cse357 ARTIFICIAL INTELLIGENCE

Professor Anita Wasilewska

Spring2016

LECTURE 4

Propositional and Predicate Languages

PART 1: Propositional Languages

PART 2: Predicate Languages

PART 3: Translations to Predicate Languages

PART 1: Propositional Languages

Propositional Language

Definition

A propositional language is a pair

$$\mathcal{L} = (\mathcal{A}, \mathcal{F})$$

where \mathcal{A}, \mathcal{F} are called an **alphabet** and a **set of formulas**, respectively

Definition

Alphabet is a set

$$\mathcal{A} = VAR \cup CON \cup PAR$$

VAR, CON, PAR are all disjoint sets of propositional variables, connectives and parenthesis, respectively The sets VAR, CON are non-empty

Alphabet Components

VAR is a countably infinite set of **propositional variables**We denote elements of VAR by a, b, c,d, ... with indices if necessary

 $CON \neq \emptyset$ is a finite set of **logical connectives**

We assume that the set CON of logical connectives is non-empty, i.e. that a propositional language always has at least one logical connective

Notation

We denote the language \mathcal{L} with the set of connectives CON by \mathcal{L}_{CON}

Observe that propositional languages **differ** only on the choice of the <u>logical connectives</u> hence our notation

Alphabet Components

PAR is a set of auxiliary symbols

This set may be empty; for example in case of Polish notation **Assumptions**

We assume here that PAR contains only 2 parenthesis and

$$PAR = \{(,)\}$$

We also assume that the set CON of logical connectives contains only unary and binary connectives, i.e.

$$CON = C_1 \cup C_2$$

where C_1 is the set of all unary connectives, and C_2 is the set of all binary connectives

It is possible to create connectives with more then one or two arguments

General Principles

Propositional connectives have well established **names** and the way we read them, even if their semantics may differ

We use names **negation**, **conjunction**, **disjunction** and **implication** for \neg , \cap , \cup , \Rightarrow , respectively

The connective \(\) is called **alternative negation** and

 $A \uparrow B$ reads: not both A and B

The connective ↓ is called **joint negation**

and $A \downarrow B$ reads: neither A nor B

Some Non-Classical Propositional Connectives

Other most common propositional connectives are **modal** connectives of **possibility** and **necessity**

Standard modal symbols are:

□ for necessity and ◊ for possibility.

The formula ⋄A reads:

it is **possible** that A or A is **possible**

The formula □A reads:

it is necessary that A or A is necessary

Some Artificial Intelligence Non-Classical Connectives

Knowledge logics also extend the classical logic by adding new **one argument** knowledge connectives

The knowledge connective is often denoted by K

A formula KA reads: it is known that A or A is known

A language of a **knowledge logic** is for example

$$\mathcal{L}_{\{K,\,\neg,\,\cap,\,\cup,\,\Rightarrow\}}$$

More Artificial Intelligence Non-Classical Connectives

Autoepistemic logics extend classical logic by adding one argument believe connectives, often denoted by B

A formula BA reads: it is believed that A

A language of an autoepistemic logic is for example

$$\mathcal{L}_{\{B,\,\neg,\,\cap,\,\cup,\,\Rightarrow\}}$$

Some Computer Science Non-Classical Connectives

Temporal logics also extend classical logic by adding one argument temporal connectives

Some of temporal connectives are: F, P, G, H.

Their intuitive meanings are:

FA reads A is true at some future time,

PA reads A was true at some past time,

GA reads A will be true at all future times,

HA reads A has always been true in the past

Formulas Definition

Definition

The set \mathcal{F} of **all formulas** of a propositional language \mathcal{L}_{CON} is build **recursively** from the elements of the alphabet \mathcal{A} as follows.

 $\mathcal{F} \subseteq \mathcal{A}^*$ and \mathcal{F} is the **smallest** set for which the following conditions are satisfied

- (1) $VAR \subseteq \mathcal{F}$
- (2) If $A \in \mathcal{F}$, $\nabla \in C_1$, then $\nabla A \in \mathcal{F}$
- (3) If A, B ∈ F, ∘ ∈ C₂ i.e ∘ is a two argument connective, then
 (A ∘ B) ∈ F

By (1) propositional variables are formulas and they are called **atomic formulas**

The set \mathcal{F} is also called a set of all **well formed formulas** (wff) of the language \mathcal{L}_{CON}

Set of Formulas

Observe that the the alphabet \mathcal{A} is countably infinite

Hence the set \mathcal{A}^* of all finite sequences of elements of \mathcal{A} is also countably infinite

