CHAPTER 1
PART FOUR: The Generalized Josephus Problem
Repertoir Method
Josephus Problem Generalization

Our function \(J : \mathbb{N} - \{0\} \longrightarrow \mathbb{N} \) is defined as
\[
J(1) = 1, \quad J(2n) = 2J(n) - 1, \quad J(2n+1) = 2J(n) + 1 \quad \text{for } n > 1
\]
We generalize it to function \(f : \mathbb{N} - \{0\} \longrightarrow \mathbb{N} \) defined as follows

\[
f(1) = \alpha
\]

\[
f(2n) = 2f(n) + \beta, \quad n \geq 1
\]

\[
f(2n + 1) = 2f(n) + \gamma, \quad n \geq 1
\]

Observe that \(J = f \) for \(\alpha = 1, \beta = -1, \gamma = 1 \)

NEXT STEP: Find a Closed Formula for \(f \)
From RF to CF

Problem: Given RF

\[
\begin{align*}
 f(1) &= \alpha \\
 f(2n) &= 2f(n) + \beta \\
 f(2n + 1) &= 2f(n) + \gamma
\end{align*}
\]

Find a CF for it

Step 1 Find few initial values for \(f \)

Step 2 Find (guess) a CF formula from Step 1

Step 3 Prove correctness of the CF formula, i.e. prove that \(RF = CF \)

This step is usually done by mathematical Induction over the domain of the function \(f \)
From RF to CF

Step 1
Evaluate few initial values for

\[f(1) = \alpha \]
\[f(2n) = 2f(n) + \beta \]
\[f(2n + 1) = 2f(n) + \gamma \]
Repertoire Method

\[n = 2^k + l, \quad 0 \leq l < 2^k \]

<table>
<thead>
<tr>
<th>2^0</th>
<th>1</th>
<th>(\alpha)</th>
<th>(l = 0)</th>
<th>(f(1) = \alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^1)</td>
<td>2</td>
<td>(2 \alpha + 1 \beta + 0 \gamma)</td>
<td>1 = (2^1 - 1 - 0), (l = 0)</td>
<td>(f(2) = 2f(1) + \beta) (l = 0)</td>
</tr>
<tr>
<td>(2^1 + 1)</td>
<td>3</td>
<td>(2 \alpha + 0 \beta + 1 \gamma)</td>
<td>0 = (2^1 - 1 - 1), (l = 1)</td>
<td>(f(3) = 2f(1) + \gamma) (l = 1)</td>
</tr>
<tr>
<td>(2^2)</td>
<td>4</td>
<td>(4 \alpha + 3 \beta)</td>
<td>3 = (2^2 - 1 - 0)</td>
<td>(f(4) = 2f(2) + \beta) (l = 0)</td>
</tr>
<tr>
<td>(2^2 + 1)</td>
<td>5</td>
<td>(4 \alpha + 2 \beta + \gamma)</td>
<td>2 = (2^2 - 1 - 1)</td>
<td>(f(5) = 2f(2) + \gamma) (l = 1)</td>
</tr>
<tr>
<td>(2^2 + 2)</td>
<td>6</td>
<td>(4 \alpha + \beta + 2 \gamma)</td>
<td>2 = (l)</td>
<td>(f(6) = 2f(3) + \beta) (l = 2)</td>
</tr>
<tr>
<td>(2^2 + 3)</td>
<td>7</td>
<td>(4 \alpha + 3 \gamma)</td>
<td>3 = (l)</td>
<td>(f(7) = 2f(3) + \gamma) (l = 3)</td>
</tr>
<tr>
<td>(2^3)</td>
<td>8</td>
<td>(8 \alpha + 7 \beta)</td>
<td></td>
<td>(\text{F(8)} = 2f(4) + \beta) (l = 0)</td>
</tr>
<tr>
<td>(2^3 + 1)</td>
<td>9</td>
<td>(8 \alpha + 6 \beta + 3 \gamma)</td>
<td></td>
<td>(f(9) = 2f(4) + \gamma) (l = 1)</td>
</tr>
</tbody>
</table>
Observations

\[n = 2^k + l, \quad 0 \leq l < 2^k \]

\(\alpha \) coefficient is \(2^k \)

\(\beta \) coefficient for the groups decreases by 1 down to 0

\(\beta \) coefficient is \(2^k - 1 - l \)

\(\gamma \) coefficient increases by 1 up from 0

\(\gamma \) coefficient is \(l \)
General Form of CF

Given a RC function

\[f(1) = \alpha, \quad f(2n) = 2f(n) + \beta, \quad f(2n + 1) = 2f(n) + \gamma \]

