cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

LECTURE 12

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

CHAPTER 4 NUMBER THEORY

PART1: Divisibility

PART 2: Primes

PART 1: DIVISIBILITY

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Basic Definitions

Definition

Given $m, n \in Z$, we say m divides n or n is divisible by m if and only if $m \neq 0$ and n = mk, for some $k \in Z$

We write it symbolically

 $m \mid n$ if and only if n = mk, for some $k \in Z$

Definition

If $m \mid n$, then m is called a **divisor** or a **factor** of n We call n = mk a **decomposition** or a **factorization** of n

Basic Definitions

Definition

Let m be a **divisor** of n, i.e. n = mk**Cleary:** $k \neq 0$ is also a **divisor** of n and is uniquely determined by m

Definition Divisors of of n occur in pairs (m,k)

Definition

 $n \in Z$ is a square number if and only if all its divisors of n are (m,m) i.e when $n = m^2$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fact 1

If (m, k) is a divisor of n so is (-m, -k)**Proof**

n = mk, so n = (-m)(-k) = mk

Definition

(-m, -k) is called an **associated divisor** to (m, k)

Fact 2

 ± 1 together with $\pm n$ are **trivial divisors** of *n* **Proof** Each number n has an obvious decomposition (1, n), (-1, -n) as n = 1n = (-1)(-n)

Fact 3

If m|n and n|m, then m, n are **associated**, i.e $m = \pm n$ **Proof**

Assume m|n i.e. $n = mk_1$, also n|m i.e. $m = nk_2$, for $k_1, k_2 \in Z$

So $n = nk_1k_2$ iff $k_1 = k_2 = 1$ and m = n

or $k_1 = k_2 = -1$, and m = -n

Fact 4

If $m \mid n_1$ and $m \mid n_2$ then $m \mid (n_1 \pm n_2)$ **Proof**

Assume $m \mid n_1$ i.e. $n_1 = mk_1$, and $m \mid n_2$ i.e. $n_2 = mk_2$ Hence $n_1 \pm n_2 = m(k_1 \pm k_2)$ i.e. $m \mid (n_1 \pm n_2)$

(ロ) (同) (三) (三) (三) (○) (○)

Fact 5 If $m \mid n$ and $n \mid k$ then $m \mid k$

Proof

 $m \mid n$ iff $n = mk_1$ and $n \mid k$ iff $k = nk_2$ Hence $k = mk_1k_2$ iff $m \mid k$

In most questions regarding **divisors** we assume that m > 0 and only consider **positive divisors** (m, k)

We look first at **positive factorizations** and then we work out others

Book Definition

The Book Definition

For $n, m, k \in \mathbb{Z}$

 $m \mid n$ if and only if m > 0 and n = mk

It means the **The Book** considers only **positive** divisors $(m,k), m > 0, k \in \mathbb{Z}$

Definition

All positive divisors, including 1, that are less than n are called **proper divisors** of n

Fact 6

If (m,k) is a divisor of n then the factors m,k can't be both $> \sqrt{n}$

Proof

Assume that for both factors $m > \sqrt{n}$ and $k > \sqrt{n}$, then $mk > \sqrt{n}\sqrt{n} = n$;

we got a **contradiction** with n = mk

Fact 6 Rewrite

If (m,k) is a divisor of n, then $m \le \sqrt{n}$ or $k \le \sqrt{n}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

Problem

Find all divisors of n = 60By the **Fact 6** the number of divisors of $m \le \sqrt{n} = \sqrt{60}$ i.e.

 $m \leq \sqrt{60} < \sqrt{64} = 8$

Hence m < 8, m = 1, 2, 3, 4, 5, 6, 7and we have six pairs of divisors

(1,60) (3,20) (5,12)

(2,30) (4,15) (6,10)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let $b \neq 0$ and $b \in Z$

Then any $a \in Z$ is either a multiple of b or alls between two consecutive multiples q b and (q+1)b of b We write it:

a = q b + r $q \in Z$ r = 0, 1, 2, ..., |b| - 1

r is called the least positive remainder or simply the remainder of a by division with b

 $0 \le r < |b|$

A D F A 同 F A E F A E F A Q A

q is the incomplete quotient or simply the quotient

Note

Given $a, b \in Z$, $b \neq 0$ the quotient q and the remainder r are uniquely determined and each integer $a \in Z$ can be written as:

$$a = q b + r$$
 $0 \leq r < |b|$

Example

 $\begin{array}{ll} 321 = 4 \cdot 74 + 25 & q = 4, \quad b = 74, \quad r = 25 \\ 46 = (-2)(-17) + 12 & q = -2, \quad b = -17, \quad r = 12 \\ \text{In particular any } n \in N, \quad n = 2q \text{ (even) or } n = 2q + 1 \text{ (odd)} \end{array}$