By definition $\mathcal{F} \subseteq \mathcal{A}^*$ and hence we get that the set of all formulas \mathcal{F} is also countably infinite

We state as separate fact

Fact

For any propositional language $\mathcal{L} = (\mathcal{A}, \mathcal{F})$, its sets of formulas \mathcal{F} is always a **countably infinite** set

We hence consider here only infinitely countable languages

Exercise 1

Exercise 1

Consider a language

$$\mathcal{L} = \mathcal{L}_{\{\neg, \ \Diamond, \ \square, \ \cup, \ \cap, \ \Rightarrow\}}$$

and a set $S \subseteq \mathcal{A}^*$ such that

$$S = \{ \lozenge \neg a \Rightarrow (a \cup b), (\lozenge (\neg a \Rightarrow (a \cup b))), \\ \lozenge \neg (a \Rightarrow (a \cup b)) \}$$

- 1. Determine which of the elements of S are, and which are not well formed formulas (wff) of \mathcal{L}
- 2. If a formula A is a well formed formula, i.e. $A \in \mathcal{F}$, determine its its main connective.
- 3. If $A \notin \mathcal{F}$ write the correct formula and then determine its main connective

Exercise 1 Solution

Solution

The formula $\Diamond \neg a \Rightarrow (a \cup b)$ is not a well formed formula. The correct formula is

$$(\Diamond \neg a \Rightarrow (a \cup b))$$

The main connective is \Rightarrow

The correct formula says:

If negation of a is possible, then we have a or b

Another correct formula in is

$$\Diamond(\neg a\Rightarrow(a\cup b))$$

The main connective is \Diamond

The corrected formula says:

It is possible that not a implies a or b

Exercise 1 Solution

The formula $(\diamond(\neg a \Rightarrow (a \cup b)))$ is not correct The correct formula is

$$\Diamond(\neg a\Rightarrow(a\cup b))$$

The main connective is \diamond

The correct formula says:

It is possible that not a implies a or b

$$\lozenge \neg (a \Rightarrow (a \cup b))$$
 is a correct formula

The main connective is \Diamond

The formula says:

It is possible that it is not true that a implies a or b

Language Defined by a set S

Definition

Given a set S of formulas of a language \mathcal{L}_{CON} Let $CS \subseteq CON$ be the set of **all connectives** that appear in formulas of SA language

$$\mathcal{L}_{CS}$$

is called the **language defined** by the set of formulas *S* **Example**

Let S be a set

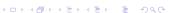
$$S = \{((a \Rightarrow \neg b) \Rightarrow \neg a), \ \Box(\neg \Diamond a \Rightarrow \neg a)\}$$

All connectives appearing in the formulas in S are:

$$\Rightarrow$$
, \neg , \square , \Diamond

The **language defined** by the set **S** is

$$\mathcal{L}_{\{\neg, \Rightarrow, \Box, \diamond\}}$$



Exercise 2

Exercise 2

Write the following natural language statement:

From the fact that it is possible that Anne is not a boy we deduce that it is not possible that Anne is not a boy or, if it is possible that Anne is not a boy, then it is not necessary that Anne is pretty

in the following two ways

1. As a formula

$$A_1 \in \mathcal{F}_1$$
 of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$

2. As a formula

```
A_2 \in \mathcal{F}_2 of a language \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}
```

Exercise 2 Solution

```
1.We translate our statement into a formula
A_1 \in \mathcal{F}_1 of the language \mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}} as follows
Propositional Variables: a,b
a denotes statement: Anne is a boy.
b denotes a statement: Anne is pretty
Propositional Modal Connectives: □, ◊
   denotes statement: it is possible that
    denotes statement: it is necessary that
Translation 1: the formula A_1 is
                 (\lozenge \neg a \Rightarrow (\neg \lozenge \neg a \cup (\lozenge \neg a \Rightarrow \neg \Box b)))
```

Exercise 2 Solution

- 2. We translate our statement into a formula
- $A_2 \in \mathcal{F}_2$ of the language $\mathcal{L}_{\{\neg, \ \cap, \ \cup, \ \Rightarrow\}}$ as follows
- Propositional Variables: a,b
- a denotes statement: it is possible that Anne is not a boy
- b denotes a statement: it is necessary that Anne is pretty
- **Translation 2:** the formula A_2 is

$$(a \Rightarrow (\neg a \cup (a \Rightarrow \neg b)))$$

Exercise 3

Exercise 3

Write the following natural language statement:

For all natural numbers $n \in N$ the following implication holds: if n < 0, then there is a natural number m, such that it is possible that n + m < 0, OR it is not possible that there is a natural number m, such that m > 0

in the following two ways

1. As a formula

$$A_1 \in \mathcal{F}_1$$
 of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

2. As a formula

```
A_2 \in \mathcal{F}_2 of a language \mathcal{L}_{\{\neg, \square, \Diamond, \cap, \cup, \Rightarrow\}}
```


Exercise 3 Solution

1. We translate our statement into a formula

 $A_1 \in \mathcal{F}_1$ of the language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ as follows

Propositional Variables: a, b

- a denotes statement: For all natural numbers $n \in N$ the following implication holds: if n < 0, then there is a natural number m, such that it is possible that n + m < 0
- **b** denotes a statement: it is possible that there is a natural number m, such that m > 0

Translation: the formula A_1 is

 $(a \cup \neg b)$

Exercise 3 Solution

2. We translate our statement into a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$ as follows

Propositional Variables: a, b

- a denotes statement: For all natural numbers $n \in N$ the following implication holds: if n < 0, then there is a natural number m, such that it is possible that n + m < 0
- b denotes a statement: there is a natural number m, such that m > 0

Translation: the formula A_2 is

 $(a \cup \neg \Diamond b)$

Exercise 4

Exercise 4

Write the following natural language statement:

The following statement holds for all natural numbers $n \in N$: if n < 0, then there is a natural number m, such that it is possible that n + m < 0, OR it is not possible that there is a natural number m, such that m > 0

in the following two ways

1. As a formula

$$A_1 \in \mathcal{F}_1$$
 of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

2. As a formula

```
A_2 \in \mathcal{F}_2 of a language \mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}
```


Exercise 5

Exercise 5

Write the following natural language statement:

From the fact that each natural number is greater than zero we deduce that it is not possible that Anne is a boy or, if it is possible that Anne is not a boy, then it is necessary that it is not true that each natural number is greater than zero

in the following two ways

1. As a formula

$$A_1 \in \mathcal{F}_1$$
 of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$

2. As a formula

```
A_2 \in \mathcal{F}_2 of a language \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}
```


PART 2: Predicate Languages

Predicate Languages

Predicate Languages are also called First Order Languages
The same applies to the use of terms for Propositional and
Predicate Logic

Propositional and **Predicate Logics** called **Zero Order** and **First Order Logics**, respectively and we will use both terms equally

We usually work with different predicate languages, depending on what applications we have in mind All **predicate languages** have some common features, and we begin with these

Propositional Connectives

Predicate Languages extend a notion of the propositional languages so we define the set CON of their propositional connectives as follows

The set CON of propositional connectives is a finite and non-empty and

$$CON = C_1 \cup C_2$$

where C_1 , C_2 are the sets of one and two arguments connectives, respectively

Parenthesis

As in the propositional case, we adopt the signs ($\,$ and $\,$) for our parenthesis., i.e. we define a set $\,$ PAR $\,$ as

$$PAR = \{ (,) \}$$

Quantifiers

We adopt two quantifiers; the **universal quantifier** denoted by \forall and the **existential quantifier** denoted by \exists , i.e. we have the following set \bigcirc of quantifiers

$$\mathbf{Q} = \{ \forall, \exists \}$$

In a case of the classical logic and the logics that **extend it**, it is possible to adopt only one quantifier and to **define the other** in terms of it and propositional connectives

Such definability is impossible in a case of some non-classical logics, for example the intuitionistic logic

But even in the case of **classical logic** the two quantifiers express better the common intuition, so we adopt the both of them

Variables

We assume that we always have a **countably infinite** set *VAR* of variables, i.e. we assume that

$$cardVAR = \aleph_0$$

We denote variables by x, y, z, ..., with indices, if necessary. we often express it by writing

$$VAR = \{x_1, x_2,\}$$

Note

The set *CON* of **propositional connectives** defines a propositional part of the **predicate logic language**

Observe that what really differ one **predicate language** from the other is the choice of additional symbols added to the symbols just described

These **additional symbols** are: predicate symbols, function symbols, and constant symbols

A **particular** predicate language is determined by specifying these additional sets of symbols

They are defined as follows

Predicate symbols

Predicate symbols represent relations

Any predicate language must have **at least one** predicate symbol

Hence we assume that any predicate language contains a non empty, finite or countably infinite set

