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Predicate Logic Introduction
Part 1

Predicate Logic Language
Translations to Logic Formulas

Translations to Al Logic Formulas



Predicate Logic Language

Symbols:

1. P, Q, R... predicates symbols, denote relations
in “real life”, countably infinite set

2. Xx,v,z.... variables, countably infinite set
3. cl, c2, .. constants, countably infinite set

4. f,g, h .. functional symbols, may be empty,
denote functions in “real life”

5. Propositional connectives:
V,A,=, - &
6. Symbols for quantifiers
¥V x — universal quantifier reads: For all x...
= x — existential quantifier reads: There is x...



Formulas of Predicate Logic

We use symbols 1 - 6 to build formulas of predicate logic
as follows

1. P(x), Q(x,f(y)), R(x)... R(c1), Q(x, c3), Q(g(x,y), c), ...
are called atomic formulas for any variables x, v,...,
functions f, g .... and constants c, c1, c2, ...
2. All atomic formulas are formulas ;
3. If A,B are formulas then (like in propositional logic):
(AV B), (A AB),(A=B), (A< B),-A
are formulas
4. Vx A, dyA are formulas, for any variables x, y

5. The set F of all formulas is the smallest set that fulfills
the conditions 1 -4.



Free and Bound Variables

Quantifiers bound variables within formulas
For example: A is a formula:
Ix (P(x) = - Q(x,y))
all the x’sin A are bounded by 3 x

y is a free variable in A and we write A=A(y)
A(y) can be bounded by a quantifier, for example
Vy 3Ax(P(x) = -Qx,y))

y got bounded and there are no free variables in A
now

A formula without free variables is called a
sentence



Examples

For example: let

P(y), Q(x,c), R(z), P,(g(x, y), z) be atomic formulas, i.e.

P(x), Q(x,c), R(z), P,(g(x,y),z) € F

Then we form some other formulas out of them as
follows:

(P(y) V -Q(x,c)) € F

It is a formula A with two free variables x, y

We denote it as a formula A(x,y)

x (P(y) V -Q(x,¢c)) € F-yis a free variable
We denote it as a formula B(y)

Vy(P(y) V -Q(x,c)) € F-xis a free variable
We denote it as a formula C(x)

Vy 3x(P(y) V -Q(x,¢c)) € F—- no free variables



Logic and Mathematical Formulas

We often use logic symbols while writing mathematical
statements in a more symbolic way

Example of a Mathematical Statement written with logical
symbols

VXEN(x>0A Iy E N (y=1))

1. Quantifier Vx € N is a quantifier with restricted
domain

Logicusesonly Vx, dy

2. x>0 and vy =1 are mathematical statements about
real relations > and =

Logic uses symbols P, Q, R... for relations

For example — we write

R(y, c,) for y=1 and P(x, c,) for x>0 wherec, and c,are
constants representing numbers 1 and 0, respectlvely



Translation of Mathematical Statements
to Logic Formulas

Consider a Mathematical Statement written with logical symbols

VXEN((Xx>0A JyEN(y=1))

X € N — we translate it as one argument predicate Q(x)
x >0 —we translate as P(x,c,),and y=1 as R(y, c,) and get

v Q(x) (P(x, c;) A 3Q(y)R(y,c,))

M Logic formula with restricted domain quantifiers

But this is not yet a proper formula since we cannot have quantifiers
v Q(x), 3Q(y) in LOGIC, but only quantifiers ¥V x, Jx

v Q(x), 3 Q(y) are called quantifiers with restricted domain



Logic Formula Corresponding to a Mathematical Statement

We need to “get rid” of quantifiers with
restricted domain i.e. to translate them into
logic quantifiers: V x, dy

dXE N, dy € N are restricted quantifiers
I certain predicate P(x)
General: restricted domain quantifiers are :
V A(x), 3B(x)

for A(x), B(x) any formulas, in particular atomic
formulas (predicates) P(x), Q(x)



