
Gene$c	 Algorithms	
Simple	 Examples	

Cse537	
Ar$ficial	 	 Intelligence	

Professor	 Anita	 Wasilewska	
	
	
	

1

Genetic Programming

A program in C
•  int foo (int time)

{
 int temp1, temp2;
 if (time > 10)
 temp1 = 3;
 else
 temp1 = 4;
 temp2 = temp1 + 1 + 2;
 return (temp2);
}

•  Equivalent expression (similar to a
classification rule in data mining):

(+ 1 2 (IF (> TIME 10) 3 4))

2 Citation: www.genetic-programming.com/c2003lecture1modified.ppt

Program tree

3

(+ 1 2 (IF (> TIME 10) 3 4))

Citation: www.genetic-programming.com/c2003lecture1modified.ppt

Given data
Input: Independent variable X Output: Dependent variable Y

-1.00 1.00
-0.80 0.84
-0.60 0.76
-0.40 0.76
-0.20 0.84
0.00 1.00
0.20 1.24
0.40 1.56
0.60 1.96
0.80 2.44
1.00 3.00

4 Citation: www.genetic-programming.com/c2003lecture1modified.ppt

Problem description
Objective: Find a computer program with one

input (independent variable X) whose
output Y equals the given data

1 Terminal set: T = {X, Random-Constants}

2 Function set: F = {+, -, *, /}

3 Initial population: Randomly created individuals from
elements in T and F.

4 Fitness: |y0’ – y0| + |y1’ – y1| + … where yi’ is
computed output and yi is given
output for xi in the range [-1,1]

5 Termination: An individual emerges whose sum of
absolute errors (the value of its fitness
function) is less than 0.1

5 Citation: www.genetic-programming.com/c2003lecture1modified.ppt

Generation 0

6

 Population of 4 randomly created individuals

x + 1	

x2 + 1	

2	

x	

Citation: examples taken from: www.genetic-programming.com/c2003lecture1modified.ppt

Mutation

7

Mutation:	

 	

	

picking “2”
as mutation
point	

/

Citation: part of the pictures used as examples are taken from: www.genetic-programming.com/c2003lecture1modified.ppt

Crossover

8

Crossover:	

 	

picking “+”
subtree and
leftmost “x” as
crossover points

Citation: example taken from: www.genetic-programming.com/c2003lecture1modified.ppt

Generation 1

9

Copy of (a)	

Mutant of (c)	

 	

picking “2”
as mutation
point	

First offspring of
crossover of (a)
and (b) 	

picking “+” of
parent (a) and
left-most “x” of
parent (b) as
crossover points	

Second offspring
of crossover of
(a) and (b)	

 picking “+” of
parent (a) and
left-most “x” of
parent (b) as
crossover points

/

Citation: part of the examples is taken from: www.genetic-programming.com/c2003lecture1modified.ppt

X Y X+1 |X+1-
Y|

1 |1-Y| X |X-Y| X2+X
+1

|X2+X
+1-Y|

-1.00 1.00 0 1 1 0 -1.00 2 1 0
-0.80 0.84 0.20 0.64 1 0.16 -0.80 1.64 0.84 0
-0.60 0.76 0.40 0.36 1 0.24 -0.60 1.36 0.76 0
-0.40 0.76 0.60 0.16 1 0.24 -0.40 1.16 0.76 0
-0.20 0.84 0.80 0.04 1 0.16 -0.20 1.04 0.84 0
0.00 1.00 1.00 0 1 0 0.00 1 1 0
0.20 1.24 1.20 0.04 1 0.24 0.20 1.04 1.24 0
0.40 1.56 1.40 0.16 1 0.56 0.40 1.16 1.56 0
0.60 1.96 1.60 0.36 1 0.96 0.60 1.36 1.96 0
0.80 2.44 1.80 0.64 1 1.44 0.80 1.64 2.44 0
1.00 3.00 2.00 1 1 2 1.00 2 3 0

10
Fitness

:
4.40 6.00 15.40 0.00

Σ Σ Σ Σ

Found!

