CSE541 EXERCISE 01

EQUIVALENCE RELATIONS

QUESTION 1 Given a set A # () and two relations defined in A, i.e. Ry, Ry C A x A.

Determine whether the following relations are, or are not equivalence relations: R1NRy, R{URs, "R =C
AxA— Rl.

In case when a given relation is an equivalence find its equivalence classes.

QUESTION 2 Given an indexed family of EQUIVALENCE Relations {R;}ier defined in a set A # (.
Determine whether

1. (), R: is an equivalence relation,
2. Uer Rt is an equivalence relation, and if it is not, give a counter-example.

QUESTION 3] Given sets X,Y # () and a function f: X — Y. We define a relation ~; on X as follows:
for any z,y € X

avpy if o f(@) = fy).

Prove that ~ is an equivalence. Describe the equivalence classes. Formulate the conditions for ~¢ to
be identity.

QUESTION 3
1. Prove the following

Theorem 1 For any A # (), and any equivalence relation = on A, the family A/ ~ of sets is a partition
of A, i.e.

(i) VldeA/~ ([a] #0)

i.e. all equivalence classes are non-empty.

(i) Vla] #[b] € A/~ ([a]N[0] = 0)

i.e. all equivalence classes are disjoint.

(i) A/ ~= A

i.e sum of all equivalence classes (sets from A/ =) is the set A.
2. Prove the following ”inverse” theorem to the Theorem 1.

Theorem 2 For any A # () and any partition P C P(A) of A, there is an equivalence relation on A such
that its equivalence classes are exactly the sets of the partition P.

3.

Sets R(a) Observe that we can consider, for ANY relation R on A sets that "look” like equivalence
classes i.e. are defined as follows:

R(a) ={be A; aRb} ={bec A; (a,b) € R}.

Fact 1 R is an equivalence on A iff the family {R(a)},c4 is a partition of A.



QUESTION 4 Given a family F of the following intervals of real numbers R,
F=Ala,a+1):a€ Z}.
Define an equivalence relation ~ on R such that its equivalence classes are exactly the sets of F. Prove

that such equivalence exists.

CONSTRUCTION OF INTEGERS and RATIONAL NUMBERS

QUESTION 5 Consider the following relation ~ defined on the set N x N, where N is the set on natural
numbers.
(my,n1) = (ma,n2) iff my+ng=mo+n;.

1. Prove that it is an equivalence and find equivalence classes.
2. Describe how the equivalence classes define positive and negative integers.

3 We have the following definitions of operations of multiplication and addition on those numbers:

[(m1,n1)] + [(m2,n2)] = [(m1 + m2,n1 + na)]

[(m1,n1)] - [(m2,n2] = [(mim2 +n1 + ng, ming + nime)]

Show that they comply with all basic laws in the arithmetic of natural numbers; moreover, that the
substraction can always be defined in the domain of such defined integers.

QUESTION 6 Consider the following relation ~ defined on the set Z x Z — {0}, where N is the set on
natural numbers.
(m1,m1) = (ma,n2) iff mang = mani.

1. Prove that it is an equivalence and find equivalence classes.
2. Describe how the equivalence classes define rational numbers.

3 We have the following definitions of operations of multiplication and addition on those numbers:

[(m1,n1)] + [(m2,n2)] = [(min2 +nimz,ning)]

[(m1,m1)] - [(m2,n2)] = [(mimamnins)]
Show that they comply with all basic laws in the arithmetic of natural numbers; moreover, that the

division by a rational number other then 0, i.e., other then [(m,n)], where m = 0, can always be defined
in the domain of such defined rational numbers.

NOTE on Cantor’s Theory of Real Numbers

Let X be the set of all sequences with rational terms satisfying Cauchy’s condition of convergence.
Thus, a sequence {a, }nen is in X iff the following condition is satisfied:



for every rational number € > 0 there is natural number ng such that for every natural number n and
for every natural number k the condition n > ng implies |a,, — an4i| < €.
Let ~ be an equivalence relation on X defined as:

{an}nEN ~ {bn}nEN fo lzmnﬂoo(an - bn) =0.

The real numbers are defined its the equivalence classes .

POSETS and LATTICES

QUESTION 7 Prove the following
Theorem 1 In any poset (A, <), if a greatest and a least elements exist, then they are unique.
QUESTION 8 Prove the following

Theorem 2 If (4, =) is a finite poset (i.e. A is a finite set), then a unique maximal (if exists) is the
largest element and a unique minimal (if exists) is the least element. item[Theorem 3] In any poset,
the largest element is a unique maximal element and the least element is the unique minimal element.

QUESTION 9 Show that it is possible to to order an infinite set A in such a way that the poset (A, <)
has a unique maximal element (minimal element) and no largest element (least element).

QUESTION 10 Show examples of a set B C A of a poset (A4, <) such that it can have none, finite or
infinite number of lower or upper bounds, depending of ordering.

QUESTION 11 Prove the following theorem:
Theorem 4 If (A,U,N) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.

QUESTION 12 Show that if (A,U,N) is an infinite lattice (i.e. the set A is infinite ), then 1 or 0 might
or might not exist.



