CHAPTER 1 Problem 20 SOLUTION

Problem

Use the repertoire method to solve the general five-parameter recurrence RF

Solve means here FIND the closed formula CF equivalent to RF

$$h(1) = \alpha;$$

 $h(2n+0) = 4h(n) + \gamma_0 n + \beta_0;$
 $h(2n+1) = 4h(n) + \gamma_1 n + \beta_1, \text{ for all } n \ge 1.$

General Form of CF

Our RF for h is a FIVE parameters function and it is a generalization of the General Josephus GJ f considered before

So we guess that now the general form of the CF is also a generalization of the one we already proved for GJ, i.e. General form of CF is

$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

The Problem 20 asks us to use repertoire method to prove that CF equivalent to RF.

Thinking Time

Solution requires a system of 5 equations on A(n), B(n), C(n), D(n), E(n) and accordingly a 5 repertoire function!

Let's THINK a bit before we embark on quite complicated calculations and without certainty that they would succeed (look at the Problem 16!)

First: we observe that when when $\gamma_0 = \gamma_1 = 0$, we get that h becomes for Generalize Josephus function f below for k = 4

$$f(1) = \alpha$$
, $f(2n+j) = kf(n) + \beta_j$,

where $k \ge 2$, j = 0, 1 and $n \ge 0$

It seems worth to examine the case $\gamma_0 = \gamma_1 = 0$ first.

GJ f Closed Formula Solution

We proved that GJ f has a relaxed k- representation closed formula

$$f((1,b_{m-1},...b_1,b_0)_2) = (\alpha,\beta_{b_{m-1}},...\beta_{b_0})_k$$

where β_{b_i} are defined by

$$\beta_{b_j} = \begin{cases}
\beta_0 & b_j = 0 \\
\beta_1 & b_j = 1
\end{cases}; j = 0, ..., m - 1,$$

for relaxed k- radix representation defined as

$$(\alpha, \beta_{b_{m-1}}, ..., \beta_{b_0})_{\mathbf{k}} = \alpha_{\mathbf{k}}^{\mathbf{m}} + {\mathbf{k}}^{m-1}\beta_{m-1} + ... + \beta_{b_0}$$

Special Case of h

Consider now a special case of our h, when $\gamma_0=\gamma_1=0$ We know that it now has a relaxed 4 - representation closed formula

$$h((1,b_{m-1},...b_1,b_0)_2) = (\alpha,\beta_{b_{m-1}},...\beta_{b_0})_4$$

It means that we get

Fact 0 For any $n = (1, b_{m-1}, ...b_1, b_0)_2$,

$$h(n) = (\alpha, \beta_{b_{m-1}}, ...\beta_{b_0})_4$$

Observe that our general form of CF in this case becomes

$$h(n) = \alpha A(n) + \beta_0 D(n) + \beta_1 E(n)$$

We must have h(n) = h(n), for all n, so from this and Fact 0 we get the following equation 1.

Fact 1 For any
$$n = (1, b_{m-1}, ...b_1, b_0)_2$$
,
$$\alpha A(n) + \beta_0 D(n) + \beta_1 E(n) = (\alpha, \beta_{b_{m-1}}, ...\beta_{b_0})_4$$

This provides us with the Equation 1 for finding our general form of CF

Next Observation

Observe that A(n) in the Original Josephus was given (and proved to be) by a formula

$$A(n) = 2^k$$
, for all $n = 2^k + \ell$, $0 \le \ell < 2^k$,

So we wonder if we could have a similar solution for our A(n)

Special Case of h

We evaluate now few initial values for h in case $\gamma_0 = \gamma_1 = 0$

$$h(1) = \alpha;$$

$$h(2) = h(2(1) + 0) = 4h(1) + \beta_0$$

$$= 4\alpha + \beta_0;$$

$$h(3) = h(2(1) + 1) = 4h(1) + \beta_1$$

$$= 4\alpha + \beta_1;$$

$$h(4) = h(2(2) + 0) = 4h(2) + \beta_0$$

 $= 16\alpha + 5\beta_0$;

It is pretty obvious that we do have a similar formula for A(n) as on the Original Josephus O.

