cse547/ams547 QUIZ 3 SOLUTIONS Spring 2018

QUESTION

Part 1

1. Formulate the Euclid Algorithm and the Euclid Theorem

For any $a, b \in Z^+$ and $a \ge b$,

Euclid Algorithm

$$a = q_1b + r_1$$

$$b = q_2r_1 + r_2$$

$$r_1 = q_2r_2 + r_3$$

$$\dots$$

$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n + 0$$

Euclid Theorem

If
$$r_{n+1} = 0$$
 then $r_n = (a,b) = gcd(a,b)$

2. Use it to **prove** that for any $a, b, k \in \mathbb{Z}$,

$$gcd(ka,kb) = k \cdot gcd(a,b).$$

Proof

 $gcd(a,b) = r_n$ in the Euclid Algorithm

 $a = q_1 b + r_1$ \dots $r_{n-2} = q_n r_{n-1} + r_n$ $r_{n-1} = q_{n+1} r_n + 0$

We multiply each step by k and get

$$ka = kq_1b + kr_1$$

$$\dots$$

$$kr_{n-2} = kq_nr_{n-1} + kr_n$$

$$kr_{n-1} = q_{n+1}kr_n + 0$$

This is the Euclid Algorithm for *ka*, *kb* and hence

$$gcd(ka,kb) = k \cdot r_n = k \cdot gcd(a,b)$$

- **Part 2** The **Main Factorization Theorem** says: *Every composite number can be factored uniquely into prime factors.*
- Explain its General Form n = ∏_p p^{n_p} for p∈P, n_p ≥ 0.
 n_p is the multiplicity of p i.e. the number of times p occurs in the prime factorization. This is an infinite product, bur for any particular n∈N, n > 1 all but few exponents n_p = 0, and p⁰ = 1. Hence for a given n, it is a finite product.
- **2.** Use it to define a **representation** $n = \langle n_1, n_2, n_3, \dots, n_k, \dots \rangle$ of any $n \in N \{0, 1\}$.

We put all prime numbers in P in a 1-1 sequence

$$p_1 < p_2 < \dots p_n < \dots$$

 $2 < 3 < 5 < 7 < 11 < 13 < \dots$

and we write the General Form as

$$n = \prod_{i \ge 1} p_i^{n_i} \text{ for } n_i \ge 0$$

Because of the uniqueness of the representation we can represent any $n \in N$, n > 1 as

$$n = < n_1, n_2, n_3, \dots n_k, \dots >$$

3. Find the representations of of n = 5, 10, 12

$$5 = < 0, 0, 1, 0, \ldots = < 0, 0, 1 >$$

- $10 == 2 \cdot 5 = <1, 0, 1>$
- $12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3$ so $12 = <2, 1, 0, 0, \dots > = <2, 1>$

EXTRA CREDIT

We proved the Spectrum Partition Theorem for $Spec(\sqrt{2})$ and $Spec(2+\sqrt{2})$.

1. Give 3 examples of α , $\beta \in R - Q$ for which the **Spectrum Partition Theorem** also holds.

We also proved the following

General Spectrum Partition Theorem

Let $\alpha > 0$, $\beta > 0$, α , $\beta \in R - Q$ be such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Then the sets $Spec(\alpha)$ and $Spec(\beta)$ form a **partition** of $Z^+ = N - \{0\}$.

HENCE the Spectrum Partition Theorem holds for any $\alpha > 0$, $\beta > 0$, α , $\beta \in R - Q$ such that

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1$$

We evaluate

$$\alpha = \frac{\beta}{\beta - 1}$$

Examples

E1 Take for example $\beta = \sqrt{3}$, we get $\alpha = \frac{\sqrt{3}}{\sqrt{3}-1}$

E2 Other pairs are, for example

$$\alpha = \pi$$
 and $\beta = \frac{\pi}{\pi - 1}$, $\alpha = e^2 sin 32$ and $\beta = \frac{e^2 sin 32}{e^2 sin 32 - 1}$

Observe that for any number $x \in R - Q$ we have that $x - 1 \neq 0$ and the number $\frac{x}{x-1} \in R - Q$.

- E3 Hence any pair of numbers x, $\frac{x}{x-1}$ such that $x \in R Q$ can serve an **example** of two numbers for which the **Spectrum Partition Theorem** holds, i.e. such that he sets Spec(x) and $Spec(\frac{x}{x-1})$ form a **partition** of $Z^+ = N \{0\}$.
- **Part 3** Prove that there are uncountably many α , $\beta \in R Q$ for which it also holds.
 - The numbers for which Spectrum Partition Theorem holds must be irrational and must fulfill the condition $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. There are uncountably many irrational numbers, and so there are uncountably many pairs: β , $\frac{\beta}{\beta-1}$.