P

of **predicate symbols**, i.e. we assume that

$$0 < card \mathbf{P} \leq \aleph_0$$

We denote predicate symbols by P, Q, R, ..., with indices, if necessary

Each predicate symbol $P \in P$ has a positive integer #P assigned to it; when #P = n we call P an n-ary (n - place) predicate (relation) symbol

Function symbols

We assume that any predicate language contains a finite (may be empty) or countably infinite set **F** of **function symbols** I.e. we assume that

$$0 \le card \mathbf{F} \le \aleph_0$$

When the set **F** is empty we say that we deal with a language without functional symbols

We denote functional symbols by f, g, h, ... with indices, if necessary

Similarly, as in the case of predicate symbols, each **function symbol** $f \in \mathbf{F}$ has a positive integer #f assigned to it; if #f = n then f is called an n-ary (n - place) **function symbol**



Constant symbols

We also assume that we have a finite (may be empty) or countably infinite set

C

of constant symbols

I.e. we assume that

$$0 \le card \mathbf{C} \le \aleph_0$$

The elements of $\bf C$ are **denoted** by $\bf c, \bf d, \bf e...$, with indices, if necessary

We often express it by putting

$$\mathbf{C} = \{c_1, c_2, ...\}$$

When the set **C** is **empty** we say that we deal with a language without constant symbols

Alphabet of Predicate Languages

Sometimes the **constant symbols** are defined as **0-ary function symbols**, i.e. we have that

 $C \subseteq F$

We single them out as a separate set for our convenience We assume that all of the above sets of symbols are **disjoint Alphabet**

The union of all of above disjoint sets of symbols is called the alphabet \mathcal{A} of the predicate language, i.e. we define

 $\mathcal{A} = VAR \cup CON \cup PAR \cup Q \cup P \cup F \cup C$

Predicate Languages Notation

Observe, that once the set of propositional connectives is fixed, the **predicate language** is determined by the sets **P**, **F** and **C**

We use the notation

$$\mathcal{L}(\mathsf{P},\mathsf{F},\mathsf{C})$$

for the **predicate language** \mathcal{L} **determined** by **P**, **F**, **C** If there is no danger of confusion, we may **abbreviate** $\mathcal{L}(\mathbf{P},\mathbf{F},\mathbf{C})$ to just \mathcal{L}

If the set of propositional connectives involved is not fixed, we also use the notation

$$\mathcal{L}_{CON}(\mathbf{P}, \mathbf{F}, \mathbf{C})$$

to denote the **predicate language** \mathcal{L} **determined** by **P**, **F**, **C** and the set of propositional connectives CON

Predicate Languages Notation

We sometimes allow the same symbol to be used as an n-place relation symbol, and also as an m-place one; no confusion should arise because the different uses can be told apart easily

Example

If we write P(x, y), the symbol P denotes **2-argument** predicate symbol

If we write P(x, y, z), the symbol P denotes **3-argument** predicate symbol

Similarly for function symbols

Two more Predicate Language Components

Having defined the alphabet we now complete the formal **definition of the predicate language** by defining two more components:

the set T of all **terms** and the set \mathcal{F} of all **well formed formulas** of the **language** $\mathcal{L}(P, F, C)$

Set of Terms

Terms

The set **T** of **terms** of the **predicate language** $\mathcal{L}(P, F, C)$ is the **smallest** set

$$\mathbf{T} \subseteq \mathcal{A}^*$$

meeting the conditions:

- 1. any variable is a **term**, i.e. $VAR \subseteq T$
- 2. any constant symbol is a **term**, i.e. $C \subseteq T$
- 3. if f is an n-place function symbol, i.e. $f \in \mathbf{F}$ and #f = n and $t_1, t_2, ..., t_n \in T$, then $f(t_1, t_2, ..., t_n) \in \mathbf{T}$

Terms Examples

Example 1

Let $f \in \mathbf{F}$, #f = 1, i.e. f is a 1-place function symbol Let x, y be variables, c, d be constants, i.e.