A general form of CF is

\[f(n) = \alpha A(n) + \beta B(n) + \gamma C(n) \]

for certain \(A(n), B(n), C(n) \) to be determined

Our guess is:

\[A(n) = 2^k, \quad B(n) = 2^k - 1 - l, \quad C(n) = l \]

for \(n = 2^k + l \)
General form of CF

RF: \(f(1) = \alpha, \quad f(2n) = 2f(n) + \beta, \quad f(2n + 1) = 2f(n) + \gamma \)

CF: \(f(n) = \alpha A(n) + \beta B(n) + \gamma C(n) \)

We prove by mathematical Induction over \(k \) that when \(n = 2^k + l, \quad 0 \leq l < 2^k \) our guess is true, i.e.

\[A(n) = 2^k, \quad B(n) = 2^k - 1 - l, \quad C(n) = l \]

STEP 1: We consider a case: \(\alpha = 1, \beta = \gamma = 0 \) and we get

RF: \(f(1) = 1, \quad f(2n) = 2f(n), \quad f(2n + 1) = 2f(n) \) and

CF: \(f(n) = A(n) \)
Fact 1

We use $f(n) = A(n)$ and re-write RF in terms of $A(n)$ as follows

$$\begin{align*}
AR : & \quad A(1) = 1, \quad A(2n) = 2A(n), \quad A(2n + 1) = 2A(n)
\end{align*}$$

Fact 1 Closed formula CA for AR is:

$$\begin{align*}
CAR : & \quad A(n) = A(2^k + l) = 2^k, \quad 0 \leq l < 2^k
\end{align*}$$

Proof by induction on k

Base Case: $k=0$, i.e. $n=2^0 + l$, $0 \leq l < 1$, and we have that $n = 1$ and evaluate

AR: $A(1) = 1$, CAR: $A(1) = 2^0 = 1$, and hence $AR = CAR$
Fact 1

Inductive Assumption:
\[A(2^{k-1} + l) = A(2^{k-1} + l) = 2^{k-1}, \quad 0 \leq l < 2^{k-1} \]

Inductive Thesis:
\[A(2^k + l) = A(2^k + l) = 2^k, \quad 0 \leq l < 2^k \]

Two cases: \(n \in \text{even}, \quad n \in \text{odd} \)

C1: \(n \in \text{even} \)

\(n := 2n, \) and we have \(2^k + l = 2n \) iff \(l \in \text{even} \)
Fact 1

We evaluate n:

$$2n = 2^k + l, \quad n = 2^{k-1} + \frac{l}{2}$$

We use n in the inductive step.

Observe that the correctness of using $\frac{l}{2}$ follows from that fact that $l \in \text{even}$ so $\frac{l}{2} \in N$ and it can be proved formally like on the previous slides.

Proof

$$A(2n) = \text{reprn} \quad A(2^k + l) = \text{evaln} \quad 2A(2^{k-1} + \frac{l}{2}) = \text{ind}$$

$$2 \cdot 2^{k-1} = 2^k$$
Fact 1

C2: \(n \in odd \)

\(n := 2n+1 \), and we have \(2^k + l = 2n + 1 \) iff \(l \in odd \)

We evaluate \(n \):

\[
2n + 1 = 2^k + l, \quad n = 2^{k-1} + \frac{l-1}{2}
\]

We use \(n \) in the inductive step. Observe that the correctness of using \(\frac{l-1}{2} \) follows from that fact that \(l \in odd \) so \(\frac{l-1}{2} \in N \)

Proof:

\[
A(2n + 1) \equiv_{\text{repr}} A(2^k + l) \equiv_{\text{eval}} 2A(2^{k-1} + \frac{l-1}{2}) \equiv_{\text{ind}} 2 \times 2^{k-1} = 2^k
\]

It ends the proof of the Fact 1: \(A(n) = 2^k \)
Repertoire Method

GENERAL PROBLEM
We have a certain recursive formula RF that depends on some parameters, in our case α, β, γ, i.e.

$$RF = RF(n, \alpha, \beta, \gamma)$$

We want to find a formula CF of the form

$$CF(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$$

such that $CF = RF$

GOAL: find $A(n), B(n), C(n)$ - we have 3 unknowns so we need 3 equations to find a solution and then we have to prove

$$RF(n, \alpha, \beta, \gamma) = A(n)\alpha + B(n)\beta + C(n)\gamma$$

for all $n \in N$

In general, when there are k parameters we need to develop and solve k equations, and then to prove

$$RF(n, \alpha_1 \ldots \alpha_k) = A_1(n)\alpha_1 + \ldots + A_k(n)\alpha_k$$

for all $n \in N$
Repertoire Method

METHOD: we use a repertoire of special functions
\[R_1 = R_1(n), \quad R_2 = R_2(n), \quad R_3 = R_3(n) \] and form and solve a system of 6 equations:

