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CHAPTER 4
NUMBER THEORY
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PART 1: DIVISIBILITY



Basic Definitions

Definition
Given m,ne Z, we say

m divides n or n is divisible by m if and only if
m=+0 and n=mk, forsome kcZ

We write it symbolically
m|n ifandonlyif n=mk, forsome kecZ

Definition
If m|n, then mis called a divisor or a factor of n
We call n=mk a decomposition or a factorization of n



Basic Definitions

Definition
Let m be a divisor of n,i.e. n=mk

Cleary: k +0is also a divisor of n and is uniquely
determined by m

Definition
Divisors of of n occur in pairs (m,k)

Definition
ne Z is a square number if and only if all its divisors of
n are (m,m) i.e when n=m?



Basic Facts

Fact 1

If (m,k) isadivisorofn sois(—m,—k)
Proof

n=mk, so n=(—m)(—k)=mk

Definition
(—m,—k) is called an associated divisor to (m. k)

Fact 2
+1 together with +-n are trivial divisors of n

Proof Each number n has an obvious decomposition
(1,n),(-1,-n) as n=1n=(-1)(—n)



Basic Facts

Fact 3
If mn and njm, then m,n are associated,i.e m=+n
Proof

Assume min i.e. n=mky, also nim i.e. m= nko, for
ki, ko e Z

So n=nkik, iff ki=ko=1 and m=n
or ki=ko=-1,and m=—n

Fact 4

If m|ny and m|ny, then m|(ny£ny)

Proof

Assume m|nqyi.e. ny=mky, and m|npi.e. no=mky
Hence ni+n,=m(kitky) i.e. m|(ny£np)



Basic Facts

Fact 5
If m|nand n|k then m|k

Proof
m|n iff n=mky and n|k iff k=nk
Hence k= mkiky iff m|k

In most questions regarding divisors we assume that
m >0 and only consider positive divisors (m, k)

We look first at positive factorizations and then we work
out others



Book Definition
The Book Definition
For nmkeZ
m|n ifandonlyif m>0 and n=mk
It means the The Book considers only positive

divisors (m,k), m>0, keZ

Definition
All positive divisors, including 1, thatare less than n
are called proper divisors of n



Basic Facts

Fact 6

If (m,k) is a divisor of n then the factors m,k can’t be
both > \/n

Proof

Assume that for both factors m > /n and k > /n, then
mk > /n\v/n=n;

we got a contradiction with n= mk

Fact 6 Rewrite
If (m,k) isadivisorof n, then m</n or k< ./n



Example

Problem
Find all divisors of n=60
By the Fact 6 the number of divisors of m< /n= /60

i.e.
m< v60< vV64=8

Hence m<8, m=1,2,3,4,56,7
and we have six pairs of divisors

(1,60) (3,20) (5,12)

(2,30) (4,15) (6,10)



Division and Remainders

Letb#+0 and beZ

Thenany ac Z is either a multiple of b or alls between
two consecutive multiples g b and (q+1)b ofb

We write it:
a=qb+r qeZ r=0,1,2..|b—1

r is called the least positive remainder or simply the
remainder of a by division with b

0<r<|b|

g isthe incomplete quotient or simply the quotient



Division and Remainders

Note

Given a,be Z, b+0 the quotient g and the remainder
r are uniquely determined and each integer a € Z can be
written as:

a=qgb+r 0<r<|b
Example
321 =4.74+25 g=4, b=74, r=25
46 = (—2)(—17)+12 g=-2, b=-17, r=12
In particular any n€ N, n=2q (even)or n=2q-+1 (odd)



Division and Remainders

Theorem

The square of ne€ Z is either divisible by 4, or leaves the
remainder 1 when divided by 4

Proof
Case1: n=2q, N*=(29)°>=4q¢?
Case2: n=2q+1, " =4¢°+4q+1=4(g°+q)+1



Division and Remainders

Let b#0; a,b,ge”Z
a=qb+r 0<r<|b|
We re-write is as

a r r
a_oir gl g
p=9tp 0sp<

Fact g isthe greatestinteger suchthat g< g



Division and Remainders

Special Notation
Old notation

[g] = greatest integer such that it is less or equal
Modern notation

| 2] = greatest integer such that it is less or equal

Modern notation comes from K.E. Iverson, 1960

Tl

Tl



Division and Remainders

Book, page 67

FLOOR: |x| =the greaterinteger q, g < x

CEILING: [x]| =the leastinteger g, g > x

q=|{] =the greatestinteger g, g <  isalso called the
greatest integer contained in £
Example

HEN RN



Division and Remainders

We extent notation to Real numbers

x,y,geR x=|x]+y, 0<y<1
Example
In]=3, le]=2, |[n%/2]=4

Back to the Chapter 3 - we used notation {x} for y



Number Systems

Given a,be N, we represent a on base b as
a=apb"+a,_ 1b" '+ .. +a b +ay where a,¢{0,1, b—1}
We write it as

a= (anvanfhvahaO)b

Questions

1. How to find the representation of a on base b?
2. How to pass from one base to the other?

This we did show already in Chapter 1!