 $x, y \in VAR, c, d \in \mathbf{C}$

Then the following expressions are **terms**:

$$x, y, f(x), f(y), f(c), f(d), f(f(x)), f(f(y)), f(f(c)), f(f(d)), \dots$$

Example 2

Let $\mathbf{F} = \emptyset$, $\mathbf{C} = \emptyset$

In this case terms consists of variables only, i.e.

$$T = VAR = \{x_1, x_2,\}$$

Terms Examples

Directly from the **Example 2** we get the following

REMARK

For any predicate language $\mathcal{L}(P, F, C)$, the set **T** of its **terms** is always **non-empty**

Example 3

Let $f \in \mathbf{F}$, #f = 1, $g \in \mathbf{F}$, #g = 2, $x, y \in VAR$, $c, d \in \mathbf{C}$ Some of the **terms** are the following:

$$f(g(x,y)), f(g(c,x)), g(f(f(c)), g(x,y)),$$

 $g(c,g(x,f(c))), g(f(g(x,y)), g(x,f(c))) \dots$

Terms Notation

From time to time, the logicians are and we may be informal about how we write terms

Example

If we **denote** a 2- place function symbol g by +, we **may** write x + y instead +(x, y)

Because in this case we can think of x + y as an unofficial way of designating the "real" term g(x, y)

Atomic Formulas

Before we define the **set of formulas**, we need to define one more set; the set of **atomic**, or **elementary** formulas

Atomic formulas are the simplest formulas as the propositional variables were in the case of propositional languages

Atomic Formulas

Definition

An atomic formula of a predicate language $\mathcal{L}(P,F,C)$ is any element of \mathcal{A}^* of the form

$$R(t_1, t_2, ..., t_n)$$

where $R \in \mathbf{P}, \#R = n$ and $t_1, t_2, ..., t_n \in \mathbf{T}$

l.e. R is n-ary relational symbol and $t_1, t_2, ..., t_n$ are any terms

The set of all **atomic formulas** is denoted by $A\mathcal{F}$ and is defines as

$$A\mathcal{F} = \{R(t_1, t_2, ..., t_n) \in \mathcal{A}^* : R \in \mathbf{P}, t_1, t_2, ..., t_n \in \mathbf{T}, n \ge 1\}$$

Atomic Formulas Examples

Example 1

Consider a language $\mathcal{L}(\{P\}, \emptyset, \emptyset)$, for #P = 1Our language

$$\mathcal{L} = \mathcal{L}(\{P\}, \emptyset, \emptyset)$$

is a language without neither functional, nor constant symbols, and with one, 1-place predicate symbol P. The set of atomic formulas contains all formulas of the form P(x), for x any variable, i.e.

$$A\mathcal{F} = \{P(x) : x \in VAR\}$$

Atomic Formulas Examples

Example 2

Let now consider a predicate language

$$\mathcal{L} = \mathcal{L}(\lbrace R \rbrace, \lbrace f, g \rbrace, \lbrace c, d \rbrace)$$

for
$$\#f = 1, \#g = 2, \#R = 2$$

The language \mathcal{L} has **two functional symbols:** 1-place symbol f and 2-place symbol g, one 2-place **predicate** symbol R, and two constants: c,d

Some of the atomic formulas in this case are the following.

$$R(c,d), R(x,f(c)), R((g(x,y)),f(g(c,x))),$$

 $R(y, g(c,g(x,f(d)))) \dots$

Set of Formulas Definition

Now we are ready to define the set \mathcal{F} of all **well formed** formulas of any predicate language $\mathcal{L}(P,F,C)$

Definition

The set \mathcal{F} of all well formed formulas, called shortly set of formulas, of the language $\mathcal{L}(P, F, C)$ is the smallest set meeting the following four conditions:

1. Any atomic formula of $\mathcal{L}(P, F, C)$ is a formula, i.e.

$$A\mathcal{F} \subseteq \mathcal{F}$$

2. If A is a formula of $\mathcal{L}(P, F, C)$, ∇ is an one argument **propositional connective**, then ∇A is a formula of $\mathcal{L}(P, F, C)$, i.e. the following **recursive condition** holds

if
$$A \in \mathcal{F}, \nabla \in C_1$$
 then $\nabla A \in \mathcal{F}$

Set of Formulas Definition

3. If A, B are formulas of $\mathcal{L}(P, F, C)$ and \circ is a two argument propositional connective, then $(A \circ B)$ is a formula of $\mathcal{L}(P, F, C)$, i.e. the following recursive condition holds

If
$$A \in \mathcal{F}, \forall \in C_2$$
, then $(A \circ B) \in \mathcal{F}$

4. If A is a **formula** of $\mathcal{L}(P, F, C)$ and x is a **variable**, \forall , $\exists \in Q$, then $\forall xA$, $\exists xA$ are **formulas** of $\mathcal{L}(P, F, C)$, i.e. the following recursive condition holds

If
$$A \in \mathcal{F}$$
, $x \in VAR$, $\forall \exists \in \mathbf{Q}$, then $\forall xA, \exists xA \in \mathcal{F}$

Scope of the Quantifier

Another important notion of the **predicate language** is the notion of **scope of a quantifier**

It is defined as follows

Definition

Given formulas $\forall xA$, $\exists xA$, the formula A is said to be in the scope of the quantifier \forall , \exists , respectively.

