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Medical Imaging 
(The Whole Course in Two Lectures)

On the website you will find papers connected to this

Material. Please choose one, and do the following:

(1) Read it and understand it

(2) Write a report on the work (10 pages)

(3) Implement the algorithm on computer

(4) Give me the code and some test images

(5) This is your final project

(6) Contact info: allen.tannenbaum@stonybrook.edu
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Outline of Course

Medical Imaging Devices: (Notes provided 
online)

Enhancement

Segmentation

Registration

Visualization
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Medical Applications: IGT and IGS

Biomedical Engineering principles to develop 
general-purpose software methods that can be 
integrated into complete therapy delivery 
systems. 

Four main components of image-guided therapy 
(IGT): localization, targeting, monitoring and 
control.

Develop robust algorithms for:
Segmentation - automated methods that create 

patient-specific models of relevant anatomy from 
multi-modal data.

Registration – automated methods that align multiple 
data sets with each other and with the patient.
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Segmentation
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IMAGE SEGMENTATION

 Conformal curvature flow (CCF) methods find 3-D objects in 3-D 

space, avoiding distortion from 2-D mapping.

 In CCF methods, a curve or bubble is drawn by the user.  This 

curve moves according to a differential equation, and can wrap 

around objects:

time

(iterations)

N


N


ORIGINAL 

CURVE DRAWN
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IMAGE SEGMENTATION

 Curve or surface movement is based on 2-D or 3-D data using the 

differential equation:

CURVATURE 

FLOW
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Active Contours-Geometric Heat Equation

@t

@C
= ôN~

The following equation gives the gradient direction in which the length of 

a closed, embedded plane curve is shrinking as fast as possible using only 

local information:

The next equation gives the gradient direction in which the area of a 

closed, compact embedded surface is shrinking as fast as possible 

using only local information:

@t

@S
=HN~
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Conformal Metrics

ds ! þds

@t

@C
= (þôàrþ áN~ )N~

dA ! þdA

@t

@S
= (þHàrþ áN~ )N~

We now use conformal metrics to modify the geometric heat

equation in order to derive our geometric snakes models.

Curves:

Surfaces:
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Gradient Flows

The two flows were derived using the calculus of variations. For the 

curve case, the variational problem was to determine the direction

in which the arc-length functional with respect to the conformal

Euclidean metric is decreasing as fast as possible. We outine the steps now.

Set

U := (þôàrþ áN~ )N~

One can compute that the first variation of this weighted arc-length functional is:

and

Lþ(t) :=
R

0

1
jj
@p

@C
jjþdp

L
0

þ
(t) =à

R

0

Lþ(t)
h
@t

@C
; Ui

This gives the flow for curves written down above.
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Level Sets

If the initial curve is defined implicitly as a function 

 (x; y) = 0

then the same evolution will be achieved by the following level

set version of the active contour evolution equation:

Ñt = þjjUjj div (
jjUjj

U
)+rþ á U;

where

U :=rÑ:

Level sets allow automatic changes in topology.
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Medical Applications of Active Contours

Active contours can find interesting anatomical 
structures.

Used in neurosciences for brain segmentation.

Can also be used to determine pathologies.
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Active Contours Find Cortical Surface
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Blood Vessels in the Brain

Segmentation was performed
using codimension 2 active contours.
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Knowledge-Based Segmentation

Combination of Statistical and Partial 
Differential Equation Methods

Bayesian Approach to Segmentation + Curvature 
Driven Flows

Methodology Used in Conjunction with 
Geometric Active Contours
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Isotropic

smoothing

Anisotropic

smoothing

Anisotropic Diffusion
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The main problem

Anisotropic diffusion is “blind” to information 
about types of objects in the scene

Objects Background

ONLY “TWO CLASSES” ONLY “THREE CLASSES”

Background
Object

Shadow
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Approach

Introduce prior information about classes in the image 

Work also with non-additive noise

Add learning capabilities

Classical approach

New approach
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Anisotropic Smoothing of Posterior Probabilities
Posterior Probabilities

for each class

Anisotropically Smoothed

Posterior Probabilities

for each class

Anisotropic

Smoothing

MAP

Estimation

MAP

Estimation

Intensity Image

of SAR data
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MAP Estimation

 Classes C

 Prior (given) probability:  Pr (class=C)

