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Discrete Mathematics Basics

PART 1: Sets and Operations on Sets



Sets

Set A setis a collection of objects

Elements The objects comprising a set are are
called its elements or members

ac€ A denotesthat a is anelement of aset A
a¢ A denotesthat a is notan elementof A

Empty Set is a set without elements

Empty Set is denoted by 0



Sets

Sets can be defined by listing their elements;

Example
The set

A ={a,0,{a,0}}

has 3 elements:

acA, 0eA, {a,0}€A



Sets

Sets can be defined by referring to other sets and

to properties P(x) that elements may or may not
have

We write it as
B={xeA: P(x)}

Example
Let N be a set of natural numbers

B={neN: n<0}=0



Operations on Sets

Set Inclusion
AcCB ifandonlyif VYa(acA = aecB)
is a true statement

Set Equality
A=B ifandonlyif ACB and BCA

Proper Subset
AcB ifandonlyif ACB and A#B



Operations on Sets

Subset Notations

A C B for asubset (might be improper)
A c B for a proper subset

Power Set  Set of all subsets of a given set



Operations on Sets

Union

AUB={x: x€A or xe B}

We write:

xeAUB ifandonlyif xeA U xeB

Intersection

ANB={x: x€eA and xe B}

We write:

xe ANnB ifandonlyif xeAn xeB



Operations on Sets

Relative Complement
xe(A-B) ifandonlyif xeA and x ¢B
We write:

A-B={x: xeA N x ¢ B}

Complement is defined only for A C U, where U
is called an universe

-A=U-A
We write for x € U,
xe—-A ifandonlyif x¢A



Operations on Sets

Algebra of sets consists of properties of sets that
are true for all sets involved

We use tautologies of propositional logic
to prove basic properties of the algebra of sets

We then use the basic properties to prove more
elaborated properties of sets



Operations on Sets

It is possible to form intersections and unions of more then
two, or even a finite number o sets

Let ¥ denote is any collection of sets

We write |J¥ forthe set whose elements are the
elements of all of the sets in

Example Let
F = {{a}.{0}.{a,0,b}}

We get
| JF =1a 0, b)



Operations on Sets

Observe that given
F = {{a},{0},{a.0,b}} = {A1, Az, As}
we have that
(alu{0)Uia,0,b) =AU AU As =(a, 0, b} =|_|F
Hence we have that for any element x,

X € U F ifand only if there exists i, such that x € A;



Operations on Sets

We define formally
Generalized Union of any family ¥ of setsis
U?" = {x: existsasetS e ¥ suchthatxe S}

We write it also as

XGUT ifandonly if dgcr x€ S



Operations on Sets

Generalized Intersection of any family ¥ of setsis
ﬂﬁr:{x: Yser X € S}
We write

xe( )7 itandonlyif Vs xeS



Operations on Sets

Ordered Pair
Given two sets A, B we denote by

(a,b)

an ordered pair, where ac A and beB
We call a a first coordinate of (a, b)

and b its second coordinate

We define

(a,b) = (c,d) ifandonlyif a=c and b=d



Operations on Sets
Cartesian Product
Given two sets A and B, the set
AxB={(a,b): acAandb e B}

is called a Cartesian product (cross product) of sets A, B
We write

(a,b)e AxB ifandonlyif acAandbeB



Discrete Mathematics Basics

PART 2: Relations and Functions



Binary Relations

Binary Relation
Any set R suchthat RC A XA
is called a binary relation defined inaset A

Domain, Range of R
Given a binary relation R C A X A, the set

Dr={acA: (a,b)eR}

is called a domain of the relation R

The set
Vg ={beA: (a,b)eR}

is called a range (set of values) of the relation R



n- ary Relations

Ordered tuple

Given sets Ay, ...A,, anelement (ai,ap,...a,) such that
ajeA; for i=1,2,..n iscalled an ordered tuple

Cartesian Product of sets Ay, , A, is a set

A1 X A2 X ... X An = {(81, ao, ...an) . aj € A,‘, i= 1,2, n}

n-ary Relation onsets Ay, ..., A, isany subset of
Ay X Ao X ... X Ap, i.e. the set

RCA xAXx ... XA,



Function as Relation

Definition
A binary relation R C A x B onsets A,B is afunction
from A toB

if and only if the following condition holds

VagA EII beB (a,b) € R
where 1! ,cg means there is exactly one b € B
Because the condition says that for any a € A we have
exactly one b < B, we write

R(a) =b for (a, b)eR



Function as Relation

Given a binary relation
RcAxB
that is a function

The set A is called a domain of the function R
and we write:

R: A— B

to denote that the relation R is a function and say that
R maps the set A into the set B



Functions

Function notation

We denote relations that are functions by letters f, g, h,...
and write
f: A— B

say that the function f maps the set A into the set B

Domain, Codomain

Let f: A — B,

the set A is called a domain of f,

and the set B is called a codomain of f



Functions

Range
Givenafunction f: A — B
The set
Ri={beB: b=f(a) and ac A}
is called a range of the function f
By definition, the range of f is a subset of its codomain B
We write Rf={beB: Hzab="Ff(a)}

The set
f={(a,b)e AxB: b=f(a)}

is called a graph of the function f



Functions
Function "onto”

The function f: A — B is an onto function
if and only if the following condition holds

YpeB Jaca f(a) =b
We denote it by

f A onto
. —>



Functions
Function ”one- to -one”

The function f: A — B
is called a one- to -one function and denoted by

f- a8

if and only if the following condition holds

Vxyea(x #y = f(x) # f(y) )



Functions

Afunction f: A — B is not one-to -one function
if and only if the following condition holds

3x.,yeA(X #Fyn f(X) = f(y) )

If a function f is 1-1 and onto
we denote it as

1-1,onto



Functions
Composition of functions
Let f and g be two functions such that
f: A— B and g: B — C
We define a new function
h: A — C

called a composition of functions f and g as follows:
forany x € A we put



Functions
Composition notation
Given function f and g such that
f. A— B and g: B — C

We denote the composition of f and g by (fog)
in order to stress that the function

f: A— B
"goes first” followed by the function
g: B— C

with a shared set B between them



Functions

We write now the definition of composition of functions f
and g using the composition notation (name for the
composition function) (fog) as follows

The composition (fo g) isanew function

(fog): A — C
such thatforany x e A we put

(fo 9)(x) = g(f(x))



Functions

There is also other notation (name) for the composition of f
and g that uses the symbol (g o f), i.e. we put

(gof)(x)=g(f(x)) forall xeA

This notation was invented to help calculus students to
remember the formula g(f(x)) defining the composition of
functions f and g



Functions

Inverse function

Letf: A— B and g: B — A
g is called an inverse functionto f if and only if
the following condition holds

Yaca(fog)(a) = 9g(f(a)) = a

If g is aninverse functionto f we denoteby g = '



Functions
Identity function
Afunction/: A — A s called an identity on A

if and only if the following condition holds

VaEA I(a) =a

Inverse and Identity
Let f: A — B and let f':
be an inverse to f, then the following hold

B — A

(fof ') (a) =f"(f(a)) =I(a) =a, forall acA
forall beB

(' o f(b)) = f(f'(b) = I(b) = b,



Functions: Image and Inverse Image

Image
Given afunction f: X — Y andaset AC X
The set

f[Al]={yeY: Ix(xeA ny=f(x))}

is called an image of the set A € X under the function f
We write

y € f[A] ifandonlyif thereis x e A andy = f(x)
Other symbols used to denote the image are

f7(A) or f(A)



Functions: Image and Inverse Image

Inverse Image
Given a function f: X — Y andaset BCY

The set
f[B] ={xeX: f(x)eB)

is called an inverse image of the set B C Y under the
function f

We write
xef'[B] ifandonlyif f(x)eB
Other symbol used to denote the inverse image are

f'(B) or f(B)



Sequences

Definition
A sequence of elements of a set A is any function from
the set of natural numbers N into the set A, i.e. any function

fi N—A

Any f(n) = a, iscalled n-th term of the sequence f

Notations
f={antnen. {@nlnen. f{an)



Sequences Example

Example
We define a sequence f of real numbers R as follows

f: N—R

such that
f(n)=n+ vn
We also use a shorthand notation for the function f and

write it as
an=n+ Vn



Sequences Example

We often write the function f = {a,} in an even shorter and
informal form as

a =0 a=1+1=2, a=2+ Vo....

or even as

0, 2, 2+ V2, 343, ... n+ V..



Observations

Observation 1

By definition, sequence of elements of any set is always
infinite (countably infinite) because the domain of the
sequence function f is a set N of natural numbers

Observation 2
We can enumerate elements of a sequence by any infinite
subset of N

We usually take a set N — {0} as a sequence domain
(enumeration)



Observations

Observation 3

We can choose as a set of indexes of a sequence any
countably infinite set T, i. e, not only the set N

of natural numbers

We often choose T = N - {0} = N, i.e we consider
sequences that "start” with n =1
In this case we write sequences as

ai, ao, az, ... an, «v. ...



Finite Sequences

Finite Sequence

Given afinite set K =1{1,2, ..., n}, for n€ N and any set
A

Any function

f: 1,2,..n} — A
is called a finite sequence of elements of the set A
of the length n

Case n=0

In this case the function f is an empty set and we call it an
empty sequence

We denote the empty sequence by e



Example

Example
Consider a sequence given by a formula

The domain of the function f(n) = a, is the set N — {2, 5}
and the sequence f is a function

f: N-{2,5) - R

The first elements of the sequence f are

ap = f(O), a = f(1), as = f(3), ag = f(4) as = f(5), dg — f(G),...



