Problem 1

Given a proof system:

\[S = (\mathcal{L}_{\neg, \rightarrow}, \ \mathcal{E} = \mathcal{F}, AX = \{(A \rightarrow A), (A \rightarrow (\neg A \rightarrow B))\}, \ (r) \ \frac{(A \rightarrow B)}{(B \rightarrow (A \rightarrow B))}. \]

1. Prove that \(S \) is sound under classical semantics.

2. Prove that \(S \) is not sound under \(\mathbf{K} \) semantics.

3. Write a formal proof in \(S \) with 2 applications of the rule \((r) \).

Solution of 1.

Definition: System \(S \) is sound if and only if

(i) Axioms are tautologies and

(ii) rules of inference are sound, i.e lead from all true premisses to a true conclusion.

We verify the conditions (i), (ii) of the definition as follows.

(i) Both axioms of \(S \) are basic classical tautologies.

(ii) Consider the rule of inference of \(S \).

\((r) \ \frac{(A \rightarrow B)}{(B \rightarrow (A \rightarrow B))}. \)

Assume that its premise (the only premise) is True, i.e. let \(v \) be any truth assignment, such that \(v^*(A \rightarrow B) = T \). We evaluate logical value of the conclusion under the truth assignment \(v \) as follows.

\[v^*(B \rightarrow (A \rightarrow B)) = v^*(B) \rightarrow v^*(A \rightarrow B) = T \]

for any \(B \) and any value of \(v^*(B) \).

Solution of 2. System \(S \) is not sound under \(\mathbf{K} \) semantics because axiom \((A \rightarrow A) \) is not a \(\mathbf{K} \) semantics tautology.

Solution of 3. There are many solutions. Here is one of them.

Required formal proof is a sequence \(A_1, A_2, A_3 \), where

\(A_1 = (A \rightarrow A) \)
(Axiom)

\(A_2 = (A \rightarrow (A \rightarrow A)) \)

Rule \((r) \) application 1 for \(A = A, B = A \).

\(A_3 = ((A \rightarrow A) \rightarrow (A \rightarrow (A \rightarrow A))) \)

Rule \((r) \) application 2 for \(A = A, B = (A \rightarrow A) \).
Problem 2

Prove, by constructing a formal proof that
\[\vdash_S ((\neg A \Rightarrow B) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B))), \]
where \(S \) is the proof system from Problem 1.

Solution: Required formal proof is a sequence \(A_1, A_2 \), where
\[A_1 = (A \Rightarrow (\neg A \Rightarrow B)) \]
Axiom
\[A_2 = ((\neg A \Rightarrow B) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B))) \]
Rule (r) application for \(A = A, B = (\neg A \Rightarrow B) \).

Observe that we needed only one application of the rule (r). One more application of the rule (r) to \(A_2 \) gives another solution to Problem 1, namely a proof \(A_1, A_2, A_3 \) for \(A_1, A_2 \) defined above and
\[A_3 = ((A \Rightarrow (\neg A \Rightarrow B)) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B))) \]
Rule (r) application for \(A = (\neg A \Rightarrow B) \) and \(B = (A \Rightarrow (\neg A \Rightarrow B)) \).

Problem 3

Given a proof system:
\[S = (\mathcal{L}_{\{\cup, \Rightarrow\}}, \mathcal{E} = \mathcal{F}, AX = \{A_1, A_2\}, \mathcal{R} = \{(r)\}), \]
where
\[A_1 = (A \Rightarrow (A \cup B)), \quad A_2 = (A \Rightarrow (B \Rightarrow A)) \]
and
\[(r) \begin{align*}
(A \Rightarrow B) & \quad \frac{(A \Rightarrow (B \Rightarrow A))}{(A \Rightarrow B)}
\end{align*} \]

Prove that \(S \) is sound under classical semantics.

Solution: Axioms of \(S \) are basic classical tautologies. The proof of soundness of the rule of inference is the following.
Assume \((A \Rightarrow B) = T \). Hence the logical value of conclusion is \((A \Rightarrow (A \Rightarrow B)) = (A \Rightarrow T) = T \) for all \(A \).

Problem 4

Determine whether \(S \) from the Problem 3 is sound or not sound under \(K \) semantics.

Solution 1: \(S \) is not sound under \(K \) semantics. Let’s take truth assignment such that \(A = \bot, B = \bot \). The logical value of axiom \(A_1 \) is as follows.
\[(A \Rightarrow (A \cup B)) = (\bot \Rightarrow (\bot \cup \bot)) = \bot \quad \text{and} \quad \not\models_K (A \Rightarrow (A \cup B)). \]

Observe that the \(v \) such that \(A = \bot, B = \bot \) is not the only \(v \) that makes \(A_1 \neq T \), i.e. proves that \(\not\models_K A_1 \).
\((A \Rightarrow (A \cup B)) \neq T \) if and only if \((A \Rightarrow (A \cup B)) = F \) or \((A \Rightarrow (A \cup B)) = \bot \). The first case is impossible because \(A_1 \) is a classical tautology.
Consider the second case. \((A \Rightarrow (A \cup B)) = \bot \) in two cases.
c1 \(A = \bot \) and \((A \cup B) = F\), i.e. \((\bot \cup B) = F\), what is impossible.

