
CHAPTER 2

INFINITE SUMS (SERIES)

Lecture Notes PART 1

We extend now the notion of a finite sum Σn
k=1 ak to an INFINITE SUM

which we write as
Σ∞

n=1 an

as follows.

For a given a sequence {an}n∈N−{0}, i.e the sequence

a1, a2, a3, ....an, .....

we consider a following (infinite) sequence

S1 = a1, S2 = a1 + a2, ...., Sn = Σn
k=1 ak, Sn+1 = Σn+1

k=1 ak, .......

and define the infinite sum as follows.

DEFINITION 1
If the limit of the sequence {Sn = Σn

k=1 ak} exists we call it an INFINITE SUM
of the sequence Sn and write it as

Σ∞
n=1 an = lim

n→∞
Sn = lim

n→∞
Σn

k=1 ak.

The sequence {Sn} is called its sequence of partial sums.

DEFINITION 2
If the limit limn→∞ Sn exists and is finite, i.e.

lim
n→∞

Sn = S,

then we say that the infinite sum Σ∞
n=1 an CONVERGES to S and we write

Σ∞
n=1 an = lim

n→∞
Σn

k=1 ak = S,

otherwise the infinite sum DIVERGES.

In a case that limn→∞ Sn exists and is infinite, i.e. limn→∞ Sn = ∞ , then we
say that the infinite sum Σ∞

n=1 an DIVERGES to ∞ and we write

Σ∞
n=1 an = ∞.
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In a case that limn→∞ Sn does not exist we say that the infinite sum Σ∞
n=1 an

DIVERGES.

OBSERVATION 1
In a case when all elements of the sequence {an}n∈N−{0} are equal 0 starting
from a certain k ≥ 1 the infinite sum becomes a finite sum, hence the infinite
sum is a generalization of the finite one, and this is why we keep the similar
notation.

EXAMPLE 1
The infinite sum of a geometric sequence an = xk for x ≥ 0, i.e. Σ∞

n=1 xn

converges if and only if | x |< 1 because

Σn
k=1 xk = Sn =

x− xn+1

x− 1
, and

lim
n→∞

x(1− xn)

x− 1
= lim

n→∞

x

x− 1
(1− xn) =

x

x− 1
iff | x |< 1,

hence
Σ∞

n=1x
k =

x

x− 1
.

EXAMPLE 2
The series Σ∞

n=1 1 DIVERGES to ∞ as Sn = Σn
k=11 = n and limn→∞ Sn =

limn→∞ n = ∞.

EXAMPLE 3
The infinite sum Σ∞

n=1 (−1)n DIVERGES.

EXAMPLE 4
The infinite sum Σ∞

n=0
1

(k+1)(k+2) CONVERGES to 1; i.e.

Σ∞
n=0

1

(k + 1)(k + 2)
= 1.

Proof: first we evaluate Sn = Σn
k=1

1
(k+1)(k+2) as follows.

Sn = Σn
k=0

1

(k + 1)(k + 2)
= Σn

k=1k
−2 = − 1

x+ 1
|n+1
0 = − 1

n+ 2
+ 1 and

lim
n→∞

Sn = lim
n→∞

− 1

n+ 2
+ 1 = 1.
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DEFINITION 3
For any infinite sum (series)

Σ∞
n=1an

a series
rn = Σ∞

m=n+1 am

is called its n-th REMINDER.

FACT 1
If Σ∞

n=1an converges, then so does its n-th REMINDER rn = Σ∞
m=n+1 am.

Proof : first, observe that if Σ∞
n=1an converges, then for any value on n so does

rn = Σ∞
m=n+1 am because

rn = lim
n→∞

(an+1 + ...+ an+k) = lim
n→∞

Sn+k − Sn = Σ∞
m=1am − Sn.

So we get

lim
n→∞

rn = Σ∞
m=1am − lim

n→∞
Sn = Σ∞

m=1Sm − Σ∞
n=1an = S − S = 0.

General Properties of Infinite Sums

THEOREM 1
If the infinite sum

Σ∞
n=1an converges, then lim

n→∞
an = 0.