A D F A 同 F A E F A E F A Q A

Theorem

The square of $n \in Z$ is either divisible by 4, or leaves the remainder 1 when divided by 4

Proof

Case 1: n = 2q, $n^2 = (2q)^2 = 4q^2$ Case 2: n = 2q + 1, $n^2 = 4q^2 + 4q + 1 = 4(q^2 + q) + 1$

(ロ) (同) (三) (三) (三) (○) (○)

Let
$$b \neq 0$$
; $a, b, q \in Z$
 $a = qb + r$ $0 \le r < |b|$
We re-write is as
 $\frac{a}{b} = q + \frac{r}{b}$ $0 \le \frac{r}{b} < 1$

Fact q is the greatest integer such that $q \le \frac{a}{b}$

Special Notation

Old notation

[q] = greatest integer such that it is less or equal $\frac{a}{b}$ **Modern** notation

 $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$ = greatest integer such that it is less or equal $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Modern notation comes from K.E. Iverson, 1960

Book, page 67 FLOOR: $\lfloor x \rfloor$ = the greater integer $q, q \le x$ CEILING: $\lceil x \rceil$ = the least integer $q, q \ge x$ $q = \lfloor \frac{a}{b} \rfloor$ = the greatest integer $q, q \le \frac{a}{b}$ is also called the greatest integer **contained** in $\frac{a}{b}$ **Example**

$$\left\lfloor \frac{25}{5} \right\rfloor = 5, \quad \left\lfloor \frac{5}{3} \right\rfloor = 1, \quad \lfloor 2 \rfloor = 2, \quad \left\lfloor \frac{-1}{3} \right\rfloor = -1, \quad \left\lfloor \frac{1}{3} \right\rfloor = 0$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

We extent notation to Real numbers

 $x, y, q \in R$ $x = |x| + y, 0 \le y < 1$

Example

$$\lfloor \pi \rfloor = 3, \quad \lfloor e \rfloor = 2, \quad \lfloor \pi^2/2 \rfloor = 4$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Back to the Chapter 3 - we used notation $\{x\}$ for y

Given $a, b \in N$, we represent a on base b as

 $a = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b^1 + a_0$ where $a_i \in \{0, 1, .., b-1\}$

We write it as

$$a = (a_n, a_{n-1}, a_1, a_0)_b$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Questions

1. How to find the representation of *a* on base *b*?

2. How to pass from one base to the other?

This we did show already in Chapter 1!

Consider

$$a = a_n b^n + a_{n-1} b^{n-1} + \dots + a_1 b^1 + a_0$$

Observation 1

 a_0 is the remainder of *a* by division by *b* as

$$a = b (a_n b^{n-1} + ... + a_1 b^0) + a_0$$

So we have

 $a = q_1 b + a_0$ where $q_1 = a_n b^{n-1} + ... + a_2 b + a_1$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Consider now

$$q_1 = b(a_n b^{n-2} + ... + a_2) + a_1$$

Observation 2

 a_1 is the remainder of q_1 by division by b and

 $q_1 = bq_2 + a_1$ where $q_2 = a_n b^{n-2} + ... + a_3 b + a_2$

Repeat

 a_i is the remainder of q_i by division by b, for i = 1...n - 1

to find all a_1, a_2, a_n

Examples

Example

Represent 1749 in a system with base 7

 $1749 = 249 \cdot 7 + 6$ $249 = 35 \cdot 7 + 4$ $35 = 5 \cdot 7 + 0$ $a_0 = 6, \quad a_1 = 4, \quad a_2 = 0, \quad a_3 = 5$ So we get $1749 = (5, 0, 4, 6)_7$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Examples

