Calculus of Variations

Example: Shortest path between two points

Choose points (0, a) and (1, b).

\[F(u, u') = \sqrt{1 + (u')^2} \]

Euler-Lagrange equation:

\[
\frac{\partial F}{\partial u} - \frac{d}{dx} \left(\frac{\partial F}{\partial u'} \right) = 0
\]

\[
\frac{1}{2} \left(1 + u'^2 \right)^{-1/2} \cdot 2u' - \frac{d}{dx} \left(\frac{u'}{\sqrt{1 + u'^2}} \right) = 0
\]

\[
\frac{u_{xx}}{\left(1 + u'^2 \right)^{3/2}} = 0
\]

Therefore:

\[u_{xx} = 0 \]
\[u(x) = \alpha x + \beta \]
\[u(0) = \beta = a \]
\[u(1) = \alpha + \beta = \alpha + a \quad \alpha = b - a \]
\[= b \]

Two dimension Problems: Works the same

\[P(u) = \iint \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \, dx \, dy \]

\[P(u + v) > P(u) \] with proper boundary conditions. **Use integration by parts.**

Euler-Lagrange derivative is

\[\Delta u = 0. \]