
Enhancement, Restoration, Conversion 

Local vs. Global 
 
Local: Only use neighborhood information 
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Spatial Smoothing: Noise removed and reduction of effects due to under sampling. 
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S = M – pixel neighborhood of points surrounding (and perhaps including  ( ),x y     )  
 
S is usually rectangular, e.g. squarenxn  
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( ) function smoothing , =jihsm  
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This is convolution 
 
Take 3=n  
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exactly averaging!! 
 
Remark:  This has continuous version. 
Nonlinear 

equationlet linear IIt Δ=  
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Can see blurring very easily: 
I will choose an odd in order for window center to be on sampling grid.  Shift origin: 
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Fourier transform is: 
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Algebra: 
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Separable transform 
 
Define: 
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or 
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Similarly ( ) ∫1,2 υς Hr  
 
 
 
Plot Magnitudes 
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Edge Information Removal 
 
Blurs 
 
Exercise: 
Take smoothing filter from Matlab or ( )blurxυ . 
Apply to image at various window sizes.   
Hand in ext Wednesday. 
 
Temporal Smoothing 
    

( ) ( ) ( )yxmyxfyxf iii ,,,ˆ +=   zero mean time-uncorrelated noise poor. 
 

Μ= ,,2,1 …i  time changes due only + noise process 
 
Sequence of images corrupted by noise. 
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Reduce noise effects by reducing variance of (averaged) noise process. 
 
Spatial Sharpening 
Simplest approach 
Smoothing = low-pass 
Sharpening = high-pass 
 
( ) ( ) ( )yxfyxfyxg sm ,,, −=       Smoothed version 

 
Typically: smf  is taken as local average of eight neighboring pixels surrounding ϑτς t,  including 
( ) :, yx  
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0,0 ≠≠ ji  

( ) is for function   window33 a×∴  
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Fourier Analysis: 
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Nonlinear Operations 
Not every operator is linear.  Class of enhoncent called “rank” or “median”. 
 
Idea: Output image intensity of spatial location ( )yx,  is chosen on the best of the relative rank or 
intensity of pixels in neighborhood of ( )yx, . 
 
Given N  pixel intensities obtail over a local region, S , denoted or Nff …,1  order in increasing 
value: 
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Output intensity: 
( ) ( )yxRRankyxg j ,, Δ  

 
Where jRank  is the intensity of the xx __0 0  intensity it position or jrank  in ( )yxR , . 
 
Ex. 
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ii. max filters is :Nj =  
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iii. N  is odd: 
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:, niceVe Try in Matlab or  

Suppose have image corrupted by spike-like noise. 
Low-pass distributes equally. 
Median removes noise without degraditive. 
 
Not b two image functions yielding sample sequences 21 RalR . 
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However: 
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Properties 
1. Median filter reduces verioma of intenatis in the image. 
2. Median filter preserve certain edge shapes. 
 Preserves triple pulse 
3. No new grey values generated 
 
Edge letectise 
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How do those work: 
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xxx Δ+〈〈 ε  

Define 
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Error ( ) ( )xD Δ≈ϑ1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1D  is a better approximation to the slope of ( )xf  at the midpoint of the interval [ ]xxx Δ+, . 

∴  Using 1D  operator for 
x
f

2
2  and 

y
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2  approximations results in approximations to the gradnet 

 not at ( )yx,  but at different points in ( )yx,  plane. 
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∴  Use centered difference: 
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This has several nice proportions: 
1. ( )xD2  and ( )yD2  due to centered routine both comprise good estimates for the respective 

directions of ( )yxf ,  of midpoints of interval, i.e. ( )yx, . 
 
2. Error ( ) ( )( )2

2 xD Δ≅θ  
 
3. ( )xD2  and ( )yD2  maybe implanted by convolving image with nests. 
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Varits: 3x3 
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“Smoothed” or “averaged” centered difference operations. 
 
Other smoothed operates with a weighting that emphasizes the central pixel eveth 
 
Sobel Weighting modes, denotes by ( )xDs  and ( )yDs  and givenly 
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Third operator for gradient approximation is Roberts: 
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Note that this operation: 
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1. Is a variate of the 1D  operation with derivates approximate along orthoyond orientation 45º 
at 135º in image plane; 

2. Midpoint of both intervals used for approximation is the same point, i.e. it is the point 
( )22 , yx yx Δ+Δ+  located at its center of the rectangle found by its four points used; 

3. Correspond to combination with rists 
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Roberts Cross Operation 
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Directionally oriented edge information 
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