Example
Example
Let T=1{-1,-2,3,4} be a finite set and
f:{-1,-2,3,4, - R

be a function given by a formula

n

== Gn-s)

f is a finite sequence of length 4 with elements

a1 =1(-1), az2=1(-2), a3=1(3), as=1(4)



Families of Sets

Family of sets
Any collection of sets is called a family of sets
We denote the family of sets by

7:’

Sequence of sets
Any function
f: N— F
is a sequence of sets, i..e a sequence where all its
elements are sets
We use capital letters to denote sets and write the sequence

of sets as
{An } neN



Generalized Union

Generalized Union
Given a sequence {Ap}nen Of sets
We define that Generalized Union of the sequence of sets as

UAn:{X3 Jnen x € Ap)

neN

We write

X e U A, ifandonlyif Ty x € A,
neN



Generalized Intersection

Generalized Intersection

Given a sequence {Ap}nen Of sets
We define that Generalized Intersection of the sequence
of sets as

mAn:{X5 Vnen X € Ap}
neN

We write

xe()A, ifandonlyif Vaey x €A,
neN



Indexed Family of Sets
Indexed Family of Sets
Given ¥ be a family of sets

Let T # 0 be any non empty set

Any function

f: T —F
is called an indexed family of sets with the set of indexes T
We write it
{AthteT
Notice

Any sequence of sets is an indexed family of sets for T =N



Short Review

Some Simple Questions and Answers



Simple Short Questions

Here are some short Yes/ No questions
Answer them and write a short justification of your answer

Q2 {{a,b}} e 2lab(ab)
Q3 () c 2labiaby

Q4 Any function f from A # 0 onto A, has property

f(a) # a forcertain ac A



Simple Short Questions

Q5 Let f: N— P(N) be given by a formula:
f(n)={meN: m<n?

then 0 € f[{0,1,2)]

Q6 Some relations
RcCcAXxB

are functions that map the set A into the set B



Answers to Short Questions
Q1 2N {1,2)£0
NO because
212 —10,{1},12}, (1,2} N {1,2} = 0

Q2 {{a,b}} € 2labiabi
YES because
have that {a,b} C {a,b.{a,b}} andhence

{la. b}} € 2180&00

by definition of the set of all subsets of a given set



Answers to Short Questions

Q2 {{a,b}} € 21ablabh

YES other solution

We list all subsets of the set {a, b,{a, b}},
i.e. all elements of the set

2{a,b,{a,b}}
We start as follows

{0, {a}, {b}, H{a,b}}, ...,...}

and observe that we can stop listing because we reached
the set {{a, b}}
This proves that  {{a, b}} € 2!&-b-(@bl]



Answers to Short Questions

Q3 (e 2labiabl
YES because for any set A, we havethat ) C A

Q4 Any function f from A # 0 onto A has a property
f(a) # a forcertain acA

NO

Take a function such that f(a) =a forall ac A
Obviously f is "onto” and and thereisno a c A
for which f(a) # a



Answers to Short Questions

Q5 Letf: N— P(N) be given by formula:
f(n)={meN: m<n?, then 0 ¢ f[{0,1,2}]

YES We evaluate

f(0O)={meN: m<0}=0

f1)={meN: m<1}={0}

f(2)={meN: m<22 =1{0,1,2,3}

and so by definition of f[A] get that

f[{0,1,2}] = {0,{0},{0,1,2,3}} and hence 0 € f[{0,1,2}]

Q6 Some R C A x B are functions thatmap A into B
YES: Functions are special type of relations



Simple Short Questions
Q7 {(1,2),(a,1)} isabinary relationon {1,2}

Q8 For any binary relation R € A x A, the
inverse relation R~ exists

Q9 For any binary relation R C A x A that is a function,
the inverse function R~' exists



Simple Short Questions

Q10 Let A ={a,{a},0} and B = {0, {0}, 0}

i i : 1-1
there is a function f : A—>OmO B

Q11 Let f: A— Bandg:B—%"0 A,
then the compositions (gof) and (fog) exist

Q12 The function f: N — P(R) given by the formula:

In(n3+1)}
vn+ 6

f(n)={xeR: x>

is a sequence



Answers to Short Questions

Q7 {(1,2),(a,1)} is abinary relation on {1, 2}
NO because (a,1)¢{1,2}x{1,2}

Q8 For any binary relation R € A x A, the inverse
relation R~' exists

YES By definition, the inverse relation to RC A X A is
the set
R ={(b,a): (a,b)eR}

and it is a well defined relation in the set A



Answers to Short Questions

Q9 For any binary relation R C A x A thatis a function,
the inverse function R~! exists
NO R mustbealsoa1 -1 and onto function

Q10 Let A =1{a,{a},0} and B = {0, {0}, 0}
there is a function f: A—>]);t10 B

NO Theset A has 3 elements and the set

has 2 elements and an onto function does not exists



Answers to Short Questions

Q11 Llet f: A— Bandg:B-—°%m0 A,
then the compositions (gof) and (fog) exist

YES The composition (fo g) exists because the functions
f: A— B and g:B —°" A share the same set B

The composition (g o f) exists because the functions
g:B-—°" A and f: A— B share the same set A

The information "onto” is irrelevant



Answers to Short Questions

Q12 The function f: N — #(R) given by the formula:
f(n)={xeR: x>
is a sequence

YES Itis a sequence as the domain of the function f is
the set N of natural numbers and the formula for f(n) assigns
to each natural number n a certain subset of R, i.e.

an element of #(R)



Dusctere Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATION: Equivalence Relation



Equivalence Relation

Equivalence relation

A binary relation R C A X A is an equivalence relation
definedinthe set A ifandonlyif itis reflexive, symmetric
and transitive

Symbols

We denote equivalence relation by symbols
~ B~ or =

bl

We will use the symbol ~ to denote the equivalence relation



Equivalence Relation

Equivalence class
Let ~C AXA be anequivalence relationon A

The set
E(a)={beA: a=b}

is called an equivalence class

Symbol

The equivalence classes are usually denoted by
[al]={beA: a=b}

The element a is called a representative of the equivalence
class [a] definedin A



Partitions

Partition

A family of sets P C P(A) is called a partition of the set A
if and only if  the following conditions hold
1. VYxep (X * V))
i.e. all sets in the partition are non-empty
2. VX,yEp (Xﬂ Y = (Z))
i.e. all sets in the partition are disjoint
3. UP=A
i.e union of all sets from P is the set A



Equivalence and Partitions

Notation

A/ ~ denotes the set of all equivalence classes of the
equivalence relation ~, i.e.

A/ ~={la]:acA}

We prove the following theorem 1.3.1
Theorem 1

Let A#0

If ~ is an equivalence relation on A,
then theset A/~ is a partition of A



Equivalence and Partitions

Theorem 1 (full statement)

Let A#0

If ~ is an equivalence relation on A,

then theset A/~ isa partition of A, i.e.

1. v[a]eA/z ([a] # (D)
i.e. all equivalence classes are non-empty
2. Viaplea/~ ([a] N [b] = 0)
i.e. all different equivalence classes are disjoint
3. UA/~»=A
i.e the union of all equivalence classes is equal to the set A



Partition and Equivalence

We also prove a following
Theorem 2
For any partition

PCcP(A) oftheset A

one can construct a binary relation R on A such that
R is an equivalence on A and its equivalence classes are
exactly the sets of the partition P



Partition and Equivalence

Observe that we can consider, for any binary relation R on
s set A the sets that "look” like equivalence classes i.e. that
are defined as follows:

R(a)={beA; aRb}=1{becA; (a,b)eR)

Fact 1

If the relation R is an equivalence on A,

then the family {R(a)}asca is a partition of A
Fact 2

If the family {R(a)}sca is not a partition of A
,then R is not an equivalence on A



Proof of Theorem 1

Theorem 1

Let A#0

If ~ is an equivalence relation on A,
then theset A/ =~ is a partition of A

Proof

Let A/~={[a]:acA}=P

We must show that all sets in P are nonempty, disjoint, and
together exhaust the set A



Proof of Theorem 1

1. All equivalence classes are nonempty,

This holds as a € [a] forall a € A, reflexivity of equivalence
relation

2. All different equivalence classes are disjoint
Consider two different equivalence classes [a] # [b]
Assume that [a] N [b] # 0.

We have that [a] # [b], thus there is an element c
suchthat c < [a] and c € [b]

Hence (a,c) e~ and (c,b) e

Since ~ is transitive, we get (a,b) e »



Proof of Theorem 1

Since ~ is symmetric, we have thatalso (a,b) € ~

Now take any element d € [a];
then (d, a) € =, and by transitivity, (d,b) € =
Hence d < [b], sothat [a] € [b]

Likewise [b] C [a] and [a] = [b] what contradicts the
assumption that [a] # [b]



Proof of Theorem 1

3. To prove that

JAai==[Jp=A

we simply notice that each element ac A is
in some setin P
Namely we have by reflexivity that always

a e |a]

This ends the proof of Theorem 1



Proof of the Theorem 2

Now we are going to prove that the Theorem 1 can be
reversed, namely that the following is also true

Theorem 2
For any partition
PcP(A)
of A, one can construct a binary relation R on A
such that R is an equivalence and its equivalence classes
are exactly the sets of the partition P
Proof
We define a binary relation R as follows

R ={(a,b): a,be X forsome X € P}



Short Review

PART 3: Equivalence Relations - Short and Long Questions



Short Questions

Q1 Let RCAXA for A#0, thenthe set
[a] ={beA:(a,b) e R}

is an equivalence class with a representative a

Q2 The set
{(0,0), ({a}.{a}). (3,3)}

represents a transitive relation



Short Questions

Q3 There is an equivalence relation on the set
A ={{0},{0,1},1,2}

with 3 equivalence classes

Q4 Let A #(0 besuchthatthere are exactly

25 partitions of A
It is possible to define 20 equivalence relations on A



Short Questions Answers

Q1 Let RC A x A then the set
[a] ={beA:(a,b) R}

is an equivalence class with a representative a

NO Theset [a] ={beA:(a,b)e R} isanequivalence
class only when the relation R is an equivalence relation

Q2 The set

{(0,0), ({a).{a}). (3,3))
represents a transitive relation
YES Transitivity condition is vacuously true



Short Questions Answers

Q3 There is an equivalence relation on
A = {{0},{0,1},1,2}

with 3 equivalence classes

YES For example, arelation R defined by the partition
P ={{{0}}, {{0,1}}, {1.2}}
and so By proof of Theorem 2
R ={(a,b): a,be X forsome X € P}

ie. a=b={0}ora=b={0,1}or (a=1 and b=2)