Example

Represent 19151 in a system with base 12

```
19151 = 1595 \cdot 12 + 11
1595 = 132 \cdot 12 + 11
132 = 11 \cdot 12 + 0
a_0 = 11, \quad a_1 = 11, \quad a_2 = 0, \quad a_3 = 11
So we get
19151 = (11, 0, 11, 11)_{12}
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We evaluated the components

 $a_0, a_1, ..., a_n$

from the lowest a_0 upward to a_n

Now let's evaluate a_0, \ldots, a_n downward from a_n to a_0

In this case we have to determine the **highest power** of **b** such that b^n is **less than a**, while the next power b^{n+1} **exceeds a**

We look for **division** of a by b^n and

$$a = a_n b^n + r_{n-1}$$

 $r_{n-1} = a_{n-1} b^{n-1} + a_0$

We determine a_{n-1} from r_{n-1}

$$r_{n-1} = \frac{a_{n-1}}{b^{n-1}} + r_{n-2}$$

$$r_{n-2} = a_{n-2}b^{n-2} + \ldots + a_0$$

We determine a_{n-2} from r_{n-2}

$$r_{n-2} = a_{n-2} b^{n-2} + r_{n-3}$$
 and etc...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

Example

Represent 1832 to the base 7 First calculate powers of 7

 $7^1 = 7 \qquad 7^2 = 49 \qquad 7^3 = 343 \qquad 7^4 = 2401$

and then calculate

$$a = \frac{a_n}{b^n} + r_{n-1}$$
 for $n = 3$

- $1832 = \frac{5}{7} \cdot 7^3 + 117 \qquad a_3 = 5$
- $117 = 2 \cdot 7^2 + 19$ $a_2 = 2$

$$19 = 2 \cdot 7 + 5$$
 $a_1 = 2, a_0 = 5$

We obtained

1832 = (5,2,2,5)7

Greatest Common Divisor

Definition Common Divisor

Let *a*, *b*, *c* ∈ *Z*

If c divides a and b simultanously, then c is called a common divisor of a and b

Symbolically

c is a common divisor of a and b iff $c \mid a$ and $c \mid b$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Greatest Common Divisor

Let $A = \{c: c \mid a \text{ and } c \mid b\}$ be the set of **all** common divisors of a and b

The set A is **finite**, so the poset (A, \leq) is a finite, with a total (linear) order and hence always has the **greatest** element

This greatest element is called a greatest common divisor (g.c.d.) of a and b and denoted by gcd(a,b) = (a,b)

Remark The greatest element in the poset (A, \leq) is its unique maximal element so it justifies the BOOK definition

 $gcd(a,b) = (a,b) = max\{c: c \mid a \cap c \mid b\}$

Relatively Prime Numbers

Remark

Every number has the divisor 1, so gcd(a,b) is a positive integer, i.e. $gcd(a,b) \in Z^+$

Definition

 $a, b \in Z$ are relatively prime if and only if

$$(a,b) = gcd(a,b) = 1$$

Book notation

 $a \perp b$ for $a, b \in Z$ relatively prime

Example

 $(24, 56) = 8, (15,21) = 1, 15 \perp 22$

Theorem

Any common divisor of two numbers divides their greatest common divisor

Proof By procedure known as Euclid Algorism (Algorithm)

Euclid Algorism is known from seventh book of Euclid's Elements (about 300 BC); however it is certainly of earlier origin

Here it is

Let $a, b \in Z$ be two integers whose (a,b) = gcd(a,b) we want to be studied

Since there is only question of **divisibility**, there is no limitation in assuming that **a**, **b** are positive and **a** is greater or equal **b**, i.e.

 $a, b \in Z^+$ and $a \ge b$

1. We divide a by b with respect to the least positive remainder

$$a = q_1 b + r_1$$
 $0 \le r_1 < b$

2. We divide $b by r_1$ with respect to the least positive remainder

$$b = q_2 r_1 + r_2$$
 $0 \le r_2 < r_1$

3. We divide r_1 by r_2 with respect to the least positive remainder

$$r_1 = q_2 r_2 + r_3$$
 $0 \le r_3 < r_1$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

We continue the process

Observe that such obtained remainders

 $r_1, r_2, r_3, \ldots r_n,$

form a decreasing sequence of positive integers

 $r_1 > r_2 > r_3 > \dots r_n > \dots$

and one must arrive on a division for which $r_{n+1} = 0$, i.e. the **Euclid Algorism** process: divide a by b, divide *b* by r_1 , ... divide r_k by r_{k+1} must **terminate**

