CSE 547: DISCRETE MATHEMATICS Chapter 3: Problem 11

Problem Definition

Chapter 3. Problem 11

- □ Prove that the open interval, (α, β) i.e. $(\alpha...\beta)$ contains $\lceil \beta \rceil$ $\lfloor \alpha \rfloor$ 1 integers, where $\alpha < \beta$.
- \square Also, show why case $\alpha = \beta$ has to be excluded.

Given

- □ Open Interval $(\alpha...\beta)$ i.e. a number γ belongs to the open interval if and only if $\alpha < \gamma < \beta$.
- $\square \alpha$, β are real numbers.
- $\alpha < \beta$

Groundwork

We know the following from the definition of the Floor & Ceiling Function

Where, x is a real number and n is an integer.

Groundwork

$$x < n \Rightarrow \lfloor x \rfloor < n$$

$$n < x \Rightarrow n < \lceil x \rceil$$

$$x < n \dots (given)$$

 $\lfloor x \rfloor \le x \dots (by defn)$
 $\Rightarrow \lfloor x \rfloor < n$

$$\therefore x < n \Rightarrow |x| < n$$

$$n < x \dots (given)$$

 $\lceil x \rceil \ge x \dots (by defn)$
 $\Rightarrow n < \lceil x \rceil$

$$\therefore$$
 n < x \Rightarrow n < $\lceil x \rceil$

Groundwork

- Consider a list of integers,
 - a, a+1, a+2, ... b-2, b-1, b
- □ The number of integers in the above list is given by, #integers = $(b-a) + 1 \dots (3)$
- □ Example: 3, 4, 5, 6, 7, 8

$$a = 3, b = 8$$

#integers =
$$(b-a) + 1 = (8-3) + 1 = 6$$

Now we have all necessary facts to prove our formula.

- \square Open Interval $(\alpha...\beta)$, α , β are real
- $\alpha < \beta$
- □ Let n be an integer such that,

$$\alpha < n < \beta$$
(4)

 \square Breaking up (4),

$$\alpha < n$$
 & $n < \beta$

where, α , β are real and n is an integer.

 \square Consider α < n

Using (1),
$$\alpha < n \Rightarrow \lfloor \alpha \rfloor < n \dots (5)$$

 \square Consider n < β

Using (2),

$$n < \beta \Rightarrow n < \lceil \beta \rceil \dots (6)$$

□ Combining inequalities (5) and (6), $\alpha < n < \beta \Rightarrow \lfloor \alpha \rfloor < n < \lceil \beta \rceil \dots (7)$

Thus the inequality $\alpha < n < \beta$ reduces to, $\lfloor \alpha \rfloor < n < \lceil \beta \rceil$, where now, $\lfloor \alpha \rfloor$, n, $\lceil \beta \rceil$ are all integers.

Observing $\lfloor \alpha \rfloor < n < \lceil \beta \rceil$, we come to know that, n can take the following values, $\lfloor \alpha \rfloor + 1, \lfloor \alpha \rfloor + 2 \dots \lceil \beta \rceil - 3, \lceil \beta \rceil - 2, \lceil \beta \rceil - 1$

List of Integers

□ Above is a list of integers with,

$$a = \lfloor \alpha \rfloor + 1$$

 $b = \lceil \beta \rceil - 1$

$$\therefore$$
 #integers in $\lfloor \alpha \rfloor < n < \lceil \beta \rceil$ is $\lceil \beta \rceil - \lfloor \alpha \rfloor - 1$

i.e. #integers in
$$\alpha < n < \beta$$
 is $\lceil \beta \rceil$ - $\lfloor \alpha \rfloor$ - 1

 \therefore #integers in the interval $(\alpha...\beta) = \lceil \beta \rceil - \lfloor \alpha \rfloor - 1$

Hence Proved!

Example

#integers in (2.3...8.5)
$$= \lceil \beta \rceil - \lfloor \alpha \rfloor - 1$$

= 9 - 2 - 1
= 6

Enumerating the integers: 3, 4, 5, 6, 7, 8 i.e. 6 integers.

Special Case

Case: $\alpha = \beta$

 $lue{}$ Does the formula work when $\alpha=\beta$?

When
$$\alpha = \beta$$
, $\lfloor \alpha \rfloor = \lfloor \beta \rfloor$ & $\lceil \alpha \rceil = \lceil \beta \rceil$

Example: $\alpha = \beta = 5.6$ $\lfloor \alpha \rfloor = \lfloor \beta \rfloor = 5$ $\lceil \alpha \rceil = \lceil \beta \rceil = 6$ #integers in (5.6...5.6) = 6-5-1 = 0 (Right)

Case: $\alpha = \beta$

- \square The formula seems to work fine when $\alpha = \beta$.
- \square Now let us consider that the special case that, $\alpha=\beta$ is an integer.
- In that case, $\lfloor \alpha \rfloor = \lfloor \beta \rfloor = \lceil \alpha \rceil = \lceil \beta \rceil$
 - ... We will get the incorrect answer, #integers in $(\alpha...\beta) = \lceil \beta \rceil \lfloor \alpha \rfloor 1 = -1$ (Wrong)
- □ Thus, Case: $\alpha = \beta$ is an integer needs to be excluded while using the derived formula.

Summary

- \square Open Interval ($\alpha...\beta$)
- $\square \alpha$, β are real numbers