
cse547, math547
DISCRETE MATHEMATICS

Short Review for Final

Professor Anita Wasilewska

Spring 2018



CHAPTER 1 REPERTOIR METHOD



Problem

Use the repertoire method to solve the general
five-parameter recurrence RF

Solve means FIND the closed formula CF equivalent to
following RF

h(1) = α;
h(2n + 0) = 4h(n) + γ0n + β0;
h(2n + 1) = 4h(n) + γ1n + β1, for all n ≥ 1.



General Form of CF

Our RF for h is a FIVE parameters function and it is a
generalization of the General Josephus GJ function f
considered before

So we guess that now the general form of the CF is also a
generalization of the one we already proved for GJ , i.e.

General form of CF is

h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

The Problem asks us to use the repertoire method to prove
that CF is equivalent to RF



Thinking Time

Solution requires a system of 10 equations on
α, γ0, β0, γ1, β1, A(n), B(n), C(n), D(n), E(n) and accordingly
a 5 repertoire functions

Let’s THINK a bit before we embark on quite complicated
calculations and without certainty that they would succeed
(look at the solution to the Problem 16 in Lecture 4)

First : we observe that when when γ0 = γ1 = 0, we get that
teh function h becomes for Generalize Josephus function f
below for k = 4:

f(1) = α, f(2n + j) = k f(n) + βj ,

where k ≥ 2, j = 0, 1 and n ≥ 0

It seems worth to examine first the case γ0 = γ1 = 0



GJ f Closed Formula Solution

We proved that GJ function f has a relaxed k-
representation closed formula

f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)k

where βbj are defined by

βbj =

{
β0 bj = 0
β1 bj = 1

; j = 0, ...,m − 1,

for the relaxed k- radix representation defined as

(α, βbm−1 , ..., βb0)k = αkm + km−1βm−1 + ... + βb0



Special Case of h

Consider now a special case of our h, when γ0 = γ1 = 0

We know that it now has a relaxed 4 - representation closed
formula

h((1, bm−1, ...b1, b0)2) = (α, βbm−1 , ...βb0)4

It means that we get

Fact 0 For any n = (1, bm−1, ...b1, b0)2,

h(n) = (α, βbm−1 , ...βb0)4

Observe that our general form of CF in this case becomes

h(n) = αA(n) + β0D(n) + β1E(n)

We must have h(n) = h(n), for all n, so from this and Fact 0
we get the following equation 1 (stated as Fact 1)



Equation 1

Fact 1 For any n = (1, bm−1, ...b1, b0)2,

αA(n) + β0D(n) + β1E(n) = (α, βbm−1 , ...βb0)4

This provides us with the Equation 1 for finding our general
form of CF



Next Observation

Observe that A(n) in the Original Josephus was proved to be
given by a formula

A(n) = 2k , for all n = 2k + `, 0 ≤ ` < 2k

So we wonder if we could have a similar solution for our A(n)



Special Case of h

We evaluate now few initial values for h in case γ0 = γ1 = 0

h(1) = α;
h(2) = h(2(1) + 0) = 4h(1) + β0

= 4α + β0;

h(3) = h(2(1) + 1) = 4h(1) + β1

= 4α + β1;

h(4) = h(2(2) + 0) = 4h(2) + β0

= 16α + 5β0;



Equation 2

It is pretty obvious that we do have a similar formula for A(n)
as on the Original Josephus OJ

We write it as the next

Fact 2

For all n = 2k + `, 0 ≤ ` < 2k , n ∈ N − {0}

A(n) = 4k

This provides us with the Equation 2 for finding our general
form of CF



Repertoire Method

The proof of Fact 2 is almost identical to the one in the case
of OJ, and for the Problem in Lecture 4, so leave it as an
exercise

We have already developed 2 Equations (as stated in Facts
1, 2 ) so we need now to consider only 3 repertoire
functions to obtain all Equations need to solve the problem



Repertoire Function 1

We return now to out original functions:

RF: h(1) = α, h(2n) = 4h(n) + γ0n + β0,

h(2n + 1) = 4h(n) + γ1n + β1,

CF: h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

Consider a first repertoire function : h(n) = 1, for all
n ∈ N − {0}
We put h(n) = h(n) = 1, for all n ∈ N − {0}
We have h(1) = 1, and h(1)= α, so we get α = 1
We now use h(n) = h(n) = 1, for all n ∈ N−{0} and evaluate

h(2n) = 4h(n) + γ0n + β0 h(2n + 1) = 4h(n) + γ1n + β1;
1 = 4 + γ0n + β0 1 = 4 + γ1n + β1

0 = (3 + β0) + γ0n 0 = (3 + β1) + γ1n

We get γ0 = γ1 = 0, β0 = β1 = −3

Solution 1: α = 1, γ0 = γ1 = 0, β0 = β1 = −3



Equation 3

The general form of CF is:

h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

We put h(n) = h(n) = 1, for all n ∈ N − {0}, i.e.

αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n) = h(n) = 1, for
all n ∈ N−{0}, where α, γ1, β0, γ2, β1 already are evaluated
in the Solution 1 as α = 1, γ0 = γ1 = 0, β0 = β1 = −3

We get

CF = RF if and only if the following holds

Fact 3 For all n ∈ N − {0},

A(n)− 3D(n)− 3E(n) = 1

This is our Equation 3



Repertoire Function 2

Consider a repertoire function 2: h(n) = n, for all
n ∈ N − {0}
We put h(n) = h(n) = n, for all n ∈ N − {0}
h(1) = α, h(1) = 1 and h(n)=h(n), hence α = 1
We now use h(n) = h(n) = n, for all n ∈ N−{0} and evaluate

h(2n) = 4h(n) + γ0n + β0 h(2n + 1) = 4h(n) + γ1n + β1;
2n = 4n + γ0n + β0 2n + 1 = 4n + γ1n + β1

0 = (γ0 + 2)n + β0 0 = (γ1 + 2)n + (β1 − 1)

We get γ0 = γ1 = −2, β0 = 0, β1 = 1 and

Solution 2: α = 1, γ0 = γ1 = −2, β0 = 0, β1 = 1



Equation 4

CF: h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

We evaluate CF for h(n) = h(n) = n, for all n ∈ N − {0} and
for the Solution 2: α = 1, γ0 = γ1 = −2, β0 = 0, β1 = 1
and get

CF = RF if and only if the following holds

Fact 4 For all n ∈ N − {0}

A(n)− 2B(n)− 2C(n) + E(n) = n

This is our Equation 4



Repertoire Function 3

Consider a repertoire function 3: h(n) = n2, for all n ∈ N

We put h(n) = h(n) = n2, for all n ∈ N − {0}
h(1) = α, h(1) = 1, hence α = 1

h(2n + 0) = 4h(n) + γ0n + β0 h(2n + 1) = 4h(n) + γ1n + β1;
(2n)2 = 4n2 + γ0n + β0 (2n + 1)2 = 4n2 + γ1n + β1

6 4n2 = 6 4n2 + γ0n + β0 4n2 + 4n + 1 = 4n2 + γ1n + β1

0 = γ0n + β0 0 = (γ1 − 4)n + (β1 − 1)

We get γ0 = 0, γ1 = 4, β0 = 0, β1 = 1 and

Solution 3: α = 1, γ0 = 0, γ1 = 4, β0 = 0, β1 = 1



Equation 5

CF: h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

We evaluate CF for h(n) = h(n) = n2, for all n ∈ N − {0}
and for the Solution 3:
α = 1, γ0 = 0, γ1 = 4, β0 = 0, β1 = 1

We get CF = RF if and only if the following holds

Fact 5 For all n ∈ N − {0}

A(n) + 4C(n) + E(n) = n2

This is our Equation 5



Repertoire Method: System of Equations

We obtained the following system of 5 equations on A(n),
B(n), C(n), D(n), E(n)

1. αA(n) + β0D(n) + β1E(n) = (α, βbm−1 , ...βb0)4

2. A(n) = 4k

3. A(n) - 3D(n) - 3E(n) = 1

4. A(n) - 2B(n) - 2 C(n) + E(n) = n

5. A(n) + 4C(n) + E(n) = n2

We solve it and put the solution into

h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)