Example 3

Let \mathcal{L} be a language of the previous **Example 2** with the set of connectives $\{\cap, \cup, \Rightarrow, \neg\}$, i.e. let's consider

$$\mathcal{L} = \mathcal{L}_{\{\cap,\cup,\Rightarrow,\neg\}}(\{f,g\},\{R\},\{c,d\})$$

for #f = 1, #g = 2, #R = 2

Some of the formulas of \mathcal{L} are the following.

$$R(c,d), \exists y R(y,f(c)), \neg R(x,y),$$

$$(\exists x R(x,f(c)) \Rightarrow \neg R(x,y)), \quad (R(c,d) \cap \forall z R(z,f(c))),$$

$$\forall y R(y, g(c,g(x,f(c)))), \quad \forall y \neg \exists x R(x,y)$$

Scope of Quantifiers

The formula R(x, f(c)) is in **scope of the quantifier** \exists in the formula

$$\exists x R(x, f(c))$$

The formula $(\exists x \ R(x, f(c)) \Rightarrow \neg R(x, y))$ is not in scope of any quantifier

The formula $(\exists x R(x, f(c)) \Rightarrow \neg R(x, y))$ is in **scope** of quantifier \forall in the formula

$$\forall y (\exists x R(x, f(c)) \Rightarrow \neg R(x, y))$$

Predicate Language Definition

Now we are ready to define formally a **predicate language** Let $\mathcal{A}, \mathcal{T}, \mathcal{F}$ be the **alphabet**, the set of **terms** and the set of **formulas** as already defined

Definition

A **predicate language** \mathcal{L} is a triple

$$\mathcal{L} = (\mathcal{A}, \mathsf{T}, \mathcal{F})$$

As we have said before, the language \mathcal{L} is determined by the **choice** of the symbols of its **alphabet**, namely of the **choice** of **connectives**, **predicates**, **functions**, and **constants** symbols

If we want specifically mention these choices, we write

$$\mathcal{L} = \mathcal{L}_{CON}(\mathbf{P}, \mathbf{F}, \mathbf{C})$$
 or $\mathcal{L} = \mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$

Free and Bound Variables

Given a **predicate language** $\mathcal{L} = (\mathcal{A}, \mathcal{T}, \mathcal{F})$, we must distinguish between formulas like

$$P(x,y)$$
, $\forall x P(x,y)$ and $\forall x \exists y P(x,y)$

This is done by introducing the notion of free and bound variables, and open and closed formulas

Closed formulas are also called sentences

Informally, in the formula

both variables x and y are called **free** variables

They **are not** in the **scope** of any quantifier

The formula of that type, i.e. formula **without quantifiers** is an **open formula**

Free and Bound Variables

In the formula

$$\forall y P(x, y)$$

the variable x is **free**, the variable y is **bounded** by the the quantifier \forall In the formula

$$\forall z P(x, y)$$

both *x* and *y* are **free** In the formulas

$$\forall z P(z, y), \quad \forall x P(x, y)$$

only the variable y is free

Free and Bound Variables

In the formula

$$\forall x (P(x) \Rightarrow \exists y Q(x, y))$$

there is no free variables

In the formula

$$(\forall x P(x) \Rightarrow \exists y Q(x,y))$$

the variable x (in Q(x, y)) is **free**

Sometimes in order to distinguish more easily **which** variable is **free** and which is **bound** in the formula we might use the bold face type for the quantifier bound variables, i.e. to write the last formulas as

$$(\forall \mathbf{x} P(\mathbf{x}) \Rightarrow \exists \mathbf{y} Q(x, \mathbf{y}))$$

Free and Bound Variables Formal Definition

Definition

The set FV(A) of free variables of a formula A is defined by the **induction** of the degree of the formula as follows.

