Introduction to Predicate Logic Part 2

cse371/ math371/cse541
Professor Anita Wasilewska

Predicate Logic Introduction Part 2

 Basic Laws of Quantifiers – Predicate Logic Tautologies

Intuitive Semantics for Predicate Logic

Basic Predicate Logic Tautologies

De Morgan Laws

$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

 $\neg \exists x A(x) \equiv \forall x \neg A(x)$

where A(x) is any formula with free variable x, ≡ means "logically equivalent"

Definability of Quantifiers

$$\forall x A(x) \equiv \neg \exists x \neg A(x)$$

 $\exists x A(x) \equiv \neg \forall x \neg A(x)$

Application Example

De Morgan and other Laws Application in Mathematical Statements

$$\neg \forall x((x>0 \Rightarrow x+y>0) \land \exists y (y<0))$$

≡ (by De Morgan's Law)

$$\exists x \neg ((x>0 \Rightarrow x+y>0) \land \exists y (y<0))$$

= (by De Morgan's Law and 1., 2., 3., 4.)

$$\exists x((x>0 \land x+y \le 0) \lor \forall y(y \ge 0))$$

We used

1.
$$\neg (A \Rightarrow B) \equiv (A \land \neg B)$$
, 2. $\neg (A \land B) \equiv (\neg A \lor \neg B)$
3. $\neg (x + y) > 0) \equiv x + y \le 0$

$$4. \neg \exists y (y < 0) \equiv \forall y \neg (y < 0)$$
$$\equiv \exists y (y \ge 0)$$

Math Statement -to -Logic Formula

Mathematical statement

$$\neg \forall x((x<0 \Rightarrow x+y>0) \land \exists y (y<0))$$

Corresponding Logic Formula is

$$\neg \forall x((P(x,c) \Rightarrow R(f(x,y),c)) \land \exists y P(y,c))$$

More general; A(x), B(x) any formulas

$$\neg \forall x((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x \neg ((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x((A(x) \land \neg B(x,y)) \lor \neg \exists y A(y))$$

$$\equiv \exists x ((A(x) \land \neg B(x,y)) \lor \forall y \neg A(y))$$

Distributivity Laws

- 1. $\exists x(A(x) \lor B(x)) \equiv (\exists x A(x) \lor \exists x B(x))$ Existential quantifier is distributive over \lor What we write as $(\exists x, \lor)$
- 2. $\forall x (A(x) \land B(x)) \equiv (\forall x A(x) \land \forall x B(x))$
- Universal quantifier is distributive over \wedge , what we write as $(\forall x, \wedge)$
- **Existential quantifier** is distributive over \wedge **only in one direction**:
 - 3. $\exists x(A(x) \land B(x)) \Rightarrow (\exists x A(x) \land \exists x B(x))$

Distributivity Laws

We show the inverse implication

$$(\exists x A(x) \land \exists x B(x)) \Rightarrow \exists x(A(x) \land B(x))$$

is NOT a predicate tautology;

It means that it is not true, that the implication

$$(\exists x A(x) \land \exists x B(x)) \Rightarrow \exists x(A(x) \land B(x))$$

holds for any $X \neq \varphi$ and for any A(x), B(x) defined in the set X

To prove it we have to show that

there are $X \neq \varphi$, A(x), B(x) defined in $X \neq \varphi$ for which this implication is **FALSE**

Not a Tautology

```
The formula
```

```
(\exists x A(x) \land \exists x B(x)) \Rightarrow \exists x(A(x) \land B(x))
Is not a predicate tautology
Here is a counter- example
Take: X = R (real numbers),
A(x): x > 0 and B(x): x < 0 we get that
\exists x (x>0) \land \exists x(x<0) is a true statement in R
   and
```

 $\exists x(x>0 \land x<0)$ is a false statement in R

Distributivity Laws

Universal quantifier is distributive over V in only one direction:

4. $((\forall x \ A(x) \ \lor \ \forall x \ B(x)) \Rightarrow \ \forall x (A(x) \ \lor \ B(x)))$ Here is the other direction implication counter- example

Take: X=R and A(x): x < 0, B(x): $x \ge 0$ $\forall x (x < 0 \lor x \ge 0)$ is a true statement in R (real numbers) and

 $\forall x(x<0) \ \forall \ x(x \ge 0)$ is a false statement in R

Distributivity Laws

Universal quantifier is distributive over ⇒ in one direction only:

5.
$$(\forall x(A(x) \Rightarrow B(x)) \Rightarrow (\forall x A(x) \Rightarrow \forall x B(x)))$$

Other direction implication counter example:

Take:
$$X = R$$
, $A(x)$: $x < 0$ and $B(x)$: $x+1 > 0$

 $(\forall x(x < 0)) \Rightarrow \forall x(x+1 > 0)$ is a **True** statement in set **R** of real numbers and

$$\forall x(x < 0 \Rightarrow x+1 > 0)$$
 is a **False** statement:

take x= -2, we get
$$(-2 < 0 \Rightarrow -2+1 > 0)$$
 False

Introduction and Elimination Laws

B - Formula without free variable x

6.
$$\forall x(A(x) \Rightarrow B) \equiv (\exists x A(x) \Rightarrow B)$$

7.
$$\exists x(A(x) \Rightarrow B) \equiv (\forall x A(x) \Rightarrow B)$$

8.
$$\forall x(B \Rightarrow A(x)) \equiv (B \Rightarrow \forall x A(x))$$

9.
$$\exists x(B \Rightarrow A(x)) \equiv (B \Rightarrow \exists x A(x))$$

Introduction and Elimination Laws

B - Formula without free variable x

10.
$$\forall x(A(x) \lor B) \equiv (\forall x A(x) \lor B)$$

11.
$$\forall x(A(x) \land B) \equiv (\forall x A(x) \land B)$$

12.
$$\exists x(A(x) \lor B) \equiv (\exists x A(x) \lor B)$$

13.
$$\exists x(A(x) \land B) \equiv (\exists x A(x) \land B)$$

Remark: we prove **6 -9** from **10 – 13** + de Morgan + definability of implication