Proof : observe that an = Sn − Sn−1 and hence

lim
n→∞

an = lim
n→∞

Sn The− lim
n→∞

Sn−1 = 0,

as limn→∞ Sn = limn→∞ Sn−1.

REMARK 1
The reverse statement to the theorem 1

If lim
n→∞

an = 0. then Σ∞
n=1an converges

is not always true. There are infinite sums with the term converging to zero
that are not convergent.
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EXAMPLE 5
The infinite HARMONIC sum

H = Σ∞
n=1

1

n

DIVERGES to ∞, i.e. Σ∞
n=1

1
n = ∞ but limn→∞

1
n = 0.

DEFINITION 4
Infinite sum Σ∞

n=1an is BOUNDED if its sequence of partial sums Sn = Σn
k=1 ak

is BOUNDED; i.e. there is a number M such that |Sn| < M , for all n ≤ 1, n ∈
N .

FACT 2
Every convergent infinite sum is bounded.

THEOREM 2
If the infinite sums Σ∞

n=1an, Σ
∞
n=1bn CONVERGE, then the following properties

hold.

Σ∞
n=1(an + bn) = Σ∞

n=1an + Σ∞
n=1bn,

Σ∞
n=1can = cΣ∞

n=1an, c ∈ R.

Alternating Infinite Sums. Abel Theorem

DEFINITION 5
An infinite sum

Σ∞
n=1(−1)n+1an, for an ≥ 0

is called ALTERNATING infinite sum (alternating series).

EXAMPLE 6
Consider

Σ∞
n=1(−1)n+1 = 1− 1 + 1− 1 + ....

If we group the terms in pairs, we get

(1− 1) + (1− 1) + .... = 0

but if we start the pairing one step later, we get

1− (1− 1)− (1− 1)− ..... = 1− 0− 0− 0− ... = 1.
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It shows that grouping terms in a case of infinite sum can lead to inconsistencies
(contrary to the finite case). Look also example on page 59. We need to develop
some strict criteria for manipulations and convergence/divergence of alternating
series.

THEOREM 3
The alternating infinite sum Σ∞

n=1(−1)n+1an, (an ≥ 0) such that

a1 ≥ a2 ≥ a3 ≥ .... and lim
n→∞

an = 0

always CONVERGES. Moreover, its partial sums Sn = Σn
k=1(−1)n+1an fulfil

the condition
S2n ≤ Σ∞

n=1(−1)n+1an ≤ S2n+1.

Proof : observe that the sequence of S2n is increasing as

S2(n+1) = S2n+2 = S2n+(a2n+1−a2n+2, and a2n+1−a2n+2 ≥ 0, i.e.S2n+2 ≥ S2n.

The sequence of S2n is also bounded as

S2n = a1 − ((a2 − a3) + (a4 − a5) + ...a2n) ≤ a1.

We know that any bounded and increasing sequence is is convergent, so we
proved that S2n converges. Let denote limn→∞ S2n = g.
To prove that Σ∞

n=1(−1)n+1an = limn→∞ Sn converges we have to show now
that limn→∞ S2n+1 = g.
Observe that S2n+1 = S2n + a2n+2 and we get

lim
n→∞

S2n+1 = lim
n→∞

S2n + lim
n→∞

a2n+2 = g

as we assumed that limn→∞ an = 0.
We proved that the sequence {S2n} is increasing, in a similar way we prove
that the sequence {S2n+1} is decreasing. Hence S2n ≤ limn→∞ S2n = g =
Σ∞

n=1(−1)n+1an and S2n+1 ≥ limn→∞ S2n+1 = g = Σ∞
n=1(−1)n+1an, i.e

S2n ≤ Σ∞
n=1(−1)n+1an ≤ S2n+1.

EXAMPLE 7
Consider the INHARMONIC series (infinite sum)

AH = Σ∞
n=1 (−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
.....

Observe that an = 1
n , and

1
n ≥ 1

n+1 i.e. an ≥ an+1 for all n, so the assumptions
of the theorem 3 are fulfilled for AH and hence AH converges. In fact, it is
proved (by analytical methods, not ours) that

AH = Σ∞
n=1(−1)n+1 1

n
= ln 2.
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EXAMPLE 8
A series (infinite sum)

Σ∞
n=0(−1)n

1

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
......

converges, by Theorem 3 (proof similar to the one in the example 7). It also
is proved that

Σ∞
n=0(−1)n

1

2n+ 1
=

π

4
.

