CSE547: Discrete Mathematics

Chapter 3: Problems 10, 12

Show that the expression

$$\lceil \frac{2x+1}{2} \rceil - \lceil \frac{2x+1}{4} \rceil + \lfloor \frac{2x+1}{4} \rfloor$$

is always either [x] or [x].

In what circumstances does each case arise?

Definitions

Floor, $\lfloor x \rfloor$ = the greatest integer less or equal x

Ceiling, $\lceil x \rceil$ = the least integer less or equal x

Example:

 $e\sim2.718$, therefore $\lfloor e \rfloor = 2$ and $\lceil e \rceil = 3$

Different Cases

Let's re-write the expression as follows:

$$\left\lceil \frac{2x+1}{2} \right\rceil - \left\lceil \frac{2x+1}{4} \right\rceil + \left\lfloor \frac{2x+1}{4} \right\rfloor = \left\lceil x + \frac{1}{2} \right\rceil - \left(\left\lceil \frac{2x+1}{4} \right\rceil - \left\lfloor \frac{2x+1}{4} \right\rfloor \right)$$

$$Let \frac{2x+1}{4} = n$$

If x is an integer, then
$$\frac{2x+1}{4} = (\frac{x}{2} + \frac{1}{4}) = \underline{n}$$
 is not an integer

Example:
$$x = 1$$
; $\frac{2x+1}{4} = \frac{3}{4}$ $x = 2$; $\frac{2x+1}{4} = \frac{5}{4}$

If x is not an integer, then
$$\frac{2x+1}{4} = (\frac{x}{2} + \frac{1}{4}) = \underline{n}$$
 is an integer OR not an integer

Example:
$$x = 3.5$$
; $\frac{2x+1}{4} = 8/4 = 2$ OR $x = 2.8$; $\frac{2x+1}{4} = 6.6/4 = 1.65$

Therefore, we will consider 2 cases:

- > n is an integer
- > n is not an integer

Case 1:
$$\frac{2x+1}{4} = n$$
 - is an integer

Evaluate:
$$\left[x + \frac{1}{2}\right] - \left(\left[\frac{2x+1}{4}\right] - \left\lfloor\frac{2x+1}{4}\right\rfloor\right)$$

Facts:

$$(\lceil \frac{2x+1}{4} \rceil - \lfloor \frac{2x+1}{4} \rfloor) = (\lceil n \rceil - \lfloor n \rfloor) = 0 \text{ because } \lceil n \rceil = \lfloor n \rfloor$$

> Since
$$\frac{2x+1}{4}$$
 = n, then x = $2n - \frac{1}{2}$, therefore $\lceil x \rceil = \lceil 2n - \frac{1}{2} \rceil = \lceil 2n \rceil$

Considering the above:

$$\lceil x + \frac{1}{2} \rceil - (\lceil \frac{2x+1}{4} \rceil - \lfloor \frac{2x+1}{4} \rfloor) = \lceil x + \frac{1}{2} \rceil - 0 = \lceil 2n - \frac{1}{2} + \frac{1}{2} \rceil = \lceil 2n \rceil = \lceil x \rceil$$

Therefore, for Case 1 we proved that:

$$\left\lceil \frac{2x+1}{2} \right\rceil - \left\lceil \frac{2x+1}{4} \right\rceil + \left\lfloor \frac{2x+1}{4} \right\rfloor = \left\lceil x \right\rceil$$

Case 2: $\frac{2x+1}{4}$ = n is not an integer

Evaluate:
$$\left[x + \frac{1}{2}\right] - \left(\left[\frac{2x+1}{4}\right] - \left\lfloor\frac{2x+1}{4}\right\rfloor\right)$$

Formula (3.2) from the textbook:

$$[y] - [y] = [y \text{ is not an integer}] = 1$$

Therefore:

$$(\lceil \frac{2x+1}{4} \rceil - \lfloor \frac{2x+1}{4} \rfloor) = \lfloor \frac{2x+1}{4} \rfloor$$
 is not an integer] = 1

Formula (3.6) from the textbook:

$$[y] + n = [y + n]$$
, where n is an integer

Considering the above:

$$\left\lceil x + \frac{1}{2} \right\rceil - \left(\left\lceil \frac{2x+1}{4} \right\rceil - \left\lfloor \frac{2x+1}{4} \right\rfloor \right) = \left\lceil x + \frac{1}{2} \right\rceil - 1 = \left\lceil x + \frac{1}{2} - 1 \right\rceil = \left\lceil x - \frac{1}{2} \right\rceil$$

Continued on the next slide...

