Introduction to Predicate Logic

Cse537 Professor Anita Wasilewska

Predicate Logic Introduction Part 1

Predicate Logic Language
Translations to Logic Formulas
Translations to Al Logic Formulas

Predicate Logic Language

Symbols:

- 1. P, Q, R... predicates symbols, denote relations in "real life", countably infinite set
- 2. x,y,z.... variables, countably infinite set
- 3. c1, c2, ... constants, countably infinite set
- 4. f, g, h ... functional symbols, may be empty, denote functions in "real life"
- 5. Propositional connectives:

$$\vee$$
, \wedge , \Rightarrow , \neg , \Leftrightarrow

- 6. Symbols for quantifiers
 - $\forall x$ universal quantifier reads: For all x...
 - $\exists x \text{existential quantifier reads: There is } x...$

Formulas of Predicate Logic

- We use symbols 1 6 to build formulas of predicate logic as follows
- 1. P(x), Q(x,f(y)), R(x)... R(c1), Q(x, c3), Q(g(x,y), c), ... are called **atomic formulas** for any variables x, y,..., functions f, g and constants c, c1, c2, ...
- 2. All atomic formulas are formulas;
- 3. If A,B are formulas then (like in propositional logic): (A \vee B), (A \wedge B), (A \Rightarrow B), (A \Leftrightarrow B), ¬A are formulas
- 4. $\forall x A$, $\exists y A$ are formulas, for any variables x, y
- 5. The set **F** of **all formulas** is the **smallest** set that fulfills the conditions 1 -4.

Free and Bound Variables

Quantifiers bound variables within formulas

For example: A is a formula:

$$\exists x (P(x) \Rightarrow \neg Q(x, y))$$

all the x's in A are bounded by 3x

y is a free variable in A and we write A=A(y)

A(y) can be bounded by a quantifier, for example

$$\forall y \exists x (P(x) \Rightarrow \neg Q(x, y))$$

y got **bounded** and there are **no free** variables in **A** now

A formula without free variables is called a sentence

Examples

```
For example: let
P(y), Q(x,c), R(z), P_1(g(x,y),z) be atomic formulas, i.e.
P(x), Q(x,c), R(z), P_1(g(x,y),z) \in F
Then we form some other formulas out of them as
  follows:
(P(y) \lor \neg Q(x, c)) \in F
It is a formula A with two free variables x, y
We denote it as a formula A(x,y)
\exists x (P(y) \lor \neg Q(x, c)) \in F - y \text{ is a free variable}
We denote it as a formula B(y)
\forall v (P(v) \lor \neg Q(x, c)) \in F - x \text{ is a free variable}
We denote it as a formula C(x)
\forall v \exists x(P(v) \lor \neg Q(x, c)) \in F - no free variables
```

Logic and Mathematical Formulas

We often use logic symbols while writing mathematical statements in a more symbolic way

Example of a Mathematical Statement written with logical symbols

$$\forall x \in N (x > 0 \land \exists y \in N (y = 1))$$

1. Quantifier $\forall x \in \mathbb{N}$ is a quantifier with restricted domain

Logic uses only $\forall x$, $\exists y$

2. x > 0 and y =1 are mathematical statements about real relations > and =

Logic uses symbols P, Q, R... for relations

For example – we write

 $R(y, c_1)$ for y = 1 and $P(x, c_2)$ for x > 0 where c_1 and c_2 are constants representing numbers 1 and 0, respectively

Translation of Mathematical Statements to Logic Formulas

Consider a Mathematical Statement written with logical symbols

$$\forall x \in N (x > 0 \land \exists y \in N (y = 1))$$

 $x \in N$ – we translate it as **one** argument predicate Q(x)x > 0 – we translate as $P(x, c_1)$, and y = 1 as $R(y, c_2)$ and get

$$\forall Q(x) (P(x, c_1) \land \exists Q(y) R(y, c_2))$$

↑ Logic formula with **restricted domain** quantifiers

But this is **not yet a proper formula** since **we cannot** have quantifiers $\forall Q(x)$, $\exists Q(y)$ in LOGIC, but only quantifiers $\forall x$, $\exists x$

