QUESTION 1 (10pts)

1. Use Dedekind theorem to prove that the set \(R \) of real numbers is infinite.

2. Find a function \(f \) that is 1−1 and maps \(R \) \(\text{onto} \) \(R - \{1, 8, 10\} \).

QUESTION 2 (20pts)

Here are some definitions; some of them are known to you and put as a reminder.

Definition 1 By a \textbf{m-valued semantics} \(S_m \) for a propositional language \(L = \{\neg, \land, \lor, \Rightarrow\} \) we understand any definition of of connectives \(\neg, \land, \lor, \Rightarrow \) as operations on a set \(V_m = \{ v_1, v_2, \ldots v_m \} \) of logical values.

We assume that \(v_1 \leq v_2 \leq \ldots \leq v_m \), i.e. \(V_m \) is totally ordered by a certain relation \(\leq \) with \(v_1, v_m \) being smallest and greatest elements, respectively. We denote \(v_1 = F, v_m = T \) and call them (total) False and Truth, respectively.
Definition 2 Let \(\text{VAR} \) be a set of propositional variables of \(\mathcal{L} \) and let \(S_m \) be any \(m \)-valued semantics for \(\mathcal{L} \). A truth assignment \(v : \text{VAR} \rightarrow V_m \) is called a \(S_m \) model for a formula \(A \) of \(\mathcal{L} \) iff \(v(A) = T \) and logical value \(v(A) \) is evaluated accordingly to the semantics \(S_m \). We denote it symbolically as
\[
v \models_{S_m} A.
\]
Any \(v \) such that \(v \) is not a \(S_m \) model for a formula \(A \) is called a counter-model for \(A \).

Definition 3 A formula \(A \) of \(\mathcal{L} \) is called a \(S_m \) tautology iff \(v \models_{S_m} A \), for all \(v \). We denote it by \(\models_{S_m} A \), and \(\models A \) for classical semantics tautologies.

Definition 4 A proof system \(S \) is complete with respect to a semantics \(S_m \) iff for any formula \(A \), the following holds:
\(A \) is provable in \(S \) iff \(A \) is \(S_m \) tautology.

Q2 Part one \((15 \text{pts}) \)
Let \(S_3 \) be a 3-valued semantics for \(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \) defined as follows.
\(V_3 = \{F, U, T\} \), for \(F \leq U \leq T \) and

<table>
<thead>
<tr>
<th>(\cup)</th>
<th>(F)</th>
<th>(U)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(U)</td>
<td>(T)</td>
</tr>
<tr>
<td>(U)</td>
<td>(U)</td>
<td>(U)</td>
<td>(U)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(U)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

\(\neg \) |
\(\neg F \) |
\(T \) ||
\(\neg U \) |
\(F \) ||
\(\neg T \) |
\(F \) | \(U \) |

\(a \cup b = \min\{a, b\} \), \(a \Rightarrow b = \neg a \cup b \), for any \(a, b \in V_3 \).

Consider the following classical tautologies:

\(A_1 = (A \cup \neg A), \quad A_2 = (A \Rightarrow (B \Rightarrow A)). \)

(a) Find \(S_3 \) counter-models for \(A_1, A_2 \), if exist. Use shorthand notation.
(b) Define a 2-valued semantics S_2 for L, such that none of A_1, A_2 is a S_2 tautology. Verify your results. Use shorthand notation.

(c) Define a 3-valued semantics C_3 for L, such that both A_1, A_2 are a C_3 tautologies. Verify your results. Use shorthand notation.

Q2 Part Two (5pts)

Let $S = (L, A_1, A_2, A_3, MP)$ be a proof system with axioms:

A1 $(A \Rightarrow (B \Rightarrow A))$,
A2 $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$,
A3 $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))$,

The system S is complete with respect to classical semantics.

Verify whether S is complete with respect to 3-valued semantics S_3, as defined at the beginning of this question.
QUESTION 3 (15pts)

Let S be from QUESTION 2, PART 2.

The following Lemma holds in the system S.

LEMMA For any $A, B, C \in \mathcal{F}$,

(a) $(A \Rightarrow B), (B \Rightarrow C) \vdash_H (A \Rightarrow C),$

(b) $(A \Rightarrow (B \Rightarrow C)) \vdash_H (B \Rightarrow (A \Rightarrow C)).$

Complete the proof sequence (in S)

$B_1, ..., B_9$

by providing comments how each step of the proof was obtained.

$B_1 = (A \Rightarrow B)$

$B_2 = (\neg\neg A \Rightarrow A)$

Already PROVED

$B_3 = (\neg\neg A \Rightarrow B)$

$B_4 = (B \Rightarrow \neg\neg B)$

Already PROVED

$B_5 = (\neg\neg A \Rightarrow \neg\neg B)$

$B_6 = ((\neg\neg A \Rightarrow \neg\neg B) \Rightarrow (\neg B \Rightarrow \neg A))$

Already PROVED

$B_7 = (\neg B \Rightarrow \neg A)$

$B_8 = (A \Rightarrow B) \vdash (\neg B \Rightarrow \neg A)$

$B_9 = ((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$
QUESTION 4 (35pts)
Consider any proof system \(S \),
\[
S = (\mathcal{L}_{\cap, \cup, \Rightarrow, \neg}, \ AX, (MP) \dfrac{A, (A \Rightarrow B)}{B})
\]
that is complete under classical classical semantics.

Definition 1 Let \(X \subseteq F \) be any subset of the set \(F \) of formulas of the language \(\mathcal{L}_{\cap, \cup, \Rightarrow, \neg} \) of \(S \).
We define a set \(Cn(X) \) of all consequences of the set \(X \) as follows
\[
Cn(X) = \{ A \in F : X \vdash_S A \},
\]
i.e. \(Cn(X) \) is the set of all formulas that can be proved in \(S \) from the set \((AX \cup X) \). The following theorem holds for \(S \).

Part 1 (5pts)
(i) Prove that for any subsets \(X, Y \) of the set \(F \) of formulas the following monotonicity property holds.
If \(X \subseteq Y \), then \(Cn(X) \subseteq Cn(Y) \)

(ii) Prove that for any \(X \subseteq F \), the set \(T \) of all propositional classical tautologies is a subset of \(Cn(X) \), i.e.
\[
T \subseteq Cn(X).
\]
Part two (15pts) Prove that for any $A, B \in F$, $X \subseteq F$,

$$(A \cap B) \in Cn(X) \iff A \in Cn(X) \text{ and } B \in Cn(X)$$

Hint: Use the Monotonicity and Completeness of S i.e. the fact that any tautology you might need is provable in S.
Part Three: (15pts) Prove that for any $A, B \in F$,

$$Cn\{\{A, B\}\} = Cn\{\{A \cap B\}\}$$

Hint: Use Deduction Theorem and Completeness of S.

7
QUESTION 5 (20pts) Given a tautology A, and the set V_A of all truth assignment restricted to A, the Proof 1 of the Completeness Theorem for the system S defines a method of efficiently combining $v \in V_A$ to construct a proof of A in S.

Let consider the following tautology $A = A(a, b)$

$$A = ((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a))$$

Write down all steps of the construction of the proof of A as described in the Proof 1 with justification why they are correct.