Number Systems

Consider
a=apnb"+a, 1b" '+...+ab'+a

Observation 1
ap isthe remainder of a by divisionby b as

a=b(ab" ' +..+ab’)+a

So we have

a=qib+ay where qy=aph" ' +..+ab+ay



Number Systems

Consider now
g1 = b(apb" 2+ ...+ a) + a

Observation 2
a; isthe remainder of gy by divisionby b and

g1 =bg+a; Wwhere @go=aph" 2+.. . +azb+ap

Repeat

a; isthe remainder of g; by division by b, for
i=1.n—1

tofindall a a0, a,



Examples

Example
Represent 1749 in a system with base 7

1749 =249-7+6
249=35.7+4
35=5.7+0

a=6, a=4 a=0, a3=5

So we get
1749 = (5,0,4,6)7



Examples

Example
Represent 19151 in a system with base 12

19151 =1595-12+ 11
1595 =132-12+ 11
132=11-1240

a=11, a=11, a=0, az=11

So we get
19151 =(11,0,11,11)42



Number Systems

We evaluated the components
307817"'7an

from the lowest a, upward to a,
Now let’'s evaluate ag,...,a, downward from a, to ag

In this case we have to determine the highest power of b
suchthat b” is less than a, while the next power b+’
exceeds a



Number Systems

We look for division of a by b” and

a=apb"+ rp_q
fn1=apn-1b"' + +ag

We determine a,_1 from r,_q

fn1=2ap 10"+ 2

In_o = an,gb”_Q +...+ao

We determine a,_» from r,_»

lo=an,o>b"™2+r,_3 andetc...



Example

Example
Represent 1832 to the base 7
First calculate powers of 7
7'=7 72=49 73=343 7%*=2401
and then calculate
a=ah"+r,_4 for n=3

1832 =573 +117 az=5
117=2-7°+19 a=2
19=2.74+5 a=2,8=5

We obtained
1832 =(5,2,2,5)7



Greatest Common Divisor

Definition Common Divisor
Let ab,ceZ

If ¢ divides a and b simultanously, then c is called a
common divisor of a and b

Symbolically
c isacommon divisor ofaandb iff c|a and c|b



Greatest Common Divisor

Let A={c: cl|a and c|b} bethesetof all
common divisors of a and b

The set A is finite, so the poset (A,<) is afinite, with a
total (linear) order and hence always has the greatest
element

This greatest element is called a greatest common
divisor (g.c.d.) of a and b and denoted by

ged(a,b) = (a,b)

Remark The greatest elementin the poset (A, <) isits
unique maximal element so it justifies the BOOK definition

gcd(a,b)=(a,b)=max{c: cla n c|b}



Relatively Prime Numbers

Remark

Every number has the divisor 1, so gcd(a,b) is a positive
integer, i.e. gcd(a,b)e Z+

Definition

a,be Z are relatively prime if and only if

(a,b) =gcd(a,b) =1
Book notation
alb for abeZ relatively prime

Example
(24,56) =8, (15,21)=1 15122



Euclid Algorithm

Theorem

Any common divisor of two numbers divides their greatest
common divisor

Proof By procedure known as Euclid Algorism (Algorithm)
Euclid Algorism is known from seventh book of Euclid’s
Elements (about 300 BC); however it is certainly of earlier
origin

Here it is

Let a,be Z be two integers whose (a,b) = gcd(a,b) we
want to be studied

Since there is only question of divisibility, there is no
limitation in assuming that a, b are positive and ais
greater or equal b, i.e.

abeZ" and a>b



Euclid Algorithm

1. Wedivide a by b with respect to the least positive
remainder

a=qib+r 0<rn<b
2. We divide b by r; with respect to the least positive

remainder
b=qori+10 0<rn<n

3. Wedivide ry by ro with respect to the least positive
remainder
r=Qqer+1n3 0<n<n

We continue the process



Euclid Algorithm

Observe that such obtained remainders
r, o, r3, ...In,
form a decreasing sequence of positive integers
n>rn>rmk>..mn>..