A D F A 同 F A E F A E F A Q A

Euclid Algorism

 $a = q_1 b + r_1$ $b = q_2 r_1 + r_2$ $r_1 = q_2 r_2 + r_3$ \dots $r_{n-2} = q_n r_{n-1} + r_n$ $r_{n-1} = q_{n+1} r_n + 0$

Theorem

$$r_n = (a, b) = gcd(a, b)$$

Euclid Algorithm Example

Example

Find gcd(76084, 63,020)

$$76,084 = 63,020 \cdot 1 + 13,064$$
 $q_1 = 1, r_1 = 13,064$ $63,020 = 13,064 \cdot 4 + 10,764$ $q_2 = 4, r_2 = 10,764$ $13,064 = 10,764 \cdot 1 + 2,300$ $q_3 = 1, r_3 = 2,300$ $10,764 = 2,300 \cdot 4 + 1,564$ $q_4 = 5, r_4 = 1,564$ $2,300 = 1,564 \cdot 1 + 736$ $q_5 = 1, r_5 = 736$ $1,564 = 736 \cdot 2 + 92$ $q_6 = 2, r_6 = 92$ $736 = 92 \cdot 8 + 0$ $q_7 = 8, r_7 = 0$ end $gcd(76084, 63020) = (76084, 63020) = r_6 = 92$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Euclid Algorithm Correctness Proof

Theorem

For any $a, b \in Z^+$ and $a \ge b$, and the Euclid Algorithm applied to a, b the following holds

IF
$$r_{n+1} = 0$$
 THEN $r_n = (a,b) = gcd(a,b)$

Proof

We conduct proof in two steps

Step 1 We show that the last non-vanishing remainder r_n is a **common divisor** of **a** and **b**

Step 2 We show that the r_n is the **greatest** common divisor of **a** and **b**

Step 1 We show that the last non-vanishing remainder r_n is a **common divisor** of **a** and **b**, i.e. we show that

 $r_n \mid a$ and $r_n \mid b$

Assume that r_n is the last non-vanishing remainder, i.e. $r_{n-1} = q_{n+1}r_n$ and hence

1. $r_n | r_{n-1}$

Observe that

 $r_{n-2} = q_n r_{n-1} + r_n = q_n q_{n+1} r_n + r_n = r_n (q_n q_{n+1} + 1)$

Hence

2.
$$r_n | r_{n-2}$$

Observe that

 $r_{n-3} = q_{n-1}r_{n-2} + r_{n-1}$ and $r_n | r_{n-1}, r_n | r_{n-2}$

Hence

*r*_n | *r*_{n-3}

We carry our **proof** by **double induction** with **1.** and **2.** as base cases proved already to be true

Inductive Assumption

 $r_n \mid r_{n-k}$ and $r_n \mid r_{n-(k+1)}$ for $k \ge 1$

Inductive Thesis

 $r_n | r_{n-(k+2)}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Observe that

$$r_{n-(k+2)} = q_{n-(k+1)}r_{n-(k+1)} + r_{n-k}$$

and by inductive assumption

$$r_n \mid r_{n-(k+1)}, \quad r_n \mid r_{n-k}$$

Hence

 $r_n | r_{n-(k+2)}$

By Double Induction Principle

 $r_n \mid r_{n-k}$ for all $k \ge 1$

In particular case when k = n - 1, and k = n - 2 we get

 $r_n \mid r_1$ and $r_n \mid r_2$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

We have that

$$b = q_2 r_1 + r_2$$

and we just got $r_n | r_1$ and $r_n | r_2$ Hence

*r*_n | *b*

We also have that

 $a = q_1 b + r_1$

and we just got $r_n | r_1$ and $r_n | b$ Hence

*r*_n | a

It proves that r_n is a **common divisor** of a and b and it ends the proof of the Step 1

Step 2 We show that the r_n is the **greatest** common divisor of **a** and **b**

Let A be a set of **all** common divisors of a and b, i.e.

 $A = \{c: c \mid a \cap c \mid b\}$

We have to show that for any $c \in A$

$c \mid r_n$

i.e. that r_n is the **greatest** element in the **poset** (A, |)**Exercise:** Show that | is an **order** (partial order) relation in Z

We have $a = q_1b + r_1$ and $r_1 = a - q_1b$ so for any $c \in A$, $c \mid a$ and $c \mid b$, hence $c \mid r_1$ Similarly $b = q_2r_1 + r_2$ and $r_2 = b - q_2r_1$ and $c \mid b$ and $c \mid r_1$, hence $c \mid r_2$

By Mathematical Induction

 $c \mid r_k$ for all $k \ge 1$

and in particular

c | *r*_n

what ends the proof of the correctness of the Euclid Algorithm

Faster Algorithm

Kronecker (1823 - 1891) proved that no Euclid Algorism can be shorter then one obtained by **least absolute remainders** - r_n can be negative

Example Find (76084, 63020) by the least absolute remainders

 $76,084 = 63,020 \cdot 1 + 13,064$ $63,020 = 13,064 \cdot 5 - 2,300$ $13,064 = 2,300 \cdot 6 - 736$ $2,300 = 736 \cdot 2 + 92$ $736 = 92 \cdot 8$ (76084, 63020) = 92