Short Questions Answers

Q4
Let A # 0 be such that there are exactly 25 partitions of A
It is possible to define 2 equivalence relations on A

YES By Theorem 2 one can define up to 25 (as many as
partitions) of equivalence classes



Equivalence Relations

Some Long Questions



Some Long Questions

Q1 Consider a functionf: A — B
Showthat R ={(a,b)e AxA: f(a)=1f(b)}
is an equivalence relation on A

Q2 Let f: N— N be such that

1 ifn<6
f(”)_{z itn>6

Find equivalence classes of R from Q1 for this particular
function f



Long Questions Solutions

Q1 Consider a function f: A — B
Show that

R ={(a,b)e AxA: f(a)=f(b)}
is an equivalence relation on A
Solution

1. R is reflexive
(a,a) e R forall a€ A because f(a) = f(a)



Long Questions Solutions

2. R is symmetric
Let (a,b) € R, by definition f(a) = f(b)and f(b) = f(a)
Consequently (b,a) € R

3. R is transitive
Forany a.b,c € A we getthatf(a) = f(b) and f(b) = f(c)
implies that f(a) = f(c)



Long Questions Solutions

Q2 Let f: N— N be such that

1 ifn<6
f(”):{z itn>6

Find equivalence classes of
R =1{(a,b) e AxA: f(a)=f(b)}

for this particular f



Long Questions Solutions

Solution
We evaluate

[0l ={neN: f(0) =f(n)} ={neN: f(n) =1}
={neN: n<6}

[7]={neN: {(7)=1f(n)}={neN: f(n) =2}
={neN: n>6}
There are two equivalence classes:

Ai={neN: n<6}, A A={neN: n>6}



Discrete Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATIONS: Order Relations



Order Relations

We introduce now of another type of important binary
relations: the order relations

Definition
R c A x Aisanorderrelatonon A iff R is 1.Reflexive, 2.

Antisymmetric, and 3. Transitive, i.e. the following conditions
are satisfied

1- VaeA(a,a) € R
2. Yapea((a,b) e RN (b,a) e R = a=0>b)
3. Yabcea ((a,b) e RN (b,c) e R = (a,c) € R)



Order Relations

Definition

Rc(AxA)isatotal orderon A ifandonlyif R isan
order and any two elements of A are comparable, i.e.
additionally the following condition is satisfied

4. Yapen ((a,b) e RU(b,a) € R)

Names

order relation is also called historically a partial order

total order is also called historically a linear order



Order Relations

Notations

order relations are usually denoted by <, or when we want to
make a clear distinction from the natural order in sets of
numbers we denote it by <

Remember

We use < as the order relation symbol, it is a symbol for
any order relation, not a the natural order in sets of
numbers, unless we say so



Posets

Definition
Given A # (0 and an order relation defined on A
A tuple

(A, <)

is called a poset

Name poset stands historically for Partially Ordered Set
A Diagram of is a graphical representation of a poset and
is defined as follows



Posets

A Diagram of a poset (A, <) is a simplified graph constructed
as follows

1. Asthe order relation < is reflexive, i.e. (a,a) € R for all
a € A, we draw a point with symbol a instead of a point with

symbol a and the loop

2. As the order relation < is antisymmetric we draw a pointb
above a point a connected, but without the arrows to indicate
that (a,b) € R

3. As the order relation is transitive, we connect points a, b, ¢
with a line without arrows



Posets Special Elements

Special elements in aposet (A, <) are: maximal, minimal,
greatest (largest) and smallest (least) and are defined below.

Smallest (least) ap; € A is a smallest (least) element in the
poset (A,<) iff Vaea(ao < a)

Greatest (largest) ap € A is a greatest (largest) element in
the poset (A,<) iff Vaea(a < ap)



Posets Special Elements

Maximal (formal) ap € A is a maximal element in the poset
(A, <) iff =Fzca(ap<a n ap#a)

Maximal (informal) ap € A is a maximal element in the
poset (A,<) iff on adiagram of (A, <) there is no element
placed above ag

Minimal (formal) ap € A is a minimal element in the poset
(A,<) iff —Fzea(@a<ap N ap#a)

Minimal (informal) ap € A is a minimal element in the poset
(A,<) iff onthe diagram of (A, <) there is no element
placed below ag



Some Properties of Posets

Use Mathematical Induction to prove the following property
of finite posets

Property 1 Every non-empty finite poset has at least one
maximal element

Proof

Let (A, <) be a finite, not empty poset (partially ordered set
by <, such that A has n-elements, i.e. |A| =n

We carry the Mathematical Induction over n € N — {0}

Reminder: an element a, € A ia a maximal element in a
poset (A, <) iff the following is true.

—Jdgea(a #anap <a)



Inductive Proof

Base case: n=1,s0 A = {a} and a is maximal (and
minimal, and smallest, and largest) in the poset ({a}, <)

Inductive step: Assume that any set A such that |A| = n has
a maximal element;

Denote by ap the maximal element in (A, <)
Let B be a set with n + 1 elements; i.e. we can write B as
B = A U{by} for by ¢ A, for some A with n elements



Inductive Proof

By Inductive Assumption the poset (A, <) has a maximal
element ap

To show that (B, <) has a maximal element we need to
consider 3 cases.

1. by < ag; in this case ag is also a maximal element in
(B, <)

2. ap < bp; in this case by is a new maximal in (B, <)
3. ap, by are not compatible; in this case ag remains
maximal in (B, <)

By Mathematical Induction we have proved that

¥ neen—0}(JA| = n = A has a maximal element)



Some Properties of Posets

We just proved

Property 1 Every non-empty finite poset has at least one
maximal element

Show that the Property 1 is not true for an infinite set

Solution: Consider a poset (Z, <), where Z is the set on
integers and < is a natural order on Z. Obviously no maximal
element!

Exercise: Prove

Property 2 Every non-empty finite poset has at least one
minimal element

Show that the Property 2 is not true for an infinite set



Discrete Mathematics Basics

PART 4: Finite and Infinite Sets



Equinumerous Sets

Equinumerous sets

We call two sets A and B are equinumerous

if and only if there is a bijection function f: A — B,
i.e. there is f is such that

foA Y B
Notation

We write A ~ B to denote that the sets A and B are
equinumerous and write symbolically

1-1,onto

A ~B ifandonlyif f: A — B



Equinumerous Relation
Observe that for any set X, the relation ~
is an equivalence on the set 2%, i.e.
~c 22X x2X

is reflexive, symmetric and transitive and for any set A
the equivalence class

[A]={Be2X: A ~B}

describes for finite sets all sets that have the same
number of elements as the set A



Equinumerous Relation

Observe also that the relation ~ when considered for
any sets A, B is not an equivalence relation as its domain
would have to be the set of all sets that does not exist

We extend the notion of "the same number of elements”
to any sets by introducing the notion of cardinality of sets



Cardinality of Sets

Cardinality definition

We say that A and B have the same cardinality if and only
if they are equipotent, i.e.

A~B

Cardinality notations
If sets A and B have the same cardinality we denote it as:

|A| =|B| or cardA = cardB



Cardinality of Sets

Cardinality
We put the above together in one definition

|Al =|B| if and only if
there is a function f is such that

1-1,onto

frA — B



Finite and Infinite Sets

Definition
Aset A is finite if and only if
there is n € N and there is a function

fro(0.1.2...n—1) 2%° A
In this case we have that

Al =n

and say that the set A has n elements



Finite and Infinite Sets

Definition
A set A isinfinite ifandonlyif A is notfinite

Here is a theorem that characterizes infinite sets
Dedekind Theorem

A set A isinfinite if and only if

there is a proper subset B of the set A such that

|Al = |B|



Infinite Sets Examples

E1 Set N of natural numbers is infinite

Consider a function f given by a formula
f(n)=2n forall neN
Obviously

1-1,onto

f: N — 2N

By Dedekind Theorem the set N is infinite as the set 2N of
even numbers are a proper subset of natural numbers N



Infinite Sets Examples

E2 Set R of real numbers is infinite

Consider a function f given by a formula
f(x) =2" forall xe R
Obviously

1-1,onto
f: R — RT

By Dedekind Theorem the set R is infinite as the set
R™ of positive real numbers are a proper subset of
real numbers R



Countably Infinite Sets
Cardinal Number K

Definition
A set A is called countably infinite if and only if it has the
same cardinality as the set N natural numbers, i.e. when

|Al = IN|

The cardinality of natural numbers N is called
No (Aleph zero) and we write

IN| = Ro



Countably Infinite Sets
Definition
For any set A,
|A| =N ifandonlyif |A|=|N]
Directly from definitions we get the following

Fact 1
A set A is countably infinite ifand only if |A| =g



Countably Infinite Sets

Fact 2
A set A is countably infinite if and only if
all elements of A can be putin a 1-1 sequence

Other name for countably infinite setis
infinitely countable set and we will use both names



Countably Infinite Sets

In a case of an infinite set A and not 1-1 sequence
we can "prune” all repetitive elements to get a 1-1 sequence,
i.e. we prove the following

Fact 2a
An infinite set A is countably infinite if and only if
all elements of A can be put in a sequence



Countable and Uncountable Sets

Definition
A set Ais countable ifandonlyif A is finite
or countably infinite

Fact 3
A set Ais countable ifandonlyif A is finite
or |A| =N, i.e. |A| =|N|



Countable and Uncountable Sets

Definition
A set A is uncountable ifandonlyif A is not countable

Fact 4
A set A is uncountable ifandonlyif A is infinite and
|A| # No, i.e. |A]l #|N|

Fact 5
A set A is uncountable if and only if its elements

can not be put into a sequence

Proof proof follows directly from definition and Facts 2, 4



Countably Infinite Sets

We have proved the following

Fact 2a
An infinite set A is countably infinite if and only if
all elements of A can be putin a sequence

We use it now to prove two theorems about countably infinite
sets



Countably Infinite Sets

Union Theorem

Union of two countably infinite sets is a countably infinite set
Proof

Let A, B be two disjoint infinitely countable sets

By Fact 2 we can list their elements as 1-1 sequences

A dp, a1, do, ... and B: bo, b1, bz,...
and their union can be listed as 1-1 sequence
AUB: ag, by, ai, by, as,bo,...,...