and one must arrive on a division for which r,. 1 =0, i.e.
the Euclid Algorism process:

divide a by b, divide b by ry, ... divide rg by r 4

must terminate



Euclid Algorithm

Euclid Algorism

a=qib+r
b=qori+ 1
r=Qqeh+1n

'n—2=0Qqn-1+1"n
n—1=Qqn+1Mm+0

Theorem
rn=(a,b)=gcd(a,b)



Euclid Algorithm Example

Example
Find gcd(76084 , 63,020)

76,084 =63,020-1+4 13,064

63,020 = 13,064 -4 + 10,764
13,064 = 10,7641+ 2,300
10,764 = 2,300 4+ 1,564

2,300 = 1,564 -1+736
1,564 = 736 -2+ 92
736=92-8+0

g =1, n=13,064

g-=4, n=10,764
g =1, r=2,300
gs =5, ry,=1,564
g =1, r5=736

Qs =2, 15 =92
=8, =0 end

gcd(76084 , 63020) = (76084 , 63020) = r; =92



Euclid Algorithm Correctness Proof

Theorem

Forany a,bc Z" and a> b, and the Euclid Algorithm
applied to a, b the following holds

IF r,.y=0 THEN r,=(ab)=gcd(a,b)

Proof
We conduct proof in two steps

Step1 We show that the last non-vanishing remainder r,,
is a common divisor of a and b

Step2 We show that the r,, is the greatest common
divisor of a and b



Euclid Algorithm Correctness Proof

Step 1 We show that the last non-vanishing remainder r,
is a common divisor of a and b, i.e. we show that

mla and r,|b

Assume that r;, is the last non-vanishing remainder, i.e.
1 =0qne1rn and hence

1. rn| r—q
Observe that
n—2 = Qnfn—1+rn = QnQnt1n+ = m(QnQns1 +1)

Hence
2. |2



Euclid Algorithm Correctness Proof

Observe that
M-3=0Qn-1M-2+r—1 and rp|r_1, In|mh-2

Hence
I'n ‘ I'n-3

We carry our proof by double induction with 1. and 2. as
base cases proved already to be true

Inductive Assumption
In| -k and 1yl ke for k>1

Inductive Thesis
I'n | T'n—(k+2)



Euclid Algorithm Correctness Proof

Observe that
F'n—(k+2) = An—(k+1)In—(k+1) + I'n—k
and by inductive assumption
| f—(k+1),  nl—k

Hence
I'n | 'n—(k+2)
By Double Induction Principle

M|, forall k>1
In particular case when k=n—1, and k=n—2 we get

| r and | r



Euclid Algorithm Correctness Proof

We have that

b=qori+r2
andwe justgot r,|ry and r,|re
Hence
mn|b
We also have that
a=qb+r

andwe justgot r,|ry and r,|b
Hence
nla

It proves that r, is a common divisor of a and b and it
ends the proof of the Step 1



Euclid Algorithm Correctness Proof

Step2 We show that the r, is the greatest common
divisor of a and b

Let A be a set of all common divisors of a andb, i.e.
A={c: cl|lanc|b}
We have to show that forany cc A
clnm

i.e. that r, isthe greatestelementinthe poset (A, |)

Exercise: Show that | is an order (partial order)
relation in Z



Euclid Algorithm Correctness Proof
We have
a=qib+rp and rn=a—qib
soforanyce A, c|a and c|b, hence
clr
Similarly
b=qgri+r. and rn=>b—qor
and c|b and c|r, hence
clr
By Mathematical Induction
clr forall k>1

and in particular

clnm
what ends the proof of the correctness of the
Euclid Algorithm



Faster Algorithm

Kronecker (1823 - 1891) proved that no Euclid Algorism
can be shorter then one obtained by least absolute
remainders - r, can be negative

Example Find (76084 , 63020) by the least absolute
remainders

76,084 =63,020-1+ 13,064

63,020 = 13,064 -5 — 2,300
13,064 = 2,300-6 — 736
2,300=736-2+92
736=92-8
(76084 , 63020) = 92
We did it in 5 steps instead of 7 steps



