Chapter 3

INTEGER FUNCTIONS

Floor For any \(x \in \mathbb{R} \) (real) we define:

\[
\lfloor x \rfloor = \text{the greatest integer less than or equal to } x
\]

Ceiling

\[
\lceil x \rceil = \text{the least integer greater than or equal to } x
\]

Symbolic

Floor

\[
\lfloor x \rfloor = \max \{ a \in \mathbb{Z} : a \leq x \}
\]

Ceiling

\[
\lceil x \rceil = \min \{ a \in \mathbb{Z} : a \geq x \}
\]

\(P \) has unique max \(\iff \) \(\exists ! a \in \mathbb{Z} : a \leq x \)

\(P \) has unique min \(\iff \) \(\exists ! a \in \mathbb{Z} : a \geq x \)
Fact: For any $x \in \mathbb{R}$, $\lfloor x \rfloor$, $\lceil x \rceil$ exist and are unique.

We can hence define functions $f_1 : \mathbb{R} \to \mathbb{Z}$ (floor) and $f_2 : \mathbb{R} \to \mathbb{Z}$ (ceiling):

- $f_1(x) = \lfloor x \rfloor = \max \{ a \in \mathbb{Z} : a \leq x \}$
- $f_2(x) = \lceil x \rceil = \min \{ a \in \mathbb{Z} : a \geq x \}$

Graph of f_1, f_2:

We read

$\lfloor 2 \rfloor = 2 \quad \lceil 3 \rceil = 3$
Properties of $\mathbb{L} \times \mathbb{L}$, $\mathbb{R} \times \mathbb{R}$

1. $[x] = x \text{ if } x \in \mathbb{Z}$
 $\mathbb{R} = x + 1 \text{ if } x \in \mathbb{Z}$

2. $x - 1 < x \leq x \leq x + 1$

3. $[x - 1] = [x - 1]$, $[x + 1] = [x + 1]$

4. $\mathbb{R} \times \mathbb{R} = \{ (0, x) : x \in \mathbb{Z} \}$

5. $\mathbb{L} \times \mathbb{L} = \{ (n, x) : n \leq x < n + 1 \}$

6. $\mathbb{L} \times \mathbb{L} = \{ (n, x) : x - 1 < n \leq x \}$

7. $\mathbb{R} \times \mathbb{R} = \{ (n, x) : n - 1 < x \leq n \}$

8. $\mathbb{R} \times \mathbb{R} = \{ (n, x) : x \leq n < x + 1 \}$

9. $\mathbb{L} \times \mathbb{R} = \mathbb{L} \times \mathbb{L} + n$

But $x \neq [x]$ when $n = 2$, $x = \frac{1}{2}$

$\lfloor \frac{1}{2} \rfloor = 0 + 2 \lfloor \frac{1}{2} \rfloor = 0$
More Properties

$x \in \mathbb{R}, m \in \mathbb{Z}$

\(10\) \(x < n \) \(\implies \) \(\lfloor x \rfloor < n \)

\(11\) \(m < x \) \(\implies \) \(m \leq \lfloor x \rfloor \)

\(12\) \(x \leq m \) \(\implies \) \(\lfloor x \rfloor \leq m \)

\(13\) \(m \leq x \) \(\implies \) \(m \leq \lfloor x \rfloor \)

Proof of 10

\(\rightarrow\) let \(x < n \), so \(\lfloor x \rfloor \leq x \)

\(\rightarrow\) let \(\lfloor x \rfloor < n \) by \(\circ\) \(x - 1 < \lfloor x \rfloor \) i.e. \(x < \lfloor x \rfloor + 1 \)

by \(\lfloor x \rfloor < n \) we get \(\lfloor x \rfloor + 1 \leq n \) so we get

\(x < \lfloor x \rfloor + 1 \leq n \) and \(x < n \).

