DEFINITIONS

Check the LIST OF DEFINITIONS (in Downloads) to verify the mistakes in case of NO answer.

PART 1: GENERAL DEFINITIONS

Power Set \(\mathcal{P}(A) = \{ X : A \subseteq X \} \).

Relative Complement \(A - B = \{ a : a \in A \land a \notin B \} \).

(Cartesian) Product of two sets \(A \) and \(B \).
\(A \times B = \{ (a, b) : a \in A \land b \in B \} \).

Domain of \(R \) Let \(R \subseteq A \times A \), we define domain of \(R \): \(D_R = \{ a \in A : (a, b) \in R \} \).

ONTO function \(f : A \onto B \iff \forall b \in A \exists a \in B \; f(a) = b \).

Composition Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \), we define a new function \(h : A \rightarrow C \), called a COMPOSITION of \(f \) and \(g \), as follows: for any \(x \in A \), \(h(x) = g(f(x)) \).

Inverse function Let \(f : A \rightarrow B \) and \(g : B \rightarrow A \).
\(g \) is called an INVERSE function to \(f \) iff \(\forall a \in A \; ((f \circ g)(a) = g(f(a)) = a) \).

Sequence of elements of a set \(A \) is any function \(f : \mathbb{N} \rightarrow A \) or \(f : \mathbb{N} - \{0\} \rightarrow A \).

Generalized Intersection of a sequence \(\{A_n\}_{n \in \mathbb{N}} \) of sets: \(\bigcap_{n \in \mathbb{N}} A_n = \{ x : \exists n \in \mathbb{N} \; x \in A_n \} \).

Equivalence relation \(R \subseteq A \times A \) is an equivalence relation in \(A \) iff it is reflexive, antisymmetric and transitive.

Partition A family of sets \(\mathcal{P} \subseteq \mathcal{P}(A) \) is called a partition of the set \(A \) iff the following conditions hold.

1. \(\forall X \in \mathcal{P} \; (X = \emptyset) \)
2. \(\forall X, Y \in P \ (X \cup Y = \emptyset) \)

3. \(\bigcup P = A \)

Partition and Equivalence For any partition \(P \subseteq \mathcal{P}(A) \) of \(A \), there is an equivalence relation on \(A \) such that its equivalence classes are some sets of the partition \(P \).

Mathematical Induction Let \(P(n) \) be any property (predicate) defined on a set \(N \) of all natural numbers such that:

- **Base Case** \(n = 2 \) \(P(2) \) is true.
- **Inductive Step** The implication \(P(n) \Rightarrow P(n + 1) \) can be proved for any \(n \in N \) \(\therefore P(n) \) is a true statement.

PART 2: POSETS

Poset A set \(A \neq \emptyset \) ordered by a relation \(R \) is called a poset. We write it as a tuple: \((A, R), (A, \leq) \) or \((A, \preceq) \). Name poset stands for "partially ordered set".

Smallest (least) \(a_0 \in A \) is a smallest (least) element in the poset \((A, \leq) \) \(\iff \exists a \in A \ (a_0 \leq a) \).

Greatest (largest) \(a_0 \in A \) is a greatest (largest) element in the poset \((A, \leq) \) \(\iff \forall a \in A \ (a \leq a_0) \).

Maximal \(a_0 \in A \) is a maximal element in the poset \((A, \preceq) \) \(\iff \neg \forall a \in A \ (a_0 \preceq a \land a_0 \neq a) \).

Minimal \(a_0 \in A \) is a minimal element in the poset \((A, \preceq) \) \(\iff \neg \exists a \in A \ (a \preceq a_0 \land a_0 \neq a) \).

Lower Bound Let \(B \subseteq A \) and \((A, \preceq) \) is a poset. \(a_0 \in A \) is a lower bound of a set \(B \) \(\iff \exists b \in B \ (a_0 \leq b) \).

Upper Bound Let \(B \subseteq A \) and \((A, \preceq) \) is a poset. \(a_0 \in A \) is an upper bound of a set \(B \) \(\iff \forall b \in B \ (b \leq a_0) \).

Least upper bound of \(B \) (lub \(B \)) Given: a set \(B \subseteq A \) and \((A, \preceq) \) a poset.

