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Part 1: Introduction
Sequences and Sums of Sequences



Sequences

Definition

A sequence of elements of a set A is any function f from the
set of natural numbers N into A

f : N −→ A

Any f(n) = an is called n-th term of the sequence f.

Notations:

f = {an}n∈N , {an}n∈N , {an}



Sequences Example

Example

We define a sequence f of real numbers R as follows

f : N −→ R

Given by a formula

f(n) = n +
√

n

We also use a shorthand notation for the sequence f and
write

an = n +
√

n



Sequences Example

We often write f = {an} in an even shorter and more
informal form as

a0 = 0, a1 = 1 + 1 = 2, a2 = 2 +
√

2

0, 2, 2 +
√

2, 3 +
√

3, ...........n +
√

n . . .



Observations

Observation 1: A Sequence is always INFINITE
(countably infinite) as by definition, the domain of the
sequence (function f ) is a set of N of natural numbers

Observation 2: card N = card N-K, for K is any finite subset
of N, so we can enumerate elements of a sequence by any
infinite subset of N

Definition: A set T is called countably infinite iff card T=
card N, i.e. there is a one to one (1-1) function f that maps N
onto T, i.e.

f : N −→1−1,onto T



Observations

Observation 3: We can choose as a SET of INDEXES of a
sequence any COUNTABLY infinite set T, not only the set N of
natural numbers

In our Book: T = N − {0} = N+, i.e we consider
sequences that ”start” with n = 1

We usually write sequences as

a1, a2, a3, ..... an, .....

{an}n∈N+



Finite Sequences

Definition

A finite sequence of elements of a set A is any function f
from a finite set K into A

In case when K is a non-empty finite subset of natural
numbers N we write, for simplicity K = {1, 2, ...n} and call n
the length of the sequence

We write sequence function f as

f : {1, 2, ...n} −→ A f(n) = an, f = {ak}k=1....n

Case n=0: the function f is empty we call it an empty
sequence and denote by e



Example

Example 1

Let
an =

n
(n − 2)(n − 5)

Domain of the sequence f(n) = an is N − {2, 5} and

f : N − {2, 5} → R

Example 2 Let T = {−1,−2, 3, 4}
f(n) = an for n ∈ T is now a finite sequence with the
domain T



FINITE SUMS

In Chapter 2, we consider only finite sums of consecutive
elements of sequences {an} of rational numbers

Definition

Given a sequence f of rational numbers

f : N+ −→ R f(n) = an

We write a finite sum as

n∑
k=1

ak = a1 + a2 + .....+ an



Sums of elements of sequences

We also use notations:

n∑
k=1

ak =
∑

1≤k≤n

ak =
∑

k∈{1,...n}
ak

n∑
k=1

ak =
∑

K

ak

for K = {1, ..n}



Sums of elements of sequences

Given a sequence of numbers:

f : N+ → R, f(n) = an ←− FULL DEFINITION

a1a2...an, ak ∈ R ←− SHORTHAND

We sometimes evaluate a sum of some sub-sequence of
{an}



Sums of elements of sequences

For example we want to sum-up only each second term of
{an}, i.e. n ∈ EVEN

We write in two ways:

1.
∑

1≤k≤2n, k∈EVEN

ak = a2 + a4 + .....+ a2n

where 1 ≤ k ≤ 2n, k ∈ EVEN ←− P(k) summation property

2.
n∑

k=1

a2k = a2 + a4 + .....+ a2n

where a2k ←− subsequence property



Sums Notations

We use following notations∑
P(k)

ak =
∑
k∈K

ak =
∑

K

ak

for K = {n ∈ N : P(n)}
and P(n) is a certain formula defining our restriction on n

We assume the following

1. The set K is defined; i.e. the statement P(n) = True or
False is decidable

2. The set K is finite - we consider only finite sums at this
moment



Example 1

Example 1

Let P(n) be a property: 1 ≤ n < 100 and n ∈ ODD

P(n) is a formula defining all ODD numbers between 1 and 99
(included) and hence

K = {n ∈ N : P(n)} = {n ∈ ODD : 1 < n ≤ 99} = {1, 3, 5, ....., 99}

or
K = {1, 3, .....(2n + 1)} for 0 ≤ n ≤ 49



Example 1

We have that K = {1, 3, .....(2n + 1)} for 0 ≤ n ≤ 49 and
by definition of the sum

∑
P(n)

an =
∑

K

ak ←− PROPERTY

=
49∑

n=0

a(2n+1) = a1 + a3 + .....+ a99 ←− subsequence



Example 2

Example 2

Let P(n) be a property: 1 ≤ n < 100

P(n) is now a formula defining natural numbers between 1 and
99 (included), i.e.