 $\forall Q(x), \exists Q(y)$ are called quantifiers with restricted domain

Logic Formula Corresponding to a Mathematical Statement

We need to "get rid" of quantifiers with restricted domain i.e. to translate them into logic quantifiers: $\forall x$, $\exists y$

 $\exists x \in N, \exists y \in N$ are restricted quantifiers

↑ certain **predicate** P(x)

General: restricted domain quantifiers are:

 $\forall A(x), \exists B(x)$

for A(x), B(x) any formulas, in particular atomic formulas (predicates) P(x), Q(x)

Restricted Domain Existential Quantifiers

Translation for **existential** quantifier

$$\exists_{A(x)} B(x) \equiv \exists x(A(x) \land B(x))$$

$$\uparrow \text{ restricted } \uparrow \text{logic, not restricted}$$

Example (mathematical formulas):

$$\exists x \neq 1 (x>0 \Rightarrow x+y>5)$$
 - restricted
 $\exists x ((x\neq 1) \land (x>0 \Rightarrow x+y>5))$ - not restricted
 $\uparrow B(x,y)$

English statement:

Some students are good

Logic Translation (restricted domain):

$$\exists_{S(x)} G(x)$$

Predicates are:

S(x) – x is a student G(x) – x is good

TRANSLATION:

 $\exists x(S(X) \land G(x))$

Restricted Domain Universal Quantifiers

Translation for universal quantifier

Restricted Logic (non-restricted)

$$\forall_{A(x)} B(x) \equiv \forall x (A(x) \Rightarrow B(x))$$

Example (mathematical statement)

 $\forall x \in N (x = 1 \lor x < 0)$ restricted domain

$$\exists \forall x (x \in \mathbb{N} \Rightarrow (x=1 \lor x<0)) - non-restricted$$

Translation of Mathematic Statements to Logic Formulas

Mathematical statement:

```
\forall x (x \in \mathbb{N} \Rightarrow (x=1 \lor x<0))
x \in N – translates to N(x)
x < 0 - translates to P(x, c_1)
x < y - < is a 2 argument relation translates to two
   argument predicate P(x, y), x, y are variables
0 − is a constant − denote by c₁
x=1: relation = translates to is a two argument predicate
   Q(x,y)
x = 1: 1 translates to a is constant denoted by c_2
x=1 translates to Q(x, c_2)
Corresponding logic formula:
           \forall x (N(x) \Rightarrow (Q(x, c_2) \lor P(x, c_1)))
```

Remark

Mathematical statement: x + y = 5

We re-write it as

$$= (+ (x, y), 5)$$

Given x = 2, x = 1, we get +(2,1) = 3 and the statement:

= (3,5) which is **FALSE (F)**

Predicates always returns logical values F or T

We really need also **function** symbols (like +, etc..) to **translate** mathematical statements to **logic**, even if we could use only relations as functions are special relations

This is why in **formal** definition of the predicate language we often we have **2 sets of symbols**

- 1. Predicates symbols which can be true or false in proper domains under certain interpretation
- 2. Functions symbols

Translations to Logic

Rules:

- **1.** Identify the domain: always a set $X \neq \phi$
- 2. Identify predicates (simple: atomic)
- 3. Identify functions (if needed)
- **4.** Identify the connectives \vee , \wedge , \Rightarrow , \neg , \Leftrightarrow
- 5. Identify the quantifiers ∀x, ∃x
 Write a logic formula using only symbols for 2,
 3, 4
- 6. Use restricted domain quantifier translation rules, where needed

Translations Examples

Translate:

For every bird there are some birds that are white

Predicates:

```
B(x) - x is a bird W(x) - x is white
```

Restricted:

$$\forall_{B(x)} \exists_{B(x)} W(x)$$

Logic

$$\forall x(B(x) \Rightarrow \exists x (B(x) \land W(x)))$$

Re-name variables

$$\forall x(B(x) \Rightarrow \exists y(B(y) \land W(y)))$$

By Laws of Quantifiers - we will study the laws later, we can rewrite it as

$$\forall x \exists y (B(x) \Rightarrow (B(y) \land W(y)))$$

AI: Intended Interpretation

Translate: For every bird there are some birds that are white **Predicates:** In AI we usually deal only with INTENDED INTERPRETATION so we use proper names for predicates and functions, i.e. we write Bird(x) for x is a bird White(x) for x is white Restricted: $\forall_{Bird(x)} \exists_{Bird(x)} White(x)$ **Al Logic** $\forall x(Bird(x) \Rightarrow \exists x (Bird(x) \land White(x)))$ Re-name variables $\forall x(Bird(x) \Rightarrow \exists y(Bird(y) \land White(y)))$ By Laws of Quantifiers - we will study the laws later, we can re-write it as $\forall x \exists y (Bird(x) \Rightarrow (Bird(y) \land White(y)))$