We write it as our Fact 2 and get our Equation 2.

Fact 2 for all
$$n = 2^k + \ell, 0 \le \ell < 2^k, n \in N - \{0\},$$

$$A(n)=4^k$$

The proof is almost identical to the one in the OJ, we re-write is here for our case as an exercise.

Reminder

Reminder: we investigate the case when $\gamma_0 = \gamma_1 = 0$, i.e. now our formulas are

RF:
$$h(1) = \alpha, h(2n + j) = 4h(n) + \beta_j,$$

where j = 0, 1 and $n \ge 0$, and the closed formula is

CF:
$$h(n) = \alpha A(n) + \beta_0 D(n) + \beta_1 E(n)$$

Consider now a further case $\beta_0 = \beta_1 = 0$, and $\alpha = 1$, i.e.

RF:
$$h(1) = 1$$
, $h(2n) = 4h(n)$, $h(2n + 1) = 4h(n)$

and CF: h(n) = A(n)

We use h(n) = A(n) and re-write RF in terms of A(n)

$$AR: A(1) = 1, A(2n) = 4A(n), A(2n+1) = 4A(n)$$

FACT: Closed formula CAR for AR is:

CAR:
$$A(n) = A(2^k + \ell) = 4^k$$
, $0 \le l < 2^k$

Observe that this FACT is equivalent to our Fact 2, i.e. to validity of the Equation 2, so we are now proving

Fact 2 for all
$$n = 2^k + \ell, 0 \le \ell < 2^k$$
,

$$A(n) = 4^k$$

Proof by induction on k

BASE: k=0 i.e
$$n=2^0+1, 0 \le l < 1, n = 1$$
 and AR: A(1) = 1,

CAR:
$$A(1) = 4^0 = 1$$
, and AR = CAR

Inductive Assumption:

$$A(2^{k-1}+I) = A(2^{k-1}+I) = 4^{k-1}, \quad 0 \le I < 2^{k-1}$$

Inductive Thesis:

$$A(2^k + 1) = A(2^k + 1) = 4^k, \ 0 \le 1 < 2^k$$

Two cases: $n \in even$, $n \in odd$

C1: $n \in even$

n := 2n, and we have $2^k + l = 2n$ iff $l \in even$

We evaluate n:

$$2n = 2^k + l$$
, $n = 2^{k-1} + \frac{l}{2}$

We use n in the inductive step. Observe that the correctness of using $\frac{1}{2}$ follows from that fact that $l \in even$ so $\frac{1}{2} \in N$ and it can be proved formally like on the previous slides.

Proof:

$$A(2n) = {}^{reprn} A(2^k + I) = {}^{evaln} 4A(2^{k-1} + \frac{I}{2}) = {}^{ind} 4 * 4^{k-1} = 4^k$$

C2: *n* ∈ *odd*

n:= 2n+1, and we have $2^k + l = 2n + 1$ iff $l \in odd$

We evaluate n:

$$2n+1=2^k+l, \quad n=2^{k-1}+\frac{l-1}{2}$$

We use n in the inductive step. Observe that the correctness of using $\frac{l-1}{2}$ follows from that fact that $l \in odd$ so $\frac{l-1}{2} \in N$ Proof:

$$A(2n+1) = ^{reprn} A(2^k + I) = ^{evaln} 4A(2^{k-1} + \frac{I-1}{2}) = ^{ind} 4 * 4^{k-1} = 4^k$$

It ends the proof of the Fact 2: $A(n) = 4^k$

Repertoire Method

We return now to out original functions:

RF:
$$h(1) = \alpha, h(2n) = 4h(n) + \gamma_0 n + \beta_0,$$

$$h(2n+1)=4h(n)+\gamma_1 n+\beta_1,$$

CF:
$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

We have already developed 2 equations (Fact 1 and Fact 2) so we need now to consider only 3 repertoire functions