(1) \[RF(n, \alpha, \beta, \gamma) = R_i(n), \quad \text{for all } n \in \mathbb{N}, \quad i = 1, 2, 3 \]

(2) \[CF(n) = A(n)\alpha + B(n)\beta + C(n)\gamma = R_i(n), \quad \text{for all } n \in \mathbb{N}, \quad i = 1, 2, 3 \]

For each repertoire function \(R_i \) we evaluate corresponding \(\alpha, \beta, \gamma \) from (1), for \(i = 1, 2, 3 \)

For each repertoire function \(R_i \), we put corresponding solutions \(\alpha, \beta, \gamma \) from (1) in (2) to get 3 equations on \(A(n), B(n), C(n) \) and solve them on \(A(n), B(n), C(n) \)

This also proves that \(RF(n) = CF(n) \), for all \(n \in \mathbb{N} \), i.e. \(RF = CF \)
Repertoire Function R_1

RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$, $f(2n + 1) = 2f(n) + \gamma$

CF: $f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$

We have already proved in **Step 1** the formula for $A(n)$, so we need only to consider **2 repertoire functions**

Step 2: Consider as the first repertoire function R_1 given by a formula

$$R_1(n) = 1 \quad \text{for all} \quad n \in \mathbb{N}$$

By (1) $f(n) = R_1(n) = 1$ for all $n \in \mathbb{N}$ i.e. we have the following condition

C1: $f(n) = 1$ for all $n \in \mathbb{N}$

By RF we have that $f(1) = \alpha$, and by **C1** : $f(1) = 1$, and hence $\alpha = 1$
Repertoire Function R_1

RF: \(f(1) = \alpha, \quad f(2n) = 2f(n) + \beta, \quad f(2n + 1) = 2f(n) + \gamma \)

We still consider as the first repertoire function given by the formula

\[R_1(n) = 1 \quad \text{for all} \quad n \in \mathbb{N} \]

By (1) \(f(n) = R_1(n) = 1 \) for all \(n \in \mathbb{N} \) i.e. we have the following condition

\(C1: \quad f(n) = 1 \quad \text{for all} \quad n \in \mathbb{N} \)

By RF: \(f(2n) = 2f(n) + \beta \) and by \(C1 \) we get equation:

\[1 = 2 + \beta, \quad \text{and hence} \quad \beta = -1 \]

By RF: \(f(2n + 1) = 2f(n) + \gamma \) and by \(C1 \) we get equation:

\[1 = 2 + \gamma \quad \text{and hence} \quad \gamma = -1 \]

Solution from first repertoire function R_1 is

\[\alpha = 1 \quad \beta = -1 \quad \gamma = -1 \]
Now we use the first repertoire function R_1 to the closed formula

$$f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$$

By (2) we get

$$f(n) = R_1 = 1,$$ for all $n \in N$

We input parameters $\alpha = 1, \beta = -1, \gamma = -1$ evaluated by RF and R_1 in

(2) $A(n)\alpha + B(n)\beta + C(n)\gamma = R_1(n) = 1),$ for all $n \in N$

and we get the first equation

$$A(n) - B(n) - C(n) = 1, \text{ for all } n \in N$$

By the Repertoire Method we have that $CF = RF$ iff the following holds

FACT 2

$$A(n) - B(n) - C(n) = 1, \text{ for all } n \in N$$
Repertoire Function R_2

Step 3:
RF: $f(1) = \alpha$, $f(2n) = 2f(n) + \beta$, $f(2n + 1) = 2f(n) + \gamma$

CF: $f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$

Consider a second repertoire function R_2 given by the formula

$$R_2(n) = n \quad \text{for all} \quad n \in N$$

By (1) $f(n) = R_2(n) = n$ i.e. we have the following condition

C2: $f(n) = n$, for all $n \in N$

By RF we have that $f(1) = \alpha$, and by C2 : $f(1) = 1$, and hence $\alpha = 1$
Repertoire Function R_2

RF: $f(1) = \alpha, \ f(2n) = 2f(n) + \beta \quad f(2n + 1) = 2f(n) + \gamma$

We still consider as the second repertoire function given by the formula

$$R_2(n) = n \quad \text{for all} \quad n \in \mathbb{N}$$

By (1) $f(n) = R_2(n) = n$ i.e. we have the following condition

C2: $f(n) = n$, for all $n \in \mathbb{N}$

By RF: $f(2n) = 2f(n) + \beta$ and by C2 we get

$$2n = 2n + \beta, \quad \text{and hence} \quad \beta = 0$$

By RF: $f(2n + 1) = 2f(n) + \gamma$ and by C2 we get

$$2n + 1 = 2n + \gamma \quad \text{and hence} \quad \gamma = 1$$

Solution from second repertoire function R_2 is

$\alpha = 1, \quad \beta = 0, \quad \gamma = 1$
Repertoire Method

Now we use the second repertoire function R_2 to the closed formula

$CF : f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$

By (2) we get

$f(n) = R_2 = n$, for all $n \in N$

We input parameters $\alpha = 1$, $\beta = 0$, $\gamma = 1$ evaluated by RF and R_2 in