Case 2: $\frac{2x+1}{4}$ = n is not an integer

From the previous slide:
$$\left[x + \frac{1}{2}\right] - \left(\left[\frac{2x+1}{4}\right] - \left\lfloor\frac{2x+1}{4}\right\rfloor\right) = \left[x - \frac{1}{2}\right]$$

Formula (3.8) from the textbook:

$$x = \lfloor x \rfloor + \{x\}$$
 where $\lfloor x \rfloor$ is an integer and $0 < \{x\} < 1$

Therefore:

$$\lceil x - \frac{1}{2} \rceil = \lceil \lfloor x \rfloor + \{x\} - \frac{1}{2} \rceil$$

> If
$$\{x\} > \frac{1}{2}$$
 then $\lceil \lfloor x \rfloor + \{x\} - \frac{1}{2} \rceil = \lceil \lfloor x \rfloor + y \rceil = \lceil x \rceil$, where $0 < y < \frac{1}{2}$

$$ightharpoonup$$
 If $\{x\} = \frac{1}{2}$ then $\lceil \lfloor x \rfloor + \{x\} - \frac{1}{2} \rceil = \lceil \lfloor x \rfloor \rceil = \lfloor x \rfloor$

Therefore, for Case 2 we proved that:

$$\lceil \frac{2x+1}{2} \rceil - \lceil \frac{2x+1}{4} \rceil + \lfloor \frac{2x+1}{4} \rfloor = \lceil x \rceil \text{ or } \lfloor x \rfloor$$

Problem 3.10: Conclusions

We showed that the expression

$$\lceil \frac{2x+1}{2} \rceil - \lceil \frac{2x+1}{4} \rceil + \lfloor \frac{2x+1}{4} \rfloor$$

is always either [x] or [x].

The formula gives an "unbiased" way to round.

Prove that

$$\lceil \frac{\mathbf{n}}{\mathbf{m}} \rceil = \lfloor \frac{\mathbf{n} + \mathbf{m} - \mathbf{1}}{\mathbf{m}} \rfloor$$

for all integers n and all positive integers m.

This identity gives us another way to convert ceilings to floors and vice versa, instead of using the reflective law:

$$\begin{bmatrix} -x \end{bmatrix} = - \begin{bmatrix} x \end{bmatrix}$$

 $\begin{bmatrix} -x \end{bmatrix} = - \begin{bmatrix} x \end{bmatrix}$.

Definitions

$$\frac{n}{m} = \lfloor \frac{n}{m} \rfloor + \{ \frac{n}{m} \}$$
Therefore $n = m \lfloor \frac{n}{m} \rfloor + (n \mod m)$,
Where
$$\lfloor \frac{n}{m} \rfloor \text{ is a quotient}$$

$$(n \mod m) \text{ is a remainder}$$

Thus

$$(n \mod m) = n - m \lfloor \frac{n}{m} \rfloor$$

Prove:
$$\left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right\rfloor$$

Subtracting $\lfloor \frac{n}{m} \rfloor$ from both sides:

$$\lceil \frac{\mathbf{n}}{\mathbf{m}} \rceil - \lfloor \frac{\mathbf{n}}{\mathbf{m}} \rfloor = \lfloor \frac{\mathbf{n} + \mathbf{m} - 1}{\mathbf{m}} \rfloor - \lfloor \frac{\mathbf{n}}{\mathbf{m}} \rfloor$$

Lets use formula (3.6) from the textbook:

$$[x + n] = [x] + n$$
, where n is integer

Considering the above:

$$\lceil \frac{n}{m} - \lfloor \frac{n}{m} \rfloor \rceil = \lfloor \frac{n+m-1}{m} - \lfloor \frac{n}{m} \rfloor \rfloor$$

since $\lfloor \frac{n}{m} \rfloor$ is an integer by definition

From the previous slide:

$$\left\lceil \frac{n}{m} \cdot \left\lfloor \frac{n}{m} \right\rfloor \right\rceil = \left\lfloor \frac{n+m-1}{m} \cdot \left\lfloor \frac{n}{m} \right\rfloor \right\rfloor$$

