CSE541 EXERCISE 12

Chapters 10, 11, 12 Read and learn all examples and exercises in the chapters as well!

QUESTION 1

Let GL be the Gentzen style proof system for classical logic defined in chapter 11. Prove, by constructing a proper decomposition tree that

- (1) $\vdash_{\mathbf{GL}}((\neg a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a)).$
- (2) $\not\vdash_{\mathbf{GL}}((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a)).$

QUESTION 2

Show that tree below do not constitute a proof in GL defined in chapter 10? Provide a correct proof.

$$\mathbf{T}_{\to A}$$

$$\longrightarrow \neg \neg ((\neg a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a))$$

$$\mid (\rightarrow \neg)$$

$$\neg ((\neg a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a)) \longrightarrow$$

$$\mid (\neg \rightarrow)$$

$$\longrightarrow ((\neg a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a))$$

$$\mid (\rightarrow \Rightarrow)$$

$$(\neg a \Rightarrow b) \longrightarrow (\neg b \Rightarrow a)$$

$$\mid (\rightarrow \Rightarrow)$$

$$(\neg a \Rightarrow b), \neg b \longrightarrow a$$

$$\mid (\neg \rightarrow)$$

$$(\neg a \Rightarrow b) \longrightarrow b, a$$

$$\bigwedge (\Rightarrow \longrightarrow)$$

QUESTION 3

Let GL be the Gentzen style proof system for classical logic defined in chapter 11. Prove, by constructing a counter-model defined by a proper decomposition tree that

$$\not\models ((a \Rightarrow (\neg b \cap a)) \Rightarrow (\neg b \Rightarrow (a \cup b))).$$

QUESTION 4 Let LI be the Gentzen system for intuitionistic logic as defined in chapter 11. Show that

$$\vdash_{\mathbf{LI}} \neg \neg ((\neg a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a)).$$

QUESTION 5 We know that the formulas below are not Intuitionistic Tautologies. Verify whether **H** semantics (chapter 5) provides a counter-model for them.

$$((a \Rightarrow b) \Rightarrow (\neg a \cup b)),$$

$$((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a)).$$

QUESTION 6 Show that

$$\vdash_{\mathbf{LI}} \neg \neg ((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a))$$

QUESTION 7 Use the heuristic method defined in chapter 12 to prove that

$$\not\vdash_{\mathbf{LI}}((\neg a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a)).$$