Chapter 9: Completeness

Theorem: Proof 1

We consider a sound proof system (under classical semantics)

$$S = (\mathcal{L}\{\Rightarrow, \neg\}, \mathcal{AL}, \text{MP})$$

such that the formulas listed below are provable in S.

$$\vdash_S (A \Rightarrow (B \Rightarrow A)),$$

$$\vdash_S ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$$

$$\vdash_S (\neg A \Rightarrow (A \Rightarrow B)),$$

$$\vdash_S ((\neg A \Rightarrow A) \Rightarrow A),$$

$$\vdash_S ((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)),$$
We present here two proofs of the following theorem.

Completeness Theorem For any formula A of S,

$$\models A \text{ if and only if } \vdash_{S} A.$$
OBSERVATION 1 All the above formulas have proofs in the system H_2 and the system H_2 is sound, hence the Completeness Theorem for the system S implies the completeness of the system H_2.

OBSERVATION 2 We have assumed that the system S is sound, i.e. that the following theorem holds for S.

Soundness Theorem

For any formula A of S,

$$\text{if } \vdash_S A, \text{ then } \models A.$$
It means that in order to prove the Completeness Theorem we need to prove only the following implication.

For any formula A of S,

If $\models A$, then $\vdash_S A$.

Both proofs of the Completeness Theorem rely strongly of the Deduction Theorem, as discussed and proved in the previous chapter.
Deduction theorem was proved for the system H_1 that is different than S, but all formulas that were used in its proof are provable in S, so it is valid for S as well, as it was for the system H_2, i.e. the following theorem holds.

Deduction Theorem for S

For any formulas A, B of S and Γ be any subset of formulas of S,

$$\Gamma, \ A \vdash_S B \text{ if and only if } \Gamma \vdash_S (A \Rightarrow B).$$
It is possible to prove theCompleteness Theorem independently from the Deduction Theorem and we will present two of such a proof in later chapters.

The first proof presented here is similar in its structure to the proof of the deduction theorem and is due to Kalmar, 1935.

It shows how one can use the assumption that a formula A is a tautology in order to construct its formal proof. It is hence called a proof - construction method.

The second proof is a proof of the equivalent opposite implication to the Completeness part, i.e. we show how one can deduce that a formula A is not a tautology from the fact that it does not have a proof. It is hence called a counter-model construction method.
Completeness Theorem

A Proof - Construction Method

We first present one definition and to prove one lemma.

We write $\vdash A$ instead of $\vdash_S A$, as the system S is fixed.

Definition Let A be a formula and b_1, b_2, \ldots, b_n be all propositional variables that occur in A.

Let v be variable assignment $v : VAR \rightarrow \{T, F\}$.
DEFINITION 1

We define, for $A, b_1, b_2, ..., b_n$ and v a corresponding formulas $A', B_1, B_2, ..., B_n$ as follows:

\[
A' = \begin{cases}
A & \text{if } v^*(A) = T \\
\neg A & \text{if } v^*(A) = F
\end{cases}
\]

\[
B_i = \begin{cases}
b_i & \text{if } v(b_i) = T \\
\neg b_i & \text{if } v(b_i) = F
\end{cases}
\]

for $i = 1, 2, ..., n.$
Example 1: let A be a formula

$$(a \Rightarrow \neg b)$$

Let v be such that

$$v(a) = T, \quad v(b) = F.$$

In this case: $b_1 = a, \quad b_2 = b$, and $v^*(A) = v^*(a \Rightarrow \neg b) = v(a) \Rightarrow \neg v(b) = T \Rightarrow \neg F = T$.

The corresponding A', B_1, B_2 are:

$$A' = A \quad (\text{as } v^*(A) = T),$$

$$B_1 = a \quad (\text{as } v(a) = T),$$
\[B_2 = -b \text{ (as } v(b) = F). \]
Example 2