In a case not disjoint sets we proceed the same and then
"prune” all repetitive elements to get a 1-1 sequence



Countably Infinite Sets

Product Theorem

Cartesian Product of two countably infinite sets is a
countably infinite set

Proof

Let A, B be two infinitely countable sets

By Fact 2 we can list their elements as 1-1 sequences

A dop, a1, do, ... and B: bo, b1,b2,...

We list their Cartesian Product A x B as an infinite table

ai, b4 s

(a1, b1), (a1, b ) (a ),...
(@2, b1), (a2, b2), (ag,bg),
(a3, b1), ( ) (

as,bo), (as,b1), (as, b2), (as,bs), ...

PP ey ey .y .y ey



Cartesian Product Theorem Proof

Observe that even if the table is infinite each of its
diagonals is finite

(ao, bo), (a0, b1), (ao.b2), (ao, bs), (ao, bs), ...s...
(a1, bo), (a1.b1), (a1,b2), (ai.bs),
(as,bo), (ag,b1), (a2, b2), (az, bs),
(as, bo), (as,b1), (as,b2), (as, bs),

We list now elements of A x B one diagonal after the other
Each diagonal is finite, so now we know when one finishes
and other starts



Cartesian Product Theorem Proof

A x B becomes now the following sequence

(@0, bo),

(a1, bo), (&0, b1),

(az, bo), (ai1,b1), (ao, b2),

(a3, bo), (@2,b1), (a1.b2), (ao, bs),
(as, by), (a2, b2), (a1, bs), (ao, bs), ...,

“ey ceey ceey ceey

We prove by Mathematical induction that the sequence is well
defined forall n€ N and hence that |A x B] = |N]|
It ends the proof of the Product Theorem



Union and Cartesian Product Theorems

Observe that the both Union and Product Theorems
can be generalized by Mathematical Induction to the case of
Union or Cartesian Products of any finite number of sets



Uncountable Sets

Theorem 1

The set R of real numbers is uncountable

Proof

We first prove ( homework problem 1.5.11) the following
Lemma 1

The set of all real numbers in the interval [0,1] is
uncountable

Then we use the Lemma 2 below (to be proved it as an
exercise) and the fact that [0,1] € R and this ends the proof

Lemma 2 Forany sets A,B suchthat BC A and B is
uncountable we have that also the set A is uncountable



Special Uncountable Sets

Cardinal Number C - Continuum
We denote by C the cardinality of the set R of real numbers
C is a new cardinal number called continuum and we write

IRl =C

Definition
We say that a set A has cardinality C (continuum)
if and only if |A| = |R]
We write it
|Al=C



Sets of Cardinality C

Example
The set of positive real numbers R™ has cardinality C
because a function f given by the formula

f(x) =2" forall xeR

is 1-1 function and maps R onto the set R™



Sets of Cardinality C

Theorem 2

The set 2V of all subsets of natural numbers is uncountable
Proof

We will prove it in the PART 5.

Theorem 3
The set 2" has cardinality C, i.e.
N =c

Proof

The proof of this theorem is not trivial and is not in the scope
of this course



Cantor Theorem

Cantor Theorem (1891)

For any set A,
Al < |24

where we define

Al <|B| ifandonlyif thereisafunctionf: A - B

|Al < |B| ifandonlyif |A|<|B| and |A|# |B|



Cantor Theorem

Directly from the definition we have the following
Fact 6
If A CB then |A| < |B|

We know that |[N| =Ky, C =|R],and N C R hence from
Fact 6, Ng < C, but Xg # C, as the set N is countable and
the set R is uncountable

Hence we proved

Fact 7
No <C



Uncountable Sets of Cardinality Greater then C

By Cantor Theorem we have that
INI <IP(N)| < IP(P(N))l < IP(P(P(N))l < ...
All sets
P(P(N)), PPP(N)) ...
are uncountable with cardinality greater then C, as by

Theorem 3, Fact 7, and Cantor Theorem we have that

Ro <C < [P(P(N)) < IPPPN))I < ...



Countable and Uncountable Sets

Here are some basic Theorem and Facts

Union 1
Union of two infinitely countable (of cardinality &) sets is
an infinitely countable set
This means that
No + No = Np
Union 2

Union of a finite (of cardinality n) set and infinitely countable
(of cardinality g ) setis an infinitely countable set

This means that
No +n==Ng



Countable and Uncountable Sets

Union 3
Union of an infinitely countable (of cardinality Ng) set

and a set of the same cardinality as real numbers i.e. of the
cardinality C has the same cardinality as the set of real
numbers

This means that

No+C=C
Union 4 Union of two sets of cardinality the same as real
numbers (of cardinality C) has the same cardinality as the
set of real numbers

This means that
cC+C=cC



Countable and Uncountable Sets

Product 1
Cartesian Product of two infinitely countable sets is an
infinitely countable set

No - No = Np

Product 2
Cartesian Product of a non-empty finite set and an
infinitely countable set is an infinitely countable set

n-8g==N8y for n>0



Countable and Uncountable Sets

Product 3

Cartesian Product of an infinitely countable set and an
uncountable set of cardinality C has the cardinality C

No-C=C

Product 4

Cartesian Product of two uncountable sets of cardinality C
has the cardinality C
c-c=¢C



Countable and Uncountable Sets

Power 1

The set 2N of all subsets of natural numbers (or of any
countably infinite set) is uncountable set of cardinality C , i.e.
has the same cardinality as the set of real numbers

2% =¢

Power 2
There are C of all functions that map N into N
Power 3

There are C possible sequences that can be form out of an
infinitely countable set

N,
Ny =C



Countable and Uncountable Sets

Power 4

The set of all functions that map R into R has the cardinality
CC

Power 5

The set of all real functions of one variable has the same
cardinality as the set of all subsets of real numbers

CC:2C



Countable and Uncountable Sets

Theorem 4
n<Nyg<C

Theorem 5

For any non empty, finite set A, the set A* of all finite
sequences formed out of A is countably infinite, i.e

|A*| = No
We write it as

If |Al=n, n>1, then |A"| =N



Simple Short Questions



Simple Short Questions

Q1 Set Aisuncountable iff A C R (R isthe set of real
numbers)

Q2 Set Aiscountable iff N C A where N is the set of
natural numbers

Q3 The set 2" is infinitely countable

Q4 Theset A = {{n} €2V : n? + 1 < 15} is infinite

Q5 ThesetA = {({n},n) € 2N x N : 1 < n < n?} is infinitely
countable

Q6 Union of an infinite set and a finite set is an infinitely
countable set



Answers to Simple Short Questions

Q1 Set Aisuncountable ifandonlyif ACR (R isthe
set of real numbers)

NO

The set 27 is uncountable, as |R| < |2F| by Cantor
Theorem, but 27 is not a subset of R

Also for example. N C R and N is not uncountable



Answers to Simple Short Questions

Q2 Set A iscountable ifandonlyif NCA, where N
is the set of natural numbers

NO
For example, the set A = {0} is countable as it is finite, but

N ¢ {0}

In fact, A can be any finite set

orany A can be any infinite set that does notinclude N,
for example,
A={n}: neN}



Answers to Simple Short Questions

Q3 Theset 2" isinfinitely countable

NO

[2N| = |R| = C and hence 2" is uncountable
Q4

The set A = {{n} € 2N : n? 41 < 15} is infinite
NO

Theset {ne N: n>+1 <15} =1{0,1,2,8},
Hence the set A = {{0}, {1}, {2}, {3}} is finite



Answers to Simple Short Questions

Q5 ThesetA = {({n}),n) €2V x N:1<n<n? isinfinitely
countable (countably infinite)

YES

Observe that the condition n < n® holds forall ne N,
sotheset B = {n:n<n? isnfinitely countable
Theset C ={({nje2V:1<n<n? isalso
infinitely countable as the function given by a formula
f(n) ={n} is 1—1and maps Bonto C,i.e |B| = |C|

The set A = C x B is hence infinitely countable as the
Cartesian Product of two infinitely countable sets



vDiscrete Mathematics Basics

PART 5: Fundamental Proof Techniques
1. Mathematical Induction

2. The Pigeonhole Principle

3. The Diagonalization Principle



Mathematical Induction Applications
Examples

Counting Functions Theorem

For any finite, non empty sets A, B, there are
B/

functions that map A into B

Proof

We conduct the proof by Mathematical Induction over the
number of elements of the set A, i.e. over ne N — {0},
where n = |A]|



Counting Functions Theorem Proof
Basecase n =1
We have hence that |[A|=1andlet |[Bj=m, m=>1, ie.
A =1{a} and B ={by,..by}, m=>1
We have to prove that there are
B! = m!’

functions that map A into B
The base case holds as there are exactly m' = m
functions f:{a} — {by,...bn} defined as follows



Counting Functions Theorem Proof

Inductive Step
Let A=Ajula} fora¢ Ay and |Ai{l=n
By inductive assumption, there are m"” functions

f:A— B=/{by,..bm}

We group all functions that map A; as follows
Group 1 contains all functions f; such that

fi:A—B
and they have the following property
fi(a) = by, fi(x)=f(x) forall f:A — B and x € A;

By inductive assumption there are m” functions in
the Group 1



Counting Functions Theorem Proof

Inductive Step
We define now a Group /, for 1 < i <m, m = |B]| as follows
Each Group i contains all functions f; such that

fi:A— B
and they have the following property
fila) = by, fi(x)="f(x) forall f:A— B and x € A4

By inductive assumption there are m" functions in each of
the Group i
There are m = |B| groups and each of them has m”"
elements, so all together there are

m(mn) _ mn+1

functions, what ends the proof



Mathematical Induction Applications
Pigeonhole Principle

Pigeonhole Principle Theorem

If A and B are non-empy finite sets and |A| > |B|,
then there is no one-to one function from A to B
Proof

We conduct the proof by by Mathematical Induction over
neN-{0}, where n=|B| and B # 0

Base case n =1

Suppose |B| = 1, thatis, B = {b}, and |A| > 1.