An element \(x_0 \in B \) is a least upper bound of \(B \), \(x_0 = \text{lub}B \) if \(x_0 \) is (if exists) the least (smallest) element in the set of all upper bounds of \(B \), ordered by the poset order \(\preceq \).

Greatest lower bound of \(B \) (glb \(B \)) Given: a set \(B \subseteq A \) of a poset \((A, \preceq) \).

An element \(x_0 \in A \) is a greatest lower bound of \(B \), \(x_0 = \text{glb}B \) if \(x_0 \) is (if exists) the greatest element in the set of all lower bounds of \(B \), ordered by the poset order \(\preceq \).
PART 3: LATTICES and BOOLEAN ALGEBRAS

Lattice A poset \((A, \preceq)\) is a lattice iff for all \(a, b \in A\) lub\{a, b\} or glb\{a, b\} exist.

Lattice notation Observe that by definition elements lub\(B\) and glb\(B\) are always unique (if they exist). For \(B = \{a, b\}\) we denote:
lub\{a, b\} = a ∪ b and glb\{a, b\} = a ∩ b.

Lattice union (meet) The element lub\{a, b\} = a ∩ b is called a lattice union (meet) of \(a\) and \(b\).
By lattice definition for any \(a, b \in A\) a ∩ b always exists.

Lattice intersection (joint) The element glb\{a, b\} = a ∪ b is called a lattice intersection (joint) of \(a\) and \(b\).
By lattice definition for any \(a, b \in A\) a ∪ b always exists.

Lattice as an Algebra An algebra \((A, \cup, \cap)\), where \(\cup, \cap\) are two argument operations on \(A\) is called a lattice iff the following conditions hold for any \(a, b, c \in A\) (they are called lattice AXIOMS):

\[
\begin{align*}
11 & \quad a \cup b = b \cup a \text{ and } a \cap b = b \cap a \\
12 & \quad (a \cup b) \cap c = a \cup (b \cap c) \text{ and } (a \cap b) \cap c = a \cap (b \cap c) \\
13 & \quad a \cap (a \cup b) = a \text{ and } a \cup (a \cap b) = a.
\end{align*}
\]

Lattice axioms The conditions 11-13 from above definition are called lattice axioms.

Lattice orderings Let the \((A, \cup, \cap)\) be a lattice. The relations:
\(a \preceq b\) iff \(a \cup b = b\), \(a \preceq b\) iff \(a \cap b = a\)
are order relations in \(A\) and are called a lattice orderings.

Distributive lattice Axioms A lattice \((A, \cup, \cap)\) is called a distributive lattice iff for all \(a, b, c \in A\) the following conditions hold

\[
\begin{align*}
14 & \quad a \cup (b \cap c) = (a \cup b) \cap (a \cup c) \\
15 & \quad a \cap (b \cup c) = (a \cap b) \cup (a \cap c).
\end{align*}
\]

Conditions 14-15 from above are called a distributive lattice axioms.

Lattice special elements The greatest element in a lattice (if exists) is denoted by 1 and is called a lattice UNIT. The least (smallest) element in \(A\) (if exists) is denoted by 0 and called a lattice zero.

Lattice with unit and zero If 0 (lattice zero) and 1 (lattice unit) exist in a lattice, we will write the lattice as: \((A, \cup, \cap, 0, 1)\) and call it a lattice with zero and unit.

Lattice Unit Definition Let \((A, \cup, \cap)\) be a lattice. An element \(x \in A\) is called a lattice unit iff for any \(a \in A\) \(x \cup a = a\) and \(x \cap a = x\).
Lattice Unit Axioms If lattice unit x exists we denote it by 1 and we write the unit axioms as follows.

16 $\ 1 \cap a = a$
17 $\ 1 \cup a = 1$.

Lattice Zero Let (A, \cup, \cap) be a lattice. An element $x \in A$ is called a lattice zero iff for any $a \in A$

$x \cup a = x$ and $x \cap a = a$.

Lattice Zero Axioms If lattice zero exists we denote it by 0 and write the zero axioms as follows.

18 $\ 0 \cup a = 0$
19 $\ 0 \cap a = a$.

