Cse547 Discrete Mathematics Chapter 3, Problem 16

Problem 16:

Prove that n mod $2 = (1 - (-1)^n)/2$.

Find and prove a similar expression for n mod 3 in the form

a + b $\omega^{\rm n}$ + c $\omega^{\rm 2n}$, where ω is the complex number (-1 + $i\sqrt{3}$) / 2.

Hint: $\omega^3 = 1$ and $(1 + \omega + \omega^2) = 0$

Part 1: Prove the given formula for n mod 2

When n is odd:

We know that: $n \mod 2 = 1$

$$(-1)^n = -1$$
 since n is odd

$$\frac{(1-(-1)^n)}{2} = \frac{(1-(-1))}{2} = \frac{2}{2} = 1$$

Therefore,

n mod 2 =
$$\frac{(1-(-1)^n)}{2}$$
 when 'n' is odd.

When n is even:

We know that: $n \mod 2 = 0$

$$(-1)^n = 1$$
 since n is even

$$\frac{(1-(-1)^n)}{2} = \frac{(1-(1))}{2} = \frac{0}{2} = 0$$

Therefore,

n mod 2 =
$$\frac{(1-(-1)^n)}{2}$$
 when 'n' is even.

With those 2 cases we can conclude that –

$$n \mod 2 = \frac{(1 - (-1)^n)}{2}$$

$$n \mod 2 = \frac{\mathbb{Z}}{2}$$

Part 2: Finding expression for n mod 3

We have to find expression in the following form

n mod 3 = a + b
$$\omega$$
ⁿ + c ω ²ⁿ

where
$$\omega = \frac{(-1 + i\sqrt{3})}{2}$$

- Essentially, we need to find values of a, b, c.
- We need at least 3 equations for 3 variables.

Observe that directly from the definition we have that

If
$$(n \mod 3) \in M$$
, M is some set Then,

$$M = \{0, 1, 2\}$$

When n = 0, $(n \mod 3) = 0$

$$a + b \omega^n + c \omega^{2n} = a + b + c = 0$$

When n = 1, $(n \mod 3) = 1$

$$a + b \omega^{n} + c \omega^{2n} = a + b \omega + c \omega^{2} = 1$$

= $a + b \omega + c (-\omega - 1) = 1$ since $(\omega 2 + \omega + 1 = 0)$
= $a + (b - c) \omega - c - 1 = 0$ [2]

When n = 2, $(n \mod 3) = 2$

We have (1), (2) and (3) – 3 equations and 3 unknowns – a, b, c. Solve it. \odot

Adding equations [1], [2] & [3]

$$[1] + [2] + [3] =>$$

$$[a+b+c]+[a+(b-c)\omega-c-1]+[a-b-(b-c)\omega-2] = 0$$

$$3a - 3 = 0$$

$$\mathbf{a} = 1$$

Substituting a = 1 in [1] and [3] we get,

[1]:
$$a + b + c = 0$$

 $1 + b + c = 0$ [4]

[3]:
$$a - b - (b - c) \omega - 2 = 0$$

 $1 - b - (b - c) \omega - 2 = 0$
 $-1 - b - (b - c) \omega = 0$ [5]

$$[4] \times \omega \implies \omega + b \omega + c \omega = 0 \qquad[6]$$

$$[5] - [6] => \{-1 - b - (b - c)\omega\} - \{\omega + b\omega + c\omega\} = 0$$

$$-1 - b - b\omega + c\omega - \omega - b\omega - c\omega = 0$$

$$2b\omega + b + \omega + 1 = 0$$
[Got rid of c]

$$b = \frac{-\omega - 1}{2\omega + 1}$$

Simplifying b further :-

$$b = \frac{-\omega - 1}{2\omega + 1} = \frac{-\omega - 1}{2\omega + 1} \times \frac{(\omega - 1)}{(\omega - 1)}$$

$$b = \frac{-(\omega + 1) (\omega - 1)}{2 \omega^2 - \omega - 1}$$

b =
$$\frac{-(\omega + 1)(\omega - 1)}{2(-\omega - 1) - \omega - 1}$$
 since $(\omega^2 + \omega + 1 = 0)$

$$b = \frac{-(\omega + 1)(\omega - 1)}{-3 - 3\omega}$$

$$b = \frac{(\omega + 1) (\omega - 1)}{3 (\omega + 1)} = \frac{(\omega - 1)}{3}$$

Substituting value of b in equation [4] to get value of c:

[4]:
$$1 + b + c = 0$$

 $c = -b - 1$

$$c = \frac{-(\omega - 1)}{3} - 1$$

$$c = \frac{-\omega + 1 - 3}{3}$$

$$c = \frac{-(\omega + 2)}{3}$$

So the expression is like this:-

$$n \ mod \ 3 = \ 1 + \frac{1}{3}\{(\omega-1)\omega^n - (\omega+2)\omega^{2n}\}$$