LECTURE 2
Flavius Josephus - historian of 1st century

Josephus Story: During Jewish-Roman war he was among 41 Jewish rebels captured by the Romans. They preferred suicide to the capture and decided to form a circle and to kill every third person until no one was left. Josephus with with one friend wanted none of this suicide nonsense. He calculated where he and his friend should stand to avoid being killed and they were saved.
The Josephus Problem - Our variation

\(n \) people around the circle
We **eliminate** each second remaining person until one survives. We denote by \(J(n) \) the **position** of a surviver

Example \(n = 10 \)

Elimination order: 2, 4, 6, 8, 10, 3, 7, 1, 9.
As a result, number 5 survives, i.e. \(J(n) = 5 \)
Problem: Determine survivor number $J(n)$

We know that $J(n) = 5$

We evaluate now $J(n)$ for $n=1,2,6$

$J(1)=1$, $J(2) = 1$, $J(3)$:

We get that $J(3)=3$
Determine survivor number \(J(n) \)

Picture for \(J(4) \):

We get \(J(4) = 1 \)
Determine survivor number $J(n)$

Picture for $J(5)$:

We get $J(5) = 3$
Problem: Determine survivor number $J(n)$

Picture for $J(6)$:

We get $J(6)=5$
Determine survivor number $J(n)$

We put our results in a table:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J(n)$</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Observation
All our $J(n)$ after the first run are **odd numbers**

Fact
First trip **eliminates** all even numbers
Determine survivor number $J(n)$

Fact
First trip *eliminates* all even numbers

Observation
If $n \in \text{EVEN}$ we arrive to similar situation we started with *half* as many people (numbering has changed)
Determine survivor number $J(n)$

ASSUME that we START with $2n$ people

After first trip we have

This is like starting with n except each person has been doubled and decreased by 1

3 goes out next
Determine survivor number $J(n)$

Case $n=2n$

We get $J(2n) = 2J(n) - 1$ (each person has been doubled and decreased by 1)

We know that $J(10) = 5$, so $J(20) = 2J(10) - 1 = 2 \times 5 - 1 = 9$

Re-numbering

![Diagram with numbers and re-numbering arrows]
Determine survivor number $J(n)$

Case $n=2n+1$

ASSUME that we start with $2n+1$ people:

First looks like that

1 is wipped out after $2n$

We want to have n-elements after **first** round
Determine survivor number $J(n)$

After the first trip we have

This is like starting with n except that now each person is doubled and increased by 1.
Determine survivor number $J(n)$

CASE $n = 2n + 1$ c.d.

Re-numbering

Formula: new number $k = 2k + 1$

$J(2n+1) = \text{new number } J(n)$

$J(2n+1) = 2J(n) + 1$
Recurrence Formula for J(n)

The Recurrence Formula RF for J(n) is:

\[J(1) = 1 \]
\[J(2n) = 2J(n) - 1 \]
\[J(2n + 1) = 2J(n) + 1 \]

Remember that J(k) is a position of the survivor

This formula is more efficient than getting F(n) from F(n-1)

It reduces \(n \) by factor 2 each time it is applied. We need only 19 application to evaluate \(J(10^6) \)
From Recursive Formula to Closed Form Formula

In order to find a **Closed Form Formula (CF)** equivalent to given **Recursive Formula (RF)** we ALWAYS follow the the Steps 1 - 4 listed below.

Step 1 Compute from recurrence RF a **TABLE** for some initial values. In our case RF is:

\[J(1) = 1, \quad J(2n) = 2J(n) - 1, \quad J(2n+1) = 2J(n) + 1 \]

Step 2 Look for a **pattern** formed by the values in the **TABLE**

Step 3 Find - guess a closed form formula **CF** for the pattern

Step 4 Prove by **Mathematical Induction** that **RF = CF**
TABLE FOR J(n)

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>J(n)</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td></td>
<td>G2</td>
<td></td>
<td>G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observation: \(J(n) = 1 \) for \(n = 2^k \), \(k = 0, 1, \ldots \)

Next step: we form groups of \(J(n) \) for \(n \) consecutive powers of \(2 \) and observe that

<table>
<thead>
<tr>
<th>J(n)</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>(2^0)</td>
<td>(2^1 + l)</td>
<td>(2^2 + l)</td>
<td>(2^3 + l)</td>
<td>(2^4 + l)</td>
<td>...</td>
</tr>
</tbody>
</table>

for \(0 \leq l < 2^{(k-1)} \) and \(k = 1, 2, \ldots 5 \),
Computation of $J(n)$

Observe that for each group G_k the corresponding ns are $n = 2^{k-1} + l$ for all $0 \leq l < 2^{(k-1)}$

and the value of $J(n)$ for $n = 2^k + l$ i.e. $J(n) = J(2^k + l)$ increases by 2 within the group

