Chapter 6

cse634

Professor Anita Wasilewska
Stony Brook University
Decision Tree Algorithms
Short History

- **Late 1970s** - **ID3 (Interactive Dichotomiser)** by J. Ross Quinlan
- This work expanded on earlier work on concept learning system, described by E. B. Hunt, J. Marin, and P. T. Stone
- **Early 1980** - **C4.5 a successor of ID3** by Quinlan
- **C4.5** later became a **benchmark** to which newer supervised learning algorithms, are often compared
- **In 1984**, a group of statisticians (L. Breinman, J. Friedman, R. Olshen, and C. Stone) published the book “**Classification and Regression Trees (CART)**”
Decision Tree Algorithms

Short History

• The “Classification and Regression Trees (CART)” book described a generation of binary decision trees.

• ID3, C4.5 and CART were invented independently of one another yet follow a similar approach for learning decision trees from training tuples.

• These cornerstone algorithms spawned a flurry of work on decision tree induction.
Decision Tree Algorithms
General Description

- **ID3, C4.5, and CART** adopt a **greedy** (i.e. a non-backtracking) approach.
- It this approach decision trees are constructed in a **top-down recursive divide-and-conquer** manner.
- **Most algorithms** for decision tree induction also follow such a **top-down approach**.
- All of the algorithms start with a **training set** of tuples and their **associated class labels** (classification data table).
- The **training set** is recursively partitioned into smaller subsets as the **tree** is being built.
BASIC Decision Tree Algorithm
General Description

- A Basic Decision Tree Algorithm presented here is as published in J. Han, M. Kamber book "Data Mining, Concepts and Techniques", 2006 (second Edition)
- The algorithm may appear long, but is quite straightforward
- Basic Algorithm strategy is as follows

1. The algorithm is called with three parameters: D, $attribute_list$, and $Attribute_selection_method$
2. We refer to D as a data partition
3. Initially, D is the complete set of training tuples and their associated class labels (input training data)
Basic Decision Tree Algorithm
General Description

• The parameter `attribute_list` is a list of attributes describing the tuples

• `Attribute_selection_method` specifies a heuristic procedure for selecting the `attribute` that “best” discriminates the given tuples according to `class`

• `Attribute_selection_method` procedure employs an attribute selection measure, such as Information Gain or the Gini Index

• Whether the tree is `strictly binary` is generally driven by the `attribute selection measure`
Basic Decision Tree Algorithm
General Description

• Some attribute selection measures, like the Gini Index enforce the resulting tree to be binary
• Others, like the Information Gain, do not
• They, as Information Gain does, allow multi-way splits
• They allow for two or more branches to be grown from a node
• In this case the branches represent all the (discrete) values of the nodes attributes
Basic Decision Tree Algorithm
General Description

- **The tree starts** as a single **node N**
 The **node N** represents the training tuples in D (training data table)
- This is the **step 1** in the **algorithm**

- **IF** the tuples in D are all of the **same class**
- **THEN** **node N** becomes a **leaf** and is **labeled** with that **class**

- Theses are the **steps 2 and 3** in the **algorithm**

- The **steps 4 and 5** in the **algorithm** are **terminating conditions**
- All of the **terminating conditions** are explained at **the end** of the **algorithm**
Otherwise, the algorithm calls `attribute_selection_method` to determine the splitting criterion.

The splitting criterion tells us which attributes to test at node **N** in order to determine the “best” way to separate or partition the tuples in **D** into individual classes (sub-tables) called partitions.

This is the step 6 in the algorithm.

The splitting criterion also tells us which branches to grow from node **N** with respect to the outcomes of the chosen test.

More specifically, the splitting criterion indicates the splitting attribute and may also indicate either a split-point or a splitting subset.
Basic Decision Tree Algorithm

General Description

• The splitting criterion is determined so that, ideally, the resulting partitions at each branch are as “pure” as possible.

• A partition is **PURE** if all of the tuples in it belong to the same class.

• In other words, if we were to split up the tuples in D according to the mutually exclusive outcomes of the splitting criterion, we hope for the resulting partitions to be as pure as possible.
Basic Decision Tree Algorithm

General Description

• The node \(N \) is labeled with the **splitting criterion**, which serves as a test at the node
• This is step 7
• A branch is grown from node \(N \) for each of the **outcomes** of the splitting criterion
• The tuples in \(D \) are **partitioned** accordingly
• These are steps **10** and **11**

• There are **three** possible **scenarios**, as illustrated in figure 6.4 on page 295 of the Book
Basic Decision Tree Algorithm

General Description

• Let A be the splitting attribute.
• A has distinct values (attribute values)
• a_1, a_2, \ldots, av
• The values a_1, a_2, \ldots, av of the attribute A are based on the training data for the run of the algorithm
• This is the step 7 in the algorithm

• We have the following cases depending on the TYPE of the values of the split attribute A
Basic Decision Tree Algorithm
General Description

1. A is discrete-valued:
 • In this case, the outcomes of the test at node N correspond directly to the known in training set values of A
 • A branch is created for each value aj of the attribute A
 • The branch is labeled with that value aj.
 • There are as many branches the number of values of A in the training data
Basic Decision Tree Algorithm
General Description