CHAPTER 2
PART 5: INFINITE SUMS (SERIES)



Infinite Series

Must Know STATEMENTS- do not need to PROVE the
Theorems

Definition

If the limit limn→∞ Sn exists and is finite, i.e.

lim
n→∞

Sn = S,

then we say that the infinite sum Σ∞n=1 an converges to S
and we write

Σ∞n=1 an = lim
n→∞

Σn
k=1 ak = S,

otherwise the infinite sum diverges



Example

Show

The infinite sum Σ∞n=1 (−1)n diverges

The infinite sum Σ∞n=0
1

(k+1)(k+2) converges to 1



Example

Example

The infinite sum Σ∞n=0 (−1)n diverges

Proof

We use the Perturbation Method

Sn + an+1 = a0 +
∑n

k=0
ak+1

to eveluate

Sn = Σn
k=0 (−1)k =

1 + (−1)n

2
=

1
2

+
(−1)n

2

and we prove that

lim
n→∞

(
1
2

+
(−1)n

2
) does not exist



Example

Example
The infinite sum Σ∞n=0

1
(k+1)(k+2) converges to 1; i.e.

Σ∞n=0
1

(k + 1)(k + 2)
= 1

Proof: first we evaluate Sn = Σn
k=0

1
(k+1)(k+2) as follows

Sn = Σn
k=0

1
(k + 1)(k + 2)

= Σn
k=0k−2 = Σn+1

k=0k−2 δk

= − 1
k + 1

∣∣∣n+1
0 = − 1

n + 2
+ 1

and
lim

n→∞
Sn = lim

n→∞
− 1

n + 2
+ 1 = 1



Theorem

Theorem

If the infinite sum Σ∞n=1an converges, then limn→∞ an = 0

Observe that this is equivalent to

If limn→∞ an , 0 then Σ∞n=1an diverges

The reverse statement

If limn→∞ an = 0, then Σ∞n=1an converges is not always true

The infinite harmonic sum H = Σ∞n=1
1
n diverges to∞ even

if limn→∞
1
n = 0



Theorem

Theorem (D’Alambert’s Criterium)

If an ≥ 0 and lim
n→∞

an+1

an
< 1

then the series
∞∑

n=1

an converges

Theorem (Cauchy’s Criterium)

If an ≥ 0 and lim
n→∞

n
√

an < 1

then the series
∞∑

n=1

an converges



Theorems

Theorem (Divergence Criteria)

If an ≥ 0 and lim
n→∞

an+1

an
> 1 or limn→∞ n

√
an > 1

then the series
∞∑

n=1

an diverges



Convergence/Divergence

Remark

It can happen that for a certain infinite sum
∞∑

n=1

an

lim
n→∞

an+1

an
= 1 = lim

n→∞
n
√

an

In this case our Divergence Criteria do not decide whether
the infinite sum converges or diverges

We say in this case that that the infinite sum does not react on
the criteria

There are other, stronger criteria for convergence and
divergence



Examples

Example

The Harmonic series H =
∞∑

n=1

1
n

does not react on

D’Alambert’s Criterium

Proof: Consider

lim
n→∞

an+1

an
= lim

n→∞

1
n+1

1
n

= lim
n→∞

1

(1 + 1
n )

= 1

Since lim
n→∞

an+1

an
= 1 we say , that the Harmonic series

H =
∞∑

n=1

1
n

does not react on D’Alambert’s criterium



Examples

Example

The series
∞∑

n=1

1
(n + 1)2 does not react on D’Alambert’s

Criterium (
Proof:
Consider, lim

n→∞

an+1

an

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)2

(n + 2)2

= lim
n→∞

n2 + 2n + 1
n2 + 4n + 1

= lim
n→∞

1 + 2
n + 1

n2

1 + 4
n + 4

n2

= 1

Since, lim
n→∞

an+1

an
= 1 we say , that the series

∞∑
n=1

1
(n + 1)2

does not react on D’Alambert’s criterium



Example 1

Example 1

∞∑
n=1

cn

n!
converges for c > 0

HINT : Use D ′Alembert

Proof:

an+1

an
=

cn+1

cn
n!

