QUESTION 1
Part 1 Prove that
\[\sum_{k=2}^{n} \frac{(-1)^k}{2k-1} = -\sum_{k=1}^{n-1} \frac{(-1)^k}{2k+1} \]
Part 2 Use partial fractions and Part 1 result (must use it!) to evaluate the sum
\[S = \sum_{k=1}^{n} \frac{(-1)^k}{4k^2 - 1} \]

QUESTION 2 Give a direct proof from proper properties (use the list) of the following.
For all \(x \in \mathbb{R}, x > 0 \)
\[\lfloor \sqrt{\lfloor x \rfloor} \rfloor = \lfloor \sqrt{x} \rfloor \]

QUESTION 3
1. Prove that the series \(\sum_{n=1}^{\infty} \frac{1}{(n + 1)^2} \) does not react on D’Alambert’s Criterium
2. Prove that the series \(\sum_{n=1}^{\infty} \frac{n!}{n^n} \) converges.

QUESTION 4 Solve the recurrence: for \(n > 0 \)
\[a_0 = 1, \quad a_n = a_{n-1} + \lfloor \sqrt{a_{n-1}} \rfloor, \quad \text{for } n > 0 \]
Hint assume first that \(a_n = m^2 \) for certain \(m \in \mathbb{Z} \) and find formulas for \(a_{n+2k+1} \) and \(a_{n+2k+2} \).

QUESTION 5 Prove the following.
1. Let \(m, n, k \in \mathbb{Z} + \{-0\}. \)
 If \(k \mid mn \) and \(k \perp m \) (it means \(k, m \) are relatively prime), THEN \(k \mid n \).
2. When a number is relatively prime to each of several numbers, it is relatively prime to their product.

QUESTION 6 Write a proof of the following:
\(\text{spec}(\sqrt{2}) \) and \(\text{spec}(2 + \sqrt{2}) \) are disjoint sets.

QUESTION 7 Find the sum of all multiples of \(x \) in the closed interval \([\alpha...\beta]\), when \(x > 0 \).
Justify methods used in each step of your calculation.

QUESTION 8 Denote by \(N(\alpha, n) \) the number of elements in the \(\text{Spec}(\alpha) \) that are \(\leq n \), i.e.
\[N(\alpha, n) = | \{ m \in \text{Spec}(\alpha) : m \leq n \} |. \]
Write a detailed proof of

\[N(\alpha, n) = \left\lceil \frac{n+1}{\alpha} \right\rceil - 1. \]

No credit without each step explanations.

QUESTION 9 Show that the nth element of the sequence:

\[1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, \ldots \]

is \[\lfloor \sqrt{2n} + \frac{1}{2} \rfloor \].

Hint: Let \(P(x) \) represent the position of the last occurrence of \(x \) in the sequence.
Use the fact that \(P(x) = \frac{x(x+1)}{2} \).
Let the nth element be \(m \). You need to find \(m \).

QUESTION 10 Prove that

\[\binom{m}{n} \binom{n}{k} = \binom{m}{k} \binom{n-k}{m-k} \]

holds for all \(m, k \in \mathbb{Z} \) and \(x \in \mathbb{R} \). Consider all cases and Polynomial argument. No credit without all cases and pol. argument!

QUESTION 11 Prove the Hexagon property \((n, k \in \mathbb{N})\)

\[\binom{n-1}{k-1} \binom{n}{k+1} \binom{n+1}{k} = \binom{n-1}{k} \binom{n+1}{k+1} \binom{n}{k-1} \]