Complement Definition Let $(A, \cup, \cap, 1, 0)$ be a lattice with unit and zero. An element $x \in A$ is called a complement of an element $a \in A$ iff

$a \cap x = 1$ and $a \cup x = 0$.

Complement axioms Let $(A, \cup, \cap, 1, 0)$ be a lattice with unit and zero. The complement of $a \in A$
is usually denoted by $-a$ and the above conditions that define the complement above are called complement axioms. The complement axioms are usually written as follows.

1 $a \cup -a = 0$
2 $a \cap -a = 1$.

Boolean Algebra A distributive lattice with zero and unit such that each element has a complement is called a Boolean Algebra.

Boolean Algebra Axioms A lattice $(A, \cup, \cap, 1, 0)$ is called a Boolean Algebra iff the operations $
\cap, \cup$ satisfy axioms 11 -15, 0 $\in A$ and 1 $\in A$ satisfy axioms 16 -19 and each element $a \in A$ has a complement $-a \in A$, i.e.

11o $\forall a \in A \exists -a \in A (\ (a \cup -a = 1) \cap (a \cap -a = 0))$.

PART 4: CARDINALITIES OF SETS, Finite and Infinite Sets.

Cardinality definition Sets A and B have the same cardinality iff $\exists f(f : A \xrightarrow{1 \text{1-to-1} \text{onto}} B)$.

Cardinality notations $|A| = |B|$ or $\text{card}A = \text{card}B$, or $A \sim B$ all denote that the sets A and B
have the same cardinality.

Finite We say: a set A is finite \ iff \ $\exists n \in N(|A| = n)$.

Infinite A set A is infinite \ iff \ A is NOT finite.

Cardinality Aleph zero We say that a set A has a cardinality \aleph_0 ($|A| = \aleph_0$) \ iff \ $|A| = |N|$.

Countable A set A is countable \ iff \ $|A| = \aleph_0$.

4
Uncountable A set A is uncountable iff A is NOT countable.

Cardinality Continuum We say that a set A has a cardinality C ($|A| = C$) iff $|A| = |R|$.

Cardinality $A \leq$ Cardinality B $|A| \leq |B|$ iff $A \sim C$ and $C \subseteq B$.

Cardinality $A <$ Cardinality B $|A| < |B|$ iff $|A| \leq |B|$ or $|A| \neq |B|$.

Cantor Theorem For any set A, $|A| \leq \mathcal{P}(A)$.

PART 5: ARITHMETIC OF CARDINAL NUMBERS

Sum ($\mathcal{N} + \mathcal{M}$) We define:
$\mathcal{N} + \mathcal{M} = |A \cup B|$, where A, B are such that $|A| = \mathcal{N}$, $|B| = \mathcal{M}$.

Multiplication ($\mathcal{N} \cdot \mathcal{M}$) We define:
$\mathcal{N} \cdot \mathcal{M} = |A \times B|$, where A, B are such that $|A| = \mathcal{N}$, $|B| = \mathcal{M}$.

Power ($\mathcal{M}^{\mathcal{N}}$) $\mathcal{M}^{\mathcal{N}} = card\{ f : f : A \rightarrow B \}$, where A, B are such that $|A| = \mathcal{M}$, $|B| = \mathcal{N}$.

Power $2^{\mathcal{N}}$ We define:
$2^{\mathcal{N}} = card\{ f : f : A \rightarrow \{0, 1\} \}$, where $|A| = \mathcal{N}$.

PART 4: ARITHMETIC OF n, \aleph_0, C

Union 1 $\aleph_0 + \aleph_0 = \aleph_0$.
Union of two countable sets is a countable set.

Union 2 $\aleph_0 + n = \aleph_0$.
Union of a finite (cardinality n) and a countable set is an infinitely countable set.

Union 3 $\aleph_0 + C = C$.
Union of an infinitely countable set and an uncountable set is an uncountable set.

Cartesian Product 1 $\aleph_0 \cdot \aleph_0 = \aleph_0$.
Cartesian Product of two countable sets is a countable set.

