CHAPTER 4 PROBLEM 45
The Number 9376 has a peculiar self-reproducing property that
\[(9376)^2 = 97909376\]

How many 4 Digit numbers \(x\) satisfy the equation
\[x^2 \mod 10000 = x?\]
[No Hints in Text Book 😞]
So the Problem can be restated as

\[x^2 \mod 10^4 = x \]
\[x^2 \equiv x \pmod{10^4} \]

[From textbook]

But we will prove it for general formula for \(n \) digits

\[x^2 \equiv x \pmod{10^n} \]

\[\text{(1)} \]
\(x \equiv x \pmod{10^n} \) \hspace{1cm} (2) \hspace{1cm} [\text{by Definition of Mod}]

\[(1) - (2)\]
\[x^2 - x \equiv x - x \pmod{10^n}\]
\[x(x - 1) \equiv 0 \pmod{10^n}\]

we know that we can subtract congruence elements without losing congruence
Also, from
\[x(x - 1) \equiv 0 \pmod{10^n}, \]
we have
\[x(x - 1) \equiv 0 \pmod{2^n} \]
\[x(x - 1) \equiv 0 \pmod{5^n} \]
[By Theorem of Independent Residues]
\[x \mod 2^n = [0 \text{ or } 1] \]
[either \(x \text{ or } (x-1) \) have to be odd or even]

\[x \mod 5^n = [0 \text{ or } 1] \]
[either \(x \text{ or } (x-1) \) has to be a multiple of 5, \(x \) has to be 5 or 6]
\[x = 0 \mid x = 1 \mid x = 5 \mid x = 6 \]

First two hold good only when \(n = 1 \)

First Solution:
\[x \equiv 1 \pmod{2^n} \]
\[x \equiv 0 \pmod{5^n} \]

Second Solution:
\[x \equiv 0 \pmod{2^n} \]
\[x \equiv 1 \pmod{5^n} \]

Sum of the two Solutions is \(10^n + 1 \) (from Wiki)
Thus the solutions are
\[x \text{ and } 10^n + 1 - x \]

For \(n = 4 \)
\[x \text{ and } 10^4 + 1 - x \]

we know \(x \) can be 9376
so the other number is
\[10000 + 1 - 9376 = 625 \]

But this is not a 4 digit number.
Thus for \(n = 4 \) there is only one 4 digit Automorphic Number.

But in general, for each \(n \), there are two \(n \) digit numbers [Not Proved]
References

www.Wikipedia.com
www.Mathworld.com