Chapter 5, Problem 35

Evaluate the sum

\[S_n = \sum_{k \leq n} \binom{n}{k} 2^{k-n} \]
Q. Evaluate the sum \(S_n = \sum_{k \leq n} \binom{n}{k} 2^{k-n} \)

Let \(S_n = \sum_{k \leq n} \binom{n}{k} 2^{k-n} \) \(\ldots \) \(\ldots \)(1)

Consider the binomial theorem,

\[(x + y)^r = \sum_{k \leq r} \binom{r}{k} x^k y^{r-k} \] \(\ldots \) \(\ldots \)(2)

Compare (1) and (2).
We will try to get the RHS of (1) to look like the RHS of (2)

\[S_n = \sum_{k \leq n} \binom{n}{k} 2^{k-n} \]

or,

\[S_n = \frac{1}{2^n} \sum_{k \leq r} \binom{r}{k} 2^k \]

or,

\[S_n = \frac{1}{2^n} \sum_{k \leq r} \binom{r}{k} 2^k 1^{r-k} \]
\[S_n = \frac{1}{2^n} \sum_{k \leq r} \binom{r}{k} 2^k 1^{r-k} \]

\[(x + y)^r = \sum_{k \leq r} \binom{r}{k} x^k y^{r-k} \]

\[S_n = \frac{1}{2^n} (1+2)^n = \frac{3^n}{2^n} \]