Cartesian Product 2 $n \cdot \aleph_0 = \aleph_0$.
Cartesian Product of a finite set and an infinite set is an infinite set.
Cartesian Product 3 $\aleph_0 \cdot \mathcal{C} = \mathcal{C}$.
Cartesian Product of an infinitely countable set and a set of the same cardinality as Real numbers has the same cardinality as the set of Real numbers.

Cartesian Product 4 $\mathcal{C} \cdot \mathcal{C} = \mathcal{C}$.
Cartesian Product of two uncountable sets is an uncountable set.

Power 1 $2^{\aleph_0} = \mathcal{C}$.

Power 2 $\aleph_0^{\aleph_0} = \mathcal{C}$ means that
\[\text{card}\{ f : f : N \rightarrow N \} = \mathcal{C}. \]

Power 3 $\mathcal{C}^\mathcal{C} = 2^\mathcal{C}$ means that there are $2^\mathcal{C}$ of all functions that map \mathbb{R} into \mathbb{R}.

Inequalities $n < \aleph_0 \leq \mathcal{C}$.

QUESTIONS
Circle proper answer. WRITE a short JUSTIFICATION. NO JUSTIFICATION, NO CREDIT.

Here are YES/NO answers with FEW JUSTIFICATIONS as examples

1. If $f : A \xrightarrow{1-1\text{onto}} B$ and $g : B \xrightarrow{1-1\text{onto}} A$, then g is an inverse to f.
 JUSTIFY: The statement guarantee only that INVERSE function EXISTS.

2. Let $f : N \times N \rightarrow N$ be given by a formula $f(n, m) = n + m^2$. f is a $1-1$ function.
 JUSTIFY: $f(1, 2) = 5 = f(4, 1)$

3. Let $A = \{a, \emptyset, \emptyset\}$, $B = \{\emptyset, \emptyset, \emptyset\}$. There is a function $f : A \xrightarrow{1-1\text{onto}} B$.
 JUSTIFY: $|A| = 3$, $|B| = 2$

4. If $f : A \xrightarrow{1-1} B$ and $g : B \xrightarrow{\text{onto}} A$, then $f \circ g$ and $g \circ f$ are onto.
 JUSTIFY: $g \circ f$ no; take $|A| = 2$, $|B| = 3$

5. $f : R - \{0\} \xrightarrow{1-1} R$ is given by a formula: $f(x) = \frac{1}{2}$ and $g : R - \{0\} \rightarrow R - \{0\}$ given by $g(x) = \frac{x}{2}$.
 g is inverse to f.
 JUSTIFY: f is not ”onto”; inverse does not exist.
6. \{(1, 2), (a, 1)\} is a binary relation in \{1, 2, 3, \}.

JUSTIFY: \(a \not\in \{1, 2, 3, \}\).

7. The function \(f : N \rightarrow \mathcal{P}(N)\) given by formula: \(f(n) = \{m \in N : m \leq n\}\) is a 1–1 function.

JUSTIFY: \(n_1 \neq n_2\) then obviously \(f(n_1) \neq f(n_2)\).

8. The function \(f : N \times N \rightarrow \mathcal{P}(N)\) given by formula: \(f(n, m) = \{m \in N : m + n = 1\}\) is a sequence.

JUSTIFY: Domain of \(f\) is not \(N\).

9. The function \(f : N \times N \rightarrow \mathcal{P}(N)\) given by formula: \(f(n, m) = \{m \in N : m + n = 1\}\) is 1–1.

JUSTIFY: \(f(n, m) = \emptyset\) for all \(n, m\) such that \(m + n \neq 1\).

10. The \(f : N \rightarrow \mathcal{P}(N)\) given by formula: \(f(n) = \{m \in N : m + n = 1\}\) is a family of sets.

JUSTIFY: Values of \(f\) are sets.

11. Let \(P\) be a predicate. If \(P(0)\) is true and for all \(k \leq n\), \(P(k)\) is true implies \(P(n + 1)\) is true, then \(\forall n \in N \ P(n)\) is true.

JUSTIFY: Principle of mathematical Induction.

12. Let \(A_n = \{x \in R : n \leq x \leq n + 1\}\). Consider \(\{A_n\}_{n \in N}\). \(\bigcap_{n \in N} A_n = \emptyset\).