Let A be a formula

$$(((\neg a \Rightarrow \neg b) \Rightarrow c)$$

and let v be such that

$$v(a) = T, \quad v(b) = F, v(c) = F.$$

Evaluate $A', B_1, ... B_n$ as defined by the definition 1.
In this case $n = 3$ and

$$b_1 = a, \ b_2 = b, \ b_3 = c,$$

and we evaluate

$$v^*(A) = v^*((\neg a \Rightarrow \neg b) \Rightarrow c) =$$

$$((\neg v(a) \Rightarrow \neg v(b)) \Rightarrow v(c)) =$$

$$((\neg T \Rightarrow \neg F) \Rightarrow F') = (T \Rightarrow F') = F.$$
The corresponding A', B_1, B_2, B_2 are:

$$A' = \neg A = \neg((\neg a \implies \neg b) \implies c)$$

as $v^*(A) = F$,

$$B_1 = a \quad (\text{as } v(a) = T),$$

$$B_2 = \neg b \quad (\text{as } v(b) = F).$$

$$B_3 = \neg c \quad (\text{as } v(c) = F).$$
The lemma stated below describes a method of transforming a semantic notion of a tautology into a syntactic notion of provability. It defines, for any formula A and a variable assignment v a corresponding deducibility relation.

Lemma For any formula A and a variable assignment v, if A', B_1, B_2, ..., B_n are corresponding formulas defined by our definition, then

$$B_1, B_2, ..., B_n \vdash A'.$$
Example 3 Let A, v be as defined by the example 1, then the Lemma asserts that

$$ a, \neg b \vdash (a \Rightarrow \neg b). $$

Example 4 Let A, v be as defined in example 2, then the lemma asserts that

$$ a, \neg b, \neg c \vdash \neg((\neg a \Rightarrow \neg b) \Rightarrow c) $$
Proof of the LEMMA The proof is by induction on the degree of A i.e. a number n of logical connectives in A.

Case: $n = 0$

In the case that $n = 0$ A is atomic and so consists of a single propositional variable, say a.

Clearly, if $v^*(A) = T$ then we $A' = A = a$, $B_1 = a$.

We obtain that

$$a \vdash a$$

by the Deduction Theorem and the fact that $\vdash (A \Rightarrow A)$, i.e. also $\vdash (a \Rightarrow a)$.
In case when $v^*(A) = F$ we have that

$$A' = \neg A = \neg a,$$

$$B_1 = \neg a.$$

We obtain that

$$\neg a \vdash \neg a$$

also by the Deduction Theorem and assumption $\vdash (A \Rightarrow A)$ in S.

This proves that Lemma holds for $n = 0$.
Now assume that the lemma holds for any A with $j < n$ connectives.

Prove: lemma holds for A with n connectives.

There are several subcases to deal with.
Case: A is $\neg A_1$

If A is of the form $\neg A_1$ then A_1 has less then n connectives.

By the inductive assumption we have the formulas

$$A'_1, \ B_1, B_2, \ldots, B_n$$

corresponding to the A_1 and the propositional variables b_1, b_2, \ldots, b_n in A_1, such that

$$B_1, B_2, \ldots, B_n \vdash A'_1$$

Observe, that the formulas A and $\neg A_1$ have the same propositional variables.

So the corresponding formulas B_1, B_2, \ldots, B_n are the same for both of them.
We are going to show that the inductive assumption allows us to prove that the lemma holds for A, ie. that

$$B_1, B_2, ..., B_n \vdash A'.$$

There two cases to consider.

Case: $v^*(A_1) = T$

If $v^*(A_1) = T$ then by definition

$$A'_1 = A_1$$

and by the inductive assumption

$$B_1, B_2, ..., B_n \vdash A_1.$$
In this case: $v^*(A) = v^*(-A_1) = -v^*(T) = F$

So we have that $A' = \neg A = \neg\neg A_1$.

Since we have assumed about S that

$$\vdash (A_1 \Rightarrow \neg\neg A_1)$$

we obtain by the monotonicity that also

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow \neg\neg A_1).$$
By inductive assumption and Modus Ponens we have that also

\[B_1, B_2, \ldots, B_n \vdash \neg \neg A_1, \]

that is

\[B_1, B_2, \ldots, B_n \vdash \neg A, \]

that is

\[B_1, B_2, \ldots, B_n \vdash A'. \]

Case: \(v^*(A_1) = F \)

If \(v^*(A_1) = F \) then \(A'_1 = \neg A_1 \) and \(v^*(A) = T \) so

\[A' = A. \]

Therefore the inductive assumption we have that \(B_1, B_2, \ldots, B_n \vdash \neg A_1 \), that is (as \(A = \neg A_1 \))

\[B_1, B_2, \ldots, B_n \vdash A'. \]
Case: \(A \) is \((A_1 \Rightarrow A_2)\)

If \(A \) is of the form \((A_1 \Rightarrow A_2)\) then \(A_1 \) and \(A_2 \) have less than \(n \) connectives and so by the inductive assumption we have \(B_1, B_2, ..., B_n \vdash A_1' \) and \(B_1, B_2, ..., B_n \vdash A_2' \), where \(B_1, B_2, ..., B_n \) are formulas corresponding to the propositional variables in \(A \). Here we have the following subcases to consider.

