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Conformal Mapping for 
Registration and Visualization:
Laplace-Beltrami Approach 
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Surface Deformations and Flattening

Conformal and Area-Preserving Maps
Optical Flow

Gives Parametrization of Surface
Registration

Shows Details Hidden in Surface Folds

Path Planning
Fly-Throughs

Medical Research
Brain, Colon, Bronchial Pathologies
Functional MR and Neural Activity

Computer Graphics and Visualization
Texture Mapping
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Mathematical Theory of Surface Mapping

Conformal Mapping:
One-one
Angle Preserving
Fundamental Form 

Examples of Conformal Mappings:
One-one Holomorphic Functions
Spherical Projection

Uniformization Theorem:
Existence of Conformal Mappings
Uniqueness of Mapping

( ) ( )GFEGFE ,,,, ρ→
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Deriving the Mapping Equation

Let p  be a point on the surface  Σ . Let 

 
be a conformal equivalence sending  p   to the North Pole. 
 
Introduce Conformal Coordinates ( )vu,   near  p ,  
with 0== vu  at p . 
 

In these coordinates, ( ) ⎟
⎠
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We can ensure that ( ) 1=pλ . 
 
In these coordinates, the Laplace Beltrami operator takes the form 
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Deriving the Equation-Continued

Set ivuw += . The mapping ( )wzz =  has a simple pole at 
0=w , i.e. at p . 

 

Near p , we have a Laurent series ( ) …++++= 2DwCB
w
Awz
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The Mapping Equation
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Simply a second order linear PDE. Solvable by standard methods. 



7

Finite Elements-I
Σ  is a triangulated surface. Start with 
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Multiply by an arbitrary smooth   f   and integrate by 

parts.  For all  f  we want: 
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Let ( )Σ∈PLfz  , , the space of piecewise linear 
functions.  
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Finite Elements-II
For each vertex Σ∈P , let pφ be the 
continuous function such that: 
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These functions form a basis for the finite 
dimensional space ( )ΣPL . 
 
Then PPP zz φ Σ= . 
And we want, for all Q, 
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This is simply a matrix equation. 
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Finite Elements-III

Set ⎟
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Define vectors  
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Our equation becomes simply ibaDz −= . 
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Finite Elements-IV

Suppose the point   p  lies on a triangle with 
vertices ABC . 

Since ( )
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Finite Elements-V

 

If { }CBAQ  , ,∈ , then considering that   Qφ  is 

linear on ABC : 
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Finite Elements-VI
If we set iyxz += , then our system 

ibaDz −=  becomes 
aDx =  and bDy − . 

 
 

D   is sparse, real, symmetric  and 
positive semi-definite.  Its kernel is 
the space of constant vectors, and it is
positive definite on the space 
orthogonal to its kernel. 
 
 

These properties of D  allow us to use 
the conjugate gradient method to 
solve the system. 
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Summary of Flattening
Flattening: 
Calculate the elements of the matrices 

baD  and , , . 
 
 

Use the conjugate gradient method to 
solve bDyaDx −==  and . 
The resulting iyxz +=  is the 
conformal mapping to the complex 
plane. 
 
 

Compose z  with inverse stereo 
projection to get a conformal map to 
the unit sphere. 
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Cortical Surface Flattening-Normal Brain
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White Matter Segmentation and Flattening
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Conformal Mapping of Neonate Cortex
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Coordinate System on Cortical Surface
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Bladder Flattening
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3D Ultrasound Cardiac Heart Map
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Flattening a Tube
(1) Solve 
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     Make sure u  is increasing along the cut. 
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Flattening a Tube-Continued

 (3) Calculate  v    on  the boundary loop  

                    00 1 σσσ →→→→ cutcut
 

      by integration  

                         ( ) ds
n
uds

s
vv
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 (4)  Solve Dirichlet problem using boundary values  of   v  . 
 

 
 

If you want, scale so   π2=h ,  take  ivue +  to get an 
annulus. 

v = g(u) + h

u = 1u = 0

v = g(u)
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Flattening Without Distortion-I

In practice, once the tubular surface has been flattened into a 
rectangular shape, it will need to be visually inspected for 
pathologies.  We present a simple technique by which the entire 
colon surface can be presented to the viewer as a sequence of 
images or cine.  In addition, this method allows the viewer to 
examine each surface point without distortion at some time in the 
cine.  Here, we will say a mapping is without distortion at a point 
if it preserves the intrinsic distance there. 
 
It is well known that a surface cannot in general be flattened onto 
the plane without some distortion somewhere.  However, it may be 
possible to achieve a surface flattening which is free of distortion 
along some curve. A simple example of this is the familiar 
Mercator projection of the earth, in which the equator appears 
without distortion.  In our case, the distortion free curve will be a 
level set of the harmonic function (essentially a loop around the 
tubular colon surface), and will correspond to the vertical line 
through the center of a frame in the cine.  This line is orthogonal 
to the “path of flight” so that every point of the colon surface is 
exhibited at some time without distortion. 
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Flattening Without Distortion-II

 

Suppose we have conformally flattened the colon surface onto a rectangle  
 

[ ] [ ]ππ,,0 max −×= uR .  
 
 Let F  be the inverse of this mapping, and let ( )vu,22 φφ =  be the amount by 
Which F  scales a small area near ( )vu, ,  i.e. let 0  >φ be the “conformal 
factor” for F .   
 
Fix 0  >w , and for each [ ]max0 ,0 uu ∈  define a subset 

[ ] [ ]( ) RwuwuR ∩−×+−= ππ,, 000  which will correspond to the contents of a 
cine frame.  We define a mapping  
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Flattening Without Distortion-III

We have  
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This implies that composition of the flattening  
map  with G  sends level set loop { }0uu=  on the surface to 
the vertical line { }0ˆ =u  in the vu ˆˆ− plane without distortion. In 
addition, it follows from the formula for dG  that lengths 
measured in the û  direction accurately reflect the lengths 
of corresponding curves on the surface. 
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Introduction: Colon Cancer

US: 3rd most common diagnosed cancer
US: 3rd most frequent cause of death
US: 56.000 deaths every year

Most of the colorectal cancers arise from 
preexistent adenomatous polyps

Landis S, Murray T, Bolden S, Wingo Ph.Cancer Statitics 1999. Ca Cancer J Clin. 
1999; 49:8-31.
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Problems of CT Colonography

Proper preparation of bowel
How to ensure complete inspection
Nondistorting colon flattening program
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Colon Segmentation and Flattening
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Nondistorting colon flattening

Simulating pathologist’ approach
No Navigation is needed
Entire surface is visualized
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Nondistorting Colon Flattening

Using CT colonography data
Standard protocol for CT colonography
43 patients (28 m, 15 f)
Mean age 70.2 years (from 50 to 82)
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Flattened Colon
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Colon Fly-Through Without Distortion
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Polyps Rendering
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Finding Polyps on Original Images
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Polyp Detection
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Polyp Highlighted
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Colon cancer

Cancer: descending colon



37Cancer: Descending Colon
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Polyp

Polyp: Left Flexure
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PolypPolyp

Left Flexur
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Polyp

Polyp: Transverse Colon
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PolypPolyp: Transverse Colon
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Polyp

Polyp: Sigmoid Colon
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Polyp

Polyp: Sigmoid Colon
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Path-Planning Deluxe


