cse541
LOGIC for COMPUTER SCIENCE

Professor Anita Wasilewska
LECTURE 2a
Chapter 2
Introduction to Classical Logic Languages and Semantics
Chapter 2
Introduction to Classical Logic Languages and Semantics

Lecture 2a
Part 1: Classical Logic Model
Part 2: Propositional Language
Part 3: Propositional Semantics
Part 4: Examples of Propositional Tautologies

Lecture 2b
Part 5: Predicate Language
Part 6: Predicate Tautologies- Laws for Quantifiers
Very Short History

Logic Origins: Stoic school of philosophy (3rd century B.C.), with the most eminent representative was Chryssipus.

Modern Origins: Mid-19th century

English mathematician G. Boole, who is sometimes regarded as the founder of mathematical logic

First Axiomatic System: 1879 by German logician G. Frege.
Chapter 2
Introduction to Classical Logic Languages and Semantics

Part 1: Classical Logic Model
Logic builds symbolic models of our world.

Logic builds the models in order to describe formally the ways we reason in and about our world.

Logic also poses questions about correctness of such models and develops tools to answer them.
Classical Model Assumptions

Assumption 1
Classical logic model admits only two logical values

Why two logical values only?

Classical logic was created to model the reasoning principles of mathematics

We expect from mathematical theorems to be always either true or false and the reasonings leading to them should guarantee this without any ambiguity
Classical Model Assumptions

Assumption 2

1. The language in which we reason uses sentences

2. The sentences are build up from basic assertions about the world using special words or phrases:
 "not", "not true" ”and”, "or", ”implies”, ”if then”, ”from the fact that we can deduce”, ”if and only if”, ”equivalent”, ”every”, ”for all”, ”any”, ”some”,” exists”

3. We use symbols do denote basic assertions and special words or phrases

Hence the name symbolic logic
Logic

Logic studies the behavior of the special words and phrases. Special words and phrases have accepted intuitive meanings.

Logic builds models to formalize these intuitive meanings.

To do so we first define formal symbolic languages and then define a formal meaning of their symbols.

The formal meaning is called semantics.
Propositional Connectives

The **symbols** for the special words and phrases are called **propositional connectives**

There are **different choices of symbols** for the propositional connectives; we **adopt** the following:

- for "not", "not true"
- for "and"
- for "or"
- for "implies", "if then", "from the fact that... we can deduce"
- for "if and only if", "equivalent"

The **names** for the **propositional connectives** are:

- negation
- conjunction, disjunction
- implication and equivalence.
Propositional Logic

Restricting our attention to the role of propositional connectives yields to what is called propositional logic. The basic components of the propositional logic are a propositional language and a propositional semantics. The propositional logic is a quite simple model to justify, describe and develop. We will devote first few chapters to it. We do it both for its own sake and because it provides a good background for developing and understanding more difficult logics to follow.
We use symbols:

∀ for "every", "any", "all"

∃ for "some", "exists", "there is"

The symbols ∀, ∃ are called quantifiers

Consideration and study of the role of propositional connectives and quantifiers leads to what is called a predicate logic

The basic components of the predicate logic are predicate language and predicate semantics

The predicate logic is a much more complicated model

We develop and study it in full formality in chapters following the introduction and examination of the propositional logic model
Chapter 2
Introduction to Classical Logic Languages and Semantics

Part 2: Propositional Language
Propositional Language

Propositional language is a quite simple, symbolic language into which we can **translate (represent)** sentences of a natural language.

Example

Consider natural language sentence

"If 2 + 2 = 5, then 2 + 2 = 4"

We translate it into the **propositional language** as follows.

We **denote** the **basic assertion** (proposition) "2 + 2 = 5" by a variable, let's say \(a \), and the proposition "2 + 2 = 4" by a variable \(b \).

