
CHAPTER 1
Problem 20
SOLUTION



Problem

Use the repertoire method to solve the general five-parameter
recurrence RF

Solve means here FIND the closed formula CF equivalent to
RF

h(1) = α;

h(2n + 0) = 4h(n) + γ0n + β0;

h(2n + 1) = 4h(n) + γ1n + β1, for all n ≥ 1.



General Form of CF

Our RF for h is a FIVE parameters function and it is a
generalization of the General Josephus GJ f considered
before

So we guess that now the general form of the CF is also a
generalization of the one we already proved for GJ , i.e.

General form of CF is

h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

The Problem 20 asks us to use repertoire method to prove
that CF equivalent to RF.



Thinking Time

Solution requires a system of 5 equations on A(n), B(n), C(n),
D(n), E(n) and accordingly a 5 repertoire function!

Let’s THINK a bit before we embark on quite complicated
calculations and without certainty that they would succeed
(look at the Problem 16!)

First : we observe that when when γ0 = γ1 = 0, we get that h
becomes for Generalize Josephus function f below for k = 4

f(1) = α, f(2n + j) = k f(n) + βj ,

where k ≥ 2, j = 0, 1 and n ≥ 0

It seems worth to examine the case γ0 = γ1 = 0 first.



GJ f Closed Formula Solution

We proved that GJ f has a relaxed k- representation closed
formula

f((1, bm−1, ...b1, b0)2) = (α, βbm−1 , ...βb0)k

where βbj are defined by

βbj =

 β0 bj = 0

β1 bj = 1
; j = 0, ...,m − 1,

for relaxed k- radix representation defined as

(α, βbm−1 , ..., βb0)k = αk m + k m−1βm−1 + ...+ βb0



Special Case of h

Consider now a special case of our h, when γ0 = γ1 = 0

We know that it now has a relaxed 4 - representation closed
formula

h((1, bm−1, ...b1, b0)2) = (α, βbm−1 , ...βb0)4

It means that we get

Fact 0 For any n = (1, bm−1, ...b1, b0)2,

h(n) = (α, βbm−1 , ...βb0)4

Observe that our general form of CF in this case becomes

h(n) = αA(n) + β0D(n) + β1E(n)

We must have h(n) = h(n), for all n, so from this and Fact 0 we
get the following equation 1.



Equation 1

Fact 1 For any n = (1, bm−1, ...b1, b0)2,

αA(n) + β0D(n) + β1E(n) = (α, βbm−1 , ...βb0)4

This provides us with the Equation 1 for finding our general
form of CF



Next Observation

Observe that A(n) in the Original Josephus was given (and
proved to be) by a formula

A(n) = 2k , for all n = 2k + `, 0 ≤ ` < 2k ,

So we wonder if we could have a similar solution for our A(n)



Special Case of h

We evaluate now few initial values for h in case γ0 = γ1 = 0

h(1) = α;

h(2) = h(2(1) + 0) = 4h(1) + β0

= 4α+ β0;

h(3) = h(2(1) + 1) = 4h(1) + β1

= 4α+ β1;

h(4) = h(2(2) + 0) = 4h(2) + β0

= 16α+ 5β0;



Equation 2

It is pretty obvious that we do have a similar formula for A(n)
as on the Original Josephus O.

We write it as our Fact 2 and get our Equation 2.

Fact 2 for all n = 2k + `, 0 ≤ ` < 2k , n ∈ N − {0},

A(n) = 4k

The proof is almost identical to the one in the OJ, we re-write
is here for our case as an exercise.



Reminder

Reminder: we investigate the case when γ0 = γ1 = 0, i.e.
now our formulas are

RF: h(1) = α, h(2n + j) = 4h(n) + βj ,

where j = 0, 1 and n ≥ 0, and the closed formula is

CF: h(n) = αA(n) + β0D(n) + β1E(n)



Proof of the Equation 2

Consider now a further case β0 = β1 =0, and α = 1, i.e.

RF : h(1) = 1, h(2n) = 4h(n), h(2n + 1) = 4h(n)
and CF : h(n) = A(n)

We use h(n) = A(n) and re-write RF in terms of A(n)

AR : A(1) = 1, A(2n) = 4A(n), A(2n + 1) = 4A(n)

FACT: Closed formula CAR for AR is:
CAR: A(n) = A(2k + `) = 4k , 0 ≤ l < 2k

Observe that this FACT is equivalent to our Fact 2, i.e. to
validity of the Equation 2, so we are now proving

Fact 2 for all n = 2k + `, 0 ≤ ` < 2k ,

A(n) = 4k



Proof of the Equation 2

Proof by induction on k

BASE: k=0 i.e n=20 + l, 0 ≤ l < 1, n = 1 and AR: A(1) = 1,
CAR: A(1) = 40 = 1, and AR = CAR

Inductive Assumption:

A(2k−1 + l) = A(2k−1 + l) = 4k−1, 0 ≤ l < 2k−1

Inductive Thesis:

A(2k + l) = A(2k + l) = 4k , 0 ≤ l < 2k

Two cases: n ∈ even, n ∈ odd

C1: n ∈ even

n := 2n, and we have 2k + l = 2n iff l ∈ even



Proof of the Equation 2

We evaluate n:

2n = 2k + l, n = 2k−1 + l
2

We use n in the inductive step. Observe that the correctness
of using l

2 follows from that fact that l ∈ even so l
2 ∈ N and it

can be proved formally like on the previous slides.