Restricted Domain Existential Quantifiers

Translation for existential quantifier

3 ,,9B(x) = I x(A(x) A B(x))

1 restricted T logic, not restricted

Example (mathematical formulas):

3 x21 (x>0 = x +y >5) -restricted

x ((x21) A (x>0 = x+y>5)) -not restricted
T B(x, y)

English statement:
Some students are good

Logic Translation (restricted domain):

359 GlX)
Predicates are :
S(x) — x is a student
G(x) — x is good
TRANSLATION:

3 x(S(X) A G(x))



Restricted Domain Universal Quantifiers

Translation for universal quantifier
Restricted Logic (non-restricted)
V ) B(X) V x (A(x) = B(x))

Example (mathematical statement )
Vx € N (x=1YV x<0) restricted domain
SVx(x € N=(x=1V x<0))-non-restricted



Translation of Mathematic Statements
to Logic Formulas

Mathematical statement:

Vx(x €EN=(x=1V x<0))
X € N — translates to N(x)
X <0- translates to P(x, c,)

X<y — < isa2argument relation translates to two
argument predicate P(x, y), X,y are variables

0 — is a constant — denote by c,
x=1: relation = translates tois a two argument predicate

Q(x,y)
x =1: 1 translates to a is constant denoted by c,
x=1 translatesto Q(x,c,)

Corresponding logic formula:

Vv x (N(x) = (Q(x, c,) V P(x, c,)))



Remark

Mathematical statement: x+y=5
We re-write it as
=(+(xy),5)
Given x=2,x=1, we get +(2,1) = 3 and the statement:
=(3,5) whichis FALSE (F)
Predicates always returns logical values ForT

We really need also function symbols (like +, etc..) to
translate mathematical statements to logic, even if we
could use only relations as functions are special relations

This is why in formal definition of the predicate language we
often we have 2 sets of symbols

1. Predicates symbols which can be true or false in proper
domains under certain interpretation

2. Functions symbols



Translations to Logic

Rules:

1. Identify the domain: always a set X # ¢
Identify predicates (simple: atomic)
Identify functions (if needed)

Identify the connectives V, A , =, -, &
Identify the quantifiers V x, dx

Write a logic formula using only symbols for 2,
3,4

6. Use restricted domain quantifier translation
rules, where needed

N1k W N



Translations Examples

Translate:
For every bird there are some birds that are white
Predicates:

B(x) — x is a bird

W(x) — x is white
Restricted:

Vew T WiX)
Logic
V x(B(x) = I x (B(x) A W(x)))
Re-name variables

V x(B(x) = Ty(B(y) AW(y)))

By Laws of Quantifiers - we will study the laws later, we can re-
write it as

Vx3y (B(x) = (B(y) A W(y)))



Al: Intended Interpretation

Translate:

For every bird there are some birds that are white
Predicates:

In Al we usually deal only with INTENDED INTERPRETATION so we use
proper names for predicates and functions, i.e. we write

Bird(x)  for xis a bird
White(x) for xis white
Restricted:
vBird(x) 3 Bird(x) WhitE(X)
Al Logic
V x(Bird(x) = I x (Bird(x) A White(x)))
Re-name variables
V x(Bird(x) = 3 y(Bird(y) A White(y)))
By Laws of Quantifiers - we will study the laws later, we can re-write it as
Vv x 3y (Bird(x) = (Bird(y) A White(y)))



Example

Translate into LOGIC:

For every student there is a student that is an
elephant

B(x) for xis astudent

W(x) for xis an elephant

Ve T WI(X) - restricted

Vs TX(B(x) A W(x))

V x(B(x) = I x(B(x) A W(x))) (logic formula)



Example

Translate into Al LOGIC

For every student there is a student that is an
elephant

Student(x)  for xis a student
Elephant(x) for xis an elephant

V studenti) 3 student(x) El€PNaNt(x) - restricted
Vs TX(B(x) A W(x))

V x(Student(x) = 3 x(Student(x) A Elephant(x)))

( Al logic formula)



