CSE547

• Chapter 3, problems 19, 20

Problem 20

Problem Statement

Find the sum of all multiples of x in the closed interval $[\alpha...\beta]$, when x > 0.

Problem: Find the sum of all multiples of x in the closed interval [α .. β], when x > 0.

Let

 $S = Sum \ of \ all \ the \ multiples \ of \ x \ in \ the \ interval \ [\alpha.. \ \beta]$

b
$$\sum_{k \in \mathbb{Z}, \ \alpha \le kx \le \beta} kx$$

=

$$\sum kx \, [\, k \, is \, an \, integer] \, [\alpha \, \leq \, kx \, \leq \, \beta \,]$$

=

(Rewriting in Iversonian Form)
$$x \sum_{k \in k} k [k \text{ is an integer}] [\alpha \leq kx \leq \beta]$$

=

(Since x is a constant.)

Problem: Find the sum of all multiples of x in the closed interval $[\alpha...\beta]$, when x > 0.

=
$$x \sum k [k \text{ is an integer}] [\alpha/x \le k \le \beta/x]$$

(Since x > 0)

$$= x \sum k [k \text{ is an integer}] [\lceil \alpha/x \rceil \le k \le \lfloor \beta/x \rfloor]$$

(Since,

$$x \le n \leftrightarrow [x] \le n$$

 $n \le x \leftrightarrow n \le [x]$
where n is an integer, x is a real)

Problem: Find the sum of all multiples of x in the closed interval $[\alpha...\beta]$, when x > 0.

$$= x \sum k \left[k \text{ is an integer} \right] \left[\left[\frac{\alpha}{x} \right] \le k < \left[\frac{\beta}{x} \right] + 1 \right]$$

$$= \sum_{x} \sum_{\left[\frac{\alpha}{x}\right]^{+1}}^{\left[\frac{\beta}{x}\right]^{+1}} k^{\frac{1}{2}} \delta k$$

We know that,

$$\sum k^{1} \delta k = \frac{k^{2}}{2}$$

Problem: Find the sum of all multiples of x in the closed interval $[\alpha...\beta]$, when x > 0.

$$S = x \sum_{\left[\frac{\alpha}{x}\right]}^{\left[\frac{\beta}{x}\right]+1} k^{\frac{1}{2}} \delta k$$

$$= \frac{xk^{2}}{2} \left| \frac{\left| \frac{\beta}{x} \right| + 1}{\left| \frac{\alpha}{x} \right|} \right|$$

Thus, the sum of all multiples of x in the closed interval $[\alpha...\beta]$, when x > 0.

$$= \frac{xk^{2}}{2} \left| \frac{\left| \frac{\beta}{x} \right| + 1}{\left| \frac{\alpha}{x} \right|} \right|$$

Problem 19

Problem Statement

Find a necessary and sufficient condition on the real number b > 1 such that $\lfloor \log_b[x] \rfloor = \lfloor \log_b x \rfloor$ for all real $x \ge 1$.

A bit more formally, the question is:

```
Define a predicate P:\{y \in R: y > 1\} \rightarrow \{\text{true}, \text{false}\}\, such that:

I. \forall_{b \in R, b > 1} (P(b) \Rightarrow \forall_{x \in R, x \geq 1} (\lfloor \log_b \lfloor x \rfloor \rfloor = \lfloor \log_b x \rfloor)) (sufficiency)

II. \forall_{b \in R, b > 1} (\forall_{x \in R, x \geq 1} (\lfloor \log_b \lfloor x \rfloor \rfloor = \lfloor \log_b x \rfloor) \Rightarrow P(b)) (necessity)
```

Problem: Find a necessary and sufficient condition on the real number b > 1 such that $\lfloor \log_b x \rfloor$ for all real $x \ge 1$.

• We will prove that the predicate P defined on $\{y \in R: y > 1\} \rightarrow \{\text{true, false}\}\$ with value $P(y) = y \in Z$ satisfies (i) and (ii).

=

- Proof of Sufficiency Condition:
- We have that b ϵ R, b > 1, and P(b). P(b) being true gives us that b ϵ Z.
- Now define a function f: $\{x \in R : x \ge 1\} \to R$ $f(x) = \log_b x$
- Since b > 1, f(x) is continuous and monotonically increasing on [1, ∞), these are known properties of the log function.

Problem: Find a necessary and sufficient condition on the real number b > 1 such that $\lfloor \log_b \lfloor x \rfloor \rfloor = \lfloor \log_b x \rfloor$ for all real $x \ge 1$.