 Posterior probability:  Pr(class=C |  data)

 MAP:  Choose class C that maximizes posterior:

C* = arg max  Pr(class=C | data)

C

 Bayes’ Rule:

Pr(class=C | data) =  Pr(data | class=C).Pr(class=C)

Pr(data)

Pr(class=C | data) = Likelihood . Prior Information
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Gray-White-Black MR Segmentation-I
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Gray-White-Black MR Segmentation-II
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MRF’s and Smoothing Posteriors

Maximizing Posterior = Minimizing Energy
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MAP Estimation and MRF’s in General

We consider degradation model of the form

uo = u + n

ö

where u is the original image and n iid noise process.

MAP estimator is given by :

uê = argmaxuflog p(uoju) + log p(u)g

MRF is given by Gibbs distribution:

p(u) = 1=Z expf
õ

àF(u)
g

p(uoju) = Kexpfà
2û2

juoàuj2
g

uê = arg minufF(u) + õ=2ju à u0j
2g

Under our assumptions

and so
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Spatial properties can be modelled through different aspects, among which, the 

contextual constraint is a general and powerful one. Markov random field (MRF) theory 
provides a convenient and consistent way to model context-dependent entities such as 

image pixels and correlated features. This is achieved by characterizing mutual influences 
among such entities using conditional MRF distributions. In an MRF, the sites in are 

related to one another via a neighborhood system, which is defined as

where is the set of sites neighboring i, and . A random 
field X said to be an MRF on with respect to a neighborhood system if and only if 

Note, the neighborhood system can be multi-dimensional. 

Markov Random Field Theory-I
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Markov Random Field Theory-II



27

Specialization to Images
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Continuous Relaxation Labelling
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Isotropic Smoothing
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MRF: Non-Interacting Discontinuity Fields
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Anisotropic Smoothing
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Robust CRL
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Isotropic vs. Anisotropic MAP
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White Matter: Diffusion Tensor Imaging-I
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Diffusion Tensor Imaging-II
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Diffusion Tensor Imaging-III
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Diffusion Tensor Imaging-IV
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Brain Atlas
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fMRI and DTI for IGS
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Data Fusion
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More Data Fusion
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Registration and Surface Warping
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Surface Deformations and Flattening

 Conformal and Area-Preserving Maps
 Optical Flow

 Gives Parametrization of Surface
 Registration

 Shows Details Hidden in Surface Folds

 Path Planning
 Fly-Throughs

Medical Research
 Brain, Colon, Bronchial Pathologies
 Functional MR and Neural Activity

 Computer Graphics and Visualization
 Texture Mapping
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Mathematical Theory of Surface Mapping

Conformal Mapping:
One-one
Angle Preserving
Fundamental Form 

Examples of Conformal Mappings:
One-one Holomorphic Functions
Spherical Projection

Uniformization Theorem:
Existence of Conformal Mappings
Uniqueness of Mapping

   GFEGFE ,,,, 
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Deriving the Mapping Equation

Let p  be a point on the surface   . Let 

 

be a conformal equivalence sending  p   to the North Pole. 

 

Introduce Conformal Coordinates  vu,   near  p ,  

with 
0 vu

 at 
p

. 

 

In these coordinates,   




  22  2,2 dvduvuds   

 

We can ensure that 
  1p

. 

 

In these coordinates, the Laplace Beltrami operator takes the form 

  























2

2

2

2

2,

1

vuvu
. 

 

2: Sz 
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Deriving the Equation-Continued

Set ivuw  . The mapping  wzz   has a simple pole at 

0w , i.e. at p . 
 

Near p , we have a Laurent series    2DwCB
w

A
wz  

Apply   to get 









w
Az

1
. 

 

Taking 
2

1
A , 
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
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The Mapping Equation

p
v

i
u

z 


















. 