Proof:

A(2n) =reprn A(2k + l) =evaln 4A(2k−1 + l
2) =

ind

4 ∗ 4k−1 = 4k



Proof of the Equation 2

C2: n ∈ odd

n:= 2n+1, and we have 2k + l = 2n + 1 iff l ∈ odd

We evaluate n:

2n + 1 = 2k + l, n = 2k−1 + l−1
2

We use n in the inductive step. Observe that the correctness
of using l−1

2 follows from that fact that l ∈ odd so l−1
2 ∈ N

Proof:

A(2n + 1) =reprn A(2k + l) =evaln 4A(2k−1 + l−1
2 ) =ind

4 ∗ 4k−1 = 4k

It ends the proof of the Fact 2: A(n) = 4k



Repertoire Method

We return now to out original functions:

RF: h(1) = α, h(2n) = 4h(n) + γ0n + β0,

h(2n + 1) = 4h(n) + γ1n + β1,

CF: h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

We have already developed 2 equations ( Fact 1 and Fact 2)
so we need now to consider only 3 repertoire functions



Repertoire Function 1

Consider a repertoire function 1: h(n) = 1, for all
n ∈ N − {0},
We have h(n) = 1, h(1)= α, so we get α = 1 and we evaluate

h(2n) = 4h(n) + γ0n + β0 h(2n + 1) = 4h(n) + γ1n + β1;

1 = 4 + γ0n + β0 1 = 4 + γ1n + β1

0 = 3 + γ0n + β0 0 = 3 + γ1n + β1

Solution: γ0 = γ1 = 0, β0 = β1 = −3



Equation 3

CF: h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

We evaluate CF for α = 1, γ0 = γ1 = 0, β0 = β1 = −3 and
get

CF = RF iff the following holds

Fact 3 For all n ∈ N − {0},

A(n)− 3D(n)− 3E(n) = 1



Repertoire Function 2

Consider a repertoire function 2: h(n) = n, for all n ∈ N−{0}
h(1) = α, h(1) = 1 and h(n)=h(n), hence α = 1

h(2n) = 4h(n) + γ0n + β0 h(2n + 1) = 4h(n) + γ1n + β1;

2n = 4n + γ0n + β0 2n + 1 = 4n + γ1n + β1

0 = (γ0 + 2)n + β0 0 = (γ1 + 2)n + (β1 − 1)

Solution: γ0 = γ1 = −2, β0 = 0, β1 = 1



Equation 4

CF: h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

We evaluate CF for α = 1, γ0 = γ1 = −2, β0 = 0, β1 = 1
and get

CF = RF iff the following holds

Fact 4 For all n ∈ N − {0}

A(n)− 2B(n)− 2C(n) + E(n) = n



Repertoire Function 3

Consider a repertoire function 3: h(n) = n2, for all n ∈ N

h(1) = α, h(1) = 1, hence α = 1

h(2n + 0) = 4h(n) + γ0n + β0 h(2n + 1) = 4h(n) + γ1n + β1;

(2n)2 = 4n2 + γ0n + β0 (2n + 1)2 = 4n2 + γ1n + β1

6 4n2 = 6 4n2 + γ0n + β0 4n2 + 4n + 1 = 4n2 + γ1n + β1

0 = γ0n + β0 0 = (γ1 − 4)n + (β1 − 1)

Solution: γ0 = 0, γ1 = 4, β0 = 0, β1 = 1.



Equation 5

CF: h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)

We evaluate CF for α = 1, γ0 = 0, γ1 = 4, β0 = 0, β1 = 1
and get

CF = RF iff the following holds

Fact 5 For all n ∈ N − {0}

A(n) + 4C(n) + E(n) = n2



Repertoire Method System of Equations

We obtained the following system of 5 equations on A(n),
B(n), C(n), D(n), E(n)

1. αA(n) + β0D(n) + β1E(n) = (α, βbm−1 , ...βb0)4

2. A(n) = 4k

3. A(n) - 3D(n) - 3E(n) = 1

4. A(n) - 2B(n) - 2 C(n) + E(n) = n

5. A(n) + 4C(n) + E(n) = n2

We solve it and put the solution into

h(n) = αA(n) + γ0B(n) + γ1C(n) + β0D(n) + β1E(n)