"mod” Binary Operation
Definition
Forany x,y € R we define a binary relation

mod C Rx R as

xmody:xyBJ for y#0

and
x mod 0= x
Example
5
5mod3:5—3{3J =5-3.1=2



"mod” Binary Operation

Observe that when a bec Z, b+ 0 we get

a

a:b{b

J+amodb

and

a=bq+r for q:BJ, r=amod b

i.e. amod b is a remainder in the division of a by b
Example

We evaluated r1=5mod 3=2, r,=5mod (-3) = -1
and we have

5=3-1+2 and 5=(-3)(-1)—1



"mod” Euclid Algorithm

We use the the mod relation to formulate a more modern
version of Euclid Algorithm

We define a recursive function f for any
mneZ, 0<m<n we put

f(m,n)=f(nmod m, m) for m>0

f(0,n)=n for m=0

Theorem
Forany abeZ, 0<a<b

If the function f = f(m,n) applied recursively to a,b as
the initial values terminates at f(0,k), then

gcd(a,b) = (0, k)

Proof Book pages 103, 103 - but this is just a translation of
our proven theorem!



Examples

Example 6
f(m,n)=1f(nmod m, m) for m>0, f(0,n)=n

f(12,18) = £(6,12) = f(0,6) =6 gcd(12,18) = 1(0,6) = 6

Example 2
f(63020 , 76084) = f(13064 , 63020) = (10764 , 13064)

— £(2300 , 107640) = f(1564 , 2300) = f(736 , 1564)

f(92 , 736) = £(0 , 92)
ged(63020 , 76084) = £(0 , 92) = 92



Some Consequences of Euclid Algorithm

Definition

m,ne N—{0,1} are relatively prime if and only if
gecd(m,n) =1

Notation nlm for m.,n relatively prime

We now use Euclid Algorithm to derive other properties of
the gcd

The most important one is the following
Division Lemma

When a product ac of two natural numbers is divisible by
anumber b thatis relatively prime to a, the factor c
must be divisible by b



Some Consequences of Euclid Algorithm

Division Lemma written symbolically

If b|ac and alb then b|c

Proof

Since alb,i.e. gcd(m.n)=1, hence the last remainder
r, in the Euclid Algorithm mustbe 1,so E A has a form

a=qib+r

b=qori+r

n—2=Qnfh-1+1



Some Consequences of Euclid Algorithm
Multiply by ¢
ac=qibc+nrc

bc = qgoric+rc

I'n—2C€=Qnlh—1C+C
and b|ac, so b|ric,and hence b|r.c
By Mathematical Induction we get

Vi>1(b|r)

In particular b|r, »c,and hence b|c
It ends the proof



Some Consequences of Euclid Algorithm

Theorem 1

When a number is relatively prime to each of several
numbers, it is relatively prime to their product

Symbolically
If al by, for i=1,2,... k, then a.l biby ... by

Proof By contradiction; we show case i =2 and the rest is
carried by Mathematical Induction

Assume al b and al ¢, and a /A bc

By definition we have hence that gcd(a,bc) # 1, i.e. a has
a common divisor d with bc, i.e. thereis d such that

d|a and d | bc



Some Consequences of Euclid Algorithm

We have that there is d such that
dla and d|bc

and

al b,and d|a, henceweget d L b
We also have

alc,and d|a henceweget d L c

So from d | bcand d | bwe get by the Division Lemma
that d | cwhatis contrary to d L ¢

Exercise Write the full proof by Mathematical Induction



Some Consequences of Euclid Algorithm

Theorem 2
gcd(ka, kb) = k - gcd(a, b)

Proof
gcd(a,b) = r, in the Euclid Algorithm

a=qib+n

'n—2=3Qqn-1+1n
fn—1=Gqny1m+0

We multiply each step by k



Some Consequences of Euclid Algorithm

We multiply each step by k

ka= kg1b+ kry

Krn_2 = KQnfn—1 +Krp
Krn—1 = Qny1kmm+0
This is the Euclid Algorithm for ka, kb and

ged(ka,kb) = k - rn = k - gcd(a, b)



Some Consequences of Euclid Algorithm

Theorem 3
Let d = gcd(a,b) be such that

a=ad and b=0bid

Then

a; L by
Proof
Evaluate using Theorem 2

gcd(a, b)=gcd(aid, bid)

=d-ged(ar , by) = gcd(a,b)ged(as , br)

Sowe get gcd(a; , by) =1, asnk=k iff k=1
This means
a; L b~|



Some Consequences of Euclid Algorithm

The Theorem 3 applies in elementary arithmetic in the
reduction of fractions

Take any fraction and a= a;d, b= bid

a_ad_a
b bid by
for
a; L by

I.e any fraction can be represented in reduced form with
numerator and denominator that are relatively prime