 

 

 

 

Simply a second order linear PDE. Solvable by standard methods. 
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Finite Elements-I
  is a triangulated surface. Start with 

    

               
p

v
i

u
z 



















 

Multiply by an arbitrary smooth   f   and integrate by 

parts.  For all  f  we want: 

        p
v

f
ip

u

f

dSf
v

i
u

dSfz p




























 

                      



 

Let  PLfz  , , the space of piecewise linear 

functions.  
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Finite Elements-II

For each vertex P , let p be the 

continuous function such that: 

 
 

 












gle.each trianon linear  is 

, vertexa ,,0

1

P





QPQQ

P

P

P

 

 

These functions form a basis for the finite 

dimensional space  PL . 

 

Then PPP zz   . 

And we want, for all Q , 

   p
v

Q
p

u

Q
QdS

PP
z

P 










  

 

This is simply a matrix equation. 
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Finite Elements-III

Set 






PQ
DD , dS

QPPQ
D   . 

Define vectors  

 

 























 p

u

Q
Q

aa


,   

 























 p

v

Q
Q

bb


. 

 

Our equation becomes simply ibaDz  . 

 SR
PQ

D  cotcot
2

1
, 

PQ
D

QPPP
D


 .  

Need formulas  for   

                            
., ba
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Finite Elements-IV

Suppose the point   p  lies on a triangle with 

vertices ABC . 

Since  























 p

u

Q
Q

aa


, 

and    























 p

v

Q
Q

bb


, 

we have  CBAQ
Q

ib
Q

a  , , if 0  . 
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Finite Elements-V

 

If  CBAQ  , , , then considering that   
Q
  is 

linear on ABC : 
 

                 


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

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
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


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
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
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i
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Q
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Q
a





 

                           

                               2

,
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ABAC





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Finite Elements-VI

If we set iyxz  , then our system 

ibaDz   becomes 

aDx   and bDy  . 
 

 

D   is sparse, real, symmetric  and 

positive semi-definite.  Its kernel is 

the space of constant vectors, and it is 

positive definite on the space 

orthogonal to its kernel. 
 

 

These properties of D  allow us to use 

the conjugate gradient method to 

solve the system. 
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Summary of Flattening

Flattening: 

Calculate the elements of the matrices 

baD  and , , . 
 

 

Use the conjugate gradient method to 

solve bDyaDx   and . 

The resulting iyxz   is the 

conformal mapping to the complex 

plane. 
 

 

Compose z  with inverse stereo 

projection to get a conformal map to 

the unit sphere. 
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Cortical Surface Flattening-Normal Brain
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White Matter Segmentation and Flattening
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Conformal Mapping of Neonate Cortex
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Coordinate System on Cortical Surface



66

Principal Lines of Curvature on Brain Surface-I
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Principal Lines of Curvatures on the Brain-II
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Bladder Flattening
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3D Ultrasound Cardiac Heart Map
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Flattening a Tube

(1) Solve 

     

 

1
    1

0
    0

10
\   0







onu

onu

onu







                                       

     (2) Make a cut from  0
   to  1  . 

     Make sure u  is increasing along the cut. 






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Flattening a Tube-Continued

 (3) Calculate  v    on  the boundary loop  

                    00 1   cutcut
 

      by integration  

                         
  ds

n

u
ds

s

v
v









 

 

 (4)  Solve Dirichlet problem using boundary values  of   v  . 

 

 
 

If you want, scale so   2h ,  take  
ivue 

 to get an 

annulus. 

v = g(u) + h

u = 1u = 0

v = g(u)
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Flattening Without Distortion-I

In practice, once the tubular surface has been flattened into a 

rectangular shape, it will need to be visually inspected for 

pathologies.  We present a simple technique by which the entire 

colon surface can be presented to the viewer as a sequence of 

images or cine.  In addition, this method allows the viewer to 

examine each surface point without distortion at some time in the 

cine.  Here, we will say a mapping is without distortion at a point 

if it preserves the intrinsic distance there. 