If f: A — {b},

then there are at least two distinct elements a{,a> € A, such
that f(ay) = f(az2) = {b}

Hence the function f is not one-to one



Pigeonhole Principle Proof
Inductive Assumption
We assume thatany f : A — B is not one-to one provided
|A|>1|B| and |B|<n, where n>1

Inductive Step
Suppose that f: A — B is such that

|A|>1|B|] and |B|=n+1

Choose some b € B
Since |B| > 2 we have that B — {b} # 0



Pigeonhole Principle Proof

Consider the set f~'({b}) € A. We have two cases

1. [F'({b})l = 2

Then by definition there are a{, a» € A,

such that a; # a» and f(ai) = f(a2) = b what proves that
the function f is not one-to one

2. f({b))l < 1

Then we consider a function

g: A-f({b})) — B-—{b}
such that

g(x) = f(x) forall xeA-f'({b})



Pigeonhole Principle Proof
Observe that the inductive assumption applies to the
function g because |[B —{b}| =n for |B|=n+ 1 and
IA — (b))l = |A| -1 for | ({b}) < 1
We know that |A| > |B|, so
JAl=1>|B|—1=n=|B-{b})] and |A - f'({b})| > |B - {b}|

By the inductive assumption applied to g we get that

g is not one -to one

Hence g(a;) = g(a) for some distinct a;,a, € A — 7' ({b}),
but then f(ai) = f(a2) and f is not one -to one either



Pigeonhole Principle Revisited

We now formulate a bit stronger version of the the pigeonhole
principle and present its slightly different proof

Pigeonhole Principle Theorem
If A and B are finite sets and |A| > |B],
then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over
ne N, where n=|B]|

Base case n =0

Assume |B| = 0, thatis, B = 0. Then there is no function
f: A — B whatsoever; let alone a one-to one function



Pigeonhole Principle Revisited Proof
Inductive Assumption
Any function f: A — B is not one-to one provided
|A|>1|B] and |B|<n, n>0

Inductive Step
Suppose that f: A — B is such that

|A|>1|B|] and |B|=n+1

We have to show that f is not one-to one under the
Inductive Assumption



Pigeonhole Principle Revisited Proof

We proceed as follows
We choose some element a € A
Since |A| > |B|, and |B] = n+ 1 > 1 such choice is possible

Observe now that if there is another element a’ € A such
that a’ # a and f(a) = f(a’), then obviously the function
f is not one-to one and we are done

So, suppose now that the chosen a € A is the only
element mapped by f to f(a)



Pigeonhole Principle Revisited Proof

Consider then the sets A —{a} and B - {f(a)}
and a function
g: A-{a} — B-{f(a)}

such that
g(x) =f(x) forall xeA—{a}

Observe that the inductive assumption applies to g because
|B —{f(a)}l=n and

|A —{all =|Al-1>[B|-1=|B-{f(a)ll



Pigeonhole Principle Revisited Proof

Hence by the inductive assumption the function

g is not one-to one

Therefore, there are two distinct elements elements of
A —{a} that are mapped by g to the same element of
B - {f(a)}

The function g is, by definition, such that

g(x) =f(x) forall xeA-{a}

so the function f is not one-to one either
This ends the proof



Pigeonhole Principle Theorem Application

The Pigeonhole Principle Theorem is a quite simple fact but is
used in a large variety of proofs including many in this course
We present here just one simple application which we will use
in later Chapters

Path Definition
Let A #0 and R C A XA be abinary relation in the set A
A path in the binary relation R is a finite sequence

ai,...,ap suchthat(a;a 1) € R, fori=1,2,...n—1andn > 1

The path ay,...,a, issaidtobefrom a; to a,
The length of the path a4,...,a, isn

The path a4,...,a, isacycle if g are all distinct and also
(an.a1) € R



Pigeonhole Principle Theorem Application

Path Theorem

Let R be a binary relation on a finite set A andlet a,b € A
If there is a path fromato bin R,

then there is a path of length at most |A|

Proof

Suppose that ai,...,a, isthe shortest path from a = a;
to b = ap, that is, the path with the smallest length, and
suppose that n > |A|. By Pigeonhole Principle there is an
element in A that repeats on the path, say a; = a; for some
1<i<j<n

Butthen aj,...,a,a.1,...,a, is ashorter path from ato b,
contradicting a1, ..., a, being the shortest path



The Diagonalization Principle

Here is yet another Principle which justifies a new important
proof technique

Diagonalization Principle (Georg Cantor 1845-1918)

Let R be abinary relation on aset A, i.e.

R C Ax A andlet D, the diagonal set for R be as follows

D={acA: (a,a) ¢ R}
Foreach a € A, let
R, ={beA: (a,b)eR}

Then D is distinct from each R,



The Diagonalization Principle Applications

Here are two theorems whose proofs are the “classic
applications of the Diagonalization Principle

Cantor Theorem 2
Let N be the set on natural numbers

The set 2" is uncountable

Cantor Theorem 3
The set of real numbers in the interval [0, 1] is uncountable



Cantor Theorem 2 Proof
Cantor Theorem 2
Let N be the set on natural numbers

The set 2" is uncountable

Proof

We apply proof by contradiction method and the
Diagonalization Principle

Suppose that 2" is countably infinite. That is, we assume
that we can put sets of 2" in a one-to one sequence
{Rn}nen such that

2N = {Ry, Ri, R, ...}
We define a binary relation R € N x N as follows
R=1{(i.j): je R
This means that for any i, j € N we have that

(i,j) € R ifand only if j € R,



Cantor Theorem 2 Proof

In particular, for any i, j € N we have that
(i.j) ¢ R ifand only if j ¢ R;
and the diagonal set D for Ris
D={neN: né¢R,}
By definition D C N, i.e.
De2N ={Ry, Ry, R, ...}

and hence
D = Ry forsome k>0



Cantor Theorem 2 Proof

We obtain contradiction by asking whether k € Ry for
D = R

We have two cases to consider: k € R, or k ¢ Ry
c1 Suppose that k € Ry

Since D={neN: né¢ R,}wehavethatk ¢ D
But D = R and we get k ¢ Ry

Contradiction

c2 Suppose that k ¢ Ry

Since D={neN: n¢ R,}wehavethatk € D
But D = R and we get k € R

Contradiction

This ends the proof



Cantor Theorem 3 Proof

Cantor Theorem 3

The set of real numbers in the interval [0, 1] is uncountable
Proof

We carry the proof by the contradiction method

We assume hat the set of real numbers in the interval

[0,1] is infinitely countable

This means, by definition , that there is a function f such that
1-1,onto

f: N — [01]
Let f be any such function. We write f(n) = d, and denote by

do, dy, ..., dn, ...,

a sequence of of all elements of [01] defined by f
We will get a contradiction by showing that one can always
find an element d € [01] such that d # d, forall n € N



Cantor Theorem 3 Proof

We use binary representation of real numbers

Hence we assume that all numbers in the interval [01] form a
one to one sequence

do = 0.200 @01 @02 ao3 Ao4

dy = 0.a10 @11 a2 @13 aos
d> = 0.a20 @21 az2 @23do

dz = 0.a30 a31 @32 @33 a4 - - -

where all a; € {0, 1}



Cantor Theorem 3 Proof

We use Cantor Diagonatization idea to define an element
d € [01], such that d # d, for all n € N as follows

For each element a,, of the "diagonal’

ao0, a1, @22, «.. anpy vee 5 e

of the sequence dy, di, ..., dn, ..., ofbinary
representation of all elements of the interval [01] we define

an element b,, # ann as

b o 0 |fann:1
- 1 |fann:o



Cantor Theorem 3 Proof

Given such defined sequence

boo, b11, boo, bas, baa, ... ...
We now construct a real number d as

d = bgo b11 bop b3z bas ... ...

Obviously d € [01] and by the Diagonatization Principle
d#dpforallne N

Contradiction

This ends the proof



Cantor Theorem 3 Proof

Here is another proof of the Cantor Theorem 3

It uses, after Cantor the decimal representation of real
numbers

In this case we assume that all numbers in the interval [01]
form a one to one sequence

do = 0.a00 @01 o2 @03 aoa

di = 0.a10 @11 a2 a13 aos
d2 = 0.a20 a1 az2 azzap

0z = 0.a30 a31 a32 @33 a4 - - -

where all g; € {0,1,2...9}



Cantor Theorem 3 Proof

For each element a,, of the "diagonal”
ap0, 11, @22, <. Anns -er 5 on-

we define now an element (this is not the only possible
definition) b, # ann as

b o 2 ifann:1
M7 1 ifam # 1

We construct a real number d € [01] as

d = bgg b11 boo bzgz bgg ... ...



