CSE541 INTUITIVE PREDICATE LOGIC TEST

Due April 26, in class (10 extra points)

NAME ID#

Please read LECTURE NOTES 1, 2 on Predicate Logic. I wrote them for you as a REVIEW of what you should know.

Circle proper answer. WRITE short JUSTIFICATION.)

Give a counter example where needed. If a formula is listed in the Lecture Notes as tautology- just write Basic tautology (or logical equivalence)

lut	ology- just write basic tautology (or logical equivalence)		
1.	$(\exists x A(x) \Rightarrow \forall x A(x))$ is a predicate tautology. Justify:	У	n
2.	For any predicates $A(x)$, $B(x)$, $\neg \forall x (A(x) \cap B(x)) \equiv (\exists x \neg A(x) \cup \exists x \neg B(x))$. Justify:	J	
3.	$\neg \exists x (A(x) \cap B) \equiv \forall x \neg (A(x) \cap \neg B).$	у	n
4.		y	n
5.	Justify: $\forall x (A(x) \cap B(x)) \equiv (\forall x A(x) \cap \forall x B(x))$	y	n
6.	Justify: $\exists x (A(x) \cup B(x)) \equiv (\exists x A(x) \cup \exists x B(x))$	y	n
7.	Justify: $\forall x(x<0)\Rightarrow 2+2\neq 4 \ \ \text{is a true statement in a set of natural numbers.}$	y	n
	Justify: $\forall x \in R(x^2 < 0) \Rightarrow \forall x \in R(x^2 \ge 0)$	у	n
	Justify:	y	n
9.	$x+y>0$, for $x,y\in N$ is a (mathematical) predicate with the domain N. Justify:		

y n

- 10. $\exists x(x < 1) \cup 2 + 2 = 4$ is a true statement in a set of natural numbers numbers. Justify:
- \mathbf{y} n
- 11. $\forall x \in R(x^2 \ge 0) \Rightarrow \exists x \in R(x^2 \ge 0)$ is a true mathematical statement. Justify:

y n

12. $\neg \exists n \exists x (x < \frac{1+n}{n+1}) \equiv \forall n \exists x (x \geq \frac{1+n}{n-1}))$ Justify:

y n

13. $\neg \exists n \exists x (x < \frac{1+n}{n+1}) \equiv \forall n \forall x (x \geq \frac{1+n}{n-1}))$ Justify:

- y n
- 14. The formula $\ \forall x(C(x)\Rightarrow F(x))$ represents sentence: All trees can fly in a domain $X\neq\emptyset$.
 - Justify:

- y n
- 15. The formula $\exists x (C(x) \cap B(x) \cap F(x))$ represents sentence: Some blue flowers are yellow in a domain $X \neq \emptyset$.

 Justify:

y n

16. For any predicates A(x), B(x), the formula $((\forall x A(x) \cup \forall x B(x)) \Rightarrow \forall x (A(x) \cup B(x)))$ is a predicate tautology. Justify:

y n

17. $\exists x A(x) \Rightarrow \forall x A(x)$ is a predicate tautology. Justify:

y n

18. $\neg \forall x (A(x) \cap B(x)) \equiv (\neg \forall x A(x) \cup \exists x \neg B(x)).$ Justify:

y n

19. $\neg \exists x (A(x) \cap B) \equiv \forall x \neg (A(x) \cup \neg B)$.

Justify:

y n

20. $(A(x) \Rightarrow A(x))$ is a predicate tautology. Justify:

r

21. $\forall x (A(x) \cap B(x)) \equiv (\forall x A(x) \cup \forall x B(x))$ Justify:

y n

22. $\exists x (A(x) \cup B(x)) \equiv (\exists x A(x) \cup \exists x B(x))$ Justify:

y n

- 23. $\forall x(x>1) \cup 2 + 2 \neq 4$ is a true statement in a set of Natural numbers. Justify:
- y n
- 24. x+y>0, for $x,y\in N$ is a (mathematical) predicate with the domain N. Justify:
- y n

