Medical Imaging
(The Whole Course in Two Lectures)

On the website you will find papers connected to this
Material. Please choose one, and do the following:

(1) Read it and understand it

(2) Write a report on the work (10 pages)

(3) Implement the algorithm on computer

(4) Give me the code and some test images

(5) This is your final project

(6) Contact info: allen.tannenbaum@stonybrook.edu



Outline of Course

JMedical Imaging Devices: (Notes provided
online)

JEnhancement
J1Segmentation
JRegistration

dVisualization



Medical Applications: IGT and IGS

1Biomedical Engineering principles to develop
general-purpose software methods that can be
intfegrated into complete therapy delivery
systems.

JFour main components of image-guided therapy
(IGT): localization, targeting, monitoring and
control.

1Develop robust algorithms for:

® Segmentation - automated methods that create
patient-specific models of relevant anatomy from
multi-modal data.

® Registration - automated methods that align multiple
data sets with each other and with the patient.



Segmentation



IMAGE SEGMENTATION

e Conformal curvature flow (CCF) methods find 3-D objects in 3-D
space, avoiding distortion from 2-D mapping.

e In CCF methods, a curve or bubble is drawn by the user. This
curve moves according to a differential equation, and can wrap
around objects:
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IMAGE SEGMENTATION

e Curve or surface movement is based on 2-D or 3-D data using the

differential equation:
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Active Contours-Geometric Heat Equation

The following equation gives the gradient direction in which the length of
a closed, embedded plane curve is shrinking as fast as possible using only
local information:

oC
- — kN

The next equation gives the gradient direction in which the area of a
closed, compact embedded surface is shrinking as fast as possible
using only local information:



Conformal Metrics

We now use conformal metrics to modify the geometric heat

equation in order to derive our geometric snakes models.
Curves:

ds — ¢ds
= (¢pr— Vo NN

Surfaces:

dA — odA
L = (pH—~V¢- N)N



Gradient Flows

The two flows were derived using the calculus of variations. For the

curve case, the variational problem was to determine the direction

In which the arc-length functional with respect to the conformal

Euclidean metric is decreasing as fast as possible. We outine the steps now.

Lo(t) = [ 15| odp

and
U:=(px — V¢ - N)N
One can compute that the first variation of this weighted arc-length functional is:

(t) _ fL¢(t) ac

This gives the flow for curves written down above.



Level Sets

If the initial curve is defined implicitly as a function

Y(z,y) =0

then the same evolution will be achieved by the following level
set version of the active contour evolution equation:

Uy = ||Vl div (r) + Vo - U,

where

 -— N A’

Level sets allow automatic changes in topology.
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Medical Applications of Active Contours

JActive contours can find interesting anatomical
structures.

dUsed in neurosciences for brain segmentation.

Can also be used to determine pathologies.
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Active Contours Find Cortical Surface
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Blood Vessels in the Brain

Segmentation was performed
using codimension 2 active contours.
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Knowledge-Based Segmentation

JCombination of Statistical and Partial
Differential Equation Methods

JBayesian Approach to Segmentation + Curvature
Driven Flows

JMethodology Used in Conjunction with
Geometric Active Contours
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Anisotropic Diffusion
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15



The main problem

dAnisotropic diffusion is "blind” to information
about types of objects in the scene

,, \/ Shadow
Objects Background eckaroune

Object

ONLY "TWO CLASSES” ONLY "THREE CLASSES”
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Approach

® Introduce prior information about classes in the image
® Work also with non-additive noise

® Add learning capabilities

Classical approach

New approach
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Anisotropic Smoothing of Posterior Probabilities

Intensity Image
of SAR data

Anisotropically Smoothed
Posterior Probabilities
for each class

Posterior Probabilities
for each class

MAP
Estimation

—

Anisotropic
Smoothing

MAP
Estimation

—
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MAP Estimation

[J Classes C
[1 Prior (given) probability: Pr (class=C)
[J Posterior probability: Pr(class=C | data)

[0 MAP: Choose class C that maximizes posterior:

*=arg max Pr(class=C | data)
C
[0 Bayes’Rule:

Pr(class=C | data) = Pr(data | class=C).Pr(class=C)

Pr(data)

Pr(class=C | data) = Likelihood . Prior Information
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Differences with Anisotropic Smoothing of Raw Data