K = {n ∈ N : P(n)} = {n ∈ N : 1 < n ≤ 99} = {1, 2, ....., 99}

In this case∑
P(n)

an =
∑

K

ak =
99∑

k=1

ak

= a1 + a2 + a3 + ......+ a99



Example 3

Example 3

Let P(n) be a property: 1 ≤ n < 100 and

an = (2n + 1)2

Evaluate:
∑
P(n)

an

K = {P(n) : 1 ≤ n < 100} = {1, 2, .99} and∑
P(n)

(2n + 1)2 =
99∑

k=1

(2n + 1)2

= 32 + 52 + ....+ (2 ∗ 99 + 1)2



USEFUL NOTATION

Here is our BOOK NOTATION (from Kenneth Iverson’s
programming language APL)

Characteristic Function of the formula P(x)

[P(x)] =

 1 P(x) true

0 P(x) false

where x ∈ X , ∅
Example:

Let P(n) be a property: p is prime number

[p prime] =

 1 p is prime

0 p is not prime



Useful Sum Notation

We write∑
P(k)

ak =
∑

k

ak [P(k)] =
∑
k∈K

ak

where

K = {k : P(k)}



Useful Sum Notation Example

Example∑
p

[p prime] [p ≤ n]
1
p

Observe that now

P(x) is P1(x) ∩ P2(x)

for P1(x) : x is prime

P2(x) : x ≤ n for n ∈ N

P(x) says : x is prime and x ≤ n



Example

∑
p

[p prime] [p ≤ n]
1
p

∑
means :

we sum 1
p over all p that are PRIME and p ≤ n for n ∈ N

Case when n = 0 - as 0 ∈ N

We have that P(x) is false as PRIMES are numbers ≥ 2



Book Notations Corrections

Book uses notation p ≤ N instead of p ≤ n,

It is tricky!

N in standard notation denotes the set of natural numbers

We write n ∈ N and we can’t write n ≤ N

When you read the book now and later, pay attention

Book also uses: n ≤ K

This really means that n ≤ k

In standard notation CAPITAL LETTERS DENOTE SETS



Book Notations Corrections

Authors never define a sequence {an} for
∑

ak

They also often state:

”ak” is defined/not defined for all set of INTEGERS

It means they admit sequences and FINITE sequences with
indices being Integers- what is OK and the set of Integers is
infinitely countable



Useful Sum Notation Reminder

∑
P(k)

ak =
∑
k∈K

ak =
∑

k

[P(k)]ak

where

K = {k ∈ Z : P(k)} and K is finite

or

K = {k ∈ N : P(k)} and K is finite ← This is usual case

where N is set of Natural numbers, Z - set of Integers



Part 2: Sums and Recurrences



Some Observations

Observation 1: for any n ∈ N

n+1∑
k=1

ak =
n∑

k=1

ak + an+1, and
1∑

k=1

ak = a1

Consider case n = 0: the sum is undefined and we put

0∑
k=1

ak = 0

In general we put

b∑
k=a

ak = 0 when b < a ← DEFINITION



Some Observations

Observation 2: for any n ∈ N+

n∑
k=0

ak =
n−1∑
k=0

ak−1 + an

Now when n = 0 we get
0∑

k=0

ak = a0

Reminder:

−1∑
k=0

ak = 0



Sum Recurrence

We know that for any n ∈ N+

n∑
k=0

ak =
n−1∑
k=0

ak−1 + an

We denote Sn =
n∑

k=0

ak

Observe that we have defined a function S

S : N −→ R , S(n) = Sn =
n∑

k=0

ak ← SUM FUNCTION



Sum Recurrence

We re-rewrite S(n) = Sn =
∑n

k=0 ak and get a following
recursive formula for S

S0 = a0, Sn = Sn−1 + an for n > 0
↑

Sum Recurrence Formula

We will use techniques from Chapter 1 to evaluate (if
possible) closed formulas for certain SUMS



Problem

Given a sequence

f : N −→ R, defined by a formula

f(n) = an for an = a + bn

where a, b ∈ R are constants

Problem

Find a closed formula CF for the following sum

S(n) =
n∑

k=0

ak =
n∑

k=0

(a + bk)



Sum Recurrence

The recurrence form of our sum Sn is

RF: S0 = a

Sn = Sn−1 + (a + bn)︸    ︷︷    ︸
an

We want to find a Closed Formula CF for this recurrence
formula



Generalization

Let’s generalize our formula RF to RS as follows

RS : R0 = α

Rn = Rn−1 + β+ γn

The previous RF is a case of RS for

α = a, β = a, γ = b



From RS to CF

RF : R0 = α, Rn = Rn−1 + β+ γn

Step 1: evaluate few terms

R0 = α

R1 = α+ β+ γ

R2 = α+ β+ γ + β+ 2γ = α+ 2β+ 3γ

R3 = α+ 2β+ 3γ + β+ 3γ = α+ 3β+ 6γ



From RS to CF

Step 2: Observation - general formula for CF

Rn = A(n)α+ B(n)β+ C(n)γ ← CF

GOAL: Find A(n), B(n), C(n) and prove that RS = CF for

RS R0 = α, Rn = Rn−1 + β+ γn

Method: Repertoire Method



Repertoire Function 1

RS R0 = α, Rn = Rn−1 + β+ γn

CF Rn = A(n)α+ B(n)β+ C(n)γ

We set the first repertoire function as

Rn = 1 for all n ∈ N

We set Rn = Rn, for all n ∈ N and

R0 = α, and R0 = 1 so α = 1



Repertoire Function 1

RS: R0 = α, Rn = Rn−1 + β+ γn

Repertoire function is Rn = 1 for all n ∈ N

We set Rn = Rn, for all n ∈ N and we evaluate

1 = 1 + β+ γn for all n ∈ N

0 = β+ γn for all n ∈ N

This is possible only when β = γ = 0

Solution
α = 1, β = 0, γ = 0



Equation 1

CF: Rn = A(n)α+ B(n)β+ C(n)γ

We use now the first repertoire function

Rn = 1 for all n ∈ N

We set Rn = Rn, for all n ∈ N and use just evaluated

α = 1, β = 0, γ = 0

and get our equation 1:

1 = A(n) , for all n ∈ N

Fact 1 A(n) = 1, for all n ∈ N



Repertoire Function 2

RS: R0 = α, Rn = Rn−1 + β+ γn

We set the second repertoire function as

Rn = n for all n ∈ N

We set Rn = Rn, for all n ∈ N and evaluate

R0 = α, and R0 = 0 by definition, so α = 0



Repertoire Function 2

RS R0 = α, Rn = Rn−1 + β+ γn

The second repertoire function is Rn = n for all n ∈ N

We set Rn = Rn, for all n ∈ N and we evaluate
n = (n − 1) + β+ γn, for all n ∈ N

0 = β− 1 + γn, for all n ∈ N

1 = β+ γn, for all n ∈ N

This is possible only when β = 1, γ = 0

Solution
α = 0, β = 1, γ = 0



Equation 2

CF Rn = A(n)α+ B(n)β+ C(n)γ

We use now the second repertoire function

Rn = n for all n ∈ N

We set Rn = Rn, for all n ∈ N and use just evaluated

α = 0, β = 1, γ = 0

and get our equation 2:

n = B(n) , for all n ∈ N

Fact 2 B(n) = n, for all n ∈ N



Repertoire Function 3

RS R0 = α, Rn = Rn−1 + β+ γn

We set the third repertoire function as

Rn = n2 for all n ∈ N

We set Rn = Rn, for all n ∈ N and evaluate

R0 = α, and R0 = 0 , so α = 0



Repertoire Function 3

RS R0 = α, Rn = Rn−1 + β+ γn

Third repertoire function is

Rn = n2 for all n ∈ N

We set Rn = Rn, for all n ∈ N and evaluate

n2 = (n − 1)2 + β+ γn, for all n ∈ N

n2 = n2 − 2n + 1 + β+ γn, for all n ∈ N

0 = −2n + 1 + β+ γn , for all n ∈ N

0 = (1 + β) + n(γ − 2), for all n ∈ N

This is possible only when β = −1, γ = 2

Solution α = 0, β = −1, γ = 2



Equation 3

CF Rn = A(n)α+ B(n)β+ C(n)γ

We use now the third repertoire function

Rn = n2 for all n ∈ N

We set Rn = Rn, for all n ∈ N and use just evaluated

α = 0, β = 1, γ = 0

and get our equation 3:

2C(n)− B(n) = n2, for all n ∈ N

Fact 3 2C(n)− B(n) = n2 , for all n ∈ N



Repertoire Method System of Equations

We obtained the following system of 3 equations on A(n),
B(n), C(n)

1. A(n) = 1

2. B(n) = n

3. 2C(n)− B(n) = n2

We substitute 1. and 2. in 3. we get

n2 = −n + 2C(n) and C(n) = (n2+n)
2

Solution

A(n) = 1, B(n) = n, C(n) =
(n2 + n)

2



CF Solution

We now put the solution into the general formula

CF: Rn = A(n)α+ B(n)β+ C(n)γ

and get that the closed formula CF equivalent to

RS : R0 = α, Rn = Rn−1 + β+ γn is

Rn = α+ nβ+ (n2+n
2 )γ



CF Solution

Let’s now go back to original sum

Sn =
n∑

k=0

(a + bk)

We have that

Sn = Rn, for α = a, β = a, γ = b so

Sn = a + na + (n2+n
2 )b = (n + 1)a + (n2+n

2 )b

We hence evaluated

Sn =
n∑

k=0

(a + bk) = (n + 1)a +
n(n + 1)

2
b



Simple Solution

Of course we can do it by a MUCH simpler method
n∑

k=0

(a + bk) =
n∑

k=0

a +
n∑

k=0

bk

= (n + 1)a + b
n∑

k=0

k

=(n + 1)a +
n(n+1)

2 b

Observe that for a sequence an = a, for all n we get
n∑

k=0

an =
n∑

k=0

a = a + .....+ a = (n + 1)a



Summations Laws

Distributive Law∑
k∈K

cak = c
∑
k∈K

ak

Associative Law∑
k∈K

(ak + bk ) =
∑
k∈K

ak +
∑
k∈K

bk

Commutative Law∑
k∈K

ak =
∑

∏
(k)∈K

a∏(k)

where
∏
(k) is any permutation of elements of K

Observe that the Associative Law holds for sums over

the same domain K



Combining Domains

Formula for COMBINED DOMAINS∑
Q(k)

ak +
∑
R(k)

ak =
∑

Q(k)∩R(k)

ak +
∑

Q(k)∪R(k)

ak

OR∑
k∈K

ak +
∑

k∈K ′
ak =

∑
k∈K∩K ′

ak +
∑

k∈K∪K ′
ak

The second formula is listed without the proof on page 31 in our
BOOK



Combined Limits

For any set A, we denote by |A | the cardinality of the set A
in a case when A is finite it denotes a number of elements of
the set A. We obviously have the following

Fact
For any finite sets A, B

|A ∪ B| = |A |+ |B| − |A ∩ B|
From the Fact we have that
|K ∪ K ′| = |K |+ |K ′| − |K ∩ K ′| and hence

|K |+ |K ′| = |K ∪ K ′|+ |K ∩ K ′|

It justifies but yet not formally proves that∑
k∈K

ak +
∑

k∈K ′
ak =

∑
k∈K∩K ′

ak +
∑

k∈K∪K ′
ak

↑ ↑
COMBINE LIMITS



Combining Domains

Let’s put

K = {k : Q(k)} K ′ = {k : R(k)}

The previous formula becomes:∑
Q(k)

ak +
∑
R(k)

ak =
∑

Q(k)∩R(k)

ak +
∑

Q(k)∪R(k)

ak

↑ ↑

COMBINE DOMAINS

Proof is based on the Property given on the next slide as an
easy exercise to prove