- 1. If A is an **atomic** formula, i.e. $A \in A\mathcal{F}$, then FV(A) is just the set of variables appearing in A;
- 2. for any **unary** propositional connective, i.e. for any $\nabla \in C_1$

$$FV(\nabla A) = FV(A)$$

i.e. the **free** variables of ∇A are the **free** variables of A;

3. for any **binary** propositional connective, i.e, for any $o \in C_2$

$$FV(A \circ B) = FV(A) \cup FV(B)$$

i.e. the **free** variables of $(A \circ B)$ are the **free** variables of A together with the **free** variables of B;

4. $FV(\forall xA) = FV(\exists xA) = FV(A) - \{x\}$ i.e. the **free** variables of $\forall xA$ and $\exists xA$ are the **free** variables of A, **except** for X

Bound Variables, Sentence, Open Formula

Bound variables: a variable is called **bound** if it is **not free Sentence**: a formula with **no free variables** is called a

Open formula: a formula with **no bound variables** is called an open formula

Example

sentence

The formulas

$$\exists x Q(c, g(x, d)), \quad \neg \forall x (P(x) \Rightarrow \exists y (R(f(x), y) \cap \neg P(c)))$$

are sentences

The formulas

$$Q(c, g(x, d)), \neg (P(x) \Rightarrow (R(f(x), y) \cap \neg P(c)))$$

are open formulas

Examples

Example

The formulas

$$\exists x Q(c, g(x, y)), \quad \neg(P(x) \Rightarrow \exists y (R(f(x), y) \cap \neg P(c)))$$

are neither sentences nor open formulas

They contain **some free** and **some bound** variables;

the variable y is free in $\exists x Q(c, g(x, y))$

the variable x is **free** in $\neg(P(x) \Rightarrow \exists y(R(f(x), y) \cap \neg P(c)))$

Notations

Notation: It is common practice to use the notation

$$A(x_1, x_2, ..., x_n)$$

to indicate that

$$FV(A) \subseteq \{x_1, x_2, ..., x_n\}$$

without implying that all of $x_1, x_2, ..., x_n$ are actually free in A

This is similar to the practice in **algebra** of writing $w(a_0, a_1, ..., a_n) = a_0 + a_1x + ... + a_nx^n$ for a polynomial w without implying that **all** of the coefficients $a_0, a_1, ..., a_n$ are nonzero

Notations

Replacing x by $t \in T$ in A

If A(x) is a formula, and t is a term then

A(t/x)

or, more simply,

A(t)

denotes the result of replacing **all** occurrences of the free variable x by the term t throughout

Notation

When using the notation

A(t)

we always **assume** that **none** of the variables in *t* occur as **bound** variables in **A**

Notations

Rememeber

When **replacing** x by $t \in T$ in a formula A, we **denote** the result as

A(t)

and do it under the **assumption** that **none** of the variables in **t** occur as **bound** variables in **A**

The assumption that **none** of the variables in t occur as bound variables in A(t) is **essential** because **otherwise** by **substituting** t on the place of x we **would distort** the meaning of A(t)

Example

Example

Let t = y and A(x) is

$$\exists y(x \neq y)$$

i.e. the variable y in t is bound in A

The substitution of t for x produces a formula A(t) of the form

$$\exists y(y \neq y)$$

which has a different meaning than $\exists y(x \neq y)$

But if t = z, i.e. the variable z in t is **not bound** in A, then A(t/x) = A(t) is

$$\exists y(z \neq y)$$

and express the **same meaning** as A(x)

Remark that if for example t = f(z, x) we obtain

 $\exists y (f(z,x) \neq y)$ as a result of substitution of t = f(z,x) for x in $\exists y (x \neq y)$

PART 3: Translations to Predicate Languages

Translations Exercises

Exercise 1

Given a Mathematical Statement written with logical symbols

$$\forall_{x \in R} \exists_{n \in N} (x + n > 0 \Rightarrow \exists_{m \in N} (m = x + n))$$

- **1.** Translate it into a proper logical formula with restricted domain quantifiers
- 2. Translate your restricted domain quantifiers logical formula into a correct logical formula without restricted domain quantifiers

1. We translate the Mathematical Statement

$$\forall_{x \in R} \exists_{n \in N} (x + n > 0 \Rightarrow \exists_{m \in N} (m = x + n))$$

into a proper **logical formula** with restricted domain quantifiers as follows

Step 1

We identify all **predicates** and use their **symbolic** representation as follows:

$$R(x)$$
 for $x \in R$

$$N(x)$$
 for $n \in N$

$$G(x,y)$$
 for relation $>$, $E(x,y)$ for relation $=$

Step 2

We identify all **functions** and **constants** and their **symbolic** representation as follows:

f(x,y) for the function +, c for the constant 0

Step 3

We write **mathematical** expressions in as **symbolic logic** formulas as follows:

$$G(f(x,y), c)$$
 for $x + n > 0$ and $E(z, f(x,y))$ for $m = x + n$

Step 4

We identify logical **connectives** and **quantifiers** and write the **logical formula** with restricted domain quantifiers as follows

$$\forall_{R(x)} \exists_{N(y)} (G(f(x,y),c) \Rightarrow \exists_{N(z)} E(z,f(x,y)))$$