Faosterior Probabilities Anisotropically Smoothed MAF Clagsification

of Class 2 Pastericr Probalbilities
of Class 2

Disk Image
= = 100
o= 8, 6.2 128

Arisotropically Smoothed Posterior Probakilities M&P Classification
Digk Image of Class 2
Figure - Toy example of the posterior ditfusion algorithm. Two classes of the

same average and different standard deviation are present in the image. The first
row show the result of our algorithm (posterior, diffusion, MAP), while the second
row shows the result of classical techniques (diffusion, posterior, MAP).
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Gray-White-Black MR Segmentation-I

21



Gray-White-Black MR Segmentation-II
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MRF’s and Smoothing Posteriors

lsotropic SEmoothing
of Postericr Prokabilities

LN

Markov Random Fisld —] En:-r!tirlun:-u-a _
with 2nd order cliques Relaxation Labeling

Figure :  Equivalence between isotropic smoothing of posterior probabilities, Markow
random fields with 2Znd order cliques, and continuous relaxation labeling.

Anisatropic Smoothing
of Postericr Probabilities

LN

Markov Random Field —p Robust Continuous
with discontinuity field Relaxation Labeling

Figure : Equivalence between anisotropic smoothing of posterior probabilities. Markoy
random fields with discontinuity fields. and robust continuous relaxation labeling,.

Maximizing Posterior = Minimizing Energy
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MAP Estimation and MRF's in General

We consider degradation model of the form
Uy = U T+ T

where u is the original image and n iid noise process.

MAP estimator is given by :

4 = arg max ,{log p(u,|u) + log p(u)}
(L

MRF is given by Gibbs distribution:

p(u) =1/ Zexp{=}

Under our assumptions

and so

A

o = arg min {F(u) + X\/2|u — ug|*}
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Markov Random Field Theory-I

Spatial properties can be modelled through different aspects, among which, the
contextual constraint is a general and powerful one. Markov random field (MRF) theory
provides a convenient and consistent way to model context-dependent entities such as
Image pixels and correlated features. This is achieved by characterizing mutual influences
among such entities using conditional MRF distributions. In an MRF, the sites in Hlare
related to one another via a neighborhood system, which is defined as

& =[N3 e 8}

where M| is the set of sites n éwborlng LfgAMand iEN; &= FE N, .Hi Arandom
field X said to be an MRF on ith respect to a neighborhood system if and only if

Az)>0,¥=ed
Fmizs-m) = Plnlsm)

Note, the neighborhood system can be multi-dimensional.
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Markov Random Field Theory-II

According to the Hammersley-Clifford theorem, an MRF can equivalently be
characterized by a Gibbs distribution. Thus,
|

P =" eop U o)),

where

is a normalizing constant called the partition function, and U(x) is an energy function
of the form

Fix) = i),
i

which is a sum of clique potentials V.(x) over all possible cliques . A cliqgue cis
defined as a subset of sites in &lin which every pair of distinct sites are neighbors,
except for single-site cliques. The value of V(x) depends on the local configuration

on clique c.
26



Specialization to Images

We specialize our notation to MRF’s defined on image grids. LetS = {1,...,n}
be a set of sites where each 8 € & corresponds to a single pixel in the im-
age. For simplicity, we assume that each site can take on labels from a com-
mon set £ = {1,...,k}. Adjacency relationships between sites are encoded by
N = {Ni|i € 8} where N; is the set of sites neighboring site 4. Cliques are then
defined as subsets of sites so that any pair of sites in a clique are neighbors. In this
paper, we will only consider 4-neighbor adjacency for images (and &-neighbor
adjacency for volumes) and cliques of sizes no greater than two. By consider-
ing each site as a discrete random variable f; with a probability mass function
over L, a discrete MRF f can be defined over the sites with a Gibbs probability
distribution.