Combined Domains Property

Exercise

Prove using the Truth Tables and definition of the
characteristic function of a formula that the following holds

Combined Domains Property

For any predicates P(k), Q(k)

[Q(k)] + [R(k)] = [Q(k) ∪ R(k)] + [Q(k) ∩ R(k)]

Hence we have that for any ak

ak [Q(k)] + ak [R(k)] = ak [Q(k)∪R(k)] + ak [Q(k)∩R(k)]



Combined Domains Proof

Proof

We evaluate from above

∑
k

ak [Q(k)] +
∑

k

ak [R(k)]

=
∑

k

ak [Q(k) ∪ R(k)] +
∑

k

ak [Q(k) ∩ R(k)]

and by we get by definition that

∑
Q(k)

ak +
∑
R(k)

ak =
∑

Q(k)∩R(k)

ak +
∑

Q(k)∪R(k)

ak



Geometric Sum

Geometric Sequence

Definition

A sequence f : N → R , f(n) = an is geometric iff
an+1
an

= q, for all n ∈ N

We prove a following property of a geometric sequence {an}

an = a0qn for all n ∈ N

Geometric Sum Formula

Sn =
n∑

k=0

a0qk = a0(1−qn+1)
1−q



Proof of Geometric Sum Formula

Sn =
n∑

k=0

a0qk

Sn = a0 + a0q + ......+ a0qn

qSn = a0q + a0q2 + .....+ a0qn + a0qn+1

———————————————————————————
Sn(1− q) = a0 − a0qn+1

Sn =
n∑

k=0

a0qn = a0(qn+1−1)
q−1 ← Geometric Sum



Examples

Example 1

Sn =
n∑

k=0

2−k =
n∑

k=0

(
1
2
)

k

We have a0 = 1, q = 1
2 , and

Sn =
(1

2)
n+1 − 1
−1
2

= 2− (
1
2
)

n



Examples

Example 2

Sn =
n∑

k=1

2−k =
n∑

k=1

(
1
2
)

k

We have now a1 = 1
2 , q = 1

2 and hence n := n − 1 and

Sn−1 =
1
2((

1
2

n
)− 1)
−1
2

= 1− (
1
2
)

n



From RF to Sum Sn to CF

Tower of Hanoi

RF: T0 = 0, Tn = 2Tn−1 + 1

Divide RF by 2n

T0
20 = 0, Tn

2n =
2Tn−1

2n + 1
2n

and we get
T0
20 = 0, Tn

2n =
Tn−1

2n−1 + 1
2n

Denote Sn = Tn
2n , we get a recursive sum formula SR

RS: S0 = 0, Sn = Sn−1 +
1
2n



From RF to Sum Sn to CF

SR: S0 = 0, Sn = Sn−1 +
1
2n

It means that S : N → R and

Sn =
n∑

k=1

1
2k

= 1− 1
2n (as Sn is geometric)

But we have Sn = Tn
2n so we get

Tn = 2nSn

and we evaluate

Tn = 2n − 1 ← CF for RF



Tower of Hanoi Revisited

RF: T0 = 0, Tn = 2Tn−1 + 1
We have proved in Chapter 1 that

Tn = 2n − 1 ← Closed Formula
We now reverse the the previous problem:
we will get a sum Sn and its closed formula from the closed
formula CF for Tn

Divide Tn formula by 2n

T0
20 = 0, Tn

2n =
2Tn−1

2n + 1
2n

Put Sn = Tn
2n and we get

SR: S0 = 0, Sn = Sn−1 +
1
2n

Now, Sn = Tn
2n and using CF for Tn we get Sn = 2n−1

2n

Thus, Sn =
n∑

k=1

1
2k

= 1− 1
2n ← SUM