We did it in 5 steps instead of 7 steps

"mod" Binary Operation

Definition

For any $x, y \in R$ we define a binary relation $mod \subseteq R \times R$ as

$$x \mod y = x - y \left\lfloor \frac{x}{y} \right\rfloor$$
 for $y \neq 0$

and

 $x \mod 0 = x$

Example

$$5 \mod 3 = 5 - 3 \left\lfloor \frac{5}{3} \right\rfloor = 5 - 3 \cdot 1 = 2$$

5 \mod (-3) = 5 - (-3) $\left\lfloor \frac{5}{-3} \right\rfloor = 5 - (-3) \cdot (-1) = -1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

"mod" Binary Operation

Observe that when $a, b \in Z, b \neq 0$ we get

$$a = b \left\lfloor \frac{a}{b} \right\rfloor + a \mod b$$

and

$$a = b q + r$$
 for $q = \left\lfloor \frac{a}{b} \right\rfloor$, $r = a \mod b$

i.e. *a mod b* is a **remainder** in the division of **a** by **b Example**

We evaluated $r_1 = 5 \mod 3 = 2$, $r_2 = 5 \mod (-3) = -1$ and we have

$$5 = 3 \cdot 1 + 2$$
 and $5 = (-3)(-1) - 1$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

"mod" Euclid Algorithm

We use the the mod relation to formulate a more modern version of Euclid Algorithm

We define a recursive function f for any

 $m, n \in Z$, $0 \le m < n$ we put

 $f(m,n) = f(n \mod m, m)$ for m > 0

 $f(0,n) = n \quad \text{for} \quad m = 0$

Theorem

For any $a, b \in Z$, $0 \le a < b$

If the function f = f(m, n) applied recursively to a, b as the initial values terminates at f(0, k), then

gcd(a,b) = f(0,k)

Proof Book pages 103, 103 - but this is just a translation of our proven theorem!

Examples

Example 6

 $f(m,n) = f(n \mod m, m)$ for m > 0, f(0,n) = nf(12,18) = f(6,12) = f(0,6) = 6 gcd(12,18) = f(0,6) = 6Example 2

f(63020, 76084) = f(13064, 63020) = f(10764, 13064)

f(2300, 107640) = f(1564, 2300) = f(736, 1564)

f(92, 736) = f(0, 92)gcd(63020, 76084) = f(0, 92) = 92

A D F A 同 F A E F A E F A Q A

Definition

 $m, n \in N - \{0, 1\}$ are **relatively prime** if and only if gcd(m, n) = 1

Notation $n \perp m$ for m, n relatively prime

We now use Euclid Algorithm to derive other properties of the gcd

The most important one is the following

Division Lemma

When a product ac of two natural numbers is divisible by a number b that is **relatively prime** to a, the factor c must be divisible by b

Division Lemma written symbolically

If $b \mid ac$ and $a \perp b$ then $b \mid c$

Proof

Since $a \perp b$, i.e. gcd(m, n) = 1, hence the last remainder r_n in the Euclid Algorithm must be 1, so E A has a form

$$a = q_1 b + r_1$$

$$b = q_2 r_1 + r_2$$

...

$$r_{n-2} = q_n r_{n-1} + 1$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Multiply by c

$$ac = q_1 bc + r_1 c$$

 $bc = q_2 r_1 c + r_2 c$

 $r_{n-2}c = q_n r_{n-1}c + c$

and $b \mid ac$, so $b \mid r_1c$, and hence $b \mid r_2c$ By Mathematical Induction we get

 $\forall i \geq 1(b \mid r_i)$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

In particular $b | r_{n-2}c$, and hence b | cIt ends the proof

Theorem 1

When a number is relatively prime to each of several numbers, it is relatively prime to their product

Symbolically

If $a \perp b_i$, for $i = 1, 2, \dots, k$, then $a \perp b_1 b_2 \dots b_k$

Proof By contradiction; we show case i = 2 and the rest is carried by Mathematical Induction

Assume $a \perp b$ and $a \perp c$, and $a \perp bc$

By definition we have hence that $gcd(a, bc) \neq 1$, i.e. a has a common divisor d with bc, i.e. there is d such that

d a and d bc

We have that there is d such that

d a and d bc

and

 $a \perp b$, and $d \mid a$, hence we get $d \perp b$

We also have

 $a \perp c$, and $d \mid a$, hence we get $d \perp c$

So from $d \mid bc$ and $d \perp b$ we get by the **Division Lemma** that $d \mid c$ what is **contrary** to $d \perp c$

Exercise Write the full proof by Mathematical Induction