Example

Translate into LOGIC:

For every student there is a student that is an elephant

```
B(x) for x is a student

W(x) for x is an elephant

\forall_{B(x)} \exists_{B(x)} W(x) - \text{restricted}
\forall_{B(x)} \exists x(B(x) \land W(x))
\forall x(B(x) \Rightarrow \exists x(B(x) \land W(x))) \text{ (logic formula)}
```

Example

Translate into Al LOGIC

```
For every student there is a student that is an elephant
```

```
Student(x) for x is a student
```

```
Elephant(x) for x is an elephant
```

```
\forall_{Student(x)} \exists_{Student(x)} Elephant(x) - restricted
```

```
\forall_{B(x)} \exists x(B(x) \land W(x))
```

```
\forall x(Student(x) \Rightarrow \exists x(Student(x) \land Elephant(x)))
```

(AI logic formula)

Translations Example

```
Translate into Logic
             Some patients like all doctors
Predicates:
P(x) - x is a patient
D(x) - x is a doctor
L(x,y) - x likes y
                      \exists_{P(x)} \forall_{D(y)} L(x,y)
There is a patient(x), such that for all doctors(y), x likes y
              \exists x(P(x) \land \forall y(D(y) \Rightarrow L(x,y)))
By laws of quantifiers to be studied later we can "pull
   out \forall v'')
              \exists x \forall y (P(x) \land (D(y) \Rightarrow L(x,y)))
```

Translations Exercise

Here is a mathematical statement S:

For all natural numbers n the following hold:

IF n < 0, then there is a natural number m, such that m < 0

- 1. Re-write S as a "formula" SF that only uses mathematical and logical symbols
- 2. Translate your SF to a correct logic formula LF
- 3. Argue whether the statement S it true of false
- 4. Give an interpretation of the logic formula LF (in a non-empty set X) under which LF is false

Predicate Logic Introduction Part 2

Predicate Logic Tautologies
Intuitive Semantics for Predicate Logic

- Renaming the Variables
- Let A(x) be a formula with a free variable x
 Let y be a variable that does not occur in A(x)
- Let A(x/y) be a result of replacement of each occurrence of x by y, then the following holds

$$\forall x A(x) \equiv \forall y A(x/y)$$

 $\exists x A(x) \equiv \exists y A(x/y)$

- Renaming the Variables
- Let B be any formula in which there is a subformula $\forall x A(x)$ or $\exists x A(x)$
- Let B^* be a result of **replacement** of each occurrence of $\forall x A(x)$ or $\exists x A(x)$ by
- $\forall y \ A(x/y)$ or $\exists y \ A(x/y)$, respectively
- Then the following equivalence holds
 - $B \equiv B^*$

- Definition
- We say that a formula B has its variables named apart if no two quantifiers in B bind the same variable and no bound variable is also free
- Theorem
- Every formula is logically equivalent to one in which the variables are named apart

Example

Consider a formula B

$$B = \forall x(B(x) \Rightarrow \exists x (B(x) \land W(x)))$$

We rename variables

Substituting y for x in
$$A(x) = (B(x) \land W(x))$$
 we get

$$A(x/y) = (B(y) \land W(y))$$
 and

$$\exists x (B(x) \land W(x)) \equiv \exists y (B(y) \land W(y))$$

Substituting in B we get a formula B*

$$B^* = \forall x(B(x) \Rightarrow \exists y(B(y) \land W(y)))$$

logically equivalent to B in which the variables are named apart

De Morgan Laws

$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

 $\neg \exists x A(x) \equiv \forall x \neg A(x)$

where A(x) is any formula with free variable x, ≡ means "logically equivalent"

