cse547, math547
DISCRETE MATHEMATICS

Professor Anita Wasilewska
LECTURE 8
CHAPTER 2
SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) - Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10
CHAPTER 2
SUMS

Part 3: Multiple Sums (2) - Lecture 8
More SUMS

Problem from Book, page 39

Let’s **EVALUATE** the following sum

\[
S_n = \sum_{1 \leq j < k \leq n} \frac{1}{k - j}
\]

We denote \(P(j, k) : 1 \leq j < k \leq n \) and re-write the sum as

\[
S_n = \sum_{P(j,k)} a_{k,j}
\]

for \(a_{k,j} = \frac{1}{k - j} \)
Special SUM

Consider case \(n=1 \)

Remember that \(a_{k,j} = \frac{1}{k-j} \)

We get that \(S_1 = \sum_{1 \leq j < k < 1} a_{k,j} \) is undefined.

Book defines \(S_1 = 0 \)

Consider \(S_2 = \sum_{1 \leq j < k \leq 2} a_{k,j} = \sum_{1 \leq j < k \leq 2} \frac{1}{k-j} \)

Evaluate \(S_2 = a_{2,1} = \frac{1}{2-1} = 1 \), \(S_2 = 1 \)
Special SUM

Evaluate S_3

$$S_3 = \sum_{1 \leq j < k \leq 3} a_{k,j} = a_{3,2} + a_{3,1} + a_{2,1} = \frac{1}{3 - 2} + \frac{1}{3 - 1} + \frac{1}{2 - 1}$$

$$= \frac{1}{1} + \frac{1}{2} + 1 = \frac{5}{2}$$

$$S_3 = \frac{5}{2}$$

$$S_3 = \sum_{1 \leq j < k \leq 3} \frac{1}{k - j} = \frac{5}{2}$$
Special SUM

Now we want to express \(P(j, k) = 1 \leq j < k \leq n \) as

\[
P(j, k) \equiv P_1(k) \cap P_2(j)
\]

in order to use definition of the multiple sum below for our sum

\[
\sum_{P(j,k)} a_{k,j} = \sum_{P_1(k)} \sum_{P_2(j)} a_{k,j} = \sum_{P_2(j)} \sum_{P_1(k)} a_{k,j}
\]
Special SUM

Step 1 APPROACH 1
We consider \(P(j, k) = 1 \leq j < k \leq n \)

\[(\star)\quad 1 \leq j < k \leq n \equiv 1 < k \leq n \cap 1 \leq j < k \]

\[P(j, k) \equiv P_1(k) \cap P_2(j)\]

We get from \((\star)\) that

\[S_n = \sum_{1<k\leq n} \sum_{1\leq j<k} \frac{1}{k-j}\]
Special SUM

We substitute \(j := k - j \) and evaluate \(S_n \) and new boundaries for \(S_n \)

Boundaries: we substitute \(j := k - j \) in \(1 \leq j < k \)

\[
1 \leq k - j < k \quad \text{iff} \quad 1 - k \leq -j < 0 \quad \text{iff} \quad k - 1 \geq j > 0
\]

Remark that

\[
0 < j \leq k - 1 \quad \text{iff} \quad 1 \leq j \leq k - 1
\]

so the new **boundaries** for \(S_n \) are

\[
1 < k \leq n \quad \text{and} \quad 1 \leq j \leq k - 1
\]
Special SUM

We substitute \(j := k - j \) and evaluate \(S_n \) with new boundaries \(1 < k \leq n \) and \(1 \leq j \leq k - 1 \)

\[
S_n = \sum_{1 < k \leq n} \sum_{1 \leq j < k} \frac{1}{k - j} = \sum_{1 < k \leq n} \sum_{1 \leq j \leq k-1} \frac{1}{j}
\]

\[
= \sum_{1 < k \leq n} \sum_{j=1}^{k-1} \frac{1}{j} = \sum_{1 < k \leq n} H_{k-1}
\]

Now we evaluate new boundaries for the last sum

We put \(k := k + 1 \) in \(1 < k \leq n \) and get

\[
1 < k + 1 \leq n \iff 0 < k \leq n - 1 \iff 1 \leq k \leq n - 1 \text{ and}
\]

\[
\sum_{1 < k \leq n} H_{k-1} = \sum_{k=1}^{n-1} H_k
\]
Special SUM Formula

We developed a new formula for S_n

$$\sum_{1 \leq j < k \leq n} \frac{1}{k-j} = \sum_{k=1}^{n-1} H_k$$

We now check our result for few n

$S_1 = \sum_{k=1}^{0} H_1$ undefined, $S_1 = \sum_{1 \leq j < k \leq 1} \frac{1}{k-j}$ is also undefined

Book puts (page 39) $S_1 = 0$

Remark that the BOOK formula for S_n

$S_n = \sum_{k=0}^{n} H_k$ is not correct unless we define $H_0 = 0$
Observe that we got just another formula for our sum, not a "sum closed" formula; we have expressed one double sum by another that uses H_n

Step 2 APPROACH 2

Let’s now re-evaluate the S_n by expressing its boundaries differently

We have as before $P(j, k) \equiv 1 \leq j < k \leq n$ and want to write is now as

$$P(j, k) \equiv R_1(k) \cap R_2(j)$$

for some $R_1(k), R_2(j)$ and evaluate the sum

$$S_n = \sum_{1 \leq j < k \leq n} \frac{1}{k - j} = \sum_{R_2(j)} \sum_{R_1(k)} \frac{1}{k - j}$$
We write now
\[1 \leq j < k \leq n \equiv (1 \leq j < n) \cap (j < k \leq n) \equiv R_1(k) \cap R_2(j) \]

and evaluate
\[
S_n = \sum_{1 \leq j < k \leq n} \frac{1}{k-j} = \sum_{1 \leq j < n} \sum_{j < k \leq n} \frac{1}{k-j}
\]