We can re-write the above as:

$$\lceil \frac{n-m \lfloor \frac{n}{m} \rfloor}{m} \rceil = \lfloor \frac{n+m-1-m \lfloor \frac{n}{m} \rfloor}{m} \rfloor$$

We know that

$$(n \bmod m) = n - m \lfloor \frac{n}{m} \rfloor$$

Therefore, we can perform the following substitutions:

$$\lceil \frac{n \mod m}{m} \rceil = \lfloor \frac{n \mod m + m - 1}{m} \rfloor$$

0r

$$\lceil \frac{n \bmod m}{m} \rceil = \lfloor \frac{n \bmod m}{m} + \frac{m-1}{m} \rfloor$$

From the previous slide:

$$\lceil \frac{n \mod m}{m} \rceil = \lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \rfloor$$

To prove the original statement, it is enough to prove the above expression.

Lets break the statement into right-hand side (RHS) and lefthand side (LHS):

$$LHS = \lceil \frac{n \mod m}{m} \rceil$$

$$RHS = \left\lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \right\rfloor$$

We will consider 2 cases:

$$\rightarrow$$
 m = 1

Case 1: m = 1

LHS =
$$\lceil \frac{n \mod m}{m} \rceil$$
 RHS = $\lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \rfloor$

$$LHS = \lceil \frac{n \bmod m}{m} \rceil = \lceil \frac{n - m \lfloor \frac{n}{m} \rfloor}{m} \rceil = \lceil n - \lfloor n \rfloor \rceil = 0$$

(since n is an integer and m = 1)

RHS =
$$\lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \rfloor = \lfloor \frac{n \mod m}{m} + 0 \rfloor = \lfloor \frac{n-m \lfloor \frac{n}{m} \rfloor}{m} \rfloor = \lfloor n - \lfloor n \rfloor \rfloor = 0$$
 (since n is an integer, m = 1 and $\frac{m-1}{m} = 0$)

$$LHS = RHS$$

Thus

$$\lceil \frac{n \mod m}{m} \rceil = \lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \rfloor$$

Case 2: m > 1

LHS =
$$\lceil \frac{n \mod m}{m} \rceil$$
 RHS = $\lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \rfloor$
Case 2.1: (n mod m) = 0
LHS = 0
RHS = $\lfloor 0 + \frac{m-1}{m} \rfloor = 0$
LHS = RHS
Thus
$$\lceil \frac{n \mod m}{m} \rceil = \lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \rfloor$$

Case 2.2:
$$0 < (n \mod m) < m$$

$$OR$$

$$1 \le (n \mod m) \le (m - 1)$$

$$Continued on the next slide..._{15}$$

Case 2: m > 1

$$LHS = \lceil \frac{n \ mod \ m}{m} \rceil \qquad RHS = \lfloor \frac{n \ mod \ m}{m} + \frac{m-1}{m} \rfloor$$

$$Case 2.2: \quad 1 \leq (n \ mod \ m) \leq (m-1)$$

$$1/m \leq (n \ mod \ m)/m \leq (m-1)/m$$

$$1/m + (m-1)/m \leq (n \ mod \ m)/m + (m-1)/m \leq (m-1)/m + (m-1)/m$$

$$1 \leq (n \ mod \ m)/m + (m-1)/m \leq (2m-2)/m$$

$$(2m-2)/m = (2-2/m) < 2, \ where \ m \geq 2$$

$$1 \leq (n \ mod \ m)/m + (m-1)/m < 2$$

$$Considering \ the \ above:$$

$$LHS = \lceil \frac{n \ mod \ m}{m} \rceil = 1 \qquad RHS = \lfloor \frac{n \ mod \ m}{m} + \frac{m-1}{m} \rfloor = 1$$

Thus

$$\lceil \frac{n \mod m}{m} \rceil = \lfloor \frac{n \mod m}{m} + \frac{m-1}{m} \rfloor$$

Problem 3.12: Conclusions

We proved that

$$\lceil \frac{\mathbf{n}}{\mathbf{m}} \rceil = \lfloor \frac{\mathbf{n} + \mathbf{m} - 1}{\mathbf{m}} \rfloor$$

for all integers n and all positive integers m.