Definability of Quantifiers

$$\forall x A(x) \equiv \neg \exists x \neg A(x)$$

 $\exists x A(x) \equiv \neg \forall x \neg A(x)$

Application Example

De Morgan and other Laws Application in Mathematical Statements

$$\neg \forall x((x>0 \Rightarrow x+y>0) \land \exists y (y<0))$$

= (by De Morgan's Law)

$$\exists x \neg ((x>0 \Rightarrow x+y>0) \land \exists y (y<0))$$

= (by De Morgan's Law and 1., 2., 3., 4.)

$$\exists x((x>0 \land x+y \le 0) \lor \forall y(y \ge 0))$$

We used

1.
$$\neg (A \Rightarrow B) \equiv (A \land \neg B)$$
, 2. $\neg (A \land B) \equiv (\neg A \lor \neg B)$
3. $\neg (x + y) > 0) \equiv x + y \le 0$

$$4. \neg \exists y (y < 0) \equiv \forall y \neg (y < 0)$$
$$\equiv \exists y (y \ge 0)$$

Math Statement -to -Logic Formula

Mathematical statement

$$\neg \forall x((x<0 \Rightarrow x+y>0) \land \exists y (y<0))$$

Corresponding Logic Formula is

$$\neg \forall x((P(x,c) \Rightarrow R(f(x,y),c)) \land \exists y P(y,c))$$

More general; A(x), B(x) any formulas

$$\neg \forall x((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x \neg ((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x((A(x) \land \neg B(x,y)) \lor \neg \exists y A(y))$$

$$\equiv \exists x ((A(x) \land \neg B(x,y)) \lor \forall y \neg A(y))$$

Distributivity Laws

- 1. $\exists x(A(x) \lor B(x)) \equiv (\exists x A(x) \lor \exists x B(x))$ Existential quantifier is distributive over \lor What we write as $(\exists x, \lor)$
- 2. $\forall x (A(x) \land B(x)) \equiv (\forall x A(x) \land \forall x B(x))$
- Universal quantifier is distributive over \wedge , what we write as $(\forall x, \wedge)$
- Existential quantifier is distributive over ∧ only in one direction:
 - 3. $\exists x(A(x) \land B(x)) \Rightarrow (\exists x A(x) \land \exists x B(x))$

Distributivity Laws

We show the inverse implication

$$(\exists x A(x) \land \exists x B(x)) \Rightarrow \exists x(A(x) \land B(x))$$

is NOT a predicate tautology;

It means that it is not true, that the implication

$$(\exists x A(x) \land \exists x B(x)) \Rightarrow \exists x(A(x) \land B(x))$$

holds for **any** $X \neq \varphi$ and for **any** A(x), B(x) defined in the set X

To prove it we have to show that

there are $X \neq \varphi$, A(x), B(x) defined in $X \neq \varphi$ for which this implication is **FALSE**

Not a Tautology

```
The formula
```

```
(\exists x A(x) \land \exists x B(x)) \Rightarrow \exists x(A(x) \land B(x))
Is not a predicate tautology
Here is a counter- example
Take: X = R (real numbers),
A(x): x > 0 and B(x): x < 0 we get that
\exists x (x>0) \land \exists x(x<0) is a true statement in R
   and
```

 $\exists x(x>0) \land x<0$ is a false statement in R

Distributivity Laws

Universal quantifier is distributive over V in only one direction:

4. $((\forall x \ A(x) \ \lor \ \forall x \ B(x)) \Rightarrow \ \forall x (A(x) \ \lor \ B(x)))$ Here is the other direction implication counter- example

Take: X=R and A(x): x < 0, B(x): $x \ge 0$ $\forall x (x < 0 \lor x \ge 0)$ is a true statement in R (real numbers) and

 $\forall x(x<0) \ \forall \ x(x \ge 0)$ is a false statement in R

Distributivity Laws

Universal quantifier is distributive over ⇒ in one direction only:

5.
$$(\forall x(A(x) \Rightarrow B(x)) \Rightarrow (\forall x A(x) \Rightarrow \forall x B(x)))$$

Other direction implication counter example:

Take:
$$X = R$$
, $A(x)$: $x < 0$ and $B(x)$: $x+1 > 0$

 $(\forall x(x < 0)) \Rightarrow \forall x(x+1 > 0)$ is a **True** statement in set **R** of real numbers and

$$\forall x(x < 0 \Rightarrow x+1 > 0)$$
 is a **False** statement:

take x= -2, we get
$$(-2 < 0 \Rightarrow -2+1 > 0)$$
 False

Introduction and Elimination Laws

B - Formula without free variable x

6.
$$\forall x(A(x) \Rightarrow B) \equiv (\exists x A(x) \Rightarrow B)$$

7.
$$\exists x(A(x) \Rightarrow B) \equiv (\forall x A(x) \Rightarrow B)$$

8.
$$\forall x(B \Rightarrow A(x)) \equiv (B \Rightarrow \forall x A(x))$$

9.
$$\exists x(B \Rightarrow A(x)) \equiv (B \Rightarrow \exists x A(x))$$

Introduction and Elimination Laws

B - Formula without free variable x

10.
$$\forall x(A(x) \lor B) \equiv (\forall x A(x) \lor B)$$

11.
$$\forall x(A(x) \land B) \equiv (\forall x A(x) \land B)$$

12.
$$\exists x(A(x) \lor B) \equiv (\exists x A(x) \lor B)$$

13.
$$\exists x(A(x) \land B) \equiv (\exists x A(x) \land B)$$

Remark: we prove **6 -9** from **10 – 13** + de Morgan + definability of implication

TRUTH SETS

We use truth sets for predicates to define an intuitive semantics for predicate logic

Given a set $X \neq \varphi$ and a predicate P(x), the set

$$\{x \in X: P(x)\}$$

is called a truth set for the predicate P(x) in the domain $X \neq \phi$

Truth Sets, Interpretations

Example

```
Take P(x) as x+1=3
```

it is called an interpretation of P(x) in a set
 X ≠ φ

Let $X=\{1, 2, 3\}$ then the **truth set** for P(x) is

$${x \in X: P(x)} = {x \in X: x+1 = 3} = {2}$$

and we say that P(x) is **TRUE** in the set X under the interpretation P(x): x+1=3

TRUTH SETS semantics for Connectives

We use truth sets for predicates always for $X \neq \phi$

Conjunction:

$$\{x \in X: (P(x) \land Q(x))\} = \{x: P(x)\} \land \{x: Q(x)\}$$

Truth set for conjunction $(P(x) \land Q(x))$ is the set **intersection** of truth sets for its components.

Disjunction:

$$\{x \in X: (P(x) \lor Q(x))\} = \{x: P(x)\} \lor \{x: Q(x)\}$$

Truth set for disjunction $(P(x) \lor Q(x))$ is the set **union** of **truth sets** for its components.

Negation:

$$\{x \subseteq X: \neg P(x)\} = X - \{x \subseteq X: P(x)\}$$

- is the negation

and – is the **set complement** relative to X

Truth sets semantics for Connectives

Implication:

```
\{x \subseteq X: (P(x) \Rightarrow Q(x))\} = X - \{x: P(x)\} \lor \{x: Q(x)\}= \{x: \neg P(x)\} \lor \{x: Q(x)\}
```

Example:

```
 \{x \in \mathbb{N}: n > 0 \Rightarrow n^2 < 0\} = \{x \in \mathbb{N} | x \leq 0\} \quad \forall \{x \in \mathbb{N}: n^2 < 0\} 
 = \varphi \vee \varphi = \varphi
```

Truth Sets Semantics for Universal Quantifier

Definition:

$$\forall x A(x) = T$$
 iff $\{x \subseteq X: A(x)\} = X$ where

 $X \neq \varphi$ and A(x) is any formula with a free variable x

Definition:

$$\forall x A(x) = F \text{ iff } \{x \subseteq X: A(x)\} \neq X$$

where

 $X \neq \varphi$ and A(x) is any formula with a free variable x

Truth Sets semantics for Existential Quantifier

Definition:

$$\exists x A(x) = T (in x \neq \phi) \text{ iff } \{x \subseteq X : A(x)\} \neq \phi$$

Definition:

$$\exists x A(x) = F (in x \neq \varphi) iff \{x \subseteq X : A(x)\} = \varphi$$