Factorial Part of \(x \); \(\{ x \} \)

Adjoint

\[\{ x \} = x - \lfloor x \rfloor \]

Write

\[x = 3x + 1 \]

\[\{ x \} = x - \lfloor x \rfloor \]

Fact 1

\[x = m + \theta, m \in \mathbb{Z} \] and \(0 \leq \theta < 1 \)

then \(m = \lfloor x \rfloor \) and \(\theta = \{ x \} \)

\(\circ\) \(\lfloor x \rfloor = n \) \(\implies \) \(n \leq x < n + 1 \)

we get

\[x = \lfloor x \rfloor + \theta \implies \theta = \{ x \} \]
We proved \[|x + m| = |x| + m, \quad m \in \mathbb{R}, \quad x \in \mathbb{R} \]

Question

What happens when we consider \(L \cdot x + y \), \(x, y \in \mathbb{R} \)?

Let's look.

\[x = L \cdot x + \{ x \}, \quad y = L \cdot y + \{ y \} \]

\[|x + y| = |L \cdot x + L \cdot y + \{ x \} + \{ y \}| \]

\[= |L \cdot x + L \cdot y| + |\{ x \} + \{ y \}| \] \(\rhd \)

and \(0 < \{ x \} + \{ y \} < 2 \) so we get

\[|x + y| = \begin{cases}
|L \cdot x + L \cdot y| & \text{when } 0 < \{ x \} + \{ y \} < 1 \\
|L \cdot x + L \cdot y| + 1 & \text{when } 1 \leq \{ x \} + \{ y \} < 2
\end{cases} \]
Example

1. Find \(\lceil \log_2 35 \rceil \)

Observe
\[
2^5 < 35 \leq 2^6
\]

\[
\log_2 2^5 < \log_2 35 \leq \log_2 2^6
\]

\[
5 < \log_2 35 \leq 6
\]

We get

\[
\lceil \log_2 35 \rceil = 6
\]

2. Find \(\lceil \log_2 32 \rceil \)

\[
2^4 < 32 \leq 2^5
\]

\[
4 < \log_2 32 \leq 5
\]

By \(\circ \) we get

\[
\lceil \log_2 32 \rceil = 5
\]
EXAMPLE

FIND \(\lfloor \log_2 35 \rfloor \), \(\lfloor \log_2 32 \rfloor \)

Observe

\(2^5 < 35 < 2^6 \)

\(5 \leq \log_2 35 < 6 \)

\(\lfloor \log_2 35 \rfloor = 5 \)

\(\lfloor \log_2 32 \rfloor = 5 \)

\(\lfloor \log_2 32 \rfloor = \lfloor \log_2 327 \rfloor \)

Observe:

\(35 \) has 6 digits in binary expansion and \(\lfloor \log_2 35 \rfloor = 6 \)

\(\lfloor \log_2 35 \rfloor = 5 \)

\(\lfloor \log_2 32 \rfloor = 5 \)

\(\lfloor \log_2 32 \rfloor = \lfloor \log_2 327 \rfloor \)

Question: Is \(\# \text{ digits} = \lfloor \log_2 n \rfloor \) true/false?

32 = (100000)

and \(\lfloor \log_2 32 \rfloor = 5 + 6 \)
Question:
Can we develop a connection (formula) between \(\lfloor \log_2 n \rfloor \) and the number of digits \(m \) of the binary representation of \(n \)? \((m \geq 0)\)

Yes
Let \(m+0, n \in \mathbb{N} \) such that \(n \) has \(m \) bits in binary representation. Hence we have

\[
2^{m-1} \leq n < 2^m
\]

\[
m-1 \leq \log_2 n < m
\]

and

\[
\lfloor \log_2 n \rfloor = m - 1
\]

Exercise

DO THE SAME FOR

\[
\lceil \log_2 n \rceil
\]

\(m = 32 \)

\(m = \lfloor \log_2 32 \rfloor + 1 = 5 + 1 = 6 \)

\(m = \lfloor \log_2 546 \rfloor + 1 = 9 + 1 = 10 \)
Exercise

Prove that

\[\forall (x \in \mathbb{R}, x \geq 0) \quad \lfloor \sqrt{x} \rfloor = \lfloor \sqrt{x} \rfloor \]

i.e.

\[\forall x (x \in \mathbb{R}, x \geq 0 \implies \lfloor \sqrt{x} \rfloor = \lfloor \sqrt{x} \rfloor) \]

or just simply

\[\lfloor \sqrt{x} \rfloor = \lfloor \sqrt{x} \rfloor \quad \text{for all} \quad x \in \mathbb{R}, \quad x \geq 0 \]

Fact²

\[\lfloor \sqrt{x} \rfloor = \lfloor \sqrt{x} \rfloor \quad \text{for all} \quad x \in \mathbb{R}, \quad x \geq 0 \]

Proof:

Take \(\lfloor \sqrt{x} \rfloor \). First we get rid of outside \(\lfloor x \rfloor + \alpha \sqrt{x} \) and then of \(\lfloor x \rfloor \).

