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Basic Predicate Logic Tautologies

De Morgan Laws
- Vx A(x) = I x-A(x)
- I x A(x) = V x -A(x)

where A(x) is any formula with free variable x,

= means “logically equivalent”

Definability of Quantifiers
V x A(x) =- I x-A(x)
I x A(x) = - V x-A(x)



Application Example

De Morgan and other Laws Application in Mathematical
Statements

- Vx((x>0 = x+y >0) A Ty (y<0))
= (by De Morgan’s Law)

Ix - ((x>0 = x+y >0) A Ty (y <0))
= (by De Morgan’s Law and 1., 2,, 3., 4.)

Ix((x>0 A x+y <0) V Vy(y 20))
We used
1.-(A=>B)=(AA-B), 2.-(AAB)=(-AV -B)
3.-(x+y)>0)=x+y <0
4, - dy(y<0)=Vy-(y<0)
=dy(y20)



Math Statement -to -Logic Formula

Mathematical statement

- Vx((x<0 = x+y >0) A Ty (y<0))
Corresponding Logic Formula is

= Vx((P(x,c) =R(f(x,y),c) )A Ty P(y,c))

More general; A(x), B(x) any formulas
V x((A(x) =B(x,y)) A TyA(y))

= dx ~((A(x) = B(x,y)) A Ty Aly))

= Ax((A(x) A =-B(x,y)) V = TyAly))
= Ix ((A(x) A -B(x,y)) V Vy-A/y))

J



Distributivity Laws

1. Ix(A(x) V B(x))=(IxA(x) V T xB(x))
Existential quantifier is distributive over V

What we write as (3 x, V)

2. Vx(A(x) A B(x))=(VYxA(x) A VxB(x))

Universal quantifier is distributive over A, what
we writeas (Vx, A)

Existential quantifier is distributive over A only in
one direction:

3. Ix(A(x) A B(x))=(IxA(x) A IxB(x))



Distributivity Laws

We show the inverse implication

(IxA(x) A IxB(x)) = Ix(A(x) A B(x))

is NOT a predicate tautology;

It means that it is not true, that the implication
(IxA(x) A IxB(x)) = Ix(A(x) A B(x))

holds forany X # ® and for any A(x), B(x)
defined in the set X

To prove it we have to show that

there are X # ¢, A(x), B(x) defined in X# ¢ for
which this implication is FALSE



Not a Tautology

The formula
(IxA(x) A IxB(x)) = Ix(A(x) A B(x))
Is not a predicate tautology
Here is a counter- example
Take: X =R (real numbers),
A(x): x>0 and B(x): x<O we get that

I x (x>0) A I x(x<0) is a true statement in R
and

I x(x>0 A x<0)is a false statement in R



Distributivity Laws

Universal quantifier is distributive over V in
only one direction:

4. ((VxA(x) V VxB(x)) = Vx(A(x) V B(x)))

Here is the other direction implication
counter- example

Take: X=R and A(x): x<0, B(x): x=20

Vx (x<0 V x20) is atrue statementinR
(real numbers) and

V x(x<0) V V¥ x(x 20) is a false statement in R



Distributivity Laws

Universal quantifier is distributive over = in
one direction only:

5. (Vx(A(x) =B(x)) = (Vx A(x) = Vx B(x)))

Other direction implication counter example:

Take: X=R, A(x):x<0 and B(x): x+1 >0

(Vx(x<0)= Vx(x+1 >0) is a True statement in
set R of real numbers and

V x(x < 0= x+1>0) is a False statement:

take x=-2, we get (-2 <0 = -2+1 > 0) False



Introduction and Elimination Laws

B - Formula without free variable x

V x(A(x) = B) = (3 x A(x) = B)
3 x(A(x) = B) = (V x A(x) = B)
V x(B = A(x)) = (B = V x A(x))
g x(B = A(x)) = (B = 3 x A(x))

© ® N O



Introduction and Elimination Laws

B - Formula without free variable x

10. Vx(A(x) V B)=(VxA(x) V B)

11.  Vx(A(x) A B)=(VxA(x) A B)
12.  Ix(A(x) V B)=(3IxA(x) V B)
13. I x(A(x) A B)= (I x A(x) A B)

Remark: we prove 6 -9 from 10 - 13 + de
Morgan + definability of implication



TRUTH SETS

We use truth sets for predicates to define an
intuitive semantics for predicate logic

Given a set X # & and a predicate P(x), the set
{x € X: P(x)}

is called a truth set for the predicate
P(x) in the domain X # ¢



Truth Sets, Interpretations

Example
Take P(x) as x+1 =3
— it is called an interpretation of P(x) in a set

X#d
Let X={1, 2, 3} then the truth set for P(x) is
{x € X:P(x)} ={x € X:x+1=3}={2}

and we say that P(x) is TRUE in the set X
under the interpretation P(x): x+1 =3



TRUTH SETS semantics for Connectives

We use truth sets for predicates always for X # ¢
Conjunction:
{x€ X: (P(x) A Q(x))}={x: P(x)} A {x: Q(x)}

Truth set for conjunction (P(x) A Q(x)) is the set
intersection of truth sets for its components.