Where $X \neq \varphi$ and A(x) is a formula with a free variable x

Venn Diagrams For Existential Quantifier and Conjunction

$$\exists x(A(x) \land B(x))=T \text{ iff } \{x:A(X)\} \land \{x:B(x)\} \neq \Phi$$

Picture

$$X \neq \Phi$$
 observe that $\{x:A(X)\} \neq \Phi$ and $\{x:B(x)\} \neq \Phi$

Venn Diagrams For Existential Quantifier and Conjunction

$$\exists x(A(x) \land B(x)) = F$$
 iff $\{x:A(x) \land \{x:B(x)\} = \Phi$

Picture

Remember {x:A(x)}, {x:B(x)} now can be Φ!

Venn Diagrams For Universal Quantifier and Implication

Observe that

$$\forall x (A(x) \Rightarrow B(x)) = T \text{ iff } \{x \in X : A(x) \Rightarrow B(x)\} = X$$

Iff

$$\{x:A(x)\}\subseteq \{x:B(x)\}$$

Picture

Remember that $\{x:A(x)\}$, $\{x:B(x)\}$ now can be Φ !

Exercise

Draw a picture for a situation where (in $X \neq \Phi$)

1.
$$\exists x P(x) = T$$

2.
$$\exists x Q(x) = T$$

3.
$$\exists x(P(x) \land Q(x)) = F$$

4.
$$\forall x (P(x) \lor Q(x) = F$$

Exercise Solution

1.
$$\exists x P(x) = T$$
 iff $\{x:P(x)\} \neq \Phi$

2.
$$\exists x Q(x) = T$$
 iff $\{x:Q(x)\} \neq \Phi$

3.
$$\exists x(P(x) \land Q(x)) = F \text{ iff } \{x: P(x)\} \land \{x: Q(x)\} = \Phi$$

4.
$$\forall x (P(x) \lor Q(x) = F \text{ iff } \{x:P(x)\} \lor \{x:Q(x)\} \neq X$$

Picture:

Denotes $\{x: P(x)\} \neq \Phi$

Proving Predicate Tautologies with TRUTH Sets

Prove that

$$|=(\forall x A(x) \Rightarrow \exists x A(x))$$

Proof:

Assume that not true

(Proof by contradiction) i.e. that there are $X \neq \Phi$, A(x) such that.

```
(\forall x \ A(x) \Rightarrow \exists x \ A(x)) = F

iff \forall x \ A(x) = T and \exists x \ A(x) = F (A \Rightarrow B) = F

iff X \neq \varphi and \{x \in X : A(x)\} = X and \{x \in X : A(x)\} = \varphi

iff X = \varphi

Contradiction with X \neq \varphi, hence proved.
```

Proving Predicate Tautologies with TRUTH Sets

Prove:

$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

```
Case1: \exists x \neg A(x) = T in X \neq \varphi iff \{x: \neg A(x)\} \neq \varphi iff X - \{x: A(x)\} \neq \varphi iff \{x: A(x)\} \neq \varphi iff Y \times A(x) = F iff Y \times A(x) = G Case2: \exists x \neg A(x) = F in X \neq \varphi iff \{x: \neg A(x)\} = \varphi iff \{x: A(x)\} = \varphi iff \{x:
```

Prove

$$\exists x(A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$$

Case 1:
$$\exists x(A(x) \lor B(x)) = T$$
 iff
 $\{x: (A(x) \lor B(x)) \neq \varphi \text{ (definition)}$
 $= \{x: (A(x)) \lor \{x: (B(x)) \neq \varphi \text{ iff}$
 $\{x: A(x)\} \neq \varphi \text{ or } \{x: B(x)\} \neq \varphi \text{ iff}$
 $= \exists x A(x) = T \text{ or } \exists x B(x) = T$
We used: for any sets, $A \lor B \neq \varphi \text{ iff}$
 $A \neq \varphi \text{ or } B \neq \varphi$
Case2 — similar

Russell's Paradox

We assumed in our approach that for any statement A(x)

the TRUTH set

 $\{x \in X: A(x)\}$ exists

Russell Antinomy showed that that technique of TRUTH sets is **not sufficient**

This is why we need a proper semantics!