- We can prove that $f(x) \in Z \Rightarrow x \in Z$
- Note:
 - f(x) ε Z, by assumption $\log_b x \varepsilon$ Z, by substitution
- $\log_b x \ge 0$, since $\log_b 1 = 0$, 1 is the smallest element of the domain of f, and f is monotonically increasing.
- $b^{\log_b x}$ ε Z, since b is a positive integer and $\log_b x$ is a nonnegative integer.

If $\log_b x$ is 0 then $b^{\log_b x} = 1$. Else $\log_b x$ is a positive integer, $b^{\log_b x} \in \mathbb{Z}^+$ since positive integers are closed under exponentiation.

• Simplifying, we have $b^{\log_b x} = x$. Hence $x \in Z$

Problems: Find a necessary and sufficient condition on the real number b > 1 such that $|\log_b x| = |\log_b x|$ for all real $x \ge 1$.

• Therefore f(x) is continuous, f(x) is monotonically increasing, and $f(x) \in Z \Rightarrow x \in Z$. Therefore we can invoke Theorem 3.10 proven in the textbook:

If f is a continuous, monotonically increasing function with the property that $f(x) \in Z \Rightarrow x \in Z$, then |f(x)| = |f(|x|)| whenever f(x) and f(|x|) are defined.

- Our f(x) is defined on $[1, \infty)$, so when $x \ge 1$, f(x) is defined. Additionally, when $x \ge 1$, $\lfloor x \rfloor \ge 1$ (by property 3.7 d), so $f(\lfloor x \rfloor)$ is defined.
- Therefore we get that $\forall_{x \in R, x \ge 1} (\lfloor \log_b[x] \rfloor = \lfloor \log_b x \rfloor)$
- this completes part I.

Problem: Find a necessary and sufficient condition on the real number b > 1 such that $|\log_b x| = |\log_b x|$ for all real $x \ge 1$.

• Proof of Necessary Condition

- We need to prove that $\forall_{b \in R, b > 1} (\forall_{x \in R, x \ge 1} (\lfloor \log_b \lfloor x \rfloor) = \lfloor \log_b x \rfloor) \Rightarrow P(b)$
- We'll prove it by contradiction. So assume:

$$\neg (\forall_{b \in R, b > 1} (\forall_{x \in R, x \ge 1} (\lfloor \log_b [x] \rfloor = \lfloor \log_b x \rfloor) \Rightarrow P(b))$$

- This means: $\exists_{b \in R, b > 1} (\forall_{x \in R, x \ge 1} (\lfloor \log_b \lfloor x \rfloor) = \lfloor \log_b x \rfloor) \not\Rightarrow P(b)$
- Which means: $\exists_{b \in R, b > 1} (\forall_{x \in R, x \ge 1} (\lfloor \log_b \lfloor x \rfloor) = \lfloor \log_b x \rfloor) \Lambda \neg P(b)$
- 1. $b_{\epsilon R}$ 2. b > 1
 - 3. $\forall_{x \in R, x \ge 1} (\lfloor \log_b[x] \rfloor = \lfloor \log_b x \rfloor)$ 4. $\neg P(b)$

Problem: Find a necessary and sufficient condition on the real number b > 1 such that $\lfloor \log_b \lfloor x \rfloor \rfloor = \lfloor \log_b x \rfloor$ for all real $x \ge 1$.

- Note that (1), (2), (3) imply that $\lfloor \log_b \lfloor b \rfloor \rfloor = \lfloor \log_b b \rfloor$
- We know that $\log_b b = 1$, so this gives us $\lfloor \log_b \lfloor b \rfloor \rfloor = \lfloor 1 \rfloor = 1$
- Now, using (4) from earlier, $\neg P(b) \Rightarrow b \notin Z$
- Now, $[b] \le b$ of course, and [b] = b of course, and [b] = b
- SO $[b] \neq b$
- Then because the log function is monotonically increasing, we have $\log_b[b] < \log_b b$
- We have $\log_b b = 1$, so we get $\log_b \lfloor b \rfloor < 1$

Problem: Find a necessary and sufficient condition on the real number b > 1 such that $|\log_b x| = |\log_b x|$ for all real $x \ge 1$.

- By property 3.7a then, $\lfloor \log_b \lfloor b \rfloor \rfloor < 1$ which contradicts the previously derived
- This completes the proof of part II.
- Thus, we have proved that:

The necessary and sufficient condition on the real number b > 1 such that $\lfloor \log_b[x] \rfloor = \lfloor \log_b x \rfloor$, for all real $x \ge 1$.

is that $b \in Z$

That is, **b must be an integer**.