We write a connective \(\Rightarrow \) for "if then"

As a result we obtain a propositional language **formula**

\[(a \Rightarrow b)\]
Exercise

Translate a natural language sentence S
"The fact that it is not true that at the same time $2+2 = 4$ and $2+2 = 5$ implies that $2+2 = 4$"

into a corresponding propositional language formula

We carry the translation as follows

1. We identify all words and phrases representing the logical connectives and we re-write the sentence S in a simpler form introducing parenthesis to better express its meaning
Propositional Translation

The sentence S becomes:
” If not $(2 + 2 = 4$ and $2 + 2 = 5)$ then $2 + 2 = 4$”

2.
We identify the **basic assertions** (propositions) and **assign** propositional variables to them:

\[a : \ "2 + 2 = 4" \quad \text{and} \quad b : \ "2 + 2 = 5" \]

Step 3
We write the **propositional language** formula:

\[(\neg (a \land b) \Rightarrow a) \]
A formal description of symbols and the definition of the set of formulas is called a syntax of a symbolic language. We use the word syntax to stress that the formulas do not carry neither formal meaning nor a logical value. We assign the meaning and logical value to syntactically defined formulas in a separate step. This next, separate step is called a semantics of the given symbolic language. A given symbolic language can have different semantics and the different semantics can define different logics.
Natural Languages

One can think about a natural language as a set W of all words and sentences based on a given alphabet A.

This leads to a simple, abstract model of a natural language NL as a pair

$$NL = (A, W)$$

Some natural languages share the same alphabet, some have different alphabets.

All of them face serious problems with a proper recognition and definitions of accepted words and complex sentences.
Symbolic Languages

We do not want the symbolic languages to share the difficulties of the natural languages.

We define their components precisely and in such a way that their recognition and correctness will be easily decided.

We call their words and sentences formulas and denote the set of all formulas by \mathcal{F}.

We define a symbolic language as a pair

$$SL = (A, \mathcal{F})$$
Symbolic Languages Categories

We distinguish two categories of symbolic languages:

propositional and **predicate**

We define first the **propositional** language.

The definition of the **predicate language**, with its much more complicated structure will follow.
Propositional Language Definition

Definition

By a **propositional language** \(L \) we understand a pair

\[L = (\mathcal{A}, \mathcal{F}) \]

where \(\mathcal{A} \) is called propositional **alphabet**

\(\mathcal{F} \) is called a set of **all well formed formulas**
Language Components: Alphabet

1. Alphabet \mathcal{A}

The alphabet \mathcal{A} consists of a countably infinite set VAR of propositional variables, a finite set of propositional connectives, and a set of two parenthesis.

We denote the propositional variables by letters a, b, c, p, q, r, \ldots with indices if necessary. It means that we can also use $a_1, a_2, \ldots, b_1, b_2, \ldots$ as symbols for propositional variables.
Language Components: Alphabet

Propositional connectives are:

\[\neg, \cap, \cup, \Rightarrow, \Leftrightarrow \]

The connectives have well established names:
The connectives names are:

- negation
- conjunction
- disjunction
- implication
- and equivalence (biconditional)

for the connectives \(\neg, \cap, \cup, \Rightarrow, \) and \(\Leftrightarrow \), respectively

Parenthesis are symbols (and)
Formulas are expressions build by means of elements of the alphabet \mathcal{A}. We denote formulas by capital letters A, B, C, D,, with indices, if necessary. The set \mathcal{F} of all formulas of the propositional language \mathcal{L} is defined recursively as follows

1. **Base step:** all propositional variables are are formulas. They are called atomic formulas.

2. **Recursive step:** for any already defined formulas A, B, the expressions

 $\neg A, \ (A \cap B), \ (A \cup B), \ (A \Rightarrow B), \ (A \Leftrightarrow B)$

 are also formulas.

3. Only those expressions are formulas that are determined to be so by means of conditions 1. and 2.
Formulas Example

By the definition, any propositional variable is a formula. Let’s take two variables \(a \) and \(b \).
By the recursive step we get that

\[(a \cap b), (a \cup b), (a \Rightarrow b), (a \iff b), \neg a, \neg b\]

are formulas.
The recursive step applied again produces for example formulas:

\[\neg (a \cap b), ((a \iff b) \cup \neg b), \neg \neg a, \neg \neg (a \cap b)\]
Observe that we listed only few formulas obtained in the first recursive step.

As as the recursive process continue we obtain a set of well formed of formulas.

