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PART 1: SETS AND OPERATIONS ON SETS

Subset Notations We use notation A ⊆ B for a SUBSET (might be improper) and A ⊂ B for a
PROPER subset.

Set Inclusion A ⊆ B iff ∀a(a ∈ A⇒ a ∈ B) is a true statement.

Set Equality A = B iff A ⊆ B ∩ B ⊆ A.

Proper Subset A ⊂ B iff A ⊆ B ∩ A 6= B.

Power Set P(A) = {B : B ⊆ A}.

Union A ∪B = {x : x ∈ A ∪ x ∈ B}. We write:

x ∈ (A ∪B) iff x ∈ A ∪ x ∈ B.

Intersection A ∩B = {x : x ∈ A ∩ x ∈ B}. We write:

x ∈ (A ∩B) iff x ∈ A ∩ x ∈ B.

Relative Complement A−B = {x : x ∈ A ∩ x 6∈ B}. We write:

x ∈ (A−B) iff x ∈ A ∩ x
not ∈ B.

Complement This is defined only for A ⊆ U , where U is called an UNIVERSE.

We define: −A = U −A, or write: x ∈ −A iff x 6∈ A.

Other notation some books use Ac, or ′ for −A.

Set A defined by a property (predicate) P(x) is A = {x : P (x)}.

Ordered Pair Given two sets A,B, we denote by (a, b) and ordered pair, where a ∈ A and b ∈ B.
a is a first coordinate, b is the second coordinate. We define:

(a, b) = (c, d) iff a = c and b = d.

(Cartesian) Product of two sets A and B.

A×B = {(a, b) : a ∈ A ∩ b ∈ B}, or we write:
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(a, b) ∈ (A×B) iff a ∈ A ∩ b ∈ B.

Binary Relation R defined in a set A is any subset R of a cartesian product of A×A, i.e.

R ⊆ A×A.

Domain of R Let R ⊆ A×A, we define domain of R:

DR = {a ∈ A : ∃b ∈ A((a, b) ∈ R)}.

Range of R (Set of values of R).
Let R ⊆ A×A, we define range of R (set VR of values of R):

VR = {b ∈ A : ∃a ∈ A((a, b) ∈ R)}.

Ordered tuple Given sets A1, ...An. An element (a1, a2, ...an) such that ai ∈ Ai for i = 1, 2, ...n is
called an ordered TUPLE.

(Cartesian) Product of sets A1, ...An.
A1 ×A2 × ...×An = {(a1, a2, ...an) : ai ∈ Ai, i = 1, 2, ...n}.

Algebra of sets consists of properties of sets that are TRUE for ALL sets involved. We use tau-
tologies of propositional logic to prove BASIC properties of sets and we use the basic properties
to prove more elaborated properties of sets.

PART 2: FUNCTIONS

Function as Relation R ⊆ A×B is a FUNCTION from A to B iff
∀a ∈ A ∃! b ∈ B (a, b) ∈ R.

Where ∃! b ∈ B means there is EXACTLY one b ∈ B. Because for all a ∈ A we have exactly
one b ∈ B, we write it as: a = R(b) for (a, b) ∈ R.

A is called A DOMAIN of a function R and we write:
R : A −→ B to denote that R ⊆ A×B is a FUNCTION from A to B.

Function notation We denote relations that are functions by letters f, g, h,... and write f :
A −→ B to say that f ⊆ A×B is a function from A to B (MAPS A into B).

Domain, codomain of f Let f : A −→ B, A is called a DOMAIN of f and B is called a
codomain of f.
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Graph of f In our approach the GRAPH and the function are the same. GRAPHf = f = {(a, b) :
b = f(a)}.

ONTO function f : A −→ B is called an onto function and denoted by

f : A
onto−→ B iff ∀b ∈ B∃a ∈ A f(a) = b.

1-1 function f : A −→ B is called a ONE-TO ONE function and denoted by

f : A
1−1−→ B iff ∀x, y ∈ A(x 6= y ⇒ f(x) 6= f(y) ).

f is NOT 1-1 f : A −→ B is not a ONE-TO ONE function iff ∃x, y ∈ A(x 6= y ∩ f(x) =
f(y) ).

1-1, onto If f is a 1-1 and onto function we write it as f : A
1−1,onto−→ B.

Composition Let f : A −→ B and g : B −→ C, we define a new function h : A −→ C,
called a COMPOSITION of f and g, as follows:

for any x ∈ A, h(x) = g(f(x)).

Composition notation We denote a composition h of f and g as h = f ◦ g. I.e. we define:
for all x ∈ A, (f ◦ g)(x) = g(f(x)).

Observe Standard notation for a composition of f and g is f ◦ g.

It means that f is the first function f : A −→ B and g is the second function g : B −→ C
and the composition is a function with a ”name” f ◦ g which is defined by a formula:

for all x ∈ A, (f ◦ g)(x) = g(f(x)).

Inverse function Let f : A −→ B and g : B −→ A.

The function g is called an INVERSE function to f iff the composition of f and g is an identity
on A, i.e. the following condition holds.

∀a ∈ A, (f ◦ g)(a) = g(f(a) = a).

Inverse function notation If g is an INVERSE function to f we denote by g = f−1.

Identity function f : A −→ A is called an IDENTITY on A iff ∀a ∈ Af(a) = a.

Inverse and Identity Let f : A −→ B and f−1 : B −→ A is an inverse to f , then the
compositions f ◦ f−1 and f−1 ◦ f are both identities on A and B, respectively, i.e.