(n + 1)!

=
c

n + 1



Example

lim
n→∞

an+1

an
= lim

n→∞

c
n + 1

= 0 < 1

By D’Alembert’s Criterium

∞∑
n=1

cn

n!
converges



Example

Example

∞∑
n=1

n!

nn converges

Proof:

an =
n!

nn

an+1 =
n!(n + 1)

(n + 1)n+1

an + 1
an

=
n! n(n+1)

(n + 1)n+1 .
nn

n!

= (n + 1) .
nn

(n + 1)n+1



Example

(n + 1)n+1 = (n + 1)n (n + 1)

an + 1
an

=
(n + 1) nn

(n + 1)n (n + 1)

= (
n

n + 1
)

n

=
1

(1 +
1
n

)n



Example

lim
n→∞

an+1

an
= lim

n→∞

1

(1 +
1
n

)n

=
1
e

< 1

By D’Alembert’s Criterium the series,

∞∑
n=1

n!

nn converges



Exercise

Exercise

Prove that

lim
n→∞

cn

n!
= 0 for c > 0

Solution:

We have proved in Example

∞∑
n=1

cn

n!
converges for c > 0



Exercise

Theorem says:

IF
∞∑

n=1

an converges THEN lim
n→∞

an = 0

Hence by Example and Theorem we have proved that

lim
n→∞

cn

n!
= 0 for c > 0

Observe that we have also proved that n! grows faster than
cn



CHAPTER 2: Some Problems

QUESTION

Part 1 Prove that∑n

k=2

(−1)k

2k − 1
= −

∑n−1

k=1

(−1)k

2k + 1

Part 2 Use partial fractions and Part 1 result (must use it!) to
evaluate the sum

S =
∑n

k=1

(−1)k k
(4k 2 − 1)



CHAPTER 2: Some Problems

QUESTION
Show that the nth element of the sequence:

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, .....

is b
√

2n + 1
2c

Hint

Let P(x) represent the position of the last occurrence of x in
the sequence.

Use the fact that P(x) =
x(x+1)

2

Let the nth element be m

You need to find m



CHAPTER 3
INTEGER FUNCTIONS

Here is the proofs in course material you need to know for
Final

Plus the regular Homeworks Problems



PART1: Floors and Ceilings

Prove the following

Fact 3

For any x, y ∈ R

bx + yc = bxc+ byc when 0 ≤ {x}+ {y} < 1

and

bx + yc = bxc+ byc+ 1 when 1 ≤ {x}+ {y} < 2

Fact 5

For any x ∈ R , x ≥ 0 the following property holds⌊√
bxc

⌋
=

⌊√
x
⌋



PART1: Floors and Ceilings

Prove the Combined Domains Property

Property 4∑
Q(k)∪R(k)

ak =
∑
Q(k)

ak +
∑
R(k)

ak −
∑

Q(k)∩R(k)

ak

where, as before,

k ∈ K and K = K1 × K2 · · · × Ki for 1 ≤ i ≤ n

and the above formula represents single ( i =1) and multiple
(i > 1) sums



Spectrum

Definition

For any α ∈ R we define a SPECTRUM of α as

Spec(α) = {bαc, b2αc, b3αc · · · }

Spec(
√

2) = {1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, · · · }

Spec(2 +
√

2) == {3, 6, 10, 13, 17, 20, · · · }



Finite Partition Theorem

First, we define certain finite subsets An, Bn of Spec(
√

2)
and Spec(2 +

√
2), respectively

Definition

An = {m ∈ Spec(
√

2) : m ≤ n}

Bn = {m ∈ Spec(2 +
√

2) m ≤ n}

Remember

An and Bn are subsets of {1, 2, . . . n} for n ∈ N − {0}



Finite Partition Theorem

Given sets

An = {m ∈ Spec(
√

2) : m ≤ n}
Bn = {m ∈ Spec(2 +

√
2) : m ≤ n}

Finite Spectrum Partition Theorem

1. An , ∅ and Bn , ∅
2. An ∩ Bn = ∅
3. An ∪ Bn = {1, 2, . . . n}



Counting Elements

Before trying to prove the Finite Fact we first look for a
closed formula to count the number of elements in subsets of
a finite size of any spectrum

Given a spectrum Spec(α)

Denote by N(α, n) the number of elements in the Spec(α)
that are ≤ n, i.e.