Least Common Multiple

A number m is said to be a common multiple of the
numbers a and b whenitis divisible by both of them

For example, the product ab is a common multiple of a
and b

Since, as before there is only question of divisibility, there
is no limitation in considering only positive multiples

Definition Common Multiple

Let a,bbme”Z

m=cm(a, b) is a common multiple of a and b iff
alm and b|m and m>0



Least Common Multiple

Let A={m: a|m and b|m} be the setof all
common multiples of a and b

This least element is called a least common multiple
(l.e.m.) of a and b and denoted by /cm(a,b)

Remark The least element in the poset (A,]) is its
unique minimal element so it justifies the BOOK definition

lem(a,b)=min{m: m>0 na|lm N b|m}



Least Common Multiple

Theorem 4

Any common multiple of a and b is divisible by Icm(a,b)
Proof

Let m =cm(a,b)

We divide m by lcm(a,b), i.e

m=qlcm(a,b)+r 0<r<lcm(a,b)

But a|lcm(a,b) and b|lcm(a,b)and a|m and b|m
Hence a|r and b|rand r isacommon multiple of a, b

But 0 <r < lecm(a,b), so r=0 what proves that
m=q-lcm(a,b),i.e. m is divisible by lcm(a,b)



Least Common Multiple

Theorem 5
For any a,b € Z* such that Icm(a,b) and gcd(a, b) exist

Icm(a,b)-gcd(a,b) = ab

Theorem 6
lem(a,b) =ab ifandonlyif alb

Exercise Prove both Theorems



PART 2: PRIME NUMBERS



Definition

Definition
A positive integer is called prime if it has only two divisors
1 and itself

We assume convention that 1 is not prime
We denote by P the set of all primes
Symbolically

pePCN ifandonlyif p>1and forany ke Z

if klpthen k=1 or k=p

Some primes

2,3,3,5 7, 11,13, 17, 19,23, 29, 31, 37, ...



Primes

Observe 2 isthe only even prime!

Question Is 91 prime? No, itisn'tas 91=7-13
Definition

ne N, m>1 iscalled composite and denoted by CN, if it
is not prime

Symbolically

ne CN ifandonlyif n<1U3kz(kln N k+1Nk#+n)

Directly from the definition we have that
Fact 1

Vmen—{o13(meP UmecCN) and PNCN=1



Primes

Definition
m,ne N are relatively prime if and only if gcd(m,n) =1
Notation nlm for m,ne N relatively prime
Fact 2
Vpep Vnen (PLn U p|n)
Fact 3

A product of two numbers is divisible by a prime p only
when p divides one of the factors

Symbolically

Vpep Ymnez (P mMn = (p|mUp |n))



Primes

Proof
Assume that Fact 3 is not true, i.e.

JpePImnez (PIMN O prmnp tn)

ptm soby Fact2 plm

Now when p|mn and pLm weget p|n andwe get
a contradiction with p+{n

Fact 4

A product g19-...q, of prime numbers (factors) q; is
divisible by a prime p only when p=g; forsome gq;



Primes

Fact 4

n
Vp.01Gs...GneP (p| H gk = Fi<i<n(P=0i))
k=1

Proof
Let p| H gx- Bythe Fact3 p|qg; for some g; where
qi € P; but p>1as1¢Phence p=g;

Fact 5

Every natural number n, n> 1 is divisible by some
prime



Primes

Fact 5
vnEN,n>1 3pEP (p | n )
Proof
When ne P, thisis evidentas n|n
When n is composite it can be factored n=nyn.
where ny > 1

The smallest possible one of these divisors of ny must
be prime



Main Factorization Theorem

We are now ready to prove the main theorem about
factorization. The idea of this theorem, as well as all
Facts 1-5 we will use in proving it, can be found in
Euclid’s Elementsin Book VIl and Book IX

Main Factorization Theorem

Every composite number can be factored uniquely into
prime factors



Main Factorization Theorem

We present here an "old” and pretty straightforward proof

You have another proof in the Book pages 105-105 and
all this without saying that it is a Theorem, and a quite
important one

Proof We conduct it in two steps

Step1 We show that every composite number n>1 is
product of prime numbers

Step 2 We show the uniqueness



Main Factorization Theorem

Step 1 We show that every composite number n> 1 is
product of prime numbers

By Fact 5 there is p; € P such that n= pyny
If ny is composite, then by Fact 5 again, ny = pono
We continue this process with a decreasing sequence

m>n>n3> ...