Let

\[m = \lfloor \sqrt{x} \rfloor \]

\[m \leq \sqrt{x} < m + 1 \]

\[m^2 \leq x < (m+1)^2 \]

\[m^2 \leq x < (m+1)^2 \]

\[m = m \quad \text{and} \]

\[\lfloor \sqrt{x} \rfloor = \lfloor \sqrt{x} \rfloor \]

ed.
we prove in a similar way (Exercise!)

FACT 3
\[\sqrt[3]{x} = \sqrt[3]{x} \]
for all \(x \in \mathbb{R}, x \geq 0 \)

QUESTION: \(\sqrt{x} \) is a particular \(f: \mathbb{R}^\times \rightarrow \mathbb{R} \)
\(f(x) = \sqrt{x} \)
(\text{can we have a similar property for other functions } \phi: \mathbb{R} \rightarrow \mathbb{R} \text{ (which?)})

ANSWER: YES. When \(f \) is monotonie and continuous and increasing! i.e. we will prove:

FACT 4
Let \(f: \mathbb{R}^\prime \rightarrow \mathbb{R} \) (maybe \(\mathbb{R}^\prime = \mathbb{R}, \mathbb{R}^\prime = \mathbb{R}^+ \text{ etc.} \)
\(f \geq f(x) \) be such that \(f \) is continuous, monotonic and increasing on its domain \(\mathbb{R}^\prime \).

If additionally \(f \) has the following property

\[\text{If } f(x) \in \mathbb{Z}, \text{ then } x \in \mathbb{Z} \]

then

\[\lfloor f(x) \rfloor = \lfloor f(l \times r) \rfloor \text{ and} \]

\[\lceil f(x) \rceil = \lceil f(l \times T) \rceil \]
for all \(x \in \mathbb{R}^\prime \) for which \(\text{P} \) holds
Proof: \[f(Γx) = Γf(x) Γ \]

Under the assumption:

1. Monotone and continuous
2. Trivial \(x = Γx \)

1. \(x = Γx \) we get

\[f(x) = Γf(Γx) \]

This is trivial since \(x = 2 \) and

2. \(x = Γx \). By definition \(x < Γx \) and by monotonicity \(f(x) ≤ f(Γx) \), and by non-decreasing \(Γx \) (\(x < y \) then \(Γx < Γy \)) we get

\[f(x) ≤ f(Γx) . \]

Now we show that \(< \) is impossible - hence we will have "=". Assume \(f(x) < f(Γx) \). By \(x = Γx \) we get

\[f(x) < f(x) < f(Γx) . \]

If it continuous, then there is \(y \), such that

\[f(y) = Γf(y) \]

and

\[f(x) < f(y) < f(Γx) \]

so there holds when

\[x < y < Γx \]

but \(x ≠ Γx \)

so we get

\[x ≤ y < Γx \] (there is such a \(y \) !)

But \(f(y) = Γf(x) \), i.e. \(f(y) ∈ Z \), hence by \(y = 2 \) we get:

\[y = 2 \] (there is no \(y ∈ 2 \).

These are contradictory! \(x ≤ y < Γx \) and
Special case of Fact 4 (for \(l \geq 1 \))

\[
\left\lfloor \frac{x + m}{n} \right\rfloor = \left\lfloor \frac{x}{n} \right\rfloor + m
\]

\[
\left\lceil \frac{x + m}{n} \right\rceil = \left\lceil \frac{x}{n} \right\rceil + m
\]

\[f(x) = \frac{x + m}{n}, \quad n, m \geq 2, \quad m > 0\]

Fact 5

\[f(x) = \frac{x}{m} + \frac{m}{n}\]

Example:

Take \(m = 0 \), \(n = 10 \)