The set of all formulas is countably infinite.
Formulas

Remark that we put *parenthesis* within the *formulas* in a way to avoid *ambiguity*

The expression

\[a \cap b \cup a \]

is *ambiguous*

We don’t know whether it represents a formula

\[(a \cap b) \cup a \quad \text{or a formula} \quad a \cap (b \cup a) \]

Observe that *neither* of formulas \(a \cap b \cup a, \ (a \cap b) \cup a \) or \(a \cap (b \cup a) \) is a *well formed formula*
Exercises

Exercise
Consider a following set

\[S = \{ \neg a \Rightarrow (a \cup b), ((\neg a) \Rightarrow (a \cup b)), \neg(a \Rightarrow (a \cup b)), (a \rightarrow a) \} \]

1. **Determine** which of the elements of \(S \) are, and which are not well formed formulas of \(L = (\mathcal{A}, \mathcal{F}) \)

2. For any \(A \notin \mathcal{F} \) re-write it as a **correct** formula and write what it says in the **natural language**
Solution
The formula $\neg a \Rightarrow (a \cup b)$ is not a well formed formula.
A corrected formula is $(\neg a \Rightarrow (a \cup b))$
It says: "If a is not true, then we have a or b"

Another corrected formula is $\neg (a \Rightarrow (a \cup b))$
It says: "It is not true that a implies a or $b"
Exercises

Solution

The formula \(((\neg a) \Rightarrow (a \cup b))\) is not correct because \((\neg a) \notin \mathcal{F}\)

The correct formula is \((\neg a \Rightarrow (a \cup b))\)

The formula \((a \Rightarrow (a \cup b))\) is correct

The formula \((a \rightarrow a) \notin \mathcal{F}\) is not correct

The connective \(\rightarrow\) does not belong to the language \(\mathcal{L}\)

\((a \rightarrow a)\) is a correct formula of another propositional language; the one that uses a symbol \(\rightarrow\) for implication
Exercises

Exercise
Write following natural language statement:
"One likes to play bridge or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes swimming"
as a formula of the propositional language $L = (A, F)$

Solution
First we identify the needed components of the alphabet A:

propositional variables: a, b, c

a denotes statement: one likes to play bridge, b denotes a statement: the weather is good, c denotes a statement: one likes swimming

Connectives: $\cup, \Rightarrow, \cup, \neg$

The corresponding formula of L is

$$(a \cup (b \Rightarrow (\neg a \cup c)))$$
Symbols for Connectives

The connectives symbols we use are not the only one used in mathematical, logical, or computer science literature.

Some Other Symbols

<table>
<thead>
<tr>
<th>Negation</th>
<th>Disjunction</th>
<th>Conjunction</th>
<th>Implication</th>
<th>Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg A)</td>
<td>(A \cup B)</td>
<td>(A \cap B)</td>
<td>(A \Rightarrow B)</td>
<td>(A \Leftrightarrow B)</td>
</tr>
<tr>
<td>NA</td>
<td>DAB</td>
<td>CAB</td>
<td>IAB</td>
<td>EAB</td>
</tr>
<tr>
<td>(\overline{A})</td>
<td>(A \vee B)</td>
<td>(A \land B)</td>
<td>(A \rightarrow B)</td>
<td>(A \leftrightarrow B)</td>
</tr>
<tr>
<td>(\sim A)</td>
<td>(A \lor B)</td>
<td>(A \cdot B)</td>
<td>(A \supset B)</td>
<td>(A \equiv B)</td>
</tr>
<tr>
<td>(A')</td>
<td>(A + B)</td>
<td>(A \cdot B)</td>
<td>(A \rightarrow B)</td>
<td>(A \equiv B)</td>
</tr>
</tbody>
</table>

The first notation is the closest to ours and is drawn mainly from the algebra of sets and lattice theory.

The second comes from the Polish logician J. Łukasiewicz and is called the Polish notation.

The third was used by D. Hilbert.

The fourth comes from Peano and Russell.

The fifth goes back to Schröder and Pierce.
Chapter 2
Introduction to Classical Logic Languages and Semantics

Part 3: Propositional Semantics
Propositional Semantics

We present now definitions of propositional connectives in terms of two logical values true or false and discuss their motivations.

The resulting definitions are called a semantics for the classical propositional connectives.

The semantics presented here is fairly informal.

The formal definition of classical propositional semantics is presented in chapter 4.
Conjunction: Motivation and Definition

Conjunction

A conjunction \((A \cap B)\) is a true formula if both \(A\) and \(B\) are true formulas.