We substitute now \(k := k + j \) and re-work boundaries
\[
j < k \leq n \quad \text{iff} \quad j < k + j \leq n \quad \text{iff} \quad 0 < k \leq n - j \\
\text{iff} \quad 1 \leq k \leq n - j \quad \text{and the} \quad S_n \quad \text{becomes now}
\]
\[
S_n = \sum_{1 \leq j < n} \sum_{1 \leq k \leq n-j} \frac{1}{k} = \sum_{1 \leq j < n} H_{n-j}
\]
Special SUM Approach 2

We have now

\[S_n = \sum_{1 \leq j < n} H_{n-j} \]

We substitute now \(j := n - j \) and re-work boundaries

\[1 \leq j < n \text{ iff } 1 \leq n - j < n \text{ iff } 1 - n \leq -j < 0 \]
\[\text{iff } n - 1 \geq j > 0 \text{ iff } 0 < j \leq n - 1 \text{ iff } 1 \leq j \leq n - 1 \]

and the \(S_n \) becomes now

\[S_n = \sum_{j=1}^{n-1} H_j \]

All the work - and nothing new!!
Special SUM Approach 3

Step 3 APPROACH 3

We want to find a closed formula CF for

$$S_n = \sum_{1 \leq j < k \leq n} \frac{1}{k - j}$$

We substitute $k := k + j$ and now

$$S_n = \sum_{1 \leq j < k + j \leq n} \frac{1}{k}$$
Special SUM Approach 3

PLAN of ACTION

(1) We prove: \(P(k, j) \equiv Q_1(k) \cap Q_2(j) \) expressed as follows

\[
1 \leq j < k + j \leq n \equiv (1 \leq k \leq n - 1) \cap 1 \leq j \leq n - k
\]

(2) We evaluate:

\[
S_n = \sum_{1 \leq j < k + j \leq n} \frac{1}{k} = \sum_{(1 \leq k \leq n-1) \cap (1 \leq j \leq n-k)} \frac{1}{k}
\]
Special SUM Approach 3

Proof of (1)
We evaluate:

\[(1 \leq j < k + j \leq n) \equiv \]
\[\equiv (1 \leq j) \cap (1 \leq n) \cap (j \leq n - k) \cap (j < k + j \leq n) \]
\[\equiv (1 \leq j \leq n - k) \cap (0 < k \leq n - j) \]

Now look at \((0 < k \leq n - j) \equiv (1 \leq k \leq n - j)\) for \(j = 1, 2, \ldots, n - k\)

and get that \(1 \leq k \leq n - 1\)

Hence
\[(1 \leq j < k + j \leq n) = (1 \leq j \leq n - k) \cap (1 \leq k \leq n - 1)\]

end of the proof
Special SUM Approach 3

We evaluate now (2)

\[S_n = \sum_{1 \leq k \leq n-1 \cap 1 \leq j \leq n-k} \frac{1}{k} \]

\[= \sum_{k=1}^{n-1} \sum_{j=1}^{n-k} \frac{1}{k} \]

\[= \sum_{k=1}^{n-1} \frac{1}{k} \sum_{j=1}^{n-k} 1 = \sum_{k=1}^{n-1} \frac{1}{k} (n-k) \]

\[= \sum_{k=1}^{n-1} \frac{n}{k} - \sum_{k=1}^{n-1} 1 = n \sum_{k=1}^{n-1} \frac{1}{k} - (n-1) \]
Sum CF formula

We have now

\[S_n = n \sum_{k=1}^{n-1} \frac{1}{k} - (n - 1) \]

We note:

\[\sum_{k=1}^{n-1} \frac{1}{k} = H_{n-1} \]

and

\[H_{n-1} = H_n - \frac{1}{n} \]

\[S_n = nH_{n-1} - n + 1 = n\left(H_n - \frac{1}{n}\right) - n + 1 = nH_n - 1 - n + 1 \]

Our \(H_n \) CF formula for \(S_n \) is

\[S_n = \sum_{1 \leq j < k \leq n} \frac{1}{k-j} = nH_n - n \]
Book Computation

Evaluation in Book

\[S_n \triangleq \sum_{k=1}^{n} \sum_{1 \leq j \leq n-k} \frac{1}{k} = \sum_{k=1}^{n} \sum_{j=1}^{n-k} \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{k} \sum_{j=1}^{n-k} 1 \]

\[= \sum_{k=1}^{n} \frac{1}{k} (n - k) = \sum_{k=1}^{n} \left(\frac{n}{k} - 1 \right) = n \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} 1 = nH_n - n \]

\[S_n = nH_n - n \]

Book Sum CF Formula

Justify all the steps
Extra Bonuses

We proved in Steps 1,2 that

\[S_n = nH_n - n \quad \text{and} \quad S_n = \sum_{k=1}^{n} H_k \]

We get an an Extra Bonus

\[\sum_{k=1}^{n} H_k = nH_n - n \]

And also because Book sum = Our sum we get

\[\sum_{1 \leq k \leq n, \ 1 \leq j \leq n-k} \frac{1}{k} = \sum_{1 \leq k \leq n-1, \ 1 \leq j \leq n-k} \frac{1}{k} \]

and we have also proved as a bonus Book Remark on page 41