Translations Example

Translate into Logic
Some patients like all doctors
Predicates:
P(x) — x is a patient
D(x) — x is a doctor
L( x,y) — x likes y
J e ¥ ory) LOXY)
There is a patient(x), such that for all doctors(y), x likes y
Ix(P(x) A Vy(D(y) = L(x,y)))

By laws of quantifiers to be studied later we can “pull
out Vvy”)

IxVy(P(x) A(D(y) =L(x,y)))



Translations Exercise

Here is a mathematical statement S:
For all natural numbers n the following hold:

IF n<Q0, then there is a natural number m, such that m
+n <0

1. Re-write S as a “formula” SF that only uses
mathematical and logical symbols

2. Translate your SF to a correct logic formula LF
3. Argue whether the statement S it true of false

Give an interpretation of the logic formula LF (in a
non-empty set X) under which LF is false



Predicate Logic Introduction
Part 2

Predicate Logic Tautologies

ntuitive Semantics for Predicate Logic



Equational Laws for Quantifiers

* Renaming the Variables

 Let A(x) be a formula with a free variable x
et v be a variable that does not occur in A(x)

e Let A(x/y) be a result of replacement of each
occurrence of x by y, then the following holds

VxA(x)= Vy A(x/y)
Ix A(x)= Iy A(x/y)



Equational Laws for Quantifiers

Renaming the Variables

Let B be any formula in which there is a
subformula V x A(x) or 3 x A(x)

Let B* be a result of replacement of each
occurrence of Vx A(x) or A x A(x)) by

Vv A(x/y) or Iy A(x/y), respectively
Then the following equivalence holds
B= B*



Equational Laws for Quantifiers

Definition
We say that a formula B has its variables

named apart if no two quantifiers in B bind
the same variable and no bound variable is

also free
Theorem

Every formula is logically equivalent to one in
which the variables are named apart



Example
Consider a formula B
B = Vx(B(x) = I x (B(x) A W(x)))
We rename variables
Substituting y for x in A(x) = (B(x) A W(x)) we get
A(x/y) = (B(y) A W(y)) and
Ix (B(x) A W(x)) = Ty (Bly) A W(y))

Substituting in B we get a formula B*

B* = Vx(B(x) = I y(B(y) AW(y)))
logically equivalent to B in which the variables
are named apart



Equational Laws for Quantifiers

De Morgan Laws
- Vx A(x) = I x-A(x)
- I x A(x) = V x -A(x)

where A(x) is any formula with free variable x,

= means “logically equivalent”

Definability of Quantifiers
V x A(x) =- I x-A(x)
I x A(x) = - V x-A(x)



Application Example

De Morgan and other Laws Application in Mathematical
Statements

- Vx((x>0 = x+y >0) A Ty (y<0))
= (by De Morgan’s Law)

Ix - ((x>0 = x+y >0) A Ty (y <0))
= (by De Morgan’s Law and 1., 2,, 3., 4.)

Ix((x>0 A x+y <0) V Vy(y 20))
We used
1.-(A=>B)=(AA-B), 2.-(AAB)=(-AV -B)
3.-(x+y)>0)=x+y <0
4, - dy(y<0)=Vy-(y<0)
=dy(y20)



Math Statement -to -Logic Formula

Mathematical statement

- Vx((x<0 = x+y >0) A Ty (y<0))
Corresponding Logic Formula is

= Vx((P(x,c) =R(f(x,y),c) )A Ty P(y,c))

More general; A(x), B(x) any formulas
V x((A(x) =B(x,y)) A TyA(y))

= dx ~((A(x) = B(x,y)) A Ty Aly))

= Ax((A(x) A =-B(x,y)) V = TyAly))
= Ix ((A(x) A -B(x,y)) V Vy-A/y))

J



Distributivity Laws

1. Ix(A(x) V B(x))=(IxA(x) V T xB(x))
Existential quantifier is distributive over V

What we write as (3 x, V)

