QUESTION

Part 1

1. Formulate the Euclid Algorithm and the Euclid Theorem

For any $a, b \in \mathbb{Z}^+$ and $a \geq b$,

Euclid Algorithm

\[a = q_1 b + r_1 \]
\[b = q_2 r_1 + r_2 \]
\[r_1 = q_2 r_2 + r_3 \]
\[\ldots \ldots \ldots \]
\[r_{n-2} = q_n r_{n-1} + r_n \]
\[r_{n-1} = q_{n+1} r_n + 0 \]

Euclid Theorem

If $r_{n+1} = 0$ then $r_n = (a, b) = \gcd(a, b)$

2. Use it to prove that for any $a, b, k \in \mathbb{Z}$,

\[\gcd(ka, kb) = k \cdot \gcd(a, b) \]

Proof

$\gcd(a, b) = r_n$ in the Euclid Algorithm

\[a = q_1 b + r_1 \]
\[\ldots \ldots \]
\[r_{n-2} = q_n r_{n-1} + r_n \]
\[r_{n-1} = q_{n+1} r_n + 0 \]

We multiply each step by k and get

\[ka = kq_1 b + kr_1 \]
\[\ldots \ldots \]
\[kr_{n-2} = kq_n r_{n-1} + kr_n \]
\[kr_{n-1} = q_{n+1} kr_n + 0 \]
This is the Euclid Algorithm for ka, kb and hence
\[\gcd(ka, kb) = k \cdot r_n = k \cdot \gcd(a, b) \]

Part 2 The **Main Factorization Theorem** says: *Every composite number can be factored uniquely into prime factors.*

1. Explain its **General Form** $n = \prod_{p} p^{n_p}$ for $p \in P, \ n_p \geq 0$.

 n_p is the multiplicity of p i.e. the number of times p occurs in the prime factorization.

 This is an infinite product, but for any particular $n \in N, n > 1$ all but few exponents $n_p = 0$, and $p^0 = 1$. Hence for a given n, it is a finite product.

2. Use it to define a **representation** $n = < n_1, n_2, n_3, \ldots n_k, \ldots >$ of any $n \in N - \{0, 1\}$.

 We put all prime numbers in P in a 1-1 sequence

 \[
 p_1 < p_2 < \ldots p_n < \ldots
 \]

 \[
 2 < 3 < 5 < 7 < 11 < 13 < \ldots
 \]

 and we write the **General Form** as

 \[
 n = \prod_{i \geq 1} p_i^{n_i} \text{ for } n_i \geq 0
 \]

 Because of the uniqueness of the representation we can represent any $n \in N, n > 1$ as

 \[
 n = < n_1, n_2, n_3, \ldots n_k, \ldots >
 \]

3. Find the representations of $n = 5, 10, 12$

 $5 = < 0, 0, 1, 0, \ldots = < 0, 0, 1 >$

 $10 = 2 \cdot 5 = < 1, 0, 1 >$

 $12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3$ so $12 = < 2, 1, 0, 0, \ldots > = < 2, 1 >$

EXTRA CREDIT

We proved the Spectrum Partition Theorem for $Spec(\sqrt{2})$ and $Spec(2 + \sqrt{2})$.

1. Give 3 examples of $\alpha, \beta \in R - Q$ for which the **Spectrum Partition Theorem** also holds.

 We also proved the following
General Spectrum Partition Theorem

Let $\alpha > 0$, $\beta > 0$, $\alpha, \beta \in R - Q$ be such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Then the sets $Spec(\alpha)$ and $Spec(\beta)$ form a partition of $Z^+ = N - \{0\}$.

HENCE the Spectrum Partition Theorem holds for any $\alpha > 0$, $\beta > 0$, $\alpha, \beta \in R - Q$ such that

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1$$

We evaluate

$$\alpha = \frac{\beta}{\beta - 1}$$

Examples

E1 Take for example $\beta = \sqrt{3}$, we get $\alpha = \frac{\sqrt{3}}{\sqrt{3} - 1}$

E2 Other pairs are, for example

$$\alpha = \pi \text{ and } \beta = \frac{\pi}{\pi - 1}, \quad \alpha = e^2\sin32 \text{ and } \beta = \frac{e^2\sin32}{e^2\sin32 - 1}$$

Observe that for any number $x \in R - Q$ we have that $x - 1 \neq 0$ and the number $\frac{x}{x - 1} \in R - Q$.

E3 Hence any pair of numbers x, $\frac{x}{x - 1}$ such that $x \in R - Q$ can serve an example of two numbers for which the Spectrum Partition Theorem holds, i.e. such that he sets $Spec(x)$ and $Spec(\frac{x}{x - 1})$ form a partition of $Z^+ = N - \{0\}$.

Part 3 Prove that there are uncountably many α, $\beta \in R - Q$ for which it also holds.

The numbers for which Spectrum Partition Theorem holds must be irrational and must fulfill the condition $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. There are uncountably many irrational numbers, and so there are uncountably many pairs: β, $\frac{\beta}{\beta - 1}$.