If data d; € d is observed at each site 4, and is dependent only on its la-
bel f; then the posterior probability is itself a Gibbs distribution and by the
Hammersley-Clifford theorem, also a MRF, albeit a different one [6]: P(f|d) =
Z=1 x exp{—E(f|d)} where

E(fldy = Vilfildy+ Y Valfisf3) (5)

#EC, (i,f)ECa

where V4 (fi|d;) is a combination of the single site clique potential and the inde-
pendent likelihood and Va( f;, f7) is the pairwise-site clique potential. The nota-
tion (%, ) refers to a pair of sites; thus, the sum is actually a double sum. Max-
imizing the posterior probability P(f|d) is equivalent to minimizing the energy

E(f|d).
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Continuous Relaxation Labelling

Continuous Relaxation Labeling. The continuous relaxation labeling approach
to solving this problem was introduced by Li er. al [11]. In CRL, the class
(label) of each site 7 is represented by a vector py = [py({ fi)| fi € L] subject to the
constraints: (1) p;(fs) > 0for all f; € L. and (2) EJ‘ Eﬁptl':f?;'l = 1. Within this

framework, the energy E(f]d) to be minimized is rewritten as

E(p|d) = E Z Vilfilde)pi(fi) + Z Z Vallfis [i)pi( fe)pi(fi)-
80, it (igIEC2 (fiuf5)EL2
(7)
Note that when p;( f;) is restricted to {0, 1}. E(p|d) reverts to its original counter-
part E(f|d). Hence, CRL embeds the actual combinatorial problem into a larger,
continuous, constrained minimization problem.

The constrained minimization problem is typically solved by iterating two
steps: (1) gradient computation, and (2) normalization and update. The first step
decides the direction that decreases the objective function while the second up-
dates the current estimate while ensuring compliance with the constraints. A re-
view of the normalization techniques that have been proposed are summarized
in [11]. Ignoring the need for normalization, continuous relaxation labeling 1s

similar to traditional gradient desce +l[f?) — ph(fi) — %P(’J%l where
dE(pld) .
i + 2 Va( f:, (8)
ajﬁf.ﬁs:‘ (f Id;:] E Z f f..? (J..T:]

-(F!Jjefﬂ Jickl
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Isotropic Smoothing

Isotropic Smoothing. A convenient way of visualizing the above operation 1s as
1sotropic smoothing. Since the sites represent pixels in an image. for each class

fi. p:(f;) can be represented by an image (of posterior probabilities) such that
& classes imply & such image planes. Together, these & planes form a volume of
posterior probabilities. Each step of Egn. 8 then essentially replaces the current es-
timate p’:l:f?) with a weighted average of the neighboring assignment probabilities
psl f4). In other words, the volume of posterior probabilities 1s linearly filtered. 1t
J J .
the potential functions Va( f;z, ;) favor similar labels, then the weighted average
20Jir J§ E E
1s essentially low-pass among sites with common labels and hi-pass among sites
with differing labels.,
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MRF: Non-Interacting Discontinuity Fields

We extend the original MRF problem to include a non-interacting, analog dis-
continuity ficld on a displaced lattice. Thus, the new energy to be minimized is:

Eff.)= ) [%T’%Uf:fﬂ lig+ (lij—1— lﬁgfw)] (9)
(Ea1ECa

where Vi(f;) has been dropped for simplicity since the discontinuity field does
not interact with it. The individual sites in the discontinuity field 1 are denoted by
l;,; which represent either the horizontal or vertical separation between sites ¢ and
J in&. When [;; is small, indicating the presence of a discontinuity, the effect
of the potential Va( fi, f;) is suspended: meanwhile, the energy is penalized by
the second term in Eqn. Y. There are a variety of penalty functions that could be
derived from the robust estimation framework (see [3]). The penalty function in
Eqn. Y was derived from the Lorentzian robust estimator.

The minimization of E(f, 1) is now over both f and 1. Since the discontinuity
field 1s non-interacting, 1 can be minimized analvtically by computing the partial
derivatives of E(f,1) with respect to [;,; and setting that to zero. Doing so and
inserting the result back into E(f,1) gives us

E(f) = Z log, {14——‘[ (fhf_,,.)} (10)

(?5.{'EC2
Rewriting this equation in a form suitable for CRL, we get

Bip)= Y log|l+ss > nfmUindf]- 0

(ig1ECs (faf51eL2

Note that when pg( f;) is restricted to {0, 1}, Eqn. 6 reduces to Eqn. 5



Anisotropic Smoothing

Anisotropic Smoothing. To compute the update equation for CRL, we take the

derivative of E{p) with respect to pg( f;):

OE(p) . i
api( fi) _j:l:agéﬁz Wiy _r;:{;I o(fi. )i (f5) (12)

where

Wy, 5 = 21?'3,/. 207 + Z: f_?jp?[.r?)ﬂr(.r_r) - (13)

(faaf5)EL2

The term wy ; encodes the presence of a discontinuity. If wy ; is constant, then
the above equation reverts to the isotropic case. Otherwise, wy ; either enables or
disables the penalty function If;;lifg;fj). This equation is similar to the anisotropic
diffusion equation proposed by Perona and Malik [12].