Discrete Mathematics Basics

PART 6: Closures and Algorithms



Closures - Intuitive

Idea

Natural numbers N are closed under +, i.e. for given two
natural numbers n, m we always have thatn+ me N

Natural numbers N are not closed under subtraction —, i.e
there are two natural numbers n, m such that n— m ¢ N, for
example 1,2e N and 1-2¢ N

Integers Z are closed under—, moreover Z is the smallest set
containing N and closed under subtraction —

The set Z is called a closure of N under subtraction —



Closures - Intuitive

Consider the two directed graphs R (a) and R* (b) as
shown below

Observe that R* = RU{(aj,a;) : i=1,2,3,4}U{(az, as4)},
R € R* andis R* is reflexive and transitive whereas R is

neither, moreover R* is also the smallest set containing R
that is reflexive and transitive

We call such relation R* the reflexive, transitive closure of R

We define this concept formally in two ways and prove the
equivalence of the two definitions

=} F




Two Definitions of R*

Definition 1 of R*

R* is called a reflexive, transitive closure of R iff R C R*

and is R* is reflexive and transitive and is the smallest set with
these properties

This definition is based on a notion of a closure property
which is any property of the form ” the set B is closed under
relations Rq, Ro,...,Ry”

We define it formally and prove that reflexivity and transitivity
are closures properties

Hence we justify the name: reflexive, transitive closure of R
for R*



Two Definitions of R*

Definition 2 of R*
Let R be a binary relation on a set A
The reflexive, transitive closure of R is the relation

R*={(a,b) e AxA: thereisapathfromatobinR}

This is a much simpler definition- and algorithmically more
interesting as it uses a simple notion of a path

We hence start our investigations from it- and only later
introduce all notions needed for the Definition 1 in order to
prove that the R* defined above is really what its name says:
the reflexive, transitive closure of R



Definition 2 of R*

We bring back the following
Path Definition
A path in the binary relation R is a finite sequence

ai,...,ap such that (aj,aj 1) € R, fori=1,2,...n—1andn > 1

The path ay,...,a, issaidtobefrom a; to a,

The path a; (case when n = 1) always exist and is called a
trivial path from a; to aj

Definition 2
Let R be a binary relation on a set A
The reflexive, transitive closure of R is the relation

R*={(a,b) e Ax A : thereisapathfromatob in R}



Algorithms

Definition 2 immediately suggests an following algorithm for
computing the reflexive transitive closure R* of any given
binary relation R over some finite set A = {ay, a», ..., an}

Algorithm 1

Initially R* :=0

for i=1,2,...,n do

for each i- tuple (by,...,b;) € A" do

if by,...,b; isa pathin Rthenadd (bi,b,) to R*



Algorithms

We also have a following much faster algorithm
Algorithm 2

Initially R*:= RU{(aj,a): ai €A}

for j=1,2,...,n do

for i=1,2,...,nand k=1,2,...,n do

if (ai,a)),(a,ak) € R* but (a,ak) ¢ R*

then add (a;,ax) to R*



Closure Property Formal

We introduce now formally a concept of a closure property of
a given set

Definition

Let D beaset, let n>0 and

let R c D" bea (n-+1)-ary relationon D

Then the subset B of D is said to be closed under R
if bpr1 € B whenever (by,....by,bri1) €R

Any property of the form ” the set B is closed under relations
Ri,Ro,...,Ry” is called a closure property of B



Closure Property Examples

Observe that any function f: D" — D is a special relation
f ¢ D™ so we have also defined what does it mean that a
set A C D is closed under the function f
E1: -+ is aclosure property of N
Adition is a function +: Nx N — N defined by a formula
+(n,m)=n+m,i.e.itisarelation + c NxNxN such
that

+={(n,m,n+m): n,meN}

Obviously the set N € N is (formally) closed under +
because

for any n,m € N we have that (n,m,n+ m) € +



Closures Property Examples
E2: N is a closure property of 2N
N c 2N x 2N x 2V is defined as
(A,B,C)en iff AnB=C
and the following is true for all A, B, C € 2N

ifA,Be2N and (A,B,C)en then Ce2N



Closure Property Fact1

Since relations are sets, we can speak of one relation as
being closed under one or more others

We show now the following

CP Fact 1

Transitivity is a closure property

Proof

Let D be aset, let Q be aternary relationon D x D, i.e.
Q c (D x D)® be such that

Q ={((a,b),(b,c),(a,c)): a,b,ce D}

Observe that for any binary relation R € D x D ,
R is closed under Q if and only if R is transitive



CP Fact1 Proof

The definition of closure of R under Q says: for any
X,¥,ze DxD,

ifx,y€ R and (x,y,z) € Q then ze R
But (x,y,z) e Q iff x=(a,b),y=(b,c),z=(a,c) and
(a,b),(b,c) € R implies (a,c) € R

is a true statement for all a,b,c € D iff R is transitive



Closure Property Fact2

We show now the following

CP Fact 2

Reflexivity is a closure property
Proof

Let D # 0, we define an unary relation Q" on D x D, i.e.
Q' € D x D as follows

Q' ={(a,a): aeD}

Observe that for any R binary relationon D,i.e. RC DxD
we have that

R is closed under Q" if and only if R is reflexive



Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D,
andlet AcD

Then there is a unique minimal set B suchthat BC A and
B has property P



Two Definition of R* Revisited

Definition 1

R* is called a reflexive, transitive closure of R iff R € R*
and is R* is reflexive and transitive and is the smallest set with
these properties

Definition 2
Let R be a binary relation on a set A
The reflexive, transitive closure of R is the relation

R*={(a,b) e AxA: thereisapathfromatob in R}

EquivalencyTheorem

R* of the Definition 2 is the same as R* of the Definition 1
and hence richly deserves its name reflexive, transitive
closure of R



Equivalency of Two Definition of R*

Proof Let
R*=1{(a,b) e Ax A : thereisapathfromatobinR}

R* is reflexive for there is a trivial path (case n=1) from a to
a,foranyacA

R* is transitive as forany a,b,c € A

if there is a path from a to b and a path from b to c, then there
is a path from ato c

Clearly R € R* because there is a path from a to b whenever
(a,b) e R



Equivalency of Two Definition of R*

Consider a set S of all binary relations on A that contain R
and are reflexive and transitive, i.e.

S={QCAxXA: RcCQandQ is reflexive and transitive }

We have just proved that R* € S

We prove now that R* is the smallest set in the poset (S, <),
i.e. that forany Q € S we have that R* € Q



Equivalency of Two Definition of R*

Assume that (a, b) € R*. By Definition 2 there is a path
a—ay,...., ax = bfromatob andlet Q€S

We prove by Mathematical Induction over the length k of the
path fromatob

Base case: k=1

We have that the pathis a = a; = b, i.e. (a,a) € R" and
(a,a) € Q from reflexivity of Q

Inductive Assumption:

Assume that for any (a,b) € R* such that there is a path of
length k from ato b we have that (a,b) € Q



Equivalency of Two Definition of R*

Inductive Step:

Let (a,b) € R* be now such that there is a path of length k+1
fromatob,iethereisaapatha=ay, ..., ax, ak+1 =b
By inductive assumption (a = ay, ax) € Q and by definition of
the path (ak, ak+1 = b) €R

But R € Q hence (ax,ax+1 =b)e Qand(a,b) € Qby
transitivity

This ends the proof that Definition 2 of R* implies the
Definition1

The inverse implication follows from the previously proven fact
that reflexivity and transitivity are closure properties



Discrete Mathematics Basics

PART 7: Alphabets and languages



Alphabets and languages
Introduction

Data are encoded in the computers’ memory as
strings of bits or other symbols appropriate for manipulation

The mathematical study of the Theory of Computation
begins with understanding of mathematics of manipulation
of strings of symbols

We first introduce two basic notions: Alphabet and
Language



Alphabet

Definition
Any finite set is called an alphabet

Elements of the alphabet are called symbols of the alphabet

This is why we also say:
Alphabet is any finite set of symbols



Alphabet

Alphabet Notation
We use a symbol * to denote the alphabet

Remember
> canbe (0 as empty setis a finite set

When we want to study non-empty alphabets we have to

say so, i.e to write:
>#0



E1

E2

E3

E4

Alphabet Examples
Y=1{ 0,0, . Q. & V)
> ={a, b, ¢}
Y={neN: n<10%

> = {0, 1} is called a binary alphabet



Alphabet Examples
For simplicity and consistence we will use only as
symbols of the alphabet letters (with indices if necessary) or
other common characters when needed and specified

We also write o € X for a general form of an element in x

> is a finite set and we will write

> ={ay, a, ..., an} for n>0



Finite Sequences Revisited

Definition
A finite sequence of elements of a set A is any function
f:-{1,2,...,.nf — Afor neN

We call f(n) =a, the n-th element of the sequence f
We call n the length of the sequence
31’ 827 e aﬂ

Case n=0

In this case the function f is empty and we call it an empty
sequence and denote by e



Words over X
Let ¥ be an alphabet

We call finite sequences of the alphabet > words
or strings over

We denote by e the empty word over %

Some books use symbol A for the empty word



Words over X

E5 Let > ={a,b}
We will write some words (strings) over % in a shorthand
notaiton as for example

aaa, ab, bbb
instead using the formal definition:
f: {1,2,3} — %

such that f(1) = a,f(2) = a,f(3) = a for the word aaa
or g: {1,2) — ¥ suchthat g(1) =b.g(2)=b
for the word bb .. etc..



Words in ¥

Let > be an alphabet. We denote by

the set of all finite sequences over =
Elements of ~* are called words over >
We write w € X" to express that w is a word over -
Symbols for words are
W, zZ, V, X, ¥, Z,a, B, vy EXL"

X1, X2, ... €X° Y1, Yo, ... €L



Words in ¥

Observe that the set of all finite sequences include
the empty sequencei.e. e € X* and we hence
have the following

Fact

For any alphabet % |,
YT



Some Short Questions and Answers



Short Questions

Q1 Let © = {a,b}
How many are there all possible words of length 5 over % ?

A1 By definition, words over ¥ are finite sequences;
Hence words of a length 5 are functions
f: {1,2,...,5} — {a,b}

So we have by the Counting Functions Theorem that
there are 2° words of a length 5 over ¥ = {a, b}



Counting Functions Theorem

Counting Functions Theorem
For any finite, non empty sets A, B, there are

B

functions thatmap A into B

The proof is in Part 5



Short Questions

Q2

Let ~ ={ai,...,ax} where k > 1

How many are there possible words of length <n for n>0
in X277

A2

By the Counting Functions Theorem there are

K0+k1++k”

words of length < n over ¥ because for each m
there are k™ words of length m over ¥ ={aq,...,ax}
and m=0,1...n



Short Questions

Q3 Given an alphabet > # ()

How many are there words in the set >*?