2. We translate the **logical formula** with restricted domain quantifiers

$$\forall_{R(x)} \exists_{N(y)} (G(f(x,y),c) \Rightarrow \exists_{N(z)} E(z,f(x,y)))$$

into a correct **logical formula without** restricted domain quantifiers as follows

$$\forall x (R(x) \Rightarrow \exists_{N(y)} (G(f(x,y),c) \Rightarrow \exists_{N(z)} E(z,f(x,y))))$$

$$\equiv \forall x (R(x) \Rightarrow \exists y (N(y) \cap (G(f(x,y),c) \Rightarrow \exists_{N(z)} E(z,f(x,y)))))$$

$$\equiv \forall x (R(x) \Rightarrow \exists y (N(y) \cap (G(f(x,y),c) \Rightarrow \exists z (N(z) \cap E(z,f(x,y)))))$$

Correct logical formula is:

$$\forall x (R(x) \Rightarrow \exists y (N(y) \cap (G(f(x,y),c) \Rightarrow \exists z (N(z) \cap E(z,f(x,y))))))$$

Translations Exercises

Exercise 2

Here is a mathematical statement S:

For all natural numbers n the following holds:

If n < 0, then there is a natural number m, such that m + n < 0

- **P1.** Re-write **S** as a Mathematical Statement "formula" **MSF** that only uses **mathematical** and **logical symbols**
- **P2.** Translate your Mathematical Statement "formula" **MSF** into to a correct **predicate language formula LF**
- **P3.** Argue whether the statement **S** it true of false
- P4. Give an interpretattion of the predicate language formula LF under which it is false

P1. We re-write mathematical statement S

For all natural numbers n the following holds:

If n < 0, then there is a natural number m, such that m + n < 0

as a Mathematical Statement "formula" **MSF** that only uses mathematical and logical symbols as follows

$$\forall_{n \in N} (n < 0 \Rightarrow \exists_{m \in N} (m + n < 0))$$

P2. We translate the **MSF** "formula"

$$\forall_{n\in N}(n<0\Rightarrow \exists_{m\in N}(m+n<0))$$

into a correct **predicate language formula** using the following **5** steps

Step 1

We identify **predicates** and write their **symbolic** representation as follows

We write N(x) for $x \in N$ and L(x,y) for relation <

Step 2

We identify **functions** and **constants** and write their **symbolic** representation as follows

f(x,y) for the function + and c for the constant 0

Step 3

We write the mathematical expressions in **S** as atomic formulas as follows:

$$L(f(y,c), c)$$
 for $m+n < 0$

Step 4

We identify logical **connectives** and **quantifiers** and write the **logical formula** with restricted domain quantifiers as follows

$$\forall_{N(x)}(L(x,c) \Rightarrow \exists_{N(y)}L(f(y,c),c))$$

Step 5

We translate the above into a correct logical formula

$$\forall x (N(x) \Rightarrow (L(x,c) \Rightarrow \exists y (N(y) \cap L(f(y,c),c)))$$

P3 Argue whether the statement **S** it true of false Statement $\forall_{n \in N} (n < 0 \Rightarrow \exists_{m \in N} (m + n < 0))$ is TRUE as the statement n < 0 is FALSE for all $n \in N$ and the classical implication FALSE \Rightarrow Anyvalue is always TRUE

P4. Here is an **interpretation** in a non-empty set X under which the **predicate language formula**

$$\forall x (N(x) \Rightarrow (L(x,c) \Rightarrow \exists y (N(y) \cap L(f(y,c),c)))$$

is false

Take a set $X = \{1, 2\}$

We interpret N(x) as $x \in \{1, 2\}$, L(x, y) as x > y, and constant c as 1

We **interpret** f as a two argument function f_l defined on the set X by a formula $f_l(y, x) = 1$ for all $y, x \in \{1, 2\}$ The mathematical statement

$$\forall_{x \in \{1,2\}} (x > 1 \Rightarrow \exists_{y \in \{1,2\}} (f_l(y,x) > 1))$$

is a false statement when x = 2

In this case we have 2>1 is **true** and as $f_I(y,2)=1$ for all $y\in\{1,2\}$ we get that $\exists_{y\in\{1,2\}}(f_I(y,2)>1))$ is **false** as 1>1 is **false**