CSE541 EXERCISE 3

SOLVE ALL PROBLEMS as PRACTICE and only AFTER look at the SOLUTIONS!!

Reminder: We define **H** semantics operations \cup and \cap as follows

$$a \cup b = max\{a, b\}, \quad a \cap b = min\{a, b\}.$$

The Truth Tables for Implication and Negation are:

H-Implication

H Negation

QUESTION 1 We know that

$$v: VAR \longrightarrow \{F, \bot, T\}$$

is such that

$$v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \perp$$

under **H** semantics. **evaluate** $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b))$.

QUESTION 2

We define a 4 valued \mathbf{L}_4 logic semantics as follows. The language is $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$. The logical connectives $\neg, \Rightarrow, \cup, \cap$ of \mathbf{L}_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$, defined as follows.

Negation \neg is a function \neg : $\{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that

$$\neg \bot_1 = \bot_1, \quad \neg \bot_2 = \bot_2, \quad \neg F = T, \quad \neg T = F.$$

Conjunction \cap is a function \cap : $\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$, $a \cap b = min\{a, b\}$.

Disjunction \cup is a function \cup : $\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$, $a \cup b = max\{a, b\}$.

Implication \Rightarrow is a function \Rightarrow : $\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$,

 $a \Rightarrow b = \left\{ \begin{array}{ll} \neg a \cup b & \text{if } a > b \\ T & \text{otherwise} \end{array} \right.$

Part 1 Write all Truth Tables for \mathbf{L}_4

Part 2 Verify whether

$$\models_{\mathbf{L}_4}((a\Rightarrow b)\Rightarrow (\neg a\cup b))$$

QUESTION 3 Prove using proper logical equivalences (list them at each step) that

- 1. $\neg (A \Leftrightarrow B) \equiv ((A \cap \neg B) \cup (\neg A \cap B)),$
- **2.** $((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv ((B \Rightarrow C) \cup (A \Rightarrow B)).$

QUESTION 4 We define an EQUIVALENCE of LANGUAGES as follows:

Given two languages:

 $\mathcal{L}_1 = \mathcal{L}_{CON_1}$ and $\mathcal{L}_2 = \mathcal{L}_{CON_2}$, for $CON_1 \neq CON_2$.

We say that they are logically equivalent, i.e.

$$\mathcal{L}_1 \equiv \mathcal{L}_2$$

if and only if the following conditions C1, C2 hold.

C1: For every formula A of \mathcal{L}_1 , there is a formula B of \mathcal{L}_2 , such that

$$A \equiv B$$
,

C2: For every formula C of \mathcal{L}_2 , there is a formula D of \mathcal{L}_1 , such that

$$C \equiv D$$
.

Prove that $\mathcal{L}_{\{\neg,\cap\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow\}}$.