A3

There are infinitely countably many words in X" by the
Theorem 5 (Lecture 2) that says: ” for any non empty, finite
set A, |A*|=Np”

We hence proved the following

Theorem
For any alphabet ¥ # (), the set >* of all words over %
is countably infinite



Languages over

Language Definition

Given an alphabet >, any set L such that
Lcy

is called a language over >

Fact 1
For any alphabet Y, any language over Y is countable



Languages over X

Fact 2
For any alphabet ¥ # (), there are uncountably many
languages over >

More precisely, there are exactly C = |R| of languages
over any non - empty alphabet %



Languages over X

Fact 1

For any alphabet %, any language over % is countable
Proof

By definition, a set is countable if and only if is finite or
countably infinite

1. Let X =0, hence X* = {e} and we have two languages
0, {e} over X, both finite, so countable

2. Let X # (), then X" is countably infinite, so obviously any
L C ¥* is finite or countably infinite, hence countable



Languages over X

Fact 2

For any alphabet ¥ # (), there are exactly C = |R| of
languages

over any non - empty alphabet >

Proof

We proved that || = Ky

By definition L C ¥, so there is as many languages over ©
as all subsets of a set of cardinality N that is as many as
2N =



Languages over X

Q4 Let > ={a}
There is 8y languages over >
NO

We just proved that that there is uncountably many,
more precisely, exactly C languages over > # () and

we know that
NO < C



Languages over

Definition

Given an alphabet > and aword w e **

We say that w has a length n = |w| when
w: {1,2,..n} — X

We re-write w as

w: {1,2,|w]} — X

Definition
Giveno e > and w € ¥, we say o € X occurs in the
j-th position in we X" ifand only if w(j) = o for
1<j<|w]



Some Examples

E6 Consider a word w written in a shorthand as
w = anita

By formal definition we have

w(l)=a, w(2)=n, w(3)=1i, w(4)=t, w(5)=a
and a occurs in the 1st and 5th position

E7 Let ¥ =1{0,1} and w = 01101101 (shorthand)
Formally w: {1,2,8} — {0, 1}is such that

w(1) =0, w(2) =1, w(3) =1, w(4) =0, w(5) =1,
w(6) =1, w(7) =0, w(8) =1

1 occurs in the positions 2, 3,5,6 and 8

0 occurs in the positions 1, 4,7



Informal Concatenation

Informal Definition
Given an alphabet >~ and any words x,y € ¥*

We define informally a concatenation o of words x, y as a
word w obtained from x, y by writing the word x followed by
the word y

We write the concatenation of words x,y as
W=Xoy

We use the symbol o of concatenation when it is needed
formally, otherwise we will write simply

W = Xy



Formal Concatenation

Definition
Given an alphabet >~ and any words x,y € ¥*
We define:
W= Xo y

if and only if
1. (wl=Ix[+lyl
2. w(j)=x() for j=1,2,..., x|
2. w(xl+j)=j@) for j=1,2,....lyl



Formal Concatenation
Properties
Directly from definition we have that
woe=eow=w

(xoy)oz=xo(yoz)=xoyoz

Remark: we need to define a concatenation of two words
and then we define

X1 OX20---OXn:(X1 OX20-~~OXn_1)OXn
and prove by Mathematical Induction that

W=X10Xo0---0X, iswell defined forall n> 2



Substring

Definition
A word v € X" is a substring (sub-word) of w iff there are
X,y € X* such that
W = Xvy
Remark: the words x,y € >7, i.e. they can also be empty
P1 wis a substring of w
P2 e is a substring of any string ( any word w )
as we have that ew=we =w
Definition Let w =xy
x is called a prefix and y is called a suffix of w



Power w'

Definition
We define a power w' of w by Mathematical Induction as
follows

w’ =¢e
wtl =wow
E8
0_ 1,0 _ _ 2 _
wW=e, w=wow=eow=w, w>=w'ow=wow
E9

anita® = anita' o anita = e o anita o anita = anita o anita



Reversal wf

Definition

Reversal w" of w is defined by induction over length |w| of
w as follows

1. If w/ =0, then wf=w=¢

2. If lw=n+1>0, then w=ua forsome a € ¥, and
ue x* and we define

wh = auf for lu<n-+1

Short Definition of w"

1. ef=e
2. (ua)ff =auf



Reversal Proof

We prove now as an example of Inductive proof the following
simple fact

Fact

Forany w,x e ©*

(wx) = xPwh

Proof by Mathematical Induction over the length |x| of x with
|w| = constant

Base case n=0

|x| = 0, i.e. x=e and by definition

(we)f = ew” = efinf



Reversal Proof

Inductive Assumption

R

(wx)f = xPFwf forall |x|<n

Letnow |[x]=n+1,s0 x =uaforcertainae > and |ul =n
We evaluate

(wx)" =(w(ua))™ = ((wu)a)”

—def g(wu)R =i quR R —9ef (ya)R —xR P



Languages over

Definition
Given an alphabet X, any set Lsuchthat L C X~
is called a language over -

Observe that 0, ¥, X" are all languages over X
We have proved

Theorem

Any language L over %, is finite or infinitely countable



Languages over ¥

Languages are sets so we can define them in
ways we did for sets, by listing elements (for small finite sets)
or by giving a property P(w) defining L, i.e. by setting

L={weX": P(w)}
E1
Ly ={we{0,1}": w has an even number of 0’s }
E2

Lo ={we{a,b}”: w has ab as a sub-string }



Languages Examples

E3
Ly ={we{0,1}": |w| <2}

E4
Ly ={e, 0, 1, 00, 01, 11, 10}

Observethat L[3=1L14



Languages Examples

Languages are sets so we can define set operations of
union, intersection, generalized union, generalized
intersection, complement, Cartesian product, ... etc ... of
languages as we did for any sets

For example, given L, Ly, Lo C¥*, we consider

Lyu L, Linly, Li-Ly,

—L:Z*—L, L1><L2,,... etc

and we have that all properties of algebra of sets hold for any
languages over a given alphabet %



Special Operations on Languages

We define now a special operation on languages, different
from any of the set operation

Concatenation Definition
Given L¢, L, CY*, alanguage
Liolo,={weX": w=xy forsome xelLy, yels}

is called a concatenation of the languages L and L,



Concatenation of Languages

The concatenation L4 o L, domain issue

We can have that the languages L4, L» are defined over
different domains, i.e they have two alphabets > # >, for

Ly Cc>Xy" and Lo CX5"

In this case we always take

Y =%1UX, andget Ly, Lo CXY"



Concatenation Examples

E5

Let L1, L, be languages defined below
Li={wel{a,b}: |w| <1}

Lo ={we{0,1}": |w| <2}

Describe the concatenation Li oL, of Ly and Lo

Domain ¥ of LioL,
We have that >{ = {a,b} and >, = {0,1}
sowetake > =>{UXX»=1{a,b,0,1} and

Liolo CX



Concatenation Examples

Let L1, Lo be languages defined below
Li ={wela,b}): |w <1}
Lo ={we{0,1}: |w|<2}

We write now a general formula for Lo L, as follows
Liolp,={weX": w=xy}

where

x€f{a,b}", ye{0,1}" and |x| <1, |y|<2



Concatenation Examples

E5 revisited

Describe the concatenation of Ly = {w € {a,b}" : |w| < 1}
and L, ={we{0,1}) : |w|<2}

As both languages are finite, we list their elements and get
Ly ={e, a, b}, L,={e, 0, 1, 01, 00,11, 10}

We describe their concatenation as

Lioly={ey: yelojufay: yelo}U{by: yels)}
Here is another general formula for Ly o Lo

Lioly =eolpU({a}oLy)U({b}oLp)



Concatenation Examples
E6
Describe concatenations Li oL, and LyolLq of
Ly ={we {0,1}": w has an even number of 0’s}

and
Lo ={wel{0,1}": w=0xx, xe X"}

Here the are
Liolo,={weX*: whas an odd number of 0’s}

Looly={weX": wstarts with 0}



Concatenation Examples

We have that

Liol, ={we¥X*: whas an odd number of 0’s}
Looli ={we ¥X*: wstarts with 0}

Observe that

1000 e Lioly, and 1000 ¢ Ly o L4

This proves that
L1 o I_2 * I_2 o L1
We hence proved the following
Fact
Concatenation of languages is not commutative



Concatenation Examples

E8
Let Ly, Ly be languages defined below for = {0, 1}
Li={weX": w=x1, xeX*}

L={weX*: w=0x, xeX*}
Describe the language L, o L4
Here it is

LooLi={weX": w=0xyl, x,ye€X"}

Observe that L, o Ly can be also defined by a property as
follows

Looli ={we X" :w starts with 0 and ends with1}



Distributivity of Concatenation

Theorem
Concatenation is distributive over union of languages

More precisely, given languages L, Lq, Lo,..., Ly, the
following holds for
any n>2

(L4yu Lyu---ULp)oL = (LyoL) U --- U (Lyol)

Lo(LyU LoU---ULp) = (LoLy)U---U(LoLy)

Proof by Mathematical Induction over ne N, n > 2



Distributivity of Concatenation Proof

We prove the base case for the first equation and leave the
Inductive argument and a similar proof of the second equation
as an exercise

Base Case n =2
We have to prove that

(L1 U Lp)oL = (LyoL) U (LpolL)

we (LU Ly)oL iff (by definition of o)
(welyorwely)andwe L iff (by distributivity of and
over or)

(weliandwe L)or(welyandwe L) iff (bydefinition
of o)

(w e LyoL)or (w € LyoL) iff (by definition of U)

w € (LyoL) U (LpolL)



Kleene Star - L*

Kleene Star L* of a language L is yet another operation
specific to languages

It is named after Stephen Cole Kleene (1909 -1994), an
American mathematician and world famous logician who also
helped lay the foundations for theoretical computer science

We define L* as the set of all strings obtained by
concatenating zero or more strings from L

Remember that concatenation of zero strings is e , and
concatenation of one string is the string itself



Kleene Star - L*

We define L* formally as
L* ={wywo...wy : forsome k>0 and wy,...,wx €L}
We also write as
L ={wywo...wx: k>0, wiel, i=1,2,...,k}
or in a form of Generalized Union
L*:Ukzo{ng...wk: Wi,...,Wx €L}

Remark we write xyz for x o y o z. We use the concatenation
symbol o when we want to stress that we talk about some
properties of the concatenation



Kleene Star Properties

Here are some Kleene Star basic properties

P1 eel”, forall L
Follows directly from the definition as we have case k = 0

P2 L*+#0, forall L
Follows directly from P1,as e € L*

P3 0" +0
Because L* =0"={e}# 0



Kleene Star Properties

Some more Kleene Star basic properties

P4 L*=3%" forsome L
Take L =X

P6 L*+3%* forsome L
Take L = {00, 11} over >~ = {0, 1}

We have that
01¢L* and 01eX”



Example

Observation

The property P4 provides a quite trivial example of a
language L over an alphabet 2 such that L* = 2", namely
just L =%

A natural question arises: is there any language L # ¥ such
that nevertheless L™ = >*7



Example
Example
Take > = {0, 1} and take
L ={w e X" : whas an unequal number of 0 and 1}
Some words in and out of L are
100 L, 00111eL 100011 ¢L
We now prove that

L*={0,1) =%



Example Proof

Given
L ={w e {0,1}" : w has an unequal number of 0 and 1}
We now prove that

L*={0.1) =%

Proof
By definition we have that L € {0,1}* and {0,1}* = {0,1}*
By the the following property of languages:

P: If L1 CL,, then L1* - Lz*
and get that

L*c{0,1}" ={0,1}" i.e. L"CX"



Example Proof

Now we have to show that >* C L*, i.e.
{0,1}* € {w € 0,1" : w has an unequal number of 0 and 1}

Observe that

0 € L because 0 regarded as a string over > has an
unequal number appearances of 0 and 1

The number of appearances of 1 is zero and the number of
appearances of 0 is one

1 e L forthe samereasonaOe L
So we proved that {0,1} C L
We now use the property P and get

{0, 1) CL” iie X' CL”

what ends the proof that >* = L~*



L* and LT

We define
LT = {wyws...w :forsome k >1 andsome wq,...,wx e L}
We write it also as follows

LT ={wiwo...wx: k=1 wiel, i=1,2,...,k}
Properties

P1: LT=LolL* P2: ceclLtiff ecel



L* and LT

We know that
eel” forall L
Show that
For some language L we havethat ec L™ and
for some language L we can havethat e ¢ L
E1
Obviously, for any L such that e € L we have that e € LT
E2

If Lis suchthat e ¢ L we havethat e ¢ L™ as LT does not
have a case k=0



Discrete Mathematics Basics

PART 8: Finite Representation of Languages



Finite Representation of Languages
Introduction

We can represent a finite language by finite means for
example listing all its elements

Languages are often infinite and so a natural question arises
if a finite representation is possible and when it is possible
when a language is infinite

The representation of languages by finite specifications is a
central issue of the theory of computation

Of course we have to define first formally what do we mean by
representation by finite specifications , or more precisely by a
finite representation



Idea of Finite Representation

We start with an example: let

Observe that by definition of Kleene’s star
{a}* = e, a, aa, aaa ...}

and L is an infinite set

L =1{e, a, aa, aaa ...} U {b}{e, a, aa, aaa ...

L =1{e, a, aa, aaa ...}U{b, ba, baa, baaa ...

L =1{e, a, b,aa, ba, aaa baa, ...}



Idea of Finite Representation

The expression {a}* U ({bH{a}") is built out of a
finite number of symbols:

{3 }a (7 )9 *7 U
and describe an infinite set
L =1{e, a, b,aa, ba, aaa baa, ...}

We write it in a simplified form - we skip the set symbols
{, } as we know that languages are sets

and we have
a*u(ba)



Idea of Finite Representation

We will call such expressions as
a“u(ba*)

a finite representation of a language L

The idea of the finite representation is to use symbols
(,), *, U, 0, andsymbols o e %

to write expressions that describe the language L



Example of a Finite Representation
Let L be alanguage defined as follows

L ={we{0,1}*: w has two or three occurrences of 1
the first and the second of which are not consecutive }
The language L can be expressed as
L = {0} {1}{0}*{0} o {1HO}"({1}{0O}" L 07)
We will define and write the finite representation of L as
L =0"10"010"(10" U 0")

We call expression above (and others alike) a regular
expression



Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet
Y #07

Observation
O1. Different languages must have different representations

02. Finite representations are finite strings over a finite
set, so we have that

there are &y possible finite representations



Problem with Finite Representation

03. There are uncountably many, precisely exactly

C = |R|) of possible languages over any alphabet %> # 0
Proof

Forany > # (0 we have proved that

127 = No
By definition of language
Lcy

so there are as many languages as subsets of > * thatis as
many as
> |=2%=C



Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet
> #0?

Answer
No, we can’t

By 02 and O3 there are countably many (exactly &g )
possible finite representations and there are uncountably
many (exactly C) possible languages over any ¥ # ()

This proves that
NOT ALL LANGUAGES CAN BE FINITELY REPRESENTED



Problem with Finite Representation

Moreover

There are uncountably many and exactly as many as Real
numbers, i.e. C languages that can not be finitely
represented

We can finitely represent only a small, countable portion of
languages

We define and study here only two classes of languages:

REGULAR and CONTEXT FREE languages



Regular Expressions Definition

Definition
We define a R of regular expressions over an alphabet >
as follows

RC(XUI(, ), 0, U, })* and R is the smallest set such that
1.0 e R and > CR,i.e. we have that

0eR and VY,ex (0 €R)
2. Ifa,BeR, then
(af) e R concatenation

(aupB)eRr union

a* €R  Kleene’s Star



Regular Expressions Theorem

Theorem

The set R of regular expressions over an alphabet > is
countably infinite

Proof

Observe thatthe set “ U {(, ), 0, U, =} is non-empty and
finite, sothe set (XU {(, ), 0, U, =})" is countably infinite,
and by definition

RC(ZU{(, ), 0, U, =)

hence we |R| < Ny
The set R obviously includes an infinitely countable set

0, 00, 000, ...,...,

what proves that |R| = Ng



Regular Expressions

Example

Given > = {0,1}, we have that

1. 0eR, 1eR 0eR

2. (01)eR1*eR, 0"eR, 0"eR, (DUT)eR,...,
s (U1 U0D)1) eR

Shorthand Notation when writing regular expressions we
will keep only essential parenthesis

For example, we will write
((0"u1*uU0)1)" instead of (((0* U1 u0)1)*

1°01* U (01)" instead of  (((170)1*) U (01)")



Regular Expressions and Regular Languages

We use the regular expressions from the set R as a
representation of languages

Languages represented by regular expressions are called
regular languages



Regular Expressions and Regular Languages

The idea of the representation is explained in the following

Example

The regular expression (written in a shorthand notion)
101" U (01)*

represents a language

L = {011 v {o1y



Definition of Representation

Definition

The representation relation between regular expressions
and languages they represent is establish by a

function £ such that

if @eR isanyregularexpression, then L(«a) isthe
language represented by «



Definition of Representation

Formal Definition
The function £: R — 2> s defined recursively as
follows

1. L(0)=0, L(o)={o} forall ceX
2. If a,feR, then

L(ap) = L(a) o L(B) concatenation

L(eUp) = L(a)U L(B) union
L(e") = L(a)" Kleene’s Star



Regular Language Definition
Definition
Alanguage L C X" is regular
if and only if
L is represented by a regular expression, i.e.
when thereis o € R suchthat L = L(«)

where £ : R — 2> is the representation function

We use a shorthand notation



Examples

E1
Given o € R, for o= ((aUb)*a)

Evaluate L over an alphabet ¥ = {a, b}, suchthat L = L(«)

We write
a=((aub)a)

in the shorthand notation as

a=(aub)a



Examples

We evaluate L = (auUb)*a as follows
L((aub)a)=L((aub))oL(a)=L((aub)*)ofa}=
(L(avb)){a) = (L(a) U L(b))"{a} = ({a} L {b})"{a)

Observe that
(faju{b})*{a} = {a, b}*{a} = L*{a}

so we get
L =ZL((aub)a)=1x"{a}

L ={we{a, b}*: w ends with a}



Examples

E2 Given aeR, for a = ((c*a)U(bc*)")
Evaluate L = £(«), i.e describe L =«
We write « in the shorthand notation as
a=c*auU(bc*)*
and evaluate L =c*aU (bc*)* as follows
L((c*au (bc™)") = L(c*a) U (L(bc"))" = {c}{a} U ({b}{c}")"
and we get that

L = {c}*{a} U ({b}{c}")"



Examples
E3 Given a € R, for

a = (0"U (((0"(1u (11)))((00%)(1 U (11)))")0%))
Evaluate L = £(«), i.e describe the language L = «
We write « in the shorthand notation as

a=0"U0"(1u11)((00"(1U11))")0"
and evaluate
L="L(a)=0"U0"{1,11}(00"{1,11})"0"

Observe that 00" contains at least one 0 that separates
0*{1,11} on the left with (00*({1,11})" that follows it, so we
get that

L ={we {0, 1} : w does not contain a substring 111}



Class RL of Regular Languages

Definition
Class RL of regular languages over an alphabet > contains
all L suchthat L = L(«) for certain a € R, i.e.

RL={LcX¥X: L=/L(a) forcertain acR}

Theorem
There No regular languages over > # 0 i.e.

IRL| = No

Proof

By definition that each regular language is L = L(«) for “
certain @ € R and the interpretation function £ : R — 2>
has an infinitely countable domain, hence |RL| = &g



Class RL of Regular Languages

We can also think about languages in terms of closure and
get immediately from definitions the following

Theorem

Class RL of regular languages is the closure of the set of
languages

o} oeX}u{d}

with respect to union, concatenation and Kleene Star



Languages that are NOT Regular

Given an alphabet > # 0

We have just proved that there are N, regular languages,
and we have also there are C of all languages over ¥ # (),
so we have the following

Fact

There is C languages that are not regular

Natural Questions

Q1 How to prove that a given language is regular?

A1 Find a regular expression «, suchthat L =a,i.e.
L =L(e)



Languages that are NOT Regular

Q2 How to prove that a given language is not regular?
A2 Not easy!

There is a Theorem, called Pumping Lemma which provides a
criterium for proving that a given language

is not regular
E1 A language
L =01
is is regular as it is given by a regular expression o = 0*1*

E2 We will prove, using the Pumping Lemma that the
language
L={0"": n>1, neN)

is not regular