N(α, n) = | {m ∈ Spec(α) : m ≤ n} |



Spectrum Partitions

1. Justify that

N(α, n) =
∑
k>0

[
k <

n + 1
α

]
2. Write a detailed proof of

N(α, n) =

⌈
n + 1
α

⌉
− 1

3. Write a detailed proof of Finite Fact

|An|+ |Bn| = n for any n ∈ N − {0}



Spectrum Partitions

Prove - use your favorite proof out of the two I have provided

Spectrum Partition Theorem

1. Spec(
√

2) , ∅ and Spec(2 +
√

2) , ∅
2. Spec(

√
2) ∩ Spec(2 +

√
2) = ∅

3. Spec(
√

2) ∪ Spec(2 +
√

2) = N − {0}



Generalization

General Spectrum Partition Theorem

Let α > 0, β > 0, α, β ∈ R − Q be such that

1
α

+
1
β

= 1

Then the sets

A = {bnαc : n ∈ N − {0}} = Spec(α)

B = {bnβc : n ∈ N − {0}} = Spec(β)

form a partition of Z+ = N − {0}, i.e.

1. A , ∅ and B , ∅
2. A ∩ B = ∅
3. A ∪ B = Z+



PART3: Sums

Write detailed evaluation of∑
0≤k<n

b
√

kc

Hint: use ∑
0≤k<n

b
√

kc =
∑

0≤k<n

∑
m≥0, m=b

√
kc

m



Chapter 4 Material in the Lecture 12



Theorems, Proofs and Problems

JUSTIFY correctness of the following example and be ready
to do similar problems upwards or downwards

Represent 19151 in a system with base 12

Example
19151 = 1595 · 12 + 11

1595 = 132 · 12 + 11

132 = 11 · 12 + 0

a0 = 11, a1 = 11, a2 = 0, a3 = 11

So we get
19151 = (11, 0, 11, 11)12



Chapter 4

Write a proof of Step 1 or Step 2 of the Proof of the
Correctness of Euclid Algorithm

You can use Lecture OR BOOK formalization and proofs

Use Euclid Algorithms to prove

When a product ac of two natural numbers is divisible by a
number b that is relatively prime to a, the factor c must
be divisible by b

Use Euclid Algorithms to prove the following

Fact
gcd(ka, kb) = k · gcd(a, b)



Chapter 4

Prove:

Any common multiple of a and b is divisible by lcm(a,b)

Prove the following

∀p,q1q2...qn∈P (p |
n∏

k=1

qk ⇒ ∃1≤i≤n (p = qi ) )

Write down a formal formulation (in all details ) of the Main
Factorization Theorem and its General Form



Chapter 4

Prove that the representation given by Main Factorization
Theorem is unique

Explain what it is and show that 18 =< 1, 2 >

Prove

k = gcd(m, n) if and only if kp = min{mp , np}

k = lcd(m, n) if and only if kp = max{mp , np}

Let
m = 20 · 33 · 52 · 70 n = 20 · 31 · 50 · 73

Evaluate gcd( m, n) and k = lcd( m, n)



Chapter 5

Study Homework PROBLEMS

QUESTION

Prove that

(x
m)

(
m
k

)
=

(
x
k

) (
x−k
m−k

)
holds for all m, k ∈ Z and x ∈ R

Consider all cases and Polynomial argument



Chapter 5

QUESTION Prove the Hexagon property for n, k ∈ N(
n − 1
k − 1

) (
n

k + 1

) (
n + 1

k

)
=

(
n − 1

k

) (
n + 1
k + 1

) (
n

k − 1

)



Chapter 5

QUESTION

Evaluate

∑
k

(
n
k

)3

(−1)k

Hint use the formula∑
k

(
a + b
a + k

)(
b + c
b + k

)(
c + a
c + k

)
(−1)k =

(a + b + c)!

a!b!c!