However, image difference between sites ¢ and j in Perona and Malik’s equa-
fion 1s, in our case . replaced by a discrete version: ZJ- E_ﬂlglifhf_?)p_?l:f_?) The
stopping term wy ; 1s also the same except that the m{u:n]‘rudu, of the image gradi-
ent 1s again replaced by a discrete counterpart.
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Robust CRL

Robust Continuous Relaxation Labeling. Each iteration of continuous relax-
ation labeling can be viewed as a consensus-taking process [13]. Neighboring
pixels vote on the classification of a central pixel based on their current assign-
ment probabilities p;(f;). and their votes are tallied using a weighted sum. The
weights used are the same throughout the image: thus, pixels on one side of a
region boundary mav erroncously vote for pixels on the other side. Anisotropic
smoothing of the posterior probabilities can be regarded as implementing a robust
voting scheme since votes are tempered by w; ; which estimates the presence of a
discontinuity. The connection between anisotropic diffusion on continuous-valued
images and robust estimation was recently demonstrated by Black er. al. [4].
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Isotropic vs. Anisotropic MAP

MRI Data

Postericr Probabilitics Isotropically Smoothed

of Class 2 Posterior Probabilitiez
aof Class 2

Posterior Probabilities  Anisctropically Smoothed
of Class 2 Fosterior Probabilities

of Clags 2

33
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White Matter: Diffusion Tensor Imaging-I

posterior limb of internal capsule
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Diffusion Tensor Imaging-III
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occulomotor nerve trigeminal nerve




Diffusion Tensor Imaging-IV
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White Matter
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DT-MRI Tractography

39



Distance-Based Connectivity

« Traditional DT-tractography is "one to one”
« Distance based connectivity an efficient way of
calculating "one to many”

40



Anisotropic Heat Modelling

Anisotropic heat modelling
attractive concept when
working with regions (gray
matter structure, fMRI
activations)
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Merging BWH and MGH information: Cortical thickness from
FreeSurfer (MGH) and DT-MRI Tractorgraphy in 3D Slicer

42



DT-MRI Registration - Atlas

One brain Average of 10 brains




Fiber Bundle Color Coding

Laplacian Eigenmaps:
Map the three smoothest
elgenvectors to colors

Red . Green, and Blue

The Laplacian of the graph obtained from the points approximates the
Laplace-Beltrami operator defined on the manifold providing “optimal
embedding” in the lower dimensional space.
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Brain Atlas
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fMRI and DTI for IGS

Figure 8.4.6-1. Retrospective Example of fMRI for Neurosurgical Application
62-year-old female patient with left frontal hypenntense non-enhancing mass lesion
Skin, Brain, Ventricles (blue) and Tumor (green) models from conventional MRI; fMRI
activations (yellow) from pre-operative finger-taping experiment. Fiber tract indications
(red) from Diffusion Tensor MRI.
Imaging suggests that the tumor is in front of motor strip with involvement of
supplementary motor area, with fibers from SMA piercing tumor in its posterior aspect.
46




Data Fusion

AA
-‘. ‘ - ‘
,
ARSRNY - 220

Figure 8.4.3-4. Results from DT-MRI
tractography

Tractography results in the cortico-spinal tract are
shown in gold. Note that some of the tract is

passing through the tumor (green).

47

Figure 8.4.4-4. Case 1

Left postero-lateral view of a three-dimensional
reconstruction of the tumor (transparent green), lateral
ventricles (pink), cerebral artenies (red) and white matter
tracts adjacent to the tumor (yellow) in the same case as in
Figures 2 and 3. A 3D-SPGR dataset was used for the
tumor and ventricle reconstruction and MR angiography
was used to create the vessel 3D-model. The same line
scan diffusion dataset as in Figure 8.4.4-3 was used for the
three-dimensional reconstruction of the fiber tracts.