(2) $A(n)\alpha + B(n)\beta + C(n)\gamma = R_2(n) = n$, for all $n \in N$

and get the second equation

$A(n) + C(n) = n$, for all $n \in N$

By the Repertoire Method we have that $CF = RF$ iff the following holds

FACT 3

$A(n) + C(n) = n$, for all $n \in N$

Remember: we have proved that $A(n) = 2^k$, for $n = 2^k + l$

so we do not need any more repertoire functions (and equations)
CF for Generalized Josephus

Step 4 A(n), B(n) and C(n) from the following equations

E1 \(A(n) = 2^k, \ n = 2^k + l, \ 0 \leq l < 2^k \)

E2 \(A(n) - B(n) - C(n) = 1, \ \text{for all} \ n \in N \)

E3 \(A(n) + C(n) = n, \ \text{for all} \ n \in N \)

E3 and E1 give us that \(2^k + C(n) = 2^k + l \), and so

C \(C(n) = l \)

From the above and E2 we get \(2^k - l - B(n) = 1 \) and so

B \(B(n) = 2^k - 1 - l \)
CF for Generalized Josephus

Observe that A, B, C are exact formulas we have guessed and the following holds

Fact 4

$CF : \quad f(n) = 2^k \alpha + (2^k - 1 - l) \beta + l \gamma \quad \text{for} \quad n = 2^k + l, \quad 0 \leq l < 2^k$

is the closed formula for

$RF: \quad f(1) = \alpha, \quad f(2n) = 2f(n) + \beta \quad f(2n + 1) = 2f(n) + \gamma$

This also ends the proof that Generalized Josephus CF exists and $RF = CF$
Short CF Solution

Step 2:
RF: \(f(1) = \alpha, \ f(2n) = 2f(n) + \beta \ f(2n + 1) = 2f(n) + \gamma \)

Here is a short solution as presented in our Book

You can use it for your problems solutions (also on the tests)—when you really understand what are you doing.

Consider a constant function \(f(n) = 1, \ \text{for all } n \in \mathbb{N} \) (this is our first repertoire function \(R_1 \))

We evaluate now \(\alpha, \beta, \gamma \) for it (if possible)

Solution \(1 = 2 + \beta, \ 1 = 2 + \gamma, \ \text{and so} \)

\[\alpha = 1, \ \beta = -1, \ \gamma = -1 \]
Short CF Solution

\[CF : \quad f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma \]

We evaluate \(CF \) for \(\alpha, \beta, \gamma \) being solutions for RF and \(f(n) = 1 \) and get

\(CF = RF \) iff the following holds

Fact 2

\[A(n) - B(n) - C(n) = 1 \quad \text{for all} \quad n \in \mathbb{N} \]
Short CF Solution

Step 3
RF: \(f(1) = \alpha, \ f(2n) = 2f(n) + \beta \quad f(2n + 1) = 2f(n) + \gamma \)

Consider a constant function \(f(n) = n, \) for all \(n \in \mathbb{N} \)

We evaluate now \(\alpha, \beta, \gamma \) for it (if possible)

\[2n = 2n + \beta, \quad 2n + 1 = 2n + \gamma \]

and get

Solution: \(\alpha = 1, \beta = 0, \gamma = 1 \)
Short CF Solution

\[CF : \quad f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma \]

Now we evaluate CF for the solutions \(\alpha = 1, \beta = 0, \gamma = 1 \) and \(f(n) = n \)
and we get

Fact 3

\[A(n) + C(n) = n, \quad \text{for all} \quad n \in N \]
Final Solution for CF

Step 4
We put together Facts 1, 2, 3 to evaluate formulas for $A(n)$, $B(n)$, $C(n)$

Fact 3 and Fact 1 give that $2^k + C(n) = 2^k + l$, and so $C(n) = l$

From the above and Fact 2 we get $2^k - l - B(n) = 1$ and so $B(n) = 2^k - 1 - l$
Final Solution for CF

Given RF, CF defined as follows

RF: \(f(1) = \alpha, \ f(2n) = 2f(n) + \beta \quad f(2n + 1) = 2f(n) + \gamma \)

CF: \(f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma \)

The final form of CF is as below

Fact 4

CF: \(f(n) = 2^k\alpha + (2^k - 1 - l)\beta + l\gamma \), where
\(n = 2^k + l, \quad 0 \leq l < 2^k \)

Observe that the Book does not prove that CF = RF