If one of the formulas, or both, are false, then the conjunction is a false formula.

Let’s denote statement: ”formula \(A\) is false ” by \(A = F\) and a statement: ”formula \(A\) is true ” by \(A = T\).
Conjunction: Definition

Conjunction

The logical value of a conjunction depends on the logical values of its factors in a way which is express in the form of the following table (truth table)

Conjunction Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>((A \cap B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Disjunction

The word or is used in natural language in two different senses.

First: A or B is true if at least one of the statements A, B is true

Second: A or B is true if one of the statements A and B is true and the other is false

In mathematics and hence in logic, the word or is used in the first sense
Disjunction: Definition

Disjunction
We adopt the convention that a disjunction \((A \cup B)\) is true if at least one of the formulas \(A\), \(B\) is true.

Disjunction Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>((A \cup B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Negation: Definition

Negation

The **negation** of a **true** formula is a **false** formula, and the negation of a **false** formula is a **true** formula

Negation Table

<table>
<thead>
<tr>
<th>A</th>
<th>$\neg A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Implication: Motivation and Definition

The semantics of the statements in the form

if A, then B

needs a little bit more discussion.

In everyday language a statement if A, then B is interpreted to mean that B can be inferred from A.

In mathematics its interpretation differs from that in natural language
Implication: Motivation and Definition

Consider the following

Theorem

For every natural number \(n \),

\[
\text{if } 6 \text{ DIVIDES } n, \text{ then } 3 \text{ DIVIDES } n
\]

The theorem is **true** for any natural number, hence in particular, it is **true** for numbers 2, 3, 6

Consider number 2

The following proposition is **true**

\[
\text{if } 6 \text{ DIVIDES } 2, \text{ then } 3 \text{ DIVIDES } 2
\]

It means an implication \((A \Rightarrow B)\) in which \(A\) and \(B\) are **false** is interpreted as a **true** statement
Implication: Motivation and Definition

Consider now a number 3
The following proposition is true
if 6 DIVIDES 3, then 3 DIVIDES 3,
It means that an implication \((A \Rightarrow B)\) in which \(A\) is false and \(B\) is true is interpreted as a true statement

Consider now a number 6
The following proposition is true
if 6 DIVIDES 6, then 3 DIVIDES 6.
It means that an implication \((A \Rightarrow B)\) in which \(A\) and \(B\) are true is interpreted as a true statement
Implication: Motivation and Definition

One more case.

What happens when in the implication \((A \Rightarrow B)\) the formula \(A\) is true and the formula \(B\) is false

Consider a sentence

if 6 DIVIDES 12, then 6 DIVIDES 5.

Obviously, this is a false statement
Implication: Definition

Implication

The above examples *justify* adopting the following definition of a semantics for the implication \((A \Rightarrow B)\)

Implication Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>((A \Rightarrow B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Equivalence Definition

Equivalence
An equivalence \((A \Leftrightarrow B)\) is true if both formulas A and B have the same logical value

Equivalence Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \Leftrightarrow B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
We **summarize** the tables for propositional connectives in the following one table.

We call it a **truth table definition** of propositional connectives and hence we call the semantics defined here a **truth tables semantics**.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>¬A</th>
<th>(A ∩ B)</th>
<th>(A ∪ B)</th>
<th>(A ⇒ B)</th>
<th>(A ⇔ B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Truth Tables Semantics

We **summarize** the tables for propositional connectives in the following one table.

We call it a **truth table definition** of propositional connectives and hence we call the semantics defined here a **truth tables semantics**.
Truth Tables Semantics

The truth tables indicate that the logical value of of propositional connectives independent of the formulas A, B. We write the connectives in a "formula independent" form as a set of the following equations:

\[\neg T = F, \quad \neg F = T; \]
\[(T \cap T) = T, \quad (T \cap F) = F, \quad (F \cap T) = F, \quad (F \cap F) = F; \]
\[(T \cup T) = T, \quad (T \cup F) = T, \quad (F \cup T) = T, \quad (F \cup F) = F; \]
\[(T \Rightarrow T) = T, \quad (T \Rightarrow F) = F, \quad (F \Rightarrow T) = T, \quad (F \Rightarrow F) = T; \]
\[(T \Leftrightarrow T) = T, \quad (T \Leftrightarrow F) = F, \quad (F \Leftrightarrow T) = F, \quad (T \Leftrightarrow T) = T \]