More Data Fusion




Registration and Surface Warping
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Surface Deformations and Flattening

O Conformal and Area-Preserving Maps
® Optical Flow

O Gives Parametrization of Surface
® Registration

O Shows Details Hidden in Surface Folds

d Path Planning
® Fly-Throughs

] Medical Research

® Brain, Colon, Bronchial Pathologies
® Functional MR and Neural Activity

 Computer Graphics and Visualization
® Texture Mapping

50



Mathematical Theory of Surface Mapping

dConformal Mapping:
® One-one
® Angle Preserving

® Fundamental Form (E,F,G)— p(E,F,G)

JExamples of Conformal Mappings:
® One-one Holomorphic Functions
® Spherical Projection

dUniformization Theorem:
® Existence of Conformal Mappings
® Uniqueness of Mapping

51



Deriving the Mapping Equation
Let P be a point on the surfaceX . Let
: 2
Z:2 > S
be a conformal equivalence sendingP  to the North Pole.

Introduce Conformal Coordinates(u’v) neap ,
with U=V =0 4P

In these coordinates, d52 = i(U,V)Z (du2 + dvz)

We can ensure that /1( p) - 1.

In these coordinates, the Laplace Beltrami operator takes the form
1 [ 8% 82
2| 27 2
A(u,v)“\ous  ov

A=
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Deriving the Equation-Continued

Set w=u+iv. The mapping z = z(w) has a simple pole at

w=0, l.e. atp .
Near p, we have a Laurent series z(w)= A+ B+C+Dw? ...
w
1
Apply A to get Az:AA(Wj.
: 1
Taking A=—,
27
Az=—" A ij
2t \\W
_ 1 A g —1 ajlogw
27 \ou  ov
= 19 —1 g Alogjw
2r\ou oV
1 (0 0
= —1 210
2r\ou oy BT O
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The Mapping Equation

Simply a second order linear PDE. Solvable by standard methods.
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Finite Elements-I

2. is a triangulated surface. Start with

Az:(i—i£j5
ou ov) "

Multiply by an arbitrary smooth f  and integrate by

parts. Forall T we want:

0_i8j5 f dS
ou ov) °

of . of
=a(p)—'5(p)

Let Z, f € PL(X), the space of piecewise linear
functions.

1. vz2-vf ds :uz(
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Finite Elements-II

For each vertex PeX, let ¢, be the
continuous function such that:

¢P(P) =1
$-(Q)=0,Q = P,Q a vertex,

¢ Is linear on each triangle.

These functions form a basis for the finite
dimensional space PL(Z).

Then z=3%; z,¢,.

And we want, for allQ |,
6¢Q 6¢Q

2p2p 1V -vQdS :au(p)—av(p)

This is simply a matrix equation.
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Finite Elements-III
Set D =(DPQ), Dpg =11V p Vs,

Define vectors
a = (an = [iﬁ?(p)}
b=(bg :[f?(p)]'

Our equation becomes simply Dz =a —1b.

1
Dpg = —E{cotzR +cot S},

Dpp =—2p . oPpo:
Need formulas fogl b
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Finite Elements-IV

Suppose the point p lies on a triangle with
vertices ABC.

Since a:(an [a;?( )}

and b =(ij =[8§S(p)],

we have a0 —ibQ =0if Q¢ {A B,C}.
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Finite Elements-V

If Q e{A, B,C}, then considering that 78 IS

linear on ABC:
~1 . 1-0
= A
B—A+IC—EQ
1 .0
aQ—le =< 5 A +1 C Q=8B
|
| Q=C
| —E|
(C—AB—A}
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Finite Elements-VI

If we set z=x+iy, then our system
Dz =a—ib becomes
Dx =a and Dy —b.

D Is sparse, real, symmetric and
positive semi-definite. Its kernel is
the space of constant vectors, and it Is
positive definite on the space
orthogonal to its kernel.

These properties of D allow us to use
the conjugate gradient method to
solve the system.
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Summary of Flattening

Flattening:
Calculate the elements of the matrices

D,a,andb.

Use the conjugate gradient method to
solve Dx=aand Dy =-b.

The resulting z = x+iy Is the
conformal mapping to the complex
plane.