JUSTIFY: \(A_0 = \{1\}\), \(A_1 = \{1, 2\}\), \(A_2 = \{1, 2\}\) and \(\bigcap_{n \in T} A_n = \emptyset\).

13. Let \(A_n = \{x \in R : n + 1 \leq x \leq n + 2\}\). Consider \(\{A_n\}_{n \in N}\). \(\bigcup_{n \in N} A_n = R\).

JUSTIFY: \(\bigcup_{n \in N} \{x \in R : n + 1 \leq x \leq n + 2\} = [1, \infty) \neq R\).

14. \(x \in \bigcup_{t \in T} A_t\) iff \(\exists t \in T(x \in A_t)\)

JUSTIFY: definition.

15. Let \(A_n = \{x \in N : 0 < x < n\}\). The family \(\{A_n\}_{n \in N}\) form a partition of \(N\).

JUSTIFY: \(A_0 = \{x \in N : 0 < x < 0\} = \emptyset\).

16. Let \(A_t = \{x \in \{1, 2, 3\} : x > t\}\) for \(t \in \{0, 1, 2\}\). \(\bigcap_{t \in T} A_t = \{1\}\).

JUSTIFY: \(A_0 = \{1, 2, 3\}, A_1 = \{2, 3\}, A_2 = \{3\}\) and \(\bigcap_{t \in T} A_t = \emptyset\).

17. There is an equivalence relation on \(N\) with infinite number of equivalence classes.

JUSTIFY: Equality on \(N\).
18. There is an equivalence relation on \(A = \{ x \in R : 1 \leq x < 4 \} \) with equivalence classes:
\([1] = \{ x \in R : 1 \leq x < 2 \}, \ [2] = \{ x \in R : 2 \leq x < 3 \}, \text{and} \ [3] = \{ x \in R : 3 \leq x < 4 \}.

JUSTIFY: \{[1], [2], [3] \} is a partition of \(A \).

19. Each element of a partition of a set \(A = \{ 1,2,3 \} \) is an equivalence class of a certain equivalence relation.

JUSTIFY: True for any set \(A \neq \).

20. Set of all equivalence classes of a given equivalence relation is a partition.

JUSTIFY: Partition Theorem.

21. Let \(R \subseteq A \times A \) The set \([a] = \{ b \in A : (a, b) \in R \} \) is an equivalence class with a representative \(a \).

JUSTIFY: ONLY when \(R \) is an equivalence relation.

22. Let \(A = \{ a, b, c, d \} \). There are \(4^3 \) words of length 3 in \(A^* \).

JUSTIFY: Counting the functions theorem.

23. If a set \(A \) has \(n \) elements \((n \in N) \), then every subset of \(A \) is finite.

JUSTIFY: Any subset of a finite set is a finite set.

24. Let \(\sum \) be an alphabet \(\sum = \{ \%, $, & \} \). Denote \(\sum^k = \{ w \in \sum^* : \text{length}(w) = k \} \).
The set \(\sum^3 \) has 29 elements.

JUSTIFY: \(3^3 = 27 \)

25. There is an order relation that is also an equivalence relation and a function.

JUSTIFY: Equality on any set.

26. \(R = \{(N, \{1, 2, 3\}), (Z, \{1, 2, 3\}), (1, N), (-1, N), (3, Z)\} \) is a function defined on a set \(\{N, Z, 1, -1, 3\} \) with values in the set \(Z \).

JUSTIFY: Elements of the range (values) of \(R \) are SUBSETS, not elements of \(Z \).

27. If \(f : R \to R \) and \(g : R \to R \), then \(g \circ f \) and \(f \circ g \) exists.

JUSTIFY: Corresponding domains and ranges agree.

28. \(\{(1, 2), (a, 1), (a, a)\} \) is a transitive binary relation defined in \(A = \{1, 2, a\} \).

JUSTIFY: \((a, 2) \notin R \).

29. \(f : N \to \mathcal{P}(R) \) is given by the formula: \(f(n) = \{ x \in R : x \leq \frac{-n^3 + 1}{\sqrt{n^3 + 3 + 6}} \} \) is a sequence.

JUSTIFY: Domain of \(f \) is \(N \).
30. There is an order relation R defined in $A \neq \emptyset$ such that (A, R) is a poset.