Case: \(v^*(A_1) = v^*(A_2) = T \)

If \(v^*(A_1) = T \) then \(A_1' \) is \(A_1 \) and if \(v^*(A_2) = T \) then \(A_2' \) is \(A_2 \). We also have \(v^*(A_1 \Rightarrow A_2) = T \) and so \(A' \) is \((A_1 \Rightarrow A_2)\). By the above and the inductive assumption, therefore, \(B_1, B_2, ..., B_n \vdash A_2 \) and since we have assumed about \(S \) that \(\vdash (A_2 \Rightarrow (A_1 \Rightarrow A_2)) \), we have by monotonicity and Modus Ponens, that \(B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2) \), that is \(B_1, B_2, ..., B_n \vdash A' \).
Case: \(v^*(A_1) = T, v^*(A_2) = F \)

If \(v^*(A_1) = T \) then \(A_1' \) is \(A_1 \) and if \(v^*(A_2) = F \) then \(A_2' \) is \(\neg A_2 \). Also we have in this case \(v^*(A_1 \Rightarrow A_2) = F \) and so \(A' \) is \(\neg(A_1 \Rightarrow A_2) \). By the above and the inductive assumption, therefore, \(B_1, B_2, ..., B_n \vdash \neg A_2 \). Since we have assumed \(?? \) i.e. \(\vdash (A_1 \Rightarrow (\neg A_2 \Rightarrow \neg(A_1 \Rightarrow A_2))) \), we have by monotonicity and Modus Ponens twice, that \(B_1, B_2, ..., B_n \vdash \neg(A_1 \Rightarrow A_2) \), that is \(B_1, B_2, ..., B_n \vdash A' \).

Case: \(v^*(A_1) = F \)

If \(v^*(A_1) = F \) then \(A_1' \) is \(\neg A_1 \) and, whatever value \(v \) gives \(A_2 \), we have \(v^*(A_1 \Rightarrow A_2) = T \) and so \(A' \) is \((A_1 \Rightarrow A_2) \). Therefore, \(B_1, B_2, ..., B_n \vdash \neg A_1 \) and since by \(?? \) we have \(\vdash (\neg A_1 \Rightarrow (A_1 \Rightarrow A_2)) \), by monotonicity and Modus Ponens we get that \(B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2) \), that is \(B_1, B_2, ..., B_n \vdash A' \).
With that we have covered all cases and, by induction on n, the proof of the lemma is complete.

Proof of the Completeness Theorem

Assume that $\models A$.

Let $b_1, b_2, ..., b_n$ be all propositional variables that occur in A.

By the lemma we know that, for any variable assignment v, the corresponding formulas $A', B_1, B_2, ..., B_n$ can be found such that

$$B_1, B_2, ..., B_n \vdash A'.$$
Note here that A' of the definition is A for any v since $|=A$.

Hence, if v is such that $v(b_n) = T$, then B_n is b_n and

$$B_1, B_2, ..., b_n \vdash A.$$

If $v(b_n) = F$, then B_n is $\neg b_n$ and by the lemma

$$B_1, B_2, ..., \neg b_n \vdash A.$$

So, by the Deduction Theorem, we have

$$B_1, B_2, ..., B_{n-1} \vdash (b_n \Rightarrow A)$$

and

$$B_1, B_2, ..., B_{n-1} \vdash (\neg b_n \Rightarrow A).$$
By monotonicity and $\vdash_S ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$

we have that
\[B_1, B_2, \ldots, B_{n-1} \vdash ((b_n \Rightarrow A) \Rightarrow ((\neg b_n \Rightarrow A) \Rightarrow A)). \]

Applying Modus Ponens twice we get that
\[B_1, B_2, \ldots, B_{n-1} \vdash A. \]

Similarly, $v^*(B_{n-1})$ may be T or F, and, again applying Deduction Theorem, monotonicity, and $\vdash_S ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$, and Modus Ponens twice we can eliminate B_{n-1} just as we eliminated B_n.

After n steps, we finally obtain $\vdash A$.