\(c2 \) \(A = T \) and \((A \cup B) = \bot\), i.e. \((T \cup B) = \bot\), what is impossible.

\(c3 \) \(A = \bot \) and \((A \cup B) = \bot\), i.e. \((\bot \cup B) = \bot\). This is possible for \(B = \bot \) or \(B = F \), i.e when \(A = \bot, B = \bot \) or \(A = \bot, B = F \).

From the above Observation we get second solution.

Solution 2: \(S \) is not sound under \(K \) semantics. Axiom \(A1 \) is not \(K \) semantics tautology. There are exactly two truth assignments \(v \), such that \(v \not\models A1 \). One is, as defined in Solution 1: \(A = \bot, B = \bot \). The second is \(A = \bot, B = F \).

Problem 5

Write a formal proof \(A_1, A_2, A_3 \) in \(S \) from the Problem 3 with 2 applications of the rule \((r)\) that starts with axiom \(A1 \), i.e such that \(A1 = A1 \).

Solution: The formal proof \(A_1, A_2, A_3 \) is as follows.

\[A_1 = (A \Rightarrow (A \cup B)) \]

Axiom

\[A_2 = (A \Rightarrow (A \Rightarrow (A \cup B))) \]

Rule \((r)\) application for \(A = A \) and \(B = (A \cup B) \)

\[A_3 = (A \Rightarrow (A \Rightarrow (A \Rightarrow (A \cup B)))) \]

Rule \((r)\) application for \(A = A \) and \(B = (A \Rightarrow (A \cup B)) \).

Problem 6

Use results from Problem 4 to determine whether \(\models_K A_3 \).

Solution 1: We use the two \(v \) from QUESTION 3 to evaluate the logical value of \(A_3 \). Namely we evaluate:
\[v^*(A \Rightarrow (A \Rightarrow (A \Rightarrow (A \Rightarrow (A \Rightarrow F)))) = \bot \text{, or } v^*(A \Rightarrow (A \Rightarrow (A \Rightarrow (A \Rightarrow (A \Rightarrow F)))) = \bot \text{. Both cases prove that } \not\models_K A_3 \text{.} \]

Solution 2: We know that \(S \) is not sound, because there is \(v \) for which \(A1 = A_1 = \bot \), as evaluated in Problem 4. We prove that the rule \((r)\) preserves the logical value \(\bot \) under any \(v \) such that \(A1 = \bot \), as follows.

Let the premiss \((A \Rightarrow B) = \bot\), the logical value of the conclusion is hence \((A \Rightarrow \bot) = \bot \) for \(A = \bot, T \) and \((A \Rightarrow \bot) = T \) for \(A = F \).

The case \(A = F \) evaluates the premiss \((A \Rightarrow B) = (F \Rightarrow B) = T \) for all \(B \), what contradicts the assumption that \((A \Rightarrow B) = \bot\). We must hence have \(A = \bot \). But all possible \(v \) for which \(A1 = \bot \) are such that \(A = \bot \), what end the proof.

It means that any \(A \) such that \(A \) has proof that starts with axiom \(A1 \) and then multiple applications of the rule \((r)\) is evaluated to \(\bot \) under all \(v \), such that \(v^*(A1) = \bot \). Hence, in particular, \(\not\models_K A_3 \).

Problem 7

Write a formal proof \(A_1, A_2 \) in \(S \) from the Problem 3 with 1 application of the rule \((r)\) that starts with axiom \(A2 \), i.e such that \(A1 = A2 \).
Solution: The formal proof A_1, A_2 is as follows.

$A_2 = (A \Rightarrow (B \Rightarrow A))$

Axiom

$A_2 = (A \Rightarrow (A \Rightarrow (B \Rightarrow A)))$

Rule (r) application for $A = A$ and $B = (B \Rightarrow A)$.

Problem 8

Use results from Problem 3 to determine whether $\models A_2$.

Solution: System S is sound under classical semantics, hence by the Soundness Theorem we get that $\models (A \Rightarrow (A \Rightarrow (B \Rightarrow A)))$, as it has a proof in S.

Problem 9

Prove, by constructing a formal proof in S from the Problem 3 that

$\vdash_S (A \Rightarrow (A \Rightarrow (A \Rightarrow (A \Rightarrow A))))$.

Solution: $A_2 = (A \Rightarrow (A \Rightarrow A))$

Axiom for $B = A$

$A_2 = (A \Rightarrow (A \Rightarrow (A \Rightarrow A)))$

Rule (r) application for $A = A$ and $B = (A \Rightarrow A)$.

$(A \Rightarrow (A \Rightarrow (A \Rightarrow (A \Rightarrow A))))$

Rule (r) application for $A = A$ and $B = (A \Rightarrow (A \Rightarrow A))$.

4