2. Vx(A(x) A B(x))=(VYxA(x) A VxB(x))

Universal quantifier is distributive over A, what
we writeas (Vx, A)

Existential quantifier is distributive over A only in
one direction:

3. Ix(A(x) A B(x))=(IxA(x) A IxB(x))



Distributivity Laws

We show the inverse implication

(IxA(x) A IxB(x)) = Ix(A(x) A B(x))

is NOT a predicate tautology;

It means that it is not true, that the implication
(IxA(x) A IxB(x)) = Ix(A(x) A B(x))

holds forany X # ® and for any A(x), B(x)
defined in the set X

To prove it we have to show that

there are X # ¢, A(x), B(x) defined in X# ¢ for
which this implication is FALSE



Not a Tautology

The formula
(IxA(x) A IxB(x)) = Ix(A(x) A B(x))
Is not a predicate tautology

Here is a counter- example
Take: X =R (real numbers),
A(x): x>0 and B(x): x<O we get that

I x (x>0) A I x(x<0) is a true statement in R
and

I x(x>0 A x<0)is a false statement in R



Distributivity Laws

Universal quantifier is distributive over V in
only one direction:

4. ((VxA(x) V VxB(x)) = Vx(A(x) V B(x)))

Here is the other direction implication
counter- example

Take: X=R and A(x): x<0, B(x): x=20

Vx (x<0 V x20) is atrue statementinR
(real numbers) and

V x(x<0) V V¥ x(x 20) is a false statement in R



Distributivity Laws

Universal quantifier is distributive over = in
one direction only:

5. (Vx(A(x) =B(x)) = (Vx A(x) = Vx B(x)))

Other direction implication counter example:

Take: X=R, A(x):x<0 and B(x): x+1 >0

(Vx(x<0)= Vx(x+1 >0) is a True statement in
set R of real numbers and

V x(x < 0= x+1>0) is a False statement:

take x=-2, we get (-2 <0 = -2+1 > 0) False



Introduction and Elimination Laws

B - Formula without free variable x

V x(A(x) = B) = (3 x A(x) = B)
3 x(A(x) = B) = (V x A(x) = B)
V x(B = A(x)) = (B = V x A(x))
g x(B = A(x)) = (B = 3 x A(x))

© ® N O



Introduction and Elimination Laws

B - Formula without free variable x

10. Vx(A(x) V B)=(VxA(x) V B)

11.  Vx(A(x) A B)=(VxA(x) A B)
12.  Ix(A(x) V B)=(3IxA(x) V B)
13. I x(A(x) A B)= (I x A(x) A B)

Remark: we prove 6 -9 from 10 - 13 + de
Morgan + definability of implication



TRUTH SETS

We use truth sets for predicates to define an
intuitive semantics for predicate logic

Given a set X # & and a predicate P(x), the set
{x € X: P(x)}

is called a truth set for the predicate
P(x) in the domain X # ¢



Truth Sets, Interpretations

Example
Take P(x) as x+1 =3
— it is called an interpretation of P(x) in a set

X#d
Let X={1, 2, 3} then the truth set for P(x) is
{x € X:P(x)} ={x € X:x+1=3}={2}

and we say that P(x) is TRUE in the set X
under the interpretation P(x): x+1 =3



TRUTH SETS semantics for Connectives

We use truth sets for predicates always for X # ¢
Conjunction:
{x€ X: (P(x) A Q(x))}={x: P(x)} A {x: Q(x)}

Truth set for conjunction (P(x) A Q(x)) is the set
intersection of truth sets for its components.

Disjunction:
{x€ X: (P(x) V Q(x))}={x: P(x)} V {x: Q(x)}

Truth set for disjunction (P(x) V Q(x)) is the set union of
truth sets for its components.