(f ◦ f−1)(a) = f−1(f(a)) = a, for all a ∈ A

and (f−1 ◦ f)(b) = f(f−1(b)) = b for all b ∈ B.
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Inverse Function Theorem For any function f : A −→ B, the inverse function to f exists iff

f is 1− 1 and ONTO, i.e. f : A
1−1,onto−→ B.

PART 3: SEQUENCES, GENERALIZED UNION AND INTERSECTION

A sequence of elements of a set A is any function

f : N −→ A or f : N − {0} −→ A.

n-th term of a sequence Let f : N −→ A be a sequence, an = f(n) is called a n-th term of
a sequence f and we write the sequence f as a0, a1, ...an, .....

Sequence notation Let f be a sequence, we denote it as {an}n∈N , or {an}n∈N−{0}.

Finite Sequence of elements of a set A is any function
f : {1, 2, ...n} −→ A,
and n is called a LENGTH of the sequence f. We usually list elements of the finite sequences:
a1, ...an.

Family of sets Any collection of sets is called a Family of sets. We denote it by F .

Sequence of sets is a sequence f : N −→ F , i.e a sequence where all its elements are SETS.

We use CAPITAL letters to denote the sets, so we also use capital letters to denote sequences
of sets: {An}n∈N , or {An}n∈N−{0}.

Generalized Union of a sequence of sets:
⋃

n∈N An = {x : ∃n ∈ N x ∈ An}, i.e.

x ∈
⋃

n∈N An iff ∃n ∈ N x ∈ An.

Generalized Intersection of a sequence of sets:

⋂
n∈N An = {x : ∀n ∈ N x ∈ An}, i.e.

x ∈
⋂

n∈N An iff ∀n ∈ N x ∈ An.

Indexed Family of Sets Let F be a family of sets, and T 6= ∅.

Any f : T −→ F , f(t) = At is called an indexed family of sets, T is called a set if indexes.

We write it: {At}t∈T .

NOTICE that any sequence of sets is an indexed family of sets for T = N .
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Generalized Union of an indexed family of sets:

⋃
t∈T At = {x : ∃t ∈ T x ∈ At}, i.e. x ∈

⋃
t∈T At iff ∃t ∈ T x ∈ At.

Generalized Intersection of an indexed family of sets:
⋂

t∈T At = {x : ∀t ∈ T x ∈ At}, i.e.
x ∈

⋂
t∈T At iff ∀t ∈ T x ∈ At.

PART 4: IMAGE AND INVERSE IMAGE

Image of a set A ⊆ X under a function f : X −→ Y . NOTATIONS: f(A) or f→(A). Definition:
f(A) = f→(A) = {y ∈ Y : ∃x(x ∈ A ∩ y = f(x))}, i.e.

y ∈ f(A) iff ∃x(x ∈ A ∩ y = f(x)).

Inverse Image of a set B ⊆ Y under a function f : X −→ Y . NOTATIONS: f−1(B) or f←(B).
Definition:

f−1(B) = f←(B) = {x ∈ X : f(x) ∈ B}, i.e.

x ∈ f−1(B) iff f(x) ∈ B.

PART 5: EQUIVALENCE, PARTITION

Equivalence relation R ⊆ A×A is an equivalence relation in A iff it is relexive, symmetric and
transitive.

Equivalence relation symbols We denote equivalence relation by ∼, or ≈, or ≡. In my notes
we usually use ≈ as a symbol for the equivalence relation.

Equivalence class If ≈ ⊆ A×A is and equivalence relation then the set

E = {b ∈ A : a ≈ b} is called an equivalence class.

Equivalence class symbols The equivalence classes are usually denoted by:

[a] = {b ∈ A : a ≈ b}

and the element a is called a representative of the equivalence class

[a] = {b ∈ A : a ≈ b}.

Other symbols used are: |a| or ‖ a ‖ for the equivalence class {b ∈ A : a ≈ b} with a representative
a.

Partition A family of sets P ⊆ P(A) is called a partition of the set A iff the following conditions
hold.

1. ∀ X ∈ P (X 6= ∅)
i.e. all sets in the partion are non-empty.
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2. ∀ X,Y ∈ P (X ∩ Y = ∅)
i.e. all sets in the partion are disjoint.

3.
⋃
P = A

i.e sum of all sets from P is the set A.

Notation: A/ ≈ denotes the set of all equivalence classes of ≈, i.e.

A/ ≈= {[a] : a ∈ A}.

Equivalence and Partition Theorem

Let A 6= ∅, if ≈ is an equivalence relation on A, then A/ ≈ is a partition of A, i.e.

1. ∀ [a] ∈ A/ ≈ ([a] 6= ∅)
i.e. all equivalence classes are non-empty.

2. ∀ [a] 6= [b] ∈ A/ ≈ ([a] ∩ [b] = ∅)
i.e. all equivalence classes are disjoint.

3.
⋃
A/ ≈= A

i.e sum of all equivalence classes (sets from A/ ≈) is the set A.

Partition and Equivalence We prove also a following:

For partition P ⊆ P(A) of A, there is an equivalence relation on A such that its equivalence
classes are exactly the sets of the partition P.

Sets R(a) Observe that we can consider, for ANY relation R on A sets that ”look” like equivalence
classes i.e. are defined as follows:

R(a) = {b ∈ A; aRb} = {b ∈ A; (a, b) ∈ R}.

Fact 1 If R is an equivalence on A, then the family {R(a)}a∈A is a partition of A.

Fact 2 If the family {R(a)}a∈A is NOT a partition of A, then R is NOT an equivalence on A.
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