of numbers together with a corresponding sequence of
prime numbers

p17 p27 p37
until some n, becomes a prime, i.e. ny = p, and we get

n=p1P2ps3 ...Pk



Main Factorization Theorem

Step 2 We show the uniqueness
Assume that we have two different prime factorizations

N=p1P2Ps --.-Pxk = 414243 -..qm

Each p; | n, so for each p;
m
pil TT ax
k=1

By the Fact4 p;=gq; forsome jand 1<j<m
Conversely, we also have that each q; | n, so for each g;

k
qi | H Pn
n=1

By the Fact4 q,=p, forsome n and 1 <n<k



Main Factorization Theorem

This proves that both sides of

nN=p1pP2P3 ---Pxk =q1G243 -..qm

contain the same primes

The only difference might be that a prime p could occur a
greater number of times on one side then on the other

In this case we cancel p on both sides surfficient number
of times and get equation with p on one side, not the
other

This contradicts just proven the fact that both sides of the
equation contain the same primes



Main Factorization Theorem

We re-write our Theorem in a more formal way as follows

Main Factorization Theorem

Forany ne N, n>1, thereare o N, o;>1, and
prime numbers pi#po# ... #p, r>1, 1<i<r,
such that

.

o (0% Q Q)

n=pi“-pe% - p* =[] px™
k=1

and this representation is unique

p;’ s are different prime factors of n

o; is the multiplicity , i.e. the number of times p; occurs
in the prime factorization



Main Factorization Theorem; General Form

We write our Theorem shortly in @ more general form, as in
the Book (page 107)

Main Factorization Theorem General Form

n:H p% for peP, ap>0
p
and this representation is unique

This is an infinite product, bur for any particular n all but
few exponents o, =0, and p° =1

Hence for a given n itis a finite product



Some Consequences of Main Factorization Theorem

We know, by the Main Factorization Theorem that any
n> 1 has a unique representation

n=[] p" for pecP, n,>0
I

Consider now the poset (P,<), i.e. we have that all prime
numbers in P are in the sequence

P1<Po< ... Pp< ...

2<3<b5«<7<11<13<

and we write
n=]] p" for nj>0

i>1
Because of the uniqueness of the representation we can
represent n as

n=<m, no,N3, ... Ng,... >



Example
Example
Reminder
2<3<5<7<11<13<
Here are few representations
7=7 so 7=<0,0,0,1,0,... =<0,0,0,1>

12=2.2.3=22.3 s0 12=<2,1,0,0,... >=<2.1>
18=2.3.3=2.32 so0 18=<1,2,0,0,... >=<1,2>



Some Consequences of Factorization Theorem
Observe that when we have the general representations
k=[] p*, n=J]p™ and m=]] p™
p p p
then we evaluate

k:n‘m:H pnp . Hpmp:Hpnp+mp
P P p

We have hence proved

Fact 6

k=n-m ifandonlyif ky=np+mp, forall pcP



Some Consequences of Factorization Theorem

Fact 7
Let

m=]]p™ and n=]]p™
P P
Then
m|n ifandonlyif m,<n, forall pecP

Proof
m| n iff thereis k, suchthat n=mk and k=[] p
o

By Fact6 we getthat n=mk iff n,=k,+mp Iiff
mp < np and it ends the proof



Some Consequences of Factorization Theorem

Directly from Fact 7 we definitions we get the following

Fact 8
k=gcd(m,n) ifandonlyif Kk, =min{mp,np}

k =lcd(m,n) ifandonlyif  k,=max{mp,ny,}



Example

Example 1

Let
12=22.3" 18=2".32

ng(1 2’ 18) _ 2min{2,1} . 3min{2,1} — 21 . 31 -6
lem(12, 18) = 2max{21} . gmax{2.1} _ 52 .32 _ 36

Example 2

Let
m=206.32.51.70  p—-25.33.50.70

gcd(m n) — 2min{6,5} . 3min{2,3} . 5min{1 ,0} 7min{0,0} — 25 . 32

lem(m, n)=2°.3%.5.7



Exercises

1. Use Facts 6-8 to prove
Theorem 5
Forany a,b e Z* such that Icm(a,b) and gcd(a, b) exist

Icm(a,b)-gcd(a,b) = ab

2. Use Theorem 5 and the BOOK version of Euclid
Algorithm to express lcm(n mod m, m) when nmodm + 0

This is Ch4 Problem 2



