Discrete Mathematics

Chapter 5 Problem 16
Chapter 4 Problem 14
Evaluate the sum

\[\sum_{k} \left(\begin{array}{c} 2a \\ a + k \end{array} \right) \left(\begin{array}{c} 2b \\ b + k \end{array} \right) \left(\begin{array}{c} 2c \\ c + k \end{array} \right) (-1)^{k} \]
The binomial coefficient \(\binom{n}{k} \) can be expressed in terms of factorials as follows:

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n - k)!}
\]
Continued...

Let's try to express each of the terms in the problem in factorials:

\[
\binom{2a}{a+k} = \frac{(2a)!}{(2a-(a+k))! \cdot (a+k)!} = \frac{(2a)!}{(a-k)! \cdot (a+k)!}
\]
Similarly,

\[
\binom{2b}{b + k} = \frac{(2b)!}{(b - k)! \cdot (b + k)!}
\]

\[
\binom{2c}{c + k} = \frac{(2c)!}{(c - k)! \cdot (c + k)!}
\]
Therefore,
\[\sum_{k} \binom{2a}{a+k} \binom{2b}{b+k} \binom{2c}{c+k} (-1)^k \]

\[= \sum (2a)! (2b)! (2c)! (-1)^k \]
\[= \frac{k (a-k)! (a+k)! (b-k)! (b+k)! (c-k)! (c+k)!}{k (a-k)! (a+k)! (b-k)! (b+k)! (c-k)! (c+k)!} \]
Multiplying numerator and denominator by \((a+b)! \cdot (b+c)! \cdot (c+a)!
\)

We will therefore have,

\[
\frac{(2a)! \cdot (2b)! \cdot (2c)!}{(a+b)! \cdot (b+c)! \cdot (c+a)!} \cdot \sum_{k} \frac{(a+b)! \cdot (b+c)! \cdot (c+a)! (-1)^k}{(a-k)! \cdot (a+k)! \cdot (b-k)! \cdot (b+k)! \cdot (c-k)! \cdot (c+k)!}
\]

Constant

Let's try to get a known form for this.
Continued…

Considering:

\[\sum_{k} \frac{(a+b)! (b+c)! (c+a)!}{(a-k)! (a+k)! (b-k)! (b+k)! (c-k)! (c+k)!} \]

\[= \sum_{k} \frac{(a+b)! (b+c)! (c+a)!}{(a+k)! (b-k)! (b+k)! (c-k)! (c+k)! (a-k)!} \]

(Just interchanging the order of the terms in the denominator)

We know that,

\[\frac{(a+b)!}{(a+k)! (b-k)!} = \binom{a+b}{a+k} \]
Similarly,
\[
\frac{(b+c)!}{(b+k)! \ (c-k)!} = \binom{b+c}{b+k}
\]
\[
\frac{(c+a)!}{(c+k)! \ (a-k)!} = \binom{c+a}{c+k}
\]
Therefore,

\[
\sum_{k} \frac{(a+b)! (b+c)! (c+a)!}{(a-k)! (a+k)! (b-k)! (b+k)! (c-k)! (c+k)!} \times (-1)^k
\]

\[
= \sum_{k} \frac{(a+b) (b+c) (c+a)}{(a+k) (b+k) (c+k)} \times (-1)^k
\]

which is a known form.

Using the equation given in Textbook Page No. 171, Eq. 5-29.

We have,

\[
\sum_{k} \frac{(a+b) (b+c) (c+a)}{(a+k) (b+k) (c+k)} \times (-1)^k = \frac{(a + b + c)!}{a! \ b! \ c!}
\]
Thus, the solution for the problem becomes:

\[
\frac{(2a)! (2b)! (2c)!}{(a+b)! (b+c)! (c+a)!} \times \frac{1}{a! b! c!}
\]
Chapter 4, Problem No 14

Does every prime occur as a factor of some Euclid number e_n?
Euclid Number:
Definition:

Euclid numbers are integers of the form $E_n = p_n\# + 1$,
where $p_n\#$ is the primorial of p_n which is the nth prime.
They are named after the ancient Greek mathematician Euclid, who used them in his original proof that there are an infinite number of prime numbers.

Primorial:
For \(n \geq 2 \), the **primorial** \((n#)\) is the product of all prime numbers less than or equal to \(n \). For example, \(7# = 210 \) is a primorial which is the product of the first four primes multiplied together \((2 \cdot 3 \cdot 5 \cdot 7)\).
The simplest argument could be that to show that there is a prime number which is never the factor of any Euclid number. If we consider any Euclid number, \(p_n\# \) is always a multiple of 2. And Euclid number is 1 added to \(p_n\# \).
Every Euclid number is of the form
\[= (2 \times k) + 1 \]
where “k” is product of prime numbers \(\leq n \) excluding 2.
So, it is very clear that there exists no Euclid number which is divisible by 2.
Hence, the answer is:
Every prime cannot occur as a factor of some Euclid number e_n.
THANK YOU