Repertoire Function 1

Consider a repertoire function 1: h(n) = 1, for all $n \in N - \{0\}$, We have h(n) = 1, $h(1) = \alpha$, so we get $\alpha = 1$ and we evaluate

$$h(2n) = 4h(n) + \gamma_0 n + \beta_0$$

$$1 = 4 + \gamma_0 n + \beta_0$$

$$0 = 3 + \gamma_0 n + \beta_0$$

$$h(2n+1) = 4h(n) + \gamma_1 n + \beta_1;$$

$$1 = 4 + \gamma_1 n + \beta_1;$$

$$0 = 3 + \gamma_1 n + \beta_1$$

Solution:
$$\gamma_0 = \gamma_1 = 0$$
, $\beta_0 = \beta_1 = -3$

CF:
$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

We evaluate CF for $\alpha = 1$, $\gamma_0 = \gamma_1 = 0$, $\beta_0 = \beta_1 = -3$ and get

CF = RF iff the following holds

Fact 3 For all $n \in N - \{0\}$,

$$A(n) - 3D(n) - 3E(n) = 1$$

Repertoire Function 2

Consider a repertoire function 2: h(n) = n, for all $n \in N - \{0\}$ $h(1) = \alpha$, h(1) = 1 and h(n) = h(n), hence $\alpha = 1$

$$h(2n) = 4h(n) + \gamma_0 n + \beta_0$$

$$2n = 4n + \gamma_0 n + \beta_0$$

$$0 = (\gamma_0 + 2)n + \beta_0$$

$$h(2n+1) = 4h(n) + \gamma_1 n + \beta_1;$$

$$2n+1 = 4n + \gamma_1 n + \beta_1$$

$$0 = (\gamma_1 + 2)n + (\beta_1 - 1)$$

Solution:
$$\gamma_0 = \gamma_1 = -2, \ \beta_0 = 0, \ \beta_1 = 1$$

CF:
$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

We evaluate CF for $\alpha = 1, \gamma_0 = \gamma_1 = -2, \ \beta_0 = 0, \ \beta_1 = 1$
and get

CF = RF iff the following holds

Fact 4 For all $n \in N - \{0\}$

$$A(n) - 2B(n) - 2C(n) + E(n) = n$$

Repertoire Function 3

Consider a repertoire function 3: $h(n) = n^2$, for all $n \in \mathbb{N}$ $h(1) = \alpha$, h(1) = 1, hence $\alpha = 1$

$$h(2n + 0) = 4h(n) + \gamma_0 n + \beta_0$$

$$(2n)^2 = 4n^2 + \gamma_0 n + \beta_0$$

$$An^2 = An^2 + \gamma_0 n + \beta_0$$

$$0 = \gamma_0 n + \beta_0$$

$$h(2n + 1) = 4h(n) + \gamma_1 n + \beta_1;$$

$$(2n + 1)^2 = 4n^2 + \gamma_1 n + \beta_1$$

$$4n^2 + 4n + 1 = 4n^2 + \gamma_1 n + \beta_1$$

$$0 = (\gamma_1 - 4)n + (\beta_1 - 1)$$

Solution: $\gamma_0 = 0$, $\gamma_1 = 4$, $\beta_0 = 0$, $\beta_1 = 1$.

CF:
$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$

We evaluate CF for $\alpha = 1$, $\gamma_0 = 0$, $\gamma_1 = 4$, $\beta_0 = 0$, $\beta_1 = 1$ and get

CF = RF iff the following holds

Fact 5 For all
$$n \in N - \{0\}$$

$$A(n) + 4C(n) + E(n) = n^2$$

Repertoire Method System of Equations

We obtained the following system of 5 equations on A(n), B(n), C(n), D(n), E(n)

1.
$$\alpha A(n) + \beta_0 D(n) + \beta_1 E(n) = (\alpha, \beta_{b_{m-1}}, ..., \beta_{b_0})_4$$

2.
$$A(n) = 4^k$$

3.
$$A(n) - 3D(n) - 3E(n) = 1$$

4.
$$A(n) - 2B(n) - 2C(n) + E(n) = n$$

5.
$$A(n) + 4C(n) + E(n) = n^2$$

We solve it and put the solution into

$$h(n) = \alpha A(n) + \gamma_0 B(n) + \gamma_1 C(n) + \beta_0 D(n) + \beta_1 E(n)$$