Let’s now make a TABLE for the group G_3

<table>
<thead>
<tr>
<th>$J(n)$</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7 = 2l+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2^2</td>
<td>$2^2 + l$</td>
<td>$2^2 + 2$</td>
<td>$2^2 + 3$</td>
</tr>
<tr>
<td>$l = 0$</td>
<td>$l = 1$</td>
<td>$l = 2$</td>
<td>$l = 3$</td>
<td></td>
</tr>
</tbody>
</table>
Guess for CF formula for $J(n)$

Given $n = 2^{k-1} + l$ we observed that $J(n) = 2l + 1$

We guess that our CF formula is

$$J(2^k + l) = 2l + 1,$$

for any $k \geq 0$, $0 \leq l < 2^k$
Representation of n

$n = 2^k + l$ is called a representation of n when l is a remainder by dividing n by 2^k and k is the largest power of 2 not exceeding n.

Observe that $2^k \leq n < 2^{k+1}$, $l = n - 2^k$ and so $0 \leq l < 2^{k+1} - 2^k = 2^m$, i.e.

$$0 \leq l < 2^k$$
Proof RF = CF

RF: \(J(1) = 1, J(2n) = 2J(n) - 1, J(2n + 1) = 2J(n) + 1 \)

CF: \(J(2^k + l) = 2l + 1 \), for \(n = 2^k + l, \quad k \geq 0, 0 \leq l < 2^k \)

Proof: by Mathematical Induction on \(k \)

Base Case: \(k=0 \).

Observe that \(0 \geq l < 2^0 = 1 \), and \(l = 0 \), \(n = 2^0 + 0 = 1 \), i.e. \(n = 1 \).

We evaluate \(J(1) = 1, \quad J(2^0) = 1 \), i.e.

\[RF = CF \]
Proof $RF = CF$

Induction Step over k has two cases

c1: $n \in \text{even}$ and $J(2n) = 2J(n) - 1$

c2: $n \in \text{odd}$ and $J(2n + 1) = 2J(n) + 1$

Induction Assumption for k is

$J(2^{k-1} + l) = 2l + 1$, for $0 \leq l < 2^{k-1}$

case c1: $n \in \text{even}$

Put $n := 2n$, i.e. $2^k + l = 2n$, $0 \leq l < 2^k$

Observe that $2^k + l = 2n$ iff $l \in \text{even}$, i.e. $l = 2m$, and $l/2 = m \in \mathbb{N}$ and $0 \leq \frac{l}{2} < 2^{k-1}$.
Proof $RF = CF$

We evaluate n from $2^k + l = 2n$: $n = \frac{2^k + l}{2}$, i.e.

$n = 2^{k-1} + \frac{l}{2}$, for $0 \leq \frac{l}{2} < 2^{k-1}$, $\frac{l}{2} \in \mathbb{N}$

Proof in case $c1$: $n \in \text{even}$ and $J(2n) = 2J(n) - 1$

$J(2^k + l) = \frac{\text{repr}n}{2} J(2^{k-1} + \frac{l}{2}) - 1$

$= \frac{\text{ind}}{2} (2\frac{l}{2} + 1) - 1 = 2l + 2 - 1$

$= 2l + 1.$
\[\text{Proof \(RF = CF \)} \]

Proof in case \(n \in \text{odd} \) and \(J(2n + 1) = 2J(n) + 1 \)

Inductive Assumption: \(J(2^{k-1} + l) = 2l + 1 \), for \(0 \leq l < 2^{k-1} \)

Inductive Thesis: \(J(2^k + l) = 2l + 1 \), for \(0 \leq l < 2^k \)

we put \(n := 2n + 1 \) and observe that

\[2^k + l = 2n + 1 \text{ iff } l \in \text{odd}, \text{i.e.} \]

\[l = 2m + 1, \text{ for certain } m \in N, \ l-1 = 2m, \text{ and } \frac{l-1}{2} = m \in N \]
Proof $RF = CF$

We evaluate, as before n from $2^k + l = 2n + 1$ as follows.