TRUTH SETS

We use truth sets for predicates to define an intuitive semantics for predicate logic

Given a set $X \neq \varphi$ and a predicate P(x), the set

$$\{x \in X: P(x)\}$$

is called a truth set for the predicate P(x) in the domain $X \neq \phi$

Truth Sets, Interpretations

Example

```
Take P(x) as x+1=3
```

it is called an interpretation of P(x) in a set
 X ≠ Φ

Let $X=\{1, 2, 3\}$ then the **truth set** for P(x) is

$${x \in X: P(x)} = {x \in X: x+1 = 3} = {2}$$

and we say that P(x) is **TRUE** in the set X under the interpretation P(x): x+1=3

TRUTH SETS semantics for Connectives

We use truth sets for predicates always for $X \neq \phi$

Conjunction:

$$\{x \in X: (P(x) \land Q(x))\} = \{x: P(x)\} \land \{x: Q(x)\}$$

Truth set for conjunction $(P(x) \land Q(x))$ is the set **intersection** of truth sets for its components.

Disjunction:

$$\{x \in X: (P(x) \lor Q(x))\} = \{x: P(x) \lor \{x: Q(x)\}\}$$

Truth set for disjunction $(P(x) \lor Q(x))$ is the set **union** of truth sets for its components.

Negation:

$$\{x \subseteq X: \neg P(x)\} = X - \{x \subseteq X: P(x)\}$$

- is the negation

and – is the **set complement** relative to X

Truth sets semantics for Connectives

Implication:

```
\{x \subseteq X: (P(x) \Rightarrow Q(x))\} = X - \{x: P(x)\} \lor \{x: Q(x)\}= \{x: \neg P(x)\} \lor \{x: Q(x)\}
```

Example:

Truth Sets Semantics for Universal Quantifier

Definition:

$$\forall x A(x) = T \quad \text{iff} \quad \{x \subseteq X : A(x)\} = X$$

where

 $X \neq \varphi$ and A(x) is any formula with a free variable x

Definition:

$$\forall x A(x) = F \text{ iff } \{x \subseteq X: A(x)\} \neq X$$

where

 $X \neq \varphi$ and A(x) is any formula with a free variable x

Truth Sets semantics for Existential Quantifier

Definition:

$$\exists x A(x) = T (in x \neq \phi) \text{ iff } \{x \subseteq X : A(x)\} \neq \phi$$

Definition:

$$\exists x A(x) = F (in x \neq \varphi) iff \{x \subseteq X : A(x)\} = \varphi$$

Where $X \neq \varphi$ and A(x) is a formula with a free variable x

Venn Diagrams For Existential Quantifier and Conjunction

$$\exists x(A(x) \land B(x))=T \text{ iff } \{x:A(X)\} \land \{x:B(x)\} \neq \Phi$$

Picture

$$X \neq \Phi$$
 observe that $\{x:A(X)\} \neq \Phi$ and $\{x:B(x)\} \neq \Phi$

Venn Diagrams For Existential Quantifier and Conjunction

$$\exists x(A(x) \land B(x)) = F$$
 iff $\{x:A(x) \land \{x:B(x)\} = \Phi$

Picture

Remember {x:A(x)}, {x:B(x)} now can be Φ!

Venn Diagrams For Universal Quantifier and Implication

Observe that

$$\forall x (A(x) \Rightarrow B(x)) = T \text{ iff } \{x \in X : A(x) \Rightarrow B(x)\} = X$$

Iff

$$\{x:A(x)\}\subseteq \{x:B(x)\}$$

Picture

Remember that $\{x:A(x)\}$, $\{x:B(x)\}$ now can be Φ !

Exercise

Draw a picture for a situation where (in $X \neq \Phi$)

1.
$$\exists x P(x) = T$$

2.
$$\exists x Q(x) = T$$

3.
$$\exists x(P(x) \land Q(x)) = F$$

4.
$$\forall x (P(x) \lor Q(x) = F$$

Exercise Solution

1.
$$\exists x P(x) = T$$
 iff $\{x:P(x)\} \neq \Phi$

2.
$$\exists x Q(x) = T$$
 iff $\{x:Q(x)\} \neq \Phi$

3.
$$\exists x(P(x) \land Q(x)) = F \text{ iff } \{x: P(x)\} \land \{x: Q(x)\} = \Phi$$

4.
$$\forall x (P(x) \lor Q(x) = F \text{ iff } \{x:P(x)\} \lor \{x:Q(x)\} \neq X$$

Picture:

Denotes $\{x: P(x)\} \neq \Phi$

Proving Predicate Tautologies with TRUTH Sets

Prove that

$$|=(\forall x A(x) \Rightarrow \exists x A(x))$$

Proof:

Assume that not true

(Proof by contradiction) i.e. that there are X≠ Φ,A(x) such that.

```
(\forall x \ A(x) \Rightarrow \exists x \ A(x)) = F

iff \forall x \ A(x) = T \ and \ \exists x \ A(x) = F  (A \Rightarrow B) = F

iff X \neq \varphi and \{x \in X : A(x)\} = X \ and \ \{x \in X : A(x)\} = \varphi

iff X = \varphi

Contradiction with X \neq \varphi, hence proved.
```