Evaluate:

\[
\left\lfloor \frac{x}{10} \right\rfloor /10 = \left\lfloor \frac{x/10}{10} \right\rfloor = \left\lfloor \frac{x}{100} \right\rfloor = \left\lfloor \frac{x}{1000} \right\rfloor
\]

Dividing \(x \) three times by 10 and throwing off digits is the same as dividing \(x \) by 1000 and throwing out the remainder.
Integers in the INTERVALS

In interval (closed)

\[[a, b] = \{ x \in \mathbb{R} : a \leq x \leq b \} \]

Standard notation = \([a .. b] \) - book notation

We use book notation, because

\([p(m)] \) denotes (in the book) the characteristic function

\[(a, b) = \{ x \in \mathbb{R} : a < x < b \} = (a .. b) \]

Open interval

\[(a, b) = \{ x \in \mathbb{R} : a \leq x < b \} = [a .. b) \]

Half-open interval

\[(a, b] = \{ x \in \mathbb{R} : a < x \leq b \} = (a .. b] \]

Problem:

\[A = \{ x \in \mathbb{Z} : 1 \leq x \leq 11 \} \]

Find: \[|A| \]

How many are there integers in the intervals of real numbers
We bring back our $[\alpha, \beta]$ properties

\[
\begin{align*}
\alpha < n < \beta & \iff \lfloor \alpha \rfloor \leq n < \lfloor \beta \rfloor \\
\alpha < n \leq \beta & \iff \lfloor \alpha \rfloor < n \leq \lfloor \beta \rfloor
\end{align*}
\]

$[d \ldots \beta)$ contains exactly $[\lfloor \beta \rfloor - \lfloor d \rfloor + 1$ integers

$[d \ldots \beta]$ contains $[\lfloor \beta \rfloor - \lfloor d \rfloor]+1$ int. AND we must assume $d \neq \beta$ to evaluate.

$[d \ldots \beta)$ contains $[\lfloor \beta \rfloor - \lfloor d \rfloor] - 1$ (becomes $(d \ldots d) = \emptyset$ and can't contain -1 int)

\begin{array}{|c|c|c|c|}
\hline
[p\ldots p] & \lfloor p \rfloor - \lfloor d \rfloor + 1 & \alpha < \beta \\
[d\ldots p] & \lfloor p \rfloor - \lfloor d \rfloor & \alpha < \beta \\
[d\ldots p] & \lfloor p \rfloor - \lfloor d \rfloor & d < \beta \\
(d\ldots p) & [\lfloor p \rfloor - \lfloor d \rfloor] - 1 & d < \beta \\
\hline
\end{array}
CASINO PROBLEM

There is a roulette wheel with 1,000 slots (numbered 1 \ldots 1,000).

If the number \(m \) that comes up on a spin is divisible by \(\left\lfloor \sqrt[3]{m} \right\rfloor \) i.e.

\[\left\lfloor \sqrt[3]{m} \right\rfloor \mid m \]

then \(m \) is a winner.

In the game casino pays $5 if you are the winner; but the looser has to pay $1.

Can we expect to make money if we play this game?

Let's compute average winnings i.e. amount we win (or lose) per play.

\[W - \# \text{ of winners} \]

\[L = 1000 - W \# \text{ of losers} \]

If each number comes once during 1000 plays, we win 5W and lose L dollars.
AVERAGE WINNINGS in 1000 plays

\[
\frac{5W - L}{1000} = \frac{5W - (1000 - W)}{1000} = \frac{6W - 1000}{1000}
\]

We have advantage if

\[
\frac{6W - 1000}{1000} > 70, \quad 6W > 1000, \quad W > 166.7
\]

Answer: If there is 167 or more winners (and each number comes up only once) then we have the advantage, otherwise the casino wins.

Problem:

How to count the number of winners among 1 to 1000?

Method:

Use summation

\[
W = \sum_{n=1}^{1000} \{ n \text{ is a winner} \}
\]
The only "difficult" maneuver is the decision between lines (3) and (5) to treat \(m \leq 1000 \) as a special case.

(The max. \(k^3 \leq n \leq (k+1)^3 \) does not combine easily with \(1 \leq n \leq 1000 \) when \(k = 10 \).)