We use the above set of connectives equations to evaluate logical values of formulas.
Exercise

Exercise
Show that \((A \Rightarrow (\neg A \cap B)) = F\) for the following logical values of its basic components: \(A=\text{T}\) and \(B=\text{F}\)

Solution
We calculate the logical value of the formula

\[(A \Rightarrow (\neg A \cap B))\]

by substituting the respective logical values \(\text{T}, \text{F}\) for the component formulas \(A, B\) and applying the set of connectives equations as follows

\[(T \Rightarrow (\neg T \cap F)) = (T \Rightarrow (F \cap F)) = (T \Rightarrow F) = \text{F}\]
Extensional Connectives

Extensional connectives are the connectives that have the following property:
the logical value of the formulas form by means of these connectives and certain given formulas depends only on the logical value(s) of the given formulas.

All classical **propositional connectives**

\[\neg, \cup, \cap, \Rightarrow, \Leftrightarrow \]

are **extensional**
Propositional Connectives

Remark
In everyday language there are expressions such as "I believe that", "it is possible that", "certainly", etc....
They are represented by some propositional connectives which are not extensional

They do not play any role in mathematics and so are not discussed in classical logic, they belong to non-classical logics
All Extensional Two Valued Connectives

There are many other binary (two valued) extensional propositional connectives

Here is a table of all unary connectives

<table>
<thead>
<tr>
<th>A</th>
<th>(\nabla_1 A)</th>
<th>(\nabla_2 A)</th>
<th>(\neg A)</th>
<th>(\nabla_4 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
All Extensional Binary Connectives

Here is a table of all binary connectives

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A_{01}B)</th>
<th>(A\cap B)</th>
<th>(A_{03}B)</th>
<th>(A_{04}B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A_{05}B)</th>
<th>(A_{06}B)</th>
<th>(A_{07}B)</th>
<th>(A \Leftrightarrow B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A_{09}B)</th>
<th>(A_{10}B)</th>
<th>(A_{11}B)</th>
<th>(A \cup B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A_{13}B)</th>
<th>(A \Rightarrow B)</th>
<th>(A \uparrow B)</th>
<th>(A_{16}B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of defining some connectives in terms of some others.

All classical propositional connectives can be defined in terms of disjunction and negation.

Two binary connectives: \downarrow and \uparrow suffice, each of them separately, to define all classical connectives, whether unary or binary.
Functional Dependency

The connective \uparrow was discovered in 1913 by H.M. Sheffer, who called it alternative negation. Now it is often called a Sheffer’s connective.

The formula

$A \uparrow B$ reads: not both A and B.

Negation $\neg A$ is defined as $A \uparrow A$.

Disjunction $(A \cup B)$ is defined as $(A \uparrow A) \uparrow (B \uparrow B)$.
Functional Dependency

The connective \(\downarrow \) was discovered by J. Łukasiewicz and is called a joint negation.

The formula
\[A \downarrow B \text{ reads: neither } A \text{ nor } B. \]

It was proved in 1925 by E. Żyliński that no propositional connective other than \(\uparrow \) and \(\downarrow \) suffices to define all the remaining classical connectives.
Chapter 2
Introduction to Classical Logic Languages and Semantics

Part 4: Propositional Tautologies
Propositional Tautologies

Now we connect **syntax** (formulas of a given language \(\mathcal{L} \)) with **semantics** (assignment of truth values to the formulas of the language \(\mathcal{L} \))

In **logic** we are interested in those propositional **formulas** that must be **always true** because of their **syntactical structure** **without reference** to the **natural language meaning** of the **propositions** they **represent**

Such formulas are called **propositional tautologies**
Example

Given a formula \((A \Rightarrow A)\)

We evaluate the logical value of our formula for all possible logical values of its basic component \(A\)

We put our calculation in a form of a table, called a truth table below:

<table>
<thead>
<tr>
<th>(A)</th>
<th>((A \Rightarrow A)) computation</th>
<th>((A \Rightarrow A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>((T \Rightarrow T) = T)</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>((F \Rightarrow F) = T)</td>
<td>T</td>
</tr>
</tbody>
</table>