 JUSTIFY: Definition of Poset.

31. Let $A = \{\emptyset, N, \{1\}, \{a, b, 3\}\}$. There are no more then 50 words of length 4 in A^*.

 JUSTIFY: $|A| = 4$, $3^4 > 50$.

32. There is an equivalence relation on Z with infinitely countably many equivalence classes.

 JUSTIFY: Equality on Z.

33. A is uncountable iff $|A| = |R|$ where R is the set of real numbers.

 JUSTIFY: $A = \mathcal{P}(R)$ is uncountable and by Cantor theorem $|R| < |\mathcal{P}(R)|$.

34. A is infinite iff some subsets of A are infinite.

 JUSTIFY: All subsets of a finite set are finite.

35. There exists an equivalence relation on N with \aleph_0 equivalence classes.

 JUSTIFY: Equality; $[n] = \{n\}$.

36. A is finite iff some subsets of A are finite.

 JUSTIFY: all subsets are finite; $\{1\} \subseteq N$ and N is infinite.

37. If A is a countable set, then any subset of A is countable.

 JUSTIFY: Theorem

38. If A is uncountable set, then any subset of A is uncountable.

 JUSTIFY: $N \subseteq R$.

39. $\{x \in Q : 1 \leq x \leq 2\}$ has the same cardinality as $\{x \in Q : 5 \leq x \leq 10\}$.

 JUSTIFY: both sets are of cardinality \aleph_0.

40. If A is infinite set and B is a finite set, then $((A \cup B) \cap A)$ is infinite set.

 JUSTIFY: $((A \cup B) \cap A) = A$.

41. The set of all squares centered in the origin has the same cardinality as R.

 JUSTIFY: All such circles are uniquely defined by the radius r and $r \in R$.

42. If A, B are infinitely countable sets, then $A \cap B$ is a countable set.

 JUSTIFY: $A \cap B$ is finite or infinitely countable.
43. A is uncountable iff there is a subset B of A such that $|B| = |A|$.

JUSTIFY: $N \subseteq Q$, $|N| = |Q|$ and Q is NOT uncountable.

44. A is uncountable iff $|A| = \mathcal{C}$.

JUSTIFY: $\mathcal{P}(\mathbb{R})$ is uncountable and $|\mathcal{P}(\mathbb{R})| \neq \mathcal{C}$.

45. $\aleph_0 + \aleph_0 = \aleph_0$ means that the union of two infinitely countable sets is an infinitely countable set.

JUSTIFY: The fact that the union of two infinitely countable sets is an infinitely countable set is true (theorem), but does not reflect the definition of sum of cardinal numbers; two DISJOINT infinitely countable sets.

46. $|\mathcal{P}(\mathbb{N})| = \aleph_0$

JUSTIFY: $|\mathcal{P}(\mathbb{N})| = \mathcal{C}$.

47. $\text{card}(N \cap \{1, 3\}) = \text{card}(Q \cap \{1, 2\})$

JUSTIFY: both sets have 2 elements.

48. A relation in \mathbb{N} defined as follows: $n \approx m$ iff $n + m \in \text{EVEN}$ has \aleph_0 equivalence classes. in \mathbb{N}.

JUSTIFY: two equivalence classes.

49. $\text{card}A < \text{card}\mathcal{P}(A)$

JUSTIFY: Cantor Theorem

50. A is infinite set iff there is $f : \mathbb{N} \longrightarrow \overset{1}{1}_{\text{onto}} A$.

JUSTIFY: this is definition of the infinitely countable set.

51. $\mathcal{P}(A) = \{B : B \subseteq A\}$

JUSTIFY: $B \subseteq A$

52. $|Q \cup N| = \aleph_0$

JUSTIFY: $Q \cup N = Q$.

53. $|\mathbb{R} \times \mathbb{Q}| = \mathcal{C}$

JUSTIFY: $\mathcal{C} \cdot \aleph_0 = \mathcal{C}$.

54. \(|N| \leq \aleph_0\)

JUSTIFY: \(|A| \leq |A|\).

y

55. Any non empty POSET has at least one MAX element.

JUSTIFY: \((N, \leq)\) has no max element for \(\leq\) natural order.

n

56. If \((A, \leq)\) is a finite poset (i.e. \(A\) is a finite set), then a unique maximal is the largest element and a unique minimal is the least element.