THEOREM 4 (ABEL Theorem)
IF a sequence {an} fulfils the assumptions of the theorem 3 i.e.

a1 ≥ a2 ≥ a3 ≥ .... and lim
n→∞

an = 0

and an infinite sum (converging or diverging) Σ∞
n=1bn is bounded,

THEN the infinite sum
Σ∞

n=1anbn

always converges.

Observe that Theorem 3 is a special case of theorem 4 when bn = (−1)n+1.

Convergence of Infinite Sums
with Positive Terms

We consider now infinite sums with all its terms being positive real numbers,
i.e.

S = Σ∞
n=1an, for an ≥ 0, an ∈ R.

Observe that if all an ≥ 0, then the sequence {Sn} of partial sums Sn = Σn
k=1ak

is increasing; i.e.
S1 ≤ S2 ≤ .... ≤ Sn...

and hence the limn→∞ Sn exists and is finite or is ∞. This proves the following
theorem.

THEOREM 5
The infinite sum

S = Σ∞
n=1an, for an ≥ 0, an ∈ R

always converges, or diverges to ∞.

6



THEOREM 6 (Comparing the series)
Let Σ∞

n=1an be an infinite sum and {bn} be a sequence such that for all n,

0 ≤ bn ≤ an.

If the infinite sum Σ∞
n=1an converges, then Σ∞

n=1bn also converges and

Σ∞
n=1bn ≤ Σ∞

n=1an.

Proof: Denote
Sn = Σn

k=1ak, Tn = Σn
k=1bk.

As 0 ≤ bn ≤ an we get that also Sn ≤ Tn. But

Sn ≤ lim
n→∞

Sn = Σ∞
n=1an so also Tn ≤ Σ∞

n=1an = S.

The inequality Tn ≤ Σ∞
n=1an = S means that the sequence {Tn} is a bounded

sequence with positive terms, hence by theorem 5, it converges.

By the assumption that Σ∞
n=1an we get that

Σ∞
n=1an = lim

n→∞
Σn

k=1ak = lim
n→∞

Sn = S.

We just proved that Tn = Σn
k=1bk converges, i.e.

lim
n→∞

Tn = T = Σ∞
n=1bn.

But also we proved that Sn ≤ Tn, hence

lim
n→∞

Sn ≤ lim
n→∞

Tn

what means that
Σ∞

n=1bn ≤ Σ∞
n=1an.

EXAMPLE 9
Let’s use Theorem 5 to prove that the series

Σ∞
n=1

1

(n+ 1)2

converges. We prove by analytical methods that it converges to π2

6 , here we
prove only that it does converge. First observe that the series below converges
to 1, i.e.

Σ∞
n=1

1

n(n+ 1)
= 1.
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Consider

Sn =
1

1 · 2
+

1

2 · 3
....+

1

n(n+ 1)
= (1− 1

2
)+(

1

2
− 1

3
)+ ...(

1

n
− 1

n+ 1
) = 1− 1

n+ 1

so we get

Σ∞
n=1

1

n(n+ 1)
= lim

n→∞
Sn = lim

n→∞
(1− 1

n+ 1
) = 1.

Now we observe (easy to prove) that

1

22
≤ 1

1 · 2
,

1

32
≤ 1

1 · 3
, .....

1

(n+ 1)2
≤ 1

n(n+ 1)
, ......

i.e. we proved that all assumptions of Theorem 5 hold, hence Σ∞
n=1

1
(n+1)2

converges and moreover

Σ∞
n=1

1

(n+ 1)2
≤ Σ∞

n=1

1

n(n+ 1)
.

THEOREM 7 (D’Alambert’s Criterium)
Any series with all its terms being positive real numbers, i.e.

Σ∞
n=1an, for an ≥ 0, an ∈ R

converges if the following condition holds:

lim
n→∞

an+1

an
< 1.