2. A is continuous-valued

- In this case, the test at node N has two possible outcomes, corresponding to the conditions
- $A \leq \text{split_point}$ and $A > \text{split_point}$
- The split_point is the split-point returned by Attribute_selection_method
- In practice, the split-point is often taken as the midpoint of two known adjacent values of A
- Therefore the split-point may not actually be a pre-existing value of A from the training data
Basic Decision Tree Algorithm
General Description

- Two branches are grown from N and labeled $A \leq \text{split_point}$ and $A > \text{split_point}$
- The tuples (table at the node N) are partitioned sub-tables D1 and D2
 - D1 holds the subset of class-labeled tuples in D for which $A \leq \text{split_point}$
 - D2 holds the rest
3. A is discrete-valued and a binary tree must be produced

- The **test** at node N is of the form “$A?SA?$”
- SA is the **splitting subset** for A
- SA is returned by **attribute_selection_method** as part of the splitting criterion
- SA is a subset of the known values of A
- **IF** a given tuple has value aj of A and aj belongs to SA, **THEN** the **test** at node N is **satisfied**
Basic Decision Tree Algorithms
General Description

- **Two branches** are grown from N
- The **left branch** out of N is labeled **yes** so that D_1 corresponds to the subset of class-labeled tuples in D that satisfy the **test**
- The **right branch** out of N is labeled **no** so that D_2 corresponds to the subset of class-labeled tuples from D that do not satisfy the **test**

- The algorithm uses the same process recursively to form a decision tree for the tuples at each resulting partition, D_j of D
- This is **step 14**
Basic Decision Tree Algorithms

General Description

• **TERMINATING CONDITIONS**

• The recursive partitioning *stops only when* any one of the following *terminating conditions* is *true*

• 1. *All of the tuples* in partition D (represented at node N) *belong to the same class* ([step 2 and 3]), or

• 2. *There are no remaining attributes* on which the tuples may be further partitioned ([step 4])

• *In this case, majority voting* is employed ([step 5])
Basic Decision Tree Algorithms
General Description

• **Majority voting** involves converting node \(N \) into a leaf and labeling it with the most common class in \(D \) which is a set of training tuples and their associated class labels

• **Alternatively**, the class distribution of the node tuples may be stored

• 3. There are no tuples for a given branch, that is, a partition \(D_j \) is empty

• In this case, a leaf is created with the majority class in the a set of training tuples \(D \)

• The decision tree is returned

• This is the step 15 of the algorithm
Basic Decision Tree Algorithm

- **Algorithm:** *Geneate_decision_tree*
- **Input:**
 - Data partition, D, which is a set of training tuples and their associated class labels.
 - *Attribute_list*, the set of candidate attributes
 - *Attribute_selection_method*, a procedure to determine the splitting criterion that “best” partitions the data tuples into individual classes. This criterion consists of a *splitting_attribute* and, possibly, either a *split point* or *splitting subset*.

- **Output:** a decision tree

- **Method:**
 1. create a node N;
 2. if tuples in D are all of the same class, C then
 3. return N as a leaf node labeled with the class C;
 4. If *attribute_list* is empty then
 5. Return N as a leaf node labeled with the majority class in D; //majority voting
 6. Apply *attribute_selection_method* (D, *attribute_list*) to find the “best” *splitting_criterion*;
 7. Label node N with *splitting_criterion*;
 8. If *splitting_attribute* is discrete-valued and
 - Multiway splits allowed then // not restricted to binary trees
 9. *attribute_list* → *attribute_list* - *splitting_attribute*; //remove *splitting_attribute*
 10. for each outcome j of *splitting_criterion* // partition the tuples and grow sub-trees for each partition
 11. Let Dj be the set of a data tuples in D satisfying outcome j; // a partition
 12. If Dj is empty then
 13. Attach a leaf labeled with the majority class in D to node N;
 14. Else attach the node returned by *Geneate_decision_tree* (Dj, *attribute list*) to node N;
 15. Return N;
Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the **highest information gain**
- Let p_j be the **probability** that an arbitrary tuple in D belongs to class C_i, estimated by $|C_{i,D}|/|D|$
- **Expected information** (entropy) needed to classify a tuple in D:
 \[
 \text{Info}(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)
 \]
- **Information** needed (after using A to split D into v partitions) to classify D:
 \[
 \text{Info}_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \text{I}(D_j)
 \]
- **Information gained** by branching on attribute A
 \[
 \text{Gain}(A) = \text{Info}(D) - \text{Info}_A(D)
 \]
Computing Information-Gain for Continuous-Value Attributes

• Let attribute A be a continuous-valued attribute

• Must determine the *best split point* for A

 – Sort the value A in increasing order

 – Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*

 • $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}

 – The point with the *minimum expected information requirement* for A is selected as the split-point for A

• Split:

 – D_1 is the set of tuples in D satisfying $A \leq \text{split-point}$, and D_2 is the set of tuples in D satisfying $A > \text{split-point}$
Gain Ratio for Attribute Selection (C4.5)

- **Information gain measure** is **biased** towards attributes with a large number of values.