Theorem 2

 $gcd(ka,kb) = k \cdot gcd(a,b)$

Proof

 $gcd(a,b) = r_n$ in the Euclid Algorithm

 $a = q_1 b + r_1$

... ...

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

$$r_{n-2} = q_n r_{n-1} + r_n$$

 $r_{n-1} = q_{n+1} r_n + 0$

We multiply each step by k

We multiply each step by k

$$ka = kq_1b + kr_1$$

... ...

$$kr_{n-2} = kq_nr_{n-1} + kr_n$$
$$kr_{n-1} = q_{n+1}kr_n + 0$$

This is the Euclid Algorithm for *ka*, *kb* and

 $gcd(ka,kb) = k \cdot r_n = k \cdot gcd(a,b)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Theorem 3

Let d = gcd(a, b) be such that

 $a = a_1 d$ and $b = b_1 d$

Then

 $a_1 \perp b_1$

Proof

Evaluate using Theorem 2

$$gcd(a, b) = gcd(a_1d, b_1d)$$

 $= \mathbf{d} \cdot gcd(a_1 \ , \ b_1) = \underline{gcd}(\mathbf{a}, \mathbf{b})gcd(a_1 \ , \ b_1)$

So we get $gcd(a_1, b_1) = 1$, as nk=k iff k=1 This means

$a_1 \perp b_1$

The **Theorem 3** applies in elementary arithmetic in the reduction of fractions

Take any fraction and $a = a_1 d$, $b = b_1 d$

$$\frac{a}{b} = \frac{a_1 d}{b_1 d} = \frac{a_1}{b_1}$$

for

 $a_1 \perp b_1$

I.e any fraction can be represented in **reduced form** with numerator and denominator that are relatively prime

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

A number m is said to be a common multiple of the numbers a and b when it is divisible by both of them For example, the product ab is a common multiple of a and b

Since, as before there is only question of divisibility, there is no limitation in considering only positive multiples

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition Common Multiple

Let $a, b, m \in Z$

m = cm(a, b) is a common multiple of a and b iff

 $a \mid m$ and $b \mid m$ and m > 0

Let $A = \{m: a \mid m \text{ and } b \mid m\}$ be the set of **all** common multiples of a and b

This **least** element is called a **least common multiple** (l.c.m.) of a and b and denoted by lcm(a,b)

Remark The **least** element in the poset (A, |) is its unique minimal element so it justifies the BOOK definition

 $lcm(a,b) = min\{m: m > 0 \cap a \mid m \cap b \mid m\}$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem 4

Any common multiple of a and b is **divisible** by lcm(a,b) **Proof**

Let m = cm(a,b)

We divide m by lcm(a,b), i.e

m = qlcm(a, b) + r $0 \le r < lcm(a, b)$

But $a \mid lcm(a,b)$ and $b \mid lcm(a,b)$ and $a \mid m$ and $b \mid m$ Hence $a \mid r$ and $b \mid r$ and r is a common multiple of a, bBut $0 \le r < lcm(a,b)$, so r=0 what proves that $m = q \cdot lcm(a,b)$, i.e. m is **divisible** by lcm(a,b)

Theorem 5 For any $a, b \in Z^+$ such that lcm(a,b) and gcd(a, b) exist $lcm(a,b) \cdot gcd(a,b) = ab$

Theorem 6

lcm(a,b) = ab if and only if $a \perp b$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Exercise Prove both Theorems

PART 2: PRIME NUMBERS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Definition

Definition

A positive integer is called **prime** if it has only two divisors 1 and itself

We assume convention that 1 is not prime

We denote by P the set of all primes

Symbolically

 $p \in P \subseteq N$ if and only if p > 1 and for any $k \in Z$

if k|p then k=1 or k=p

Some primes

2, 3, 3, 5, 7, 11, 13, 17, 19,23, 29, 31, 37, ...

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Observe2 is the only even prime!QuestionIs 91 prime?No, it isn't as $91 = 7 \cdot 13$ Definition
- $n \in N, m > 1$ is called **composite** and denoted by CN, if it is not prime

Symbolically

 $n \in CN$ if and only if $n \le 1 \cup \exists_{k \in Z}(k | n \cap k \ne 1 \cap k \ne n)$

Directly from the definition we have that **Fact 1**

 $\forall_{m \in N-\{0,1\}} (m \in P \cup m \in CN) \text{ and } P \cap CN = \emptyset$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition

 $m, n \in N$ are **relatively prime** if and only if gcd(m, n) = 1Notation $n \perp m$ for $m, n \in N$ relatively prime Fact 2

 $\forall_{p\in P} \forall_{n\in N} (p\perp n \cup p|n)$

Fact 3

A product of two numbers is divisible by a prime p only when p divides one of the factors Symbolically

 $\forall_{p\in P} \forall_{m,n\in Z} (p \mid mn \Rightarrow (p \mid m \cup p \mid n))$

A D F A 同 F A E F A E F A Q A

Proof

Assume that **Fact 3** is not true, i.e.

 $\exists_{p \in P} \exists_{m,n \in Z} (p \mid mn \cap p \nmid m \cap p \nmid n)$

$p \nmid m$ so by **Fact 2** $p \perp m$

Now when $p \mid mn$ and $p \perp m$ we get $p \mid n$ and we get a **contradiction** with $p \nmid n$

Fact 4

A product $q_1q_2...q_n$ of prime numbers (factors) q_i is **divisible** by a prime p only when $p = q_i$ for some q_i

Fact 4

$$\forall_{p,q_1q_2\dots q_n \in P} \left(p \mid \prod_{k=1}^n q_k \Rightarrow \exists_{1 \leq i \leq n} \left(p = q_i \right) \right)$$

Proof

Let $p \mid \prod_{k=1}^{n} q_k$. By the **Fact 3** $p \mid q_i$ for some g_i where $q_i \in P$; but p > 1 as $1 \notin P$ hence $p = q_i$

Fact 5

Every natural number n, n > 1 is **divisible** by some prime

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fact 5

$$\forall_{n\in N,n>1} \exists_{p\in P} (p \mid n)$$

Proof

When $n \in P$, this is evident as $n \mid n$

When n is composite it can be factored $n = n_1 n_2$

where $n_1 > 1$

The smallest possible one of these divisors of n_1 must be prime

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

We are now ready to prove the main theorem about factorization. The idea of this theorem, as well as all **Facts 1-5** we will use in proving it, can be found in **Euclid's Elements** in **Book VII** and **Book IX**

Main Factorization Theorem

Every composite number can be **factored uniquely** into prime factors

(ロ) (同) (三) (三) (三) (○) (○)

We present here an "old" and pretty straightforward proof You have another proof in the Book pages 105-105 and all this without saying that it is a Theorem, and a quite important one

Proof We conduct it in two steps

Step 1 We show that every composite number n > 1 is product of prime numbers

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Step 2 We show the uniqueness

Step 1 We show that every composite number n > 1 is product of prime numbers

By **Fact 5** there is $p_1 \in P$ such that $n = p_1 n_1$

If n_1 is composite, then by **Fact 5** again, $n_1 = p_2 n_2$ We continue this process with a decreasing sequence

 $n_1 > n_2 > n_3 > \dots$

of numbers together with a corresponding sequence of prime numbers

 p_1, p_2, p_3, \ldots

until some n_k becomes a prime, i.e. $n_k = p_k$ and we get

 $n = p_1 p_2 p_3 \dots p_k$

Step 2 We show the uniqueness Assume that we have two different prime factorizations

 $n = p_1 p_2 p_3 \ldots p_k = q_1 q_2 q_3 \ldots q_m$

Each $p_i | n$, so for each p_i

$$p_i \mid \prod_{k=1}^m q_k$$

By the **Fact 4** $p_i = q_j$ for some *j* and $1 \le j \le m$ Conversely, we also have that each $q_i \mid n$, so for each q_i

$$q_i \mid \prod_{n=1}^k p_n$$

By the **Fact 4** $q_i = p_n$ for some n and $1 \le n \le k$

This proves that both sides of

 $n = p_1 p_2 p_3 \ldots p_k = q_1 q_2 q_3 \ldots q_m$

contain the same primes

The only difference might be that a prime p could occur a greater number of times on one side then on the other

In this case we cancel p on both sides surfficient number of times and get equation with p on one side, not the other

This **contradicts** just proven the fact that both sides of the equation contain the same primes

We re-write our Theorem in a more formal way as follows

Main Factorization Theorem