Compose z with inverse stereo
projection to get a conformal map to
the unit sphere.
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Cortical Surface Flattening-Normal Brain
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White Matter Segmentation and Flattening
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Conformal Mapping of Neonate Cortex

Figure 8.4.5-12
Conformal mapping of the neonate cortical surface to the sphere. The shading scheme represents mean curvature.
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Coordinate System on Cortical Surface
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Principal Lines of Curvature on Brain Surface-I
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Principal Lines of Curvatures on the Brain-II
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Bladder Flattening

68



3D Ultrasound Cardiac Heart Map




Flattening a Tube

(1) Solve
AUu = 0 on Z\(aoual)

u =0 on GO

u =1 on o4 50

(2) Make a cut from g to O1 .

Make sure U s increasing along the cut.
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Flattening a Tube-Continued

(3) Calculate V' on the boundary loop

% —>CUt—>0; —>Cm—>00

by integration

v(f): je OV oV Jg Gu

oS
(4) Solve Dirichlet problem using boundary values Of

v=g(u)+h

v =9(u)

If you want, scale so h=2rx , take eu IV to get an
annulus.
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Flattening Without Distortion-I

In practice, once the tubular surface has been flattened into a
rectangular shape, it will need to be visually inspected for
pathologies. We present a simple technique by which the entire
colon surface can be presented to the viewer as a sequence of
Images or cine. In addition, this method allows the viewer to
examine each surface point without distortion at some time in the
cine. Here, we will say a mapping is without distortion at a point
If it preserves the intrinsic distance there.

It is well known that a surface cannot in general be flattened onto
the plane without some distortion somewhere. However, it may be
possible to achieve a surface flattening which is free of distortion
along some curve. A simple example of this is the familiar
Mercator projection of the earth, in which the equator appears
without distortion. In our case, the distortion free curve will be a
level set of the harmonic function (essentially a loop around the
tubular colon surface), and will correspond to the vertical line
through the center of a frame in the cine. This line is orthogonal
to the “path of flight” so that every point of the colon surface is
exhibited at some time without distortion.
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Flattening Without Distortion-IT

Suppose we have conformally flattened the colon surface onto a rectangle

R = :O’umax]x[_ﬂ-’ﬂ-].

Let P be the inverse of this mapping, and let 4°=4°(U.Y) pe the amount by

Which ™ chaIes a small area near (u,v), i.e. let ¢>0be the “conformal
factor” for

w>0 U, e[

Fix ~and for.each ° U define a subset
Ry = ([Uuy = w,u, +w]x T 7,7])AR

which will correspond to the contents of a
cine frame. We define a mapping

Ug

090 ot b |
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Flattening Without Distortion-III

We have

0 1

06(u,0)= (0[5 1)

This implies that composition of the flattening
map with G sends level set Ioop{F%} on the surface to
the vertical line =0} in thed—¥ plane without distortion. In

addition, it follows from the formula fordG that lengths

measured in theU direction accurately reflect the lengths
of corresponding curves on the surface.
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Introduction: Colon Cancer

dUS: 3rd most common diagnosed cancer
d US: 3rd most frequent cause of death
d US: 56.000 deaths every year

J Most of the colorectal cancers arise from
preexistent adenomatous polyps

O Landis S, Murray T, Bolden S, Wingo Ph.Cancer Statitics 1999. Ca Cancer J Clin.
1999; 49:8-31.
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Problems of CT Colonography

1Proper preparation of bowel
JHow to ensure complete inspection
- Nondistorting colon flattening program
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Colon Segmentation and Flattening




Nondistorting colon flattening

Simulating pathologist’ approach
JNo Navigation is needed
JEntire surface is visualized
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Nondistorting Colon Flattening

dUsing CT colonography data
dStandard protocol for CT colonography
43 patients (28 m, 15 f)

dMean age 70.2 years (from 50 to 82)
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Flattened Colon
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Colon Fly-Through Without Distortion
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Polyps Rendering




Finding Polyps on Original Images

Slice 79 of 131 Slice 45 of 1351
1 1 I I | | |
20 20 |
a0 - 40 |-
G0 - B0 |-
a0 S0 |
100k 100 |
1205 120 | —
| | | | 1 1 1 1 1 1 1 1
20 40 &0 &0 100 120 =0 40 1] S0 100 120
#“ -
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Polyp Detection
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Polyp Highlighted
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alice 263 of 474

Cancer: descending colon

Colon cancer
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Cancer: Descending Colon



olice 399 of 474

Polyp: Left Flexure




slice, aspect 1.00
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Polyp: Sigmoid Colon
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Path-Planning Deluxe




Simultaneous Fly-Through
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Coronary Vessels-Rendering
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Coronary Vessels: Fly-Through
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Area-Preserving Flows-I
Let M be a closed, connected n-dimensional manifold. VVolume form:

T = g(x)dx,dx =dx,; A .. A dX
g(x)>20

n,

Theorem (Moser):

M, N compact manifolds with volume forms = ando . Assume that M
and N are diffeomorphic. If

then there exists a diffeomorphism of M into N takig  intoo .
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Area-Preserving Flows-II

dThe basic idea of the proof of the theorem is
the contruction of an orientation-preserving
automorphism homotopic to the identity.

JAs a corollary, we get that given M and N any
two diffeomorphic surfaces with the same total
area, there exists are area-preserving
diffeomorphism.

® This can be constructed explicitly via a PDE.
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Area-Preserving Flows for the Sphere-I

O — /CN )
N Q ou

Find a one-parameter family of vector fields
u,,t €[0.1] and solve the ODE

d
a¢t = U, °¢t

to get a family of diffeomorphisms 2 such that
¢, = Id

and
det (D¢, )((1-t)det( Df )+t)= det( Df )
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Area-Preserving Flows for the Sphere-IT

To find Uy | solve
A0 =1-det(Df)
then

_ -Vé
" (1-t)det(Df )+t
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Area-Preserving Flows of Minimal Distortion

Let M and N be two compact surfaces with Riemannian metrics
h and g respectively, and let ¢ be an area preserving map. This
means if Q, and €, are the area forms then

¢*(Qg) = Qh'

Many other area preserving maps from M ——N
(just compose ¢ with any other area preserving map). Which one
has the smallest distortion?

Minimize the Dirichlet integral with respect to area-preserving
maps:

) =1/2 f,,|Dof*

This leads to explicit gradient descent equations. Method will be
discussed when we describe Monge-Kantorovich algorithms.
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Registration and Mass Transport

Image registration is the process of establishing a common geometric frame of
reference from two or more data sets from the same or different imaging
modalities taken at different times.

Multimodal registration proceeds in several steps. First, each image or data set to
be matched should be individually calibrated, corrected from imaging distortions,
cleaned from noise and imaging artifacts. Next, a measure of dissimilarity between
the data sets must be established, so we can quantify how close an image is from
another after transformations are applied to them. Similarity measures

Include the proximity of redefined landmarks, the distance between contours, the
difference between pixel intensity values. One can extract individual features

that to be matched in each data set. Once features have been extracted from each
Image, they must be paired to each other. Then, a the similarity measure between
the paired features is formulated can be formulated as an optimization problem.

We can use Monge-Kantorovich for the similarity measure in this procedure.
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Mass Transportation Problems

Original transport problem was proposed by
Gaspar Monge in 1781, and asks to move a pile
of soil or rubble to an excavation with the
least amount of work.

Modern measure-theoretic formulation given by
Kantorovich in 1942. Problem is therefore
known as Monge-Kantorovich Problem (MKP).

Many problems in various fields can be
formulated in term of MKP: statistical physics,
functional analysis, astrophysics, reliability
theory, quality control, meteorology,
transportation, econometrics, expert systems,
queuing theory, hybrid systems, and nonlinear
control.
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Monge-Kantorovich Mass Transfer Problem-1

We consider two density functions
Jro(z) dz = [pr(z) dx

We want

M: R >R

which for all bounded subsets 4 € B"

fxeAMT(w) dr = fM(x)eA'uO('T) dzx

M : :
For smooth and 1-1, we have (Jacobian equation)

det (VM (X)) 24 (M (X)) = 14(X)

We call such a map M mass preserving (MP).
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MK Mass Transfer Problem-II

Jacobian problem has many solutions. Want optimal one (Lp-
Kantorovich-Wasserstein metric)

dp(po, p1)? :=inf,, [[M(z) — z|Ppo(x)de

Optimal map (when it exists) chooses a map with preferred
geometry (like the Riemann Mapping Theorem) in the plane.
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Algorithm for Optimal Transport-I