- **C4.5** (a successor of ID3) uses **gain ratio** to overcome the problem (normalization to information gain)

\[
SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|} \right)
\]

- \(\text{GainRatio}(A) = \frac{\text{Gain}(A)}{\text{SplitInfo}(A)} \)

- **Ex.**
 \[
 SplitInfo_A(D) = -\frac{4}{14} \times \log_2 \left(\frac{4}{14} \right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14} \right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14} \right) = 0.926
 \]
 - \(\text{gain_ratio(income)} = \frac{0.029}{0.926} = 0.031 \)

- The attribute with the **maximum gain ratio** is **selected** as the splitting attribute.
Gini index (CART, IBM IntelligentMiner)

- If a data set D contains examples from n classes, gini index, $gini(D)$ is defined as

$$gini(D) = 1 - \sum_{j=1}^{n} p_j^2$$

where p_j is the relative frequency of class j in D

- If a data set D is split on A into two subsets D_1 and D_2, the gini index $gini(D)$ is defined as

$$gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

- Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

- The attribute provides the smallest $gini_{\text{split}}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)
Gini index (CART, IBM IntelligentMiner)

• Ex. \(D \) has 9 tuples in \texttt{buys_computer = “yes”} and 5 in \texttt{“no”}

\[
gini(D) = 1 - \left(\frac{9}{14} \right)^2 - \left(\frac{5}{14} \right)^2 = 0.459
\]

• Suppose the attribute \texttt{income} partitions \(D \) into 10 in \(D_1 \): \{low, medium\} and 4 in \(D_2 \)

\[
gini_{\text{income} \in \{\text{low, medium}\}}(D) = \left(\frac{10}{14} \right) Gini(D_1) + \left(\frac{4}{14} \right) Gini(D_1)
\]

\[
= \frac{10}{14} (1 - \left(\frac{6}{10} \right)^2 - \left(\frac{4}{10} \right)^2) + \frac{4}{14} (1 - \left(\frac{1}{4} \right)^2 - \left(\frac{3}{4} \right)^2)
\]

\[
= 0.450
\]

\[
= Gini_{\text{income} \in \{\text{high}\}}(D)
\]

but \(gini_{\text{medium, high}} \) is 0.30 and thus the best since it is the lowest

• Case: All attributes are assumed continuous-valued
• May need other tools, e.g., clustering, to get the possible split values
• Can be modified for categorical attributes
Comparing Attribute Selection Measures

• **The three measures, in general, return good results but**

 – **Information gain:**

 • biased towards multivalued attributes

 – **Gain ratio:**

 • tends to prefer unbalanced splits in which one partition is much smaller than the others

 – **Gini index:**

 • biased to multivalued attributes

 • has difficulty when # of classes is large

 • tends to favor tests that result in equal-sized partitions and purity in both partitions
Other Attribute Selection Measures

- **CHAID**: a popular decision tree algorithm, measure based on χ^2 test for independence
- **C-SEP**: performs better than info. gain and gini index in certain cases
- **G-statistics**: has a close approximation to χ^2 distribution
- **MDL** (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- **Multivariate splits** (partition based on multiple variable combinations)
 - **CART**: finds multivariate splits based on a linear comb. of attrs.
- **Which attribute selection measure is the best?**
 - Most give good results, *none is significantly superior* than others
Overfitting and Tree Pruning

• **Overfitting:** An induced tree may *overfit* the *training data*
 – Too many branches, some may reflect anomalies due to noise or outliers
 – Poor accuracy for unseen samples

• Two approaches to avoid overfitting
 – **Prepruning:** Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 • Difficult to choose an appropriate threshold
 – **Postpruning:** Remove branches from a “fully grown” tree—get a sequence of progressively pruned trees
 • Use a set of data different from the *training data* to decide which is the “best pruned tree”
Enhancements to Basic Decision Tree Induction

• Allow for continuous-valued attributes
 – Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals

• Handle missing attribute values
 – Assign the most common value of the attribute
 – Assign probability to each of the possible values

• Attribute construction
 – Create new attributes based on existing ones that are sparsely represented
 – This reduces fragmentation, repetition, and replication
Classification in Large Databases

• **Classification**—a classical problem extensively studied by statisticians and machine learning researchers

• **Scalability:** Classifying data sets with millions of examples and hundreds of attributes with reasonable speed

• **Why decision tree induction in data mining?**
 – relatively faster learning speed (than other classification methods)
 – convertible to simple and easy to understand classification rules
 – can use SQL queries for accessing databases
 – comparable classification accuracy with other methods
Scalable Decision Tree Induction Methods

- **SLIQ** (EDBT’96 — Mehta et al.)
 - Builds an index for each attribute and only class list and the current attribute list reside in memory

- **SPRINT** (VLDB’96 — J. Shafer et al.)
 - Constructs an attribute list data structure

- **PUBLIC** (VLDB’98 — Rastogi & Shim)
 - Integrates tree splitting and tree pruning: stop growing the tree earlier

- **RainForest** (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)

- **BOAT** (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh)
 - Uses bootstrapping to create several small samples