For any $n \in N$, n > 1, there are $\alpha_i \in N$, $\alpha_i \ge 1$, and prime numbers $p_1 \neq p_2 \neq \dots \neq p_r$ $r \ge 1$, $1 \le i \le r$, such that

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_r^{\alpha_r} = \prod_{k=1}^r p_k^{\alpha_k}$$

and this representation is unique

*p*_{*i*}'s are different prime factors of n

 α_i is the multiplicity, i.e. the number of times p_i occurs in the prime factorization

(日)

Main Factorization Theorem; General Form

We write our Theorem shortly in a more general form, as in the Book (page 107)

Main Factorization Theorem General Form

$$n=\prod_{
ho} p^{lpha_{
ho}}$$
 for $p\in P, \ lpha_{
ho}\geq 0$

and this representation is unique

This is an infinite product, bur for any particular n all but few exponents $\alpha_p = 0$, and $p^0 = 1$ Hence for a given n it is a finite product

(ロ) (同) (三) (三) (三) (○) (○)

Some Consequences of Main Factorization Theorem

We know, by the Main Factorization Theorem that any n > 1 has a unique representation

$$n=\prod_p p^{n_p}$$
 for $p\in P, n_p\geq 0$

Consider now the poset (P, \leq) , i.e. we have that all prime numbers in P are in the sequence

 $p_1 < p_2 < \ldots p_n < \ldots$

$$2 < 3 < 5 < 7 < 11 < 13 < \ \ldots$$

and we write

$$n = \prod_{i \ge 1} p_i^{n_i}$$
 for $n_i \ge 0$

Because of the uniqueness of the representation we can represent n as

 $n = \langle n_1, n_2, n_3, \dots, n_k, \dots \rangle$

Example

Example

Reminder

$2 < 3 < 5 < 7 < 11 < 13 < \dots$

Here are few representations

7 = 7 so 7 =< 0,0,0,1, 0,... = < 0,0,0,1 >
12 =
$$2 \cdot 2 \cdot 3 = 2^2 \cdot 3$$
 so $12 =< 2,1,0,0,... >= < 2,1 >$
18 = $2 \cdot 3 \cdot 3 = 2 \cdot 3^2$ so $18 =< 1,2,0,0,... >= < 1,2 >$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Some Consequences of Factorization Theorem

Observe that when we have the general representations

$$k = \prod_{\rho} p^{k_{
ho}}, \quad n = \prod_{\rho} p^{n_{
ho}} \quad \text{and} \quad m = \prod_{\rho} p^{m_{
ho}}$$

then we evaluate

$$k = n \cdot m = \prod_{\rho} \rho^{n_{\rho}} \cdot \prod_{\rho} \rho^{m_{\rho}} = \prod_{\rho} \rho^{n_{\rho} + m_{\rho}}$$

We have hence proved

Fact 6

$$k = n \cdot m$$
 if and only if $k_p = n_p + m_p$, for all $p \in P$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some Consequences of Factorization Theorem

Fact 7 Let $m = \prod_{p} p^{m_{p}}$ and $n = \prod_{p} p^{n_{p}}$ Then

 $m \mid n$ if and only if $m_p \leq n_p$ for all $p \in P$

Proof

 $m \mid n$ iff there is k, such that n = mk and $k = \prod_{p} p^{k_{p}}$ By **Fact 6** we get that n = mk iff $n_{p} = k_{p} + m_{p}$ iff $m_{p} \leq n_{p}$ and it **ends the proof**

Some Consequences of Factorization Theorem

Directly from Fact 7 we definitions we get the following

Fact 8

k = gcd(m, n) if and only if $k_p = min\{m_p, n_p\}$ k = lcd(m, n) if and only if $k_p = max\{m_p, n_p\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example

Example 1

Let

 $12 = 2^{2} \cdot 3^{1} \qquad 18 = 2^{1} \cdot 3^{2}$ $gcd(12, 18) = 2^{min\{2,1\}} \cdot 3^{min\{2,1\}} = 2^{1} \cdot 3^{1} = 6$ $lcm(12, 18) = 2^{max\{2,1\}} \cdot 3^{max\{2,1\}} = 2^{2} \cdot 3^{2} = 36$

Example 2

Let

 $m = 2^6 \cdot 3^2 \cdot 5^1 \cdot 7^0$ $n = 2^5 \cdot 3^3 \cdot 5^0 \cdot 7^0$

 $gcd(m, n) = 2^{min\{6,5\}} \cdot 3^{min\{2,3\}} \cdot 5^{min\{1,0\}} \cdot 7^{min\{0,0\}} = 2^5 \cdot 3^2$

 $lcm(m, n) = 2^6 \cdot 3^3 \cdot 5 \cdot 7$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Exercises

1. Use Facts 6-8 to prove

Theorem 5

For any $a, b \in Z^+$ such that lcm(a,b) and gcd(a, b) exist

 $lcm(a,b) \cdot gcd(a,b) = ab$

2. Use **Theorem 5** and the BOOK version of Euclid Algorithm to express $lcm(n \mod m, m)$ when $nmodm \neq 0$ This is Ch4 Problem 2

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>