GA and Classification

11

Parameter # of children
(NOC)

Salary
(S)

Domain 0…10 0…500000

Syntax of
atomic

expression

NOC = x
NOC < x

NOC <= x
NOC > x

NOC >= x

S = x
S < x
S > x

Classify customers based on number of
children and salary:

GA and Classification Rules

•  A classification rule is of the form

 IF description THEN class=ci

 Antecedent Consequence

12

Formula representation

•  Possible rule:
–  If (NOC = 2) AND (S > 80000) then GOOD (customer)

13

AND

NOC 2 S 80000

= >

Formula Class

Initial data table

14

Nr. Crt. Number of children
(NOC)

Salary
(S)

Type of customer
(C)

1 2 > 80000 GOOD

2 1 > 30000 GOOD

3 0 = 50000 GOOD

4 > 2 < 10000 BAD

5 = 10 = 30000 BAD

6 = 5 < 30000 BAD

Initial data represented as rules

•  Rule 1: If (NOC = 2) AND (S > 80000) then C = GOOD

•  Rule 2: If (NOC = 1) AND (S > 30000) then C = GOOD

•  Rule 3: If (NOC = 0) AND (S = 50000) then C = GOOD

•  Rule 4: If (NOC > 2) AND (S < 10000) then C = BAD

•  Rule 5: If (NOC = 10) AND (S = 30000) then C = BAD

•  Rule 6: If (NOC = 5) AND (S < 30000) then C = BAD

15

Generation 0
•  Population of 3 randomly created individuals:

–  If (NOC > 3) AND (S > 10000) then C = GOOD
–  If (NOC > 1) AND (S > 30000) then C = GOOD
–  If (NOC >= 0) AND (S < 40000) then C = GOOD

•  We want to find a more general (if it is possible
the most general) characteristic description for
class GOOD

•  We want to assign predicted class GOOD for all
individuals

16

Generation 0

17

AND

NOC 3

>

(NOC > 3) AND (S > 10000)

AND

NOC 1 S 30000

> >

(NOC > 1) AND (S > 30000)

S 10000

>

AND

NOC 0 S 40000

>= <

(NOC >= 0) AND (S < 40000)

Individual 1

Individual 2 Individual 3

Fitness function

•  For a rule IF A THEN C

 CF (Confidence factor) =

 |A| = number of records that satisfy A
 |AUC| = number of records that satisfy A and
are in predicted class C

18

|AUC|
|A|

Citation: the confidence formula is taken from class slides: http://www.cs.sunysb.edu/~cse634/lecture_notes/07association.pdf

Fitness function – Generation 0

Rule 1: If (NOC = 2) AND (S > 80000) then GOOD
Rule 2: If (NOC = 1) AND (S > 30000) then GOOD
Rule 3: If (NOC = 0) AND (S = 50000) then GOOD
Rule 4: If (NOC > 2) AND (S < 10000) then BAD
Rule 5: If (NOC = 10) AND (S = 30000) then BAD
Rule 6: If (NOC = 5) AND (S < 30000) then BAD

Fitness of Individual 1: If (NOC > 3) AND (S > 10000) then GOOD
 |A| = 2 (Rule 5 & 6), |AUC| = 0, CF = 0 / 2 = 0

Fitness of Individual 2: If (NOC > 1) AND (S > 30000) then GOOD
 |A| = 1 (Rule 1), |AUC| = 1, CF = 1 / 1 = 1

Fitness of Individual 3: If (NOC >= 0) AND (S < 40000) then GOOD
 |A| = 4 (Rule 2 & 4 & 5 & 6), |AUC| = 1, CF = 1 / 4 = 0.25

19

Best in Gen 0

Mutation

20

AND

NOC 0 S 40000

>= <

(NOC >= 0) AND (S < 40000)

AND

NOC 0 S 90000

> <

(NOC > 0) AND (S < 90000)

Mutation

Crossover

21

AND

NOC 0 S 40000

>= <

(NOC >= 0) AND (S < 40000)

Crossover

AND

NOC 1 S 30000

> >

(NOC > 1) AND (S > 30000)

AND

NOC S 40000

> <

(NOC > 1) AND (S < 40000)

AND

NOC 0 S 30000

>= >

(NOC >= 0) AND (S > 30000)

