SOLVE ALL PROBLEMS as PRACTICE

FINITE and INFINITE SETS

Definition 1 A set \(A \) is FINITE iff there is a natural number \(n \in N \) and there is a 1−1 function \(f \) that maps the set \(\{1, 2, \ldots, n\} \) onto \(A \).

Definition 2 A set \(A \) is INFINITE iff it is NOT FINITE.

QUESTION 1 Use the above definition to prove the following

FACT 1 A set \(A \) is INFINITE iff it contains a countably infinite subset, i.e. one can define a 1−1 sequence \(\{a_n\}_{n \in N} \) of some elements of \(A \).

Definition 3 Two sets \(A, B \) have the same CARDINALITY iff there is a function \(f \) that maps \(A \) one-to-one onto the set \(B \). We denote it \(|A| = |B| = M \) and \(M \) is called a cardinal number of sets \(A \) and \(B \).

QUESTION 2 Use the above definition and FACT 1 from Question 1 to prove the following characterization of infinite sets.

Dedekind Theorem A set \(A \) is INFINITE iff there is a set proper subset \(B \) of the set \(A \) such that \(|A| = |B| \).

QUESTION 3 Use technique from DEDEKIND THEOREM to prove the following

Theorem For any infinite set \(A \) and its finite subset \(B \), \(|A| = |A - B| \).

QUESTION 4 Use DEDEKIND THEOREM to prove that the set \(N \) of natural numbers is infinite.

QUESTION 5 Use DEDEKIND THEOREM to prove that the set \(R \) of real numbers is infinite.

QUESTION 6 Use technique from DEDEKIND THEOREM to prove that the interval \([a, b], a < b \) of real numbers is infinite and that \(|[a, b]| = |(a, b)| \).

CARDINALITIES OF SETS

Definition 4 For any sets \(A, B \), let \(|A| = \mathcal{N} \) and \(|B| = \mathcal{M} \). We say \(\mathcal{N} \leq \mathcal{M} \) iff \(|A| = |C| \) for some \(C \subseteq B \). We say \(\mathcal{N} < \mathcal{M} \) iff \(\mathcal{N} \leq \mathcal{M} \) and \(\mathcal{N} \neq \mathcal{M} \).

QUESTION 7 Prove, using the above definitions 3 and 4 that for any cardinal numbers \(\mathcal{M}, \mathcal{N}, \mathcal{K} \) the following formulas hold:

- \(\mathcal{N} \leq \mathcal{N} \)
- \(2. \text{If } \mathcal{N} \leq \mathcal{M} \text{ and } \mathcal{M} \leq \mathcal{K}, \text{ then } \mathcal{N} \leq \mathcal{K} \).

QUESTION 8 Prove, for any sets \(A, B, C \) the following holds.
Fact 2

If $A \subseteq B \subseteq C$ and $|A| = |C|$, then $|A| = |B|$.

To prove $|A| = |B|$ you must use definition 3, i.e to construct a proper function. Use the construction from proofs of Fact 1 and Question 3.

QUESTION 9 Prove the following

Berstein Theorem (1898) For any cardinal numbers \mathcal{M}, \mathcal{N}

$\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{N}$ then $\mathcal{N} = \mathcal{M}$.

1. Prove first the case when the sets A, B are disjoint.

2. Generalize the construction for 1. to the not-disjoint case.

REMINDER

Definition 5 A set A is INFINITELY COUNTABLE iff A has the same cardinality as Natural numbers \mathbb{N}, i.e. $|A| = |\mathbb{N}| = \aleph_0$

Definition 6 A set A is COUNTABLE iff A is finite or infinitely countable.

Definition 7 A set A is UNCOUNTABLE iff A is NOT countable.