Negation:

{x€ X:-P(x)} =X - {xE X: P(x)}

- is the negation

and —is the set complement relative to X



Truth sets semantics for Connectives

Implication:
{x€ X: (P(x) = Q(x))} =X-{x:P(x)} V {x:Q(x)}
={x: =P(x)} V {x:Q(x)}
Example:
X EN:n>0 = n?2<0}={x ENx<0}V {x EN:
n2<0}

=pV ¢ =9



Truth Sets Semantics for Universal Quantifier

Definition:
VxA(x)=T iff {xEX:A(x)}=X

where
X#d and A(x) is any formula with a free variable x

Definition:
VxA(x)=Fiff {x& X:A(x)}=X

where
X#d and A(x) is any formula with a free variable x



Truth Sets semantics for Existential Quantifier

Definition:
AxA(X)=T (inxz ) iff xEX:AX)} £

Definition:

AXxA(X)=F (inxzd) iff (xEX:A(x)} =

Where X # ¢ and A(x) is a formula with a free variable x



Venn Diagrams For Existential Quantifier and
Conjunction

I x(A(x) A B(x))=T iff {cAX)} A {x:B(x)}z D

Picture
Xz ® observe that {x:A(X)}# ® and {x:B(x)}# ®

N




Venn Diagrams For Existential Quantifier and
Conjunction

Ix(A(x) A B(x))=F iff {CAX) ADcB(x)}= O
. Xz O

Picture Remember {x:A(x)},
{x:B(x)} now can

B(x) be @!

Xz O




Venn Diagrams For Universal Quantifier and
Implication

Observe that

Vx(A(x) = B(x))=T iff {xEX:A(x) = B(x)}=X
1ij

{x:A(x)} & {x:B(x)}

Xz O

. Remember that {x:A(x)},
Picture B(x) {x:B(x)} now can

be Q!




Exercise

Draw a picture for a situation where (in Xz @)
1. IAxP(x)=T

2. AxQ(x)=T

3. Ix(P(x) A Q(x))=F

4. Vx(P(x) V Q(x)=F



Exercise Solution

1. AxP(x)=T iff {x:P(x)}z®
2. dxQ(x)=T iff DeQ(x)}z O
3. Ax(P(x) A Q(x)) =F iff {x: P(x)} A{x: Q(x)} =D

4. Vx (P(x) V Q(x) = Fiff {x:P(x)} V{x:Q(x)}=zX



Picture:

Xz O

Denotes {x: P(x)} # ®




Proving Predicate Tautologies with TRUTH Sets

Prove that

|=(VxA(x) = 3 x A(x))
Proof:
Assume that not true

(Proof by contradiction) i.e. that there are Xz @, A(x) such
that.

(VxA(x) = dxA(x))=F

iff VxA(x)=T and 3 x A(x)=F (A =B)=F
iff X#d¢ and

{xE X:A(x)}=Xand{x € X:A(x)}=¢

iff Xx= ¢

Contradiction with X # ¢, hence proved.



Proving Predicate Tautologies with TRUTH Sets

Prove:

- Vx A(x) = I x -A(x)

Casel: dx-A(x)=T inXzd iff {x:=-A(x)}#¢ iff
X—{x:A(X)} #p iff {x: A(x)}zX iff VxA(x)=F

iff - VxA(X)=T

Case2: dx-A(x)=F inXz¢p iff {x:=A(x)}=0¢ iff
X={x:AX)}=¢ iff {x:A(x)}=X iff VxAX)=T

iff - VxA(x)=F



Prove
I x(A(x) V B(x))= IAxA(x) V I x B(x)

Case 1: I x(A(x) V B(x)} =Tiff
Ix: (A(x) V B(x)} # & (definition)
={x: (A(x)} V {x: (B(x)} # ¢ iff
{x: A(x)} # d or {x: B(x)} # P iff

= Ax A(x)=T or A x B(x)=T

We used: for any sets, A V B # ¢ iff
Azd or Bzo

Case2 — similar



Russell’s Paradox

We assumed in our approach that for any
statement A(x)

the TRUTH set
{x €X:A(x)} exists

Russell Antinomy showed that that technique
of TRUTH sets is not sufficient

This is why we need a proper semantics!