25. $\forall x \in R(x^2 < 0) \Rightarrow \exists x \in R(x^2 > 0)$ is a true mathematical statement. Justify:

y n

26. $\neg \forall n \exists x (x < \frac{1+n}{n+1}) \equiv \exists n \forall x (x \ge \frac{1+n}{n-1}))$ **Justify:**

- y n
- 27. x+y>0, for $x,y\in N$ is a true (mathematical) predicate with the domain N. Justify:
- y n

28. $(\exists x (A(x) \cup B(x))) \equiv (\exists x A(x) \cup \exists x B(x))$ Justify:

y n

29. $\forall x \in R(x^2 > 0) \Rightarrow \exists x \in R(x^2 > 0)$ is a true mathematical statement. Justify:

y n

30. $\neg \exists n \exists x (x < \frac{1+n}{n+1}) \equiv \forall n \exists x (x \geq \frac{1+n}{n-1}))$ Justify:

- y n
- 31. The formula $\forall x (C(x) \cap F(x))$ represents sentence: All birds can fly in in the domain $X \neq \emptyset$.

 Justify:
- y n

32. For any propositional function A(x) the formula $(\forall x A(x) \Rightarrow \exists x A(x))$ is a predicate tautology. Justify:

- y n
- 33. For any predicates A(x), B, (this means that B does not contain the variable x) the formula
 - $(\forall x(A(x)\Rightarrow B)\Rightarrow (\exists xA(x)\Rightarrow B))$ is a predicate tautology. Justify:

y n

34. For any predicates A(x), B(x), the formula $(\exists x((A(x)\cap B(x))\Rightarrow (\exists xA(x)\cap \exists xB(x)))$ is a predicate tautology. Justify:

y n

35. For any propositional functions A(x), B(x), the formula $(\forall x(A(x) \cup B(x)) \Rightarrow (\forall xA(x) \cup \forall xB(x)))$ is a predicate tautology. Justify:

y n

36.	For any predicates $A(x)$, $B(x)$, the formula		
	$(\forall x(A(x)\Rightarrow B(x))\Rightarrow (\forall xA(x)\Rightarrow \forall xB(x)))$ is a predicate tautology. Justify:		
		\mathbf{y}	n
37.	For any predicates $A(x)$, $B(x)$, the formula $(\exists x(A(x) \Rightarrow B(x)) \Rightarrow (\forall xA(x) \Rightarrow \exists xB(x)))$ is a predicate tautology.		
	Justify:		
		\mathbf{y}	n
38.	For any predicates $A(x)$, $B(x)$, the formula		
	$(\forall x((A(x)\cap B(x))\Rightarrow (\exists xA(x)\cap \exists xB(x)))$ is a predicate tautology.		
	Justify:	\mathbf{y}	n
39.	For any propositional function $A(x)$ the formula	·	
5 5.	$(\forall x A(x) \Rightarrow \forall A(x))$ is a predicate tautology.		
	Justify:		•
		\mathbf{y}	n
40.	For any predicates $A(x)$, B, (this means that B does not contain the variable x) the formula		
	$\forall x(A(x) \Rightarrow B) \Rightarrow (\exists xA(x) \Rightarrow B)$ is a predicate tautology.		
	Justify:		•
		\mathbf{y}	n
41.	For any predicates $A(x)$, $B(x)$, the formula $(\exists x ((A(x) \cap B(x)) \Rightarrow (\exists x A(x) \cap \exists x B(x)))$ is a predicate tautology.		
	Justify:		
		\mathbf{y}	n
42.	3 1		
	$\forall x(A(x) \cup B(x)) \Rightarrow (\forall x A(x) \cup \forall x B(x))$ is a predicate tautology. Justify:		
	oustry.	\mathbf{y}	n
43.	For any predicates $A(x)$, $B(x)$, the formula		
	$(\forall x(A(x)\Rightarrow B(x))\Rightarrow (\forall xA(x)\Rightarrow \forall xB(x)))$ is a predicate tautology.		
	Justify:	у	n
		J	-11
44.	For any predicates $A(x)$, $B(x)$, the formula		
	$((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$ is a predicate tautology.		
	Justify:		
		\mathbf{v}	n