The logical value of the formula \((A \Rightarrow A)\) is always T

This means that it is a propositional tautology.
Example

Here is a truth table for a formula \((A \Rightarrow B)\)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>((A \Rightarrow B)) computation</th>
<th>((A \Rightarrow B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>((T \Rightarrow T) = T)</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>((T \Rightarrow F) = F)</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>((F \Rightarrow T) = T)</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>((F \Rightarrow F) = T)</td>
<td>T</td>
</tr>
</tbody>
</table>

The logical value of the formula \((A \Rightarrow B)\) is F for \(A = T\) and \(B = F\) what means that it is not a propositional tautology
Tautology Definition

Definition

For any formula \(A \in \mathcal{F} \) of a propositional language \(\mathcal{L} = (\mathcal{A}, \mathcal{F}) \), we say that \(A \) is a propositional tautology if and only if the \textit{logical value} of \(A \) is \(T \) (we write it \(A = T \)) for \textit{all possible logical values} of its \textit{basic components}.

We write

\[\models A \]

to denote that \(A \) is a \textit{tautology}.
Classical Tautologies

Here is a list of some of the most known classical notions and tautologies:

Modus Ponens known to the Stoics (3rd century B.C)

\[\vdash ((A \cap (A \Rightarrow B)) \Rightarrow B) \]

Detachment

\[\vdash ((A \cap (A \iff B)) \Rightarrow B) \]

\[\vdash ((B \cap (A \iff B)) \Rightarrow A) \]
Sufficient and Necessary

Sufficient: Given an implication \((A \Rightarrow B)\),
A is called a *sufficient condition* for B to hold.

Necessary: Given an implication \((A \Rightarrow B)\),
B is called a *necessary condition* for A to hold.
Implication Names

Simple:
\((A \Rightarrow B)\) is called a simple implication

Converse:
\((B \Rightarrow A)\) is called a converse implication to \((A \Rightarrow B)\)

Opposite:
\((\neg B \Rightarrow \neg A)\) is called an opposite implication to \((A \Rightarrow B)\)

Contrary:
\((\neg A \Rightarrow \neg B)\) is called a contrary implication to \((A \Rightarrow B)\)
Laws of contraposition

Laws of Contraposition

\[\models ((A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)), \]
\[\models ((B \Rightarrow A) \iff (\neg A \Rightarrow \neg B)). \]

These Laws make it possible to replace, in any deductive argument, a sentence of the form \((A \Rightarrow B)\) by \((\neg B \Rightarrow \neg A)\), and conversely.
Necessary and sufficient

We read the formula \((A \iff B)\) as "B is necessary and sufficient for A" because of the following tautology

\[\models ((A \iff B)) \iff ((A \Rightarrow B) \cap (B \Rightarrow A)))\]
Stoics, 3rd century B.C.

Hypothetical Syllogism

\[\models (((A \Rightarrow B) \cap (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)), \]
\[\models ((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))), \]
\[\models ((B \Rightarrow C) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))). \]

Modus Tollendo Ponens

\[\models (((A \cup B) \cap \neg A) \Rightarrow B), \]
\[\models (((A \cup B) \cap \neg B) \Rightarrow A) \]
12 to 19 Century

Duns Scotus 12/13 century

\[\models (\neg A \Rightarrow (A \Rightarrow B)) \]

Clavius 16th century

\[\models ((\neg A \Rightarrow A) \Rightarrow A) \]

Frege 1879

\[\models (((A \Rightarrow (B \Rightarrow C)) \cap (A \Rightarrow B)) \Rightarrow (A \Rightarrow C)), \]

\[\models ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))) \]

Frege gave the first formulation of the classical propositional logic as a formalized axiomatic system
Apagogic Proofs

Apagogic Proofs: means proofs by reductio ad absurdum

Reductio ad absurdum: to prove A to be true, we assume $\neg A$
If we get a contradiction, it means that we have proved A to be true

Correctness of this reasoning is guarantee by the following tautology

$$\models ((\neg A \Rightarrow (B \cap \neg B)) \Rightarrow A)$$
Chapter 2 Classical Tautologies

Chapter 2 contains a very extensive list of classical propositional tautologies

Read, prove, and memorize as many as you can

We will use them freely in later Chapters assuming that you are really familiar with all of them