JUSTIFY: Theorem

y

57. There is a non empty POSET that has no Max element.

JUSTIFY: \((N, \leq)\) has no max element for \((\leq\) natural order.

y

58. Any lattice is a POSET.

JUSTIFY: definition

y

59. It is possible to order \(N\) in such a way that \((N, \leq)\) has \(\aleph_0\) MAX elements and no MIN elements.

JUSTIFY: diagram (lecture)

y

60. In any poset \((A, \leq)\), the greatest and least elements are unique.

JUSTIFY: Theorem

y

61. If a non empty poset is finite, then unique MAX element is the smallest.

JUSTIFY: in a finite poset unique MAX element is the greatest.

n

62. Each non empty lattice has 0 and 1.

JUSTIFY: \((Z, \leq)\)

n

63. In any poset \((A, \leq)\), if a greatest and a least elements exist, then they are unique.

JUSTIFY: Theorem

y

64. Each distributive lattice has zero and unit elements.

JUSTIFY: diagram

n

65. It is possible to order the set of Natural numbers \(N\) in such a way that the poset \((N, \leq)\) has a unique maximal element (minimal element) and no largest element (least element).

JUSTIFY: diagram

n
66. It is possible to order the set of rational numbers \(\mathbb{Q} \) in such a way that the poset \((\mathbb{Q}, \preceq) \) has a unique minimal element and no smallest (least) element.

JUSTIFY: diagram

67. In any poset, the largest element is a unique maximal element and the least element is the unique minimal element.

JUSTIFY: Theorem

68. If \((A, \cup, \cap) \) is an infinite lattice (i.e. the set \(A \) is infinite), then 1 or 0 might or might not exist.

JUSTIFY: always true

69. There is a poset \((A, \preceq) \) and a set \(B \subseteq A \) and that \(B \) has none upper bounds.

JUSTIFY: \((\mathbb{N}, \preceq), B = \mathbb{N} - \{0\} \).

70. There is a poset \((A, \preceq) \) and a set \(B \subseteq A \) and that \(B \) has infinite number of lower bounds.

JUSTIFY: \((\mathbb{N}, \succeq), B = \{0, 1\} \).

71. If \((A, \cup, \cap) \) is a finite lattice (i.e. \(A \) is a finite set), then 1 and 0 always exist.

JUSTIFY: Theorem

72. Any finite lattice is distributive.

JUSTIFY: example in the lecture of 5element non-distributive lattice

73. Every Boolean algebra is a lattice.

JUSTIFY: definition

74. Any infinite Boolean algebra has unit (greatest) and zero (smallest) elements.

JUSTIFY: by definition every Boolean algebra has unit (greatest) and zero (smallest) elements

75. A non-generate Finite Boolean Algebras always have \(2^n \) elements \((n \geq 1) \).

JUSTIFY: Theorem

76. Sets \(A \) and \(B \) have the same cardinality iff \(\exists f (f : A \xrightarrow{1-1} B) \).

JUSTIFY: \(f \) must be also "onto."

77. We say: a set \(A \) is finite iff \(\exists n \in \mathbb{N} (|A| = n) \).

JUSTIFY: definition

78. A set \(A \) is infinite iff \(A \) is NOT finite.

JUSTIFY: definition
79. \aleph_0 (Aleph zero) is a cardinality of only \mathbb{N} (Natural numbers).

 JUSTIFY: definition

80. A set A is countable iff $|A| = \aleph_0$.

 JUSTIFY: A set A is countable iff is FINITE or $|A| = \aleph_0$.

81. \mathcal{C} (Continuum) is a cardinality of Real Numbers, i.e. $\mathcal{C} = |\mathbb{R}|$.

 JUSTIFY: definition

82. For any set A, $|A| < |\mathcal{P}(A)|$.

 JUSTIFY: Cantor Theorem

83. $\mathcal{M}^\mathbb{N}$ is the cardinality of all functions that map a set A (of cardinality \mathbb{N}) into a set B (of cardinality \mathcal{M}).

 JUSTIFY: definition