Proof: let h be any number such that limn→∞
an+1

an
< h < 1. It means that

there is k such that for any n ≥ k we have an+1

an
< h, i.e. an+1 < han and

ak+1 < akh, ak+2 = ak+1h < akh
2, ak+3 = ak+2h < akh

3, ......

i.e. all terms an of Σ∞
n=kan are smaller then the terms of a converging (as

0 < h < 1) geometric series Σ∞
n=0akh

n = ak + akh + akh
2 + .... By Theorem

5 the series Σ∞
n=1an must converge.

THEOREM 8 (Cauchy’s Criterium)
Any series with all its terms being positive real numbers, i.e.

Σ∞
n=1an, for an ≥ 0, an ∈ R

converges if the following condition holds:

lim
n→∞

n
√
an < 1.
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Proof: we carry the proof in a similar way as the proof of theorem 6. Let h
be any number such that limn→∞ n

√
an < h < 1. So it means that there is k

such that for any n ≥ k we have n
√
an < h, i.e. an < hn. This means that all

terms an of Σ∞
n=kan are smaller then the terms of a converging (as 0 < h < 1)

geometric series Σ∞
n=kh

n = hk + hk+1 + hk+2 + .... By Theorem 5 the series
Σ∞

n=1an must converge.

THEOREM 9 (Divergence Criteria
Any series with all its terms being positive real numbers, i.e.

Σ∞
n=1an, for an ≥ 0, an ∈ R

diverges if

lim
n→∞

an+1

an
> 1 or lim

n→∞
n
√
an > 1

Proof: observe that if limn→∞
an+1

an
> 1, then for sufficiently large n we have

that
an+1

an
> 1, and hence an+1 > an.

This means that the limit of the sequence {an} can’t be 0. By theorem 1 we
get that Σ∞

n=1an diverges.
Similarly, if limn→∞ n

√
an > 1, then then for sufficiently large n we have that

n
√
an > 1 and hence an > 1,

what means that the limit of the sequence {an} can’t be 0. By theorem 1 we
get that Σ∞

n=1an diverges.

REMARK 2
It can happen that for a certain infinite sum Σ∞

n=1an)

lim
n→∞

an+1

an
= 1 = lim

n→∞
n
√
an.

In this case our Divergence Criteria do not decide whether the infinite sum
converges or diverges. In this case we say that the infinite sum DOES NOT
REACT on the criteria.

EXAMPLE 10
The Harmonic series

H = Σ∞
n=1

1

n

does not react on D’Alambert’s Criterium (Theorem 7) because

lim
n→∞

n

n+ 1
= lim

n→∞

1

(1 + 1
n )

= 1.
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EXAMPLE 11
The series from example 9

Σ∞
n=1

1

(n+ 1)2

does not react on D’Alambert’s Criterium (Theorem 7) because

lim
n→∞

(n+ 1)2

(n+ 2)2
= lim

n→∞

n2 + 2n+ 1

n2 + 4n+ 1
= lim

n→∞

1 + 2
n + 1

n2

1 + 4
n + 4

n2

= 1.

REMARK 3 Both series Σ∞
n=1

1
n and Σ∞

n=1
1

(n+1)2 do not react on D’Alambert’s,

but first in divergent and the second is convergent.

There are more criteria for convergence, most known are Kumer’s criterium and
Raabe criterium.

EXAMPLE 12
The series

Σ∞
n=1

cn

n!

converges for c > 0.

Proof : Use D’Alambert Criterium.

an+1

an
=

cn+1

cn
· n!

(n+ 1)!
=

c

n+ 1

and
lim
n→∞

an+1

an
= lim

n→∞

c

n+ 1
= 0 < 1.

EXAMPLE 13
The series

Σ∞
n=1

n!

nn

converges.

Proof : Use D’Alambert Criterium.

an+1

an
=

n!(n+ 1)

(n+ 1)n+1
·n

n

n!
= (n+1)

nn

(n+ 1)n+1
=

an+1

an
=

(n+ 1)nn

(n+ 1)n(n+ 1)
= (

n

n+ 1
)n =

1

(1 + 1
n )

n
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