Disjunction:
{x€ X: (P(x) V Q(x))}={x: P(x) V {x: Q(x)}

Truth set for disjunction (P(x) V Q(x)) is the set union of
truth sets for its components.

Negation:

{x€ X:-P(x)} =X - {xE X: P(x)}

- is the negation

and —is the set complement relative to X



Truth sets semantics for Connectives

Implication:
{x€ X: (P(x) = Q(x))} =X-{x:P(x)} V {x:Q(x)}
={x: =P(x)} V {x:Q(x)}
Example:
X EN:n>0 = n?2<0}={x ENx<0}V {x EN:
n2<0}

=pV ¢ =9



Truth Sets Semantics for Universal Quantifier

Definition:
VxA(x)=T iff {xEX:A(x)}=X

where
X#d and A(x) is any formula with a free variable x

Definition:
VxA(x)=Fiff {x& X:A(x)}=X

where
X#d and A(x) is any formula with a free variable x



Truth Sets semantics for Existential Quantifier

Definition:
AxA(X)=T (inxz ) iff xEX:AX)} £

Definition:

AXxA(X)=F (inxzd) iff (xEX:A(x)} =

Where X # ¢ and A(x) is a formula with a free variable x



Venn Diagrams For Existential Quantifier and
Conjunction

I x(A(x) A B(x))=T iff {cAX)} A {x:B(x)}z D

Picture
Xz ® observe that {x:A(X)}# ® and {x:B(x)}# ®

N




Venn Diagrams For Existential Quantifier and
Conjunction

Ix(A(x) A B(x))=F iff {CAX) ADcB(x)}= O
. Xz O

Picture Remember {x:A(x)},
{x:B(x)} now can

B(x) be @!

Xz O




Venn Diagrams For Universal Quantifier and
Implication

Observe that

Vx(A(x) = B(x))=T iff {xEX:A(x) = B(x)}=X
1ij

{x:A(x)} & {x:B(x)}

Xz O

. Remember that {x:A(x)},
Picture B(x) {x:B(x)} now can

be Q!




Exercise

Draw a picture for a situation where (in Xz @)
1. IAxP(x)=T

2. AxQ(x)=T

3. Ix(P(x) A Q(x))=F

4. Vx(P(x) V Q(x)=F



Exercise Solution

1. AxP(x)=T iff {x:P(x)}z®
2. dxQ(x)=T iff DeQ(x)}z O
3. Ax(P(x) A Q(x)) =F iff {x: P(x)} A{x: Q(x)} =D

4. Vx (P(x) V Q(x) = Fiff {x:P(x)} V{x:Q(x)}=zX



Picture:

Xz O

Denotes {x: P(x)} # ®




Proving Predicate Tautologies with TRUTH Sets

Prove that

|=(VxA(x) = 3 x A(x))
Proof:
Assume that not true

(Proof by contradiction) i.e. that there are Xz ®,A(x) such
that.

(VxA(x) = dxA(x))=F

iff VxA(x)=T and 3 x A(x)=F (A =B)=F
iff X#d¢ and

{xE X:A(x)}=Xand{x € X:A(x)}=¢

iff Xx= ¢

Contradiction with X # ¢, hence proved.



Proving Predicate Tautologies with TRUTH Sets

Prove:

- Vx A(x) = I x -A(x)

Casel: dx-A(x)=T inXzd iff {x:=-A(x)}#¢ iff
X—{x:A(X)} #p iff {x: A(x)}zX iff VxA(x)=F

iff - VxA(X)=T

Case2: dx-A(x)=F inXz¢p iff {x:=A(x)}=0¢ iff
X={x:AX)}=¢ iff {x:A(x)}=X iff VxAX)=T

iff - VxA(x)=F



Prove
I x(A(x) V B(x))= IAxA(x) V I x B(x)

Case 1: I x(A(x) V B(x)} =Tiff
Ix: (A(x) V B(x)} # & (definition)
={x: (A(x)} V {x: (B(x)} # ¢ iff
{x: A(x)} # d or {x: B(x)} # P iff

= Ax A(x)=T or A x B(x)=T

We used: for any sets, A V B # ¢ iff
Azd or Bzo

Case2 — similar



Russell’s Paradox

We assumed in our approach that for any
statement A(x)

the TRUTH set
{x €X:A(x)} exists

Russell Antinomy showed that that technique
of TRUTH sets is not sufficient

This is why we need a proper semantics!