$2^k + (l - 1) = 2n$ and $n = 2^{k-1} + \frac{l-1}{2}$

Proof in case $c2$: $n \in \text{odd}$ and $J(2n + 1) = 2J(n) + 1$ is as follows

$J(2^k + l) = \text{reprn} \ 2J(2^{k-1} + \frac{l-1}{2}) + 1$

$= \text{ind} \ 2(2\frac{l-1}{2} + 1) + 1 = 2(l - 1 + 1) + 1$

$= 2l + 1.$
Some Facts

Fact 1 \[\forall_m J(2^m) = 1 \]

Proof by induction over \(m \)

Observe that \(2^m \in \text{Even} \), so we use the formula
\[J(2n) = 2J(n) - 1 \]
and get
\[J(2^m) = J(2 \times 2^{m-1}) = J(2^{m-1}) - 1 = 2J(2^{m-1}) - 1 = 2 \times 1 - 1 = 1 \]

Hence we also have

Fact 2 First person will always survive whenever \(n \) is a power of 2
General Case

Fact 3 Let \(n = 2^m + l \). Observe that the number of people is reduced to power of 2 after there have been \(l \) executions. The first remaining person, the survivor is number \(2l + 1 \)

Our solution

\[
J(2^m + l) = 2l + l
\]

where \(n = 2^m + l \) and \(0 \leq l < 2^m \) depends heavily on powers of 2

Let’s look now at the binary expansion of \(n \) and see how we can simplify the computations
Binary Expansion of n

Definition

$n = (b_m b_{m-1} \ldots b_1 b_0)_2$

stands for

\[n = b_m 2^m + b_{m-1} 2^{m-1} + \ldots b_1 2 + b_0 \]

for

\[b_i \in 0, 1, \ b_m = 1 \]
Binary Expansion of n

EXAMPLE: $n=100$

$n = (1 1 0 0 1 0 0)_2$

$$2^6 2^5 2^4 2^3 2^2 2^1 2^0$$

$n = 2^6 + 2^5 + 2^2 = 64 + 32 + 4 + 100$
Binary Expansion of n

Let now:

\[n = 2^m + l, \quad 0 \leq l < 2^m \]

we have the following binary expansions:

1) \[l = (0, b_{m-1}, .., b_1, b_0)_2 \quad \text{as} \quad l < 2^m \]
2) \[2l = (b_{m-1}, .., b_1, b_0, 0)_2 \quad \text{as} \]
\[l = b_{m-1}2^{m-1} + .. + b_12 + b_0 \]
\[2l = b_{m-1}2^m + .. + b_12^2 + b_02 + 0 \]
3) \[2^m = (1, 0, ..., 0)_2, 1 = (0...1)_2 \]
4) \[n = 2^m + l \]

\[n = (1, b_{m-1}, .., b_1, b_0)_2 \quad \text{from} \quad 1 + 3 \]
5) \[2l + 1 = (b_{m-1}, b_{m-2}, .., b_0, 1)_2 \quad \text{from} \quad 2 + 3 \]
Binary Expansion Josephus

CF: \(J(n) = 2l + 1 \),
for \(n = 2^m + l \)

From 5 on last slide we can re-write \(CF \) in binary expansion as follows

\[
BF: \quad J((b_m, b_{m-1}, \ldots, b_1, b_0)_2) = (b_{m-1}, \ldots, b_1, b_0, b_m)_2
\]

because \(b_m = 1 \) in binary expansion of \(n \), we get

\[
BF: \quad J((1, b_{m-1}, \ldots, b_1, b_0)_2) = (b_{m-1}, \ldots, b_1, b_0, 1)_2
\]
Binary Expansion Josephus

Example: Find $J(100)$

$n = 100 = (1100100)_2$

$$J(100) = J((1100100)_2) = BF (1001001)_2$$

$J(100) = 64 + 8 + 1 = 73$

$BF: \quad J((1, b_{m-1}, \ldots, b_1, b_0)_2) = ((b_{m-1}, \ldots, b_1, b_0, 1)_2$
Josephus Generalization

Our function $J : N \setminus \{0\} \rightarrow N$ is defined as

$J(1) = 1, \quad J(2n) = 2J(n) - 1, \quad J(2n+1) = 2J(n) + 1$ for $n > 1$

We generalize it to function $f : N \setminus \{0\} \rightarrow N$ defined as follows

$f(1) = \alpha$

$f(2n) = 2f(n) + \beta, \quad n \geq 1$

$f(2n + 1) = 2f(n) + \gamma, \quad n \geq 1$

Observe that $J = f$ for $\alpha = 1, \beta = -1, \gamma = 1$

NEXT STEP: Find a Closed Formula for f