 

It is well known that a surface cannot in general be flattened onto 

the plane without some distortion somewhere.  However, it may be 

possible to achieve a surface flattening which is free of distortion 

along some curve. A simple example of this is the familiar 

Mercator projection of the earth, in which the equator appears 

without distortion.  In our case, the distortion free curve will be a 

level set of the harmonic function (essentially a loop around the 

tubular colon surface), and will correspond to the vertical line 

through the center of a frame in the cine.  This line is orthogonal 

to the “path of flight” so that every point of the colon surface is 

exhibited at some time without distortion. 
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Flattening Without Distortion-II

 

Suppose we have conformally flattened the colon surface onto a rectangle  

 
    ,,0 max  uR .  

 

 Let F  be the inverse of this mapping, and let  vu,22     be the amount by  

Which 
F

 scales a small area near  vu, ,  i.e. let 0   be the “conformal 

factor” for 
F

.   

 

Fix 
0  w

, and for each 
 max0 ,0 uu 

 define a subset 
     RwuwuR   ,, 000

 which will correspond to the contents of a 

cine frame.  We define a mapping  

 

       













  

u

u

v

dvvudvvuGvu

0 0

0 ,,,,ˆ,ˆ  . 
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Flattening Without Distortion-III

We have  

 

 
   

  























 

vu

dvvu

vv

uu
vudG

u

u

v

vu

vu

,0

,,

ˆˆ

ˆˆ
,

0

0




, 

 

                                









10

01
,, 00 vuvudG   . 

This implies that composition of the flattening  

map  with G   sends level set loop  0uu  on the surface to 

the vertical line  0ˆ u  in the vu ˆˆ  plane without distortion. In 

addition, it follows from the formula for dG  that lengths 

measured in the û  direction accurately reflect the lengths 

of corresponding curves on the surface. 
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Introduction: Colon Cancer

 US: 3rd most common diagnosed cancer

 US: 3rd most frequent cause of death

 US: 56.000 deaths every year

Most of the colorectal cancers arise from 
preexistent adenomatous polyps

 Landis S, Murray T, Bolden S, Wingo Ph.Cancer Statitics 1999. Ca Cancer J Clin. 
1999; 49:8-31.
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Problems of CT Colonography

Proper preparation of bowel

How to ensure complete inspection

 Nondistorting colon flattening program
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Colon Segmentation and Flattening
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Nondistorting colon flattening

Simulating pathologist’ approach

No Navigation is needed

Entire surface is visualized
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Nondistorting Colon Flattening

Using CT colonography data

Standard protocol for CT colonography

43 patients (28 m, 15 f)

Mean age 70.2 years (from 50 to 82)
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Flattened Colon
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Colon Fly-Through Without Distortion
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Polyps Rendering
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Finding Polyps on Original Images
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Polyp Detection
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Polyp Highlighted
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Colon cancer

Cancer: descending colon



87Cancer: Descending Colon
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Polyp

Polyp: Left Flexure
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Polyp

Left Flexure
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Polyp

Polyp: Transverse Colon
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Polyp
Polyp: Transverse Colon
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Polyp

Polyp: Sigmoid Colon
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Polyp

Polyp: Sigmoid Colon
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Path-Planning Deluxe
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Simultaneous Fly-Through
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Coronary Vessels-Rendering
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Coronary Vessels: Fly-Through
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Area-Preserving Flows-I

Let M be a closed, connected n-dimensional manifold. Volume form: 
 

                         

                                                     0)(

...,)( ,1





xg

dxdxdxdxxg n

 

Theorem (Moser):  

 

M, N compact manifolds with volume forms      and     .    Assume that  M 

and N are diffeomorphic. If 

 

                                                  NM , 

then there exists a diffeomorphism of M into N taking   into  . 
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Area-Preserving Flows-II

The basic idea of the proof of the theorem is 
the contruction of an orientation-preserving 
automorphism homotopic to the identity.

As a corollary, we get that given M and N any 
two diffeomorphic surfaces with the same total 
area, there exists are area-preserving 
diffeomorphism.
This can be constructed explicitly via a PDE.
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Area-Preserving Flows for the Sphere-I

Find a one-parameter family of vector fields   

 1,0, tu t   and solve the   ODE 

 

                                               
ttu

dt

d
     t    

 

to get a family of diffeomorphisms t    such that   

 

                                           
id0

 

 

and  

 

           
     )det()det(1det DftDftD t 

. 

f
S2

S2
f o 

  

N
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Area-Preserving Flows for the Sphere-II

To find  tu , solve   
 

                                      
)det(1 Df

,  

 

then 
 

                                       tDft
ut






)det(1


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Area-Preserving Flows of Minimal Distortion
 

 

 

  

Let M  and N   be two compact surfaces with Riemannian metrics 
h  and g  respectively, and let    be an area preserving map. This 

means if g  and h  are the area forms then  

             .)(*
hg   

Many other area preserving maps from NM   

(just compose   with any other area preserving map). Which one 

has the smallest distortion? 

 

Minimize the Dirichlet integral with respect to area-preserving 

maps: 

 

                    
J(þ) = 1=2

R

M
jDþj2 Òh

 
 

This leads to explicit gradient descent equations. Method will be 

discussed when we describe Monge-Kantorovich algorithms. 
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Registration and Mass Transport

Image registration is the process of establishing a common geometric frame of 

reference  from two or more data sets from the same or different imaging 

modalities taken at  different times. 

Multimodal registration proceeds in several steps.  First, each image or data set to 

be matched should be individually calibrated, corrected from imaging distortions, 

cleaned from noise and imaging artifacts.  Next, a measure of dissimilarity between 

the data sets must be established, so we can quantify how close an image is from 

another after transformations are applied to them.  Similarity measures 

include the proximity of redefined landmarks, the distance between contours, the

difference between pixel intensity values. One can extract individual features

that to be matched in each data set. Once features have been extracted from each 

image, they must be paired to each other. Then, a the similarity measure between 

the paired features is formulated can be formulated as an optimization problem.

We can use Monge-Kantorovich for the similarity measure in this procedure.
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Mass Transportation Problems

Original transport problem was proposed by 
Gaspar Monge in 1781, and asks to move a pile 
of soil or rubble to an excavation with the 
least amount of work. 

Modern measure-theoretic formulation given by 
Kantorovich in 1942. Problem is therefore 
known as Monge-Kantorovich Problem (MKP).

Many problems in various fields can be 
formulated in term of MKP: statistical physics, 
functional analysis, astrophysics, reliability 
theory, quality control, meteorology, 
transportation, econometrics, expert systems, 
queuing theory, hybrid systems, and nonlinear 
control.
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Monge-Kantorovich Mass Transfer Problem-I

We consider two density functions 

                               

                

R
ö0(x) dx =

R
öT(x) dx  

 

We want  

                             M:Rd!Rd 
 

which for all bounded subsets  
A ú Rd

 

                                                            R

x2A
öT(x) dx =

R

M (x)2A
ö0(x) dx

  

       

For  
M

smooth and 1-1, we have (Jacobian equation) 

 

                                 
)())(())((det 0 xxMxM T  
 

 

We call such a map M  mass preserving (MP). 
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MK Mass Transfer Problem-II
 

 

 

  

 

 

Jacobian problem has many solutions. Want optimal one (Lp-

Kantorovich-Wasserstein metric) 

                           

               

 

            dp(ö0; ö1)
p := infM

R
jM(x) à xjpö0(x)dx  

 
 

 

Optimal map (when it exists) chooses a map with preferred 

geometry (like the Riemann Mapping Theorem) in the plane. 
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Algorithm for Optimal Transport-I

Ò0;Ò1 úRd

Subdomains with smooth boundaries and positive densities:

R

Ò0
ö0 =

R

Ò1
ö1

We consider diffeomorphisms which map one density to the

other:

öo = det(Duà)ö1 î uà

We call this the mass preservation (MP) property. We let u be a

initial MP mapping.
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Algorithm for Optimal Transport-II

We consider a one-parameter family of MP maps derived as follows:

uà := u î sà1; s= s(á ; t); ö0 =det(Ds)ö0 î s

Notice that from the MP property of the mapping s, and definition of the family,

uà t = à
ö0

1
Duà á ð; ð = ö0 st î s

à1

div ð = 0
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Algorithm for Optimal Transport-III

M(t) =
R

Ò0
Ð(uà(x; t)àx)ö0(x) dx

=
R
Ð(u(y)às(y; t))ö0(y) dy; x = s(y; t); sã(ö0(x)dx) = ö0(y)dy

M0(t) =à
R
hÐ0(uàs); stiö0dy

= à
R
hÐ0(uà(x; t)à x); ö0st î s

à1i dx

= à
R

Ò0
hÐ0(uà(x; t)àx); ði dx

We consider a functional of the following form which we infimize with respect to

the maps      :

Taking the first variation:

uà
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Algorithm for Optimal Transport-IV

ð = Ð0(uà à x) +rp

div ð = 0

ðj@Ò0
tangential to @Ò0

Ép+div (Ð0(uà àx)) = 0; on Ò0

@n~

@p
+n~ áÐ0(uà àx) = 0; on @Ò0

First Choice:

This leads to following system of equations:

uàt =à1=ö0Duà á (Ð
0(uà àx) +rp)
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Algorithm for Optimal Transport-V

Duà á (IàrÉà1r á )Ð0(uà àx)
@t

@uà
= à

ö0

1

This equation can be written in the non-local form:

At optimality, it is known that

Ð0(uà à x) = rë

where          is a function. Notice therefore for an optimal

solution, we have that the non-local equation becomes

ë

@t

@uà
= 0

ë

ë


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Solution of L2 M-K and Polar Factorization

uà =à1=ö0Duà(uà àrÉà1 div(uà))

Ð(x) =
2

jxj2

uà = u î sà1 =rw+ÿ; div(ÿ) = 0 Helmholtz decomp:

For the L2 Monge-Kantorovich problem, we take

This leads to the following “non-local” gradient descent equation:

Notice some of the motivation for this approach. We take:

The idea is to push the fixed initial u around (considered as a vector

field) using the 1-parameter family of MP maps s(x,t), in such a manner

as to remove the divergence free part. Thus we get that at optimality

u=rwîs Polar factorization
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Example of Mass Transfer-I

We want to map the Lena image to the Tiffany one.
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Example of Mass Transfer-II

The first image is the initial guess at a mapping. The second is
the Monge-Kantorovich improved mapping.
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Morphing the Densities-I

V(t; x) = x + t(uop t(x)à x)
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Morphing the Densities-II (Brain Sag)
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Deformation Map

Brain deformation sequence. Two 3D MR data sets were used. 

First is pre-operative, and second during surgery, after 

craniotomy and opening of the dura. First image shows planar 

slice while subsequent images show 2D projections of 3D 

surfaces which constitute path from original slice. Here time t=0, 

0.33, 0.67,and 1.0. Arrows indicate areas of greatest deformation.
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Morphing-III
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Morphing-IV
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Morphing-V
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Surface Warping-I

M-K allows one to find area-correcting

flattening. After conformally flattening

surface, define density mu_0 to be determinant of

Jacobian of inverse of flattening map, and mu_1 to be 

constant.  MK optimal map is then area-correcting.
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Surface Warping-II
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General Set-Up for L2 Mass Transport

Optimal mass transport and area-preserving maps of
minimal distortion can be including in the following general
framework:

Ð = 1=2juà à xj2 + ë2jD(uà à x)j2

ÐHere     is a positive definite quadratic form. The case
of interest is:

inf
uà MP

R
Ð(uààx;D(uààx))ö0(x) dx

Second term also acts as “smoothness term” in the M-K
problem.
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Mass Transfer and Interpolation
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Warping Map

M = infu2AP
R
(F î u àG)2 +ë2

R
jDuj2

F : Ò0 !R; G : Ò1 !R
F and G are the image intensities and we infimize over all 
area-preserving maps:

u : Ò0 ! Ò1
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And now for the details…………….