1

Generation 1

22

AND

NOC 0 S 90000

> <

(NOC > 0) AND (S < 90000)

AND

NOC 1 S 40000

> <

(NOC > 1) AND (S < 40000)

AND

NOC 0 S 30000

>= >

(NOC >= 0) AND (S > 30000)

Individual 1 Individual 2

Individual 3

Fitness function – Generation 1

Rule 1: If (NOC = 2) AND (S > 80000) then GOOD
Rule 2: If (NOC = 1) AND (S > 30000) then GOOD
Rule 3: If (NOC = 0) AND (S = 50000) then GOOD
Rule 4: If (NOC > 2) AND (S < 10000) then BAD
Rule 5: If (NOC = 10) AND (S = 30000) then BAD
Rule 6: If (NOC = 5) AND (S < 30000) then BAD

Individual 1: If (NOC > 1) AND (S < 40000) then GOOD
 |A| = 2 (Rule 4 & 5 & 6), |A&C| = 0, CF = 0 / 2 = 0

Individual 2: If (NOC >= 0) AND (S > 30000) then GOOD
 |A| = 3 (Rule 1 & 2 & 3), |A&C| = 3, CF = 3 / 3 = 1

Individual 3: If (NOC > 0) AND (S < 90000) then GOOD
 |A| = 5 (Rule 1 & 2 & 4 & 5 & 6), |A&C| = 1, CF = 1 / 5 = 0.2

23

Best in Gen 1

GA Rules Problem

-  When GAs are used for optimization, the goal
is typically to return a single value - the best
 solution found to date

-  The entire population ultimately converges to
 the neighborhood of a single solution

-  Sometimes Gas employ a special method called
a niching method that makes them capable
 of finding and maintaining multiple rules

:

APPLICATION EXAMPLE

Technical Document of

 LBS Capital Management, Inc., Clearwater, Florida

Link: http://nas.cl.uh.edu/boetticher/ML_DataMining/mahfoud96financial.pdf

Forecasting Individual Stock
Performance

-  GOAL: using historical data of a stock, predict relative return for a
quarter

Example: If IBM stock is up 5% after one quarter and the S&P 500
index is up 3% over the same period, then IBM’s relative return is +2%

- The Implementation Example consists of 15 attributes of a stock at
specific points in time and the relative return for the stock over the
subsequent 12 week time period.

-  200 to 600 (records) examples were utilized depending on the
experiment and the data available for a particular stock

GOAL: Combination of rules is required to model relationships among
financial variables

Example: Rule-1 : IF [P/E > 30] THEN Sell

 Rule-2: IF [P/E < 40 and Growth Rate > 40%] THEN Buy

Preliminary Experiments

•  For Preliminary set of experiments, to predict the return, relative to
the market, a Madcap stock was randomly selected from the S&P 400

•  331 examples(records) present in the database of examples of stock X

•  70% of examples (records) were used as a training set for the GA

•  20% of the examples (records) were used as a stopping set, to decide
which population is best

•  10% of the examples (records) were used to measure performance

•  A sample rule that the GA generated in one of the experiments:

IF [Earning Surprise Expectation > 10% and Volatility > 7%] and […]

THEN Prediction = Up

•  Same set of experiments were used using Neural Network with one
layer of hidden nodes using Backpropagation algorithm with the same
training, stopping and test sets as that of GA experiment

Observations on the Results

•  The GA correctly predicts the direction of stock relative to the
market 47.6% of the time and incorrectly predicts the 6.6% of
time and produces no prediction 45%

•  Over half of the time (47.6% + 6.6%), the GA makes a
prediction

•  When it does make a prediction, GA is correct 87.8% of the
time

•  The Neural Network correctly predicts the direction relative to
the market 79.2% of the time and incorrectly predicts direction
15.8% of the time.

•  When it does make a prediction, the NN is correct 83.4%

Comparison with Neural Networks

•  Advantage of GA’s over NN’s:

 1. GA has ability to output comprehensible rules

2. GA provides rough explanation of the concepts learned by
black-box approaches such as NN’s

3. GA learns rules that are subsequently used in a formal
expert system

•  3. GA makes no prediction when data is uncertain as opposed
to Neural Network