Subdomains with smooth boundaries and positive densities:

(2,8 C R¢
Jo o = Jo, 1

We consider diffeomorphisms which map one density to the
other:

1, = det(Du)uy o u

We call this the mass preservation (MP) property. We let u be a
Initial MP mapping.
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Algorithm for Optimal Transport-II

We consider a one-parameter family of MP maps derived as follows:

1

u:=uos ,s=s(-,t), up =det(Ds)ugo s

Notice that from the MP property of the mapping s, and definition of the family,

~

1 ~ _
Ut:_%Du'Ca (= posos

div { =0
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Algorithm for Optimal Transport-III

We consider a functional of the following form which we infimize with respect to
the maps «:

- fQOq)@(f’?at) —x) () dr
= [ ®uly) —s(y,t))mly) dy, = =s(y,t), s"(polz)dr) = poly)dy

Taking the first variation:

M(t) = — (@' (u—s), spuody
= — (@' (u(x,t) —x), posios ) dux

= — [, (@' (W(z,t) —x), () da
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Algorithm for Optimal Transport-IV
First Choice:
(=®(u—x)+ Vp
div (=0
Clon, tangential to 98

This leads to following system of equations:

ty = — 1/ Dii - (¥(i — ) + V)
P47 (@ —x) =0, on Ky
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Algorithm for Optimal Transport-V

This equation can be written in the non-local form:

S = — = Du-(I-VA'V- )P (i — )

At optimality, it is known that
¢’ (1 —x) = Va

where ¢ Is a function. Notice therefore for an optimal
solution, we have that the non-local equation becomes
ou

ot
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Solution of L2 M-K and Polar Factorization

For the L2 Monge-Kantorovich problem, we take

O (x) = lF

2
2
This leads to the following “non-local” gradient descent equation:
i =—1/peDu(t — VAT div(@))
Notice some of the motivation for this approach. We take:
w=uos ' =Vw+y, div(y) =0 Helmholtz decomp.

The idea is to push the fixed initial u around (considered as a vector
field) using the 1-parameter family of MP maps s(x,t), in such a manner
as to remove the divergence free part. Thus we get that at optimality

u = Vwo s Polar factorization
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Example of Mass Transfer-I

Domain Density Target Density
= = :?‘ N

435
50

100

150

200 |

0 50 100 150 200 250
Y Y

We want to map the Lena image to the Tiffany one.
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Example of Mass Transfer-II

135

50 100 150 200 250

The first image is the initial guess at a mapping. The second is
the Monge-Kantorovich improved mapping.
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Morphing the Densities-I




Morphing the Densities-II (Brain Sag)
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Deformation Map

Brain deformation sequence. Two 3D MR data sets were used.
First is pre-operative, and second during surgery, after
craniotomy and opening of the dura. First image shows planar
slice while subsequent images show 2D projections of 3D
surfaces which constitute path from original slice. Here time t=0,
0.33, 0.67,and 1.0. Arrows indicate areas of greatest deformation.
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Morphing-IIT
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Morphing-IV
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Morphing-V
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Surface Warping-I

M-K allows one to find area-correcting

flattening. After conformally flattening

surface, define density mu_0 to be determinant of
Jacobian of inverse of flattening map, and mu_1 to be
constant. MK optimal map is then area-correcting.
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Surface Warping-II




General Set-Up for L2 Mass Transport

Optimal mass transport and area-preserving maps of
minimal distortion can be including in the following general
framework:

inf [®(t —x, D(t — x))po(z) dr

u MP

Here @ is a positive definite quadratic form. The case
of interest is:

& =1/2|t —z|*+ o’|D(i — )|

Second term also acts as "“smoothness term” in the M-K
problem.
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Mass Transfer and Interpolation

Target Image

Original Image. Iteration: 1051
T

T T T T T

20
30

40

60
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Warping Map

The Calculated Warp

10

20 FEEEE
30
40
50

60

0 10 20 30 40 50 60
h

M=inf _,p [(Fou—G)*+« [|Dul?
F:Q—-R,G: Q1 — R

F and G are the image intensities and we infimize over all
area-preserving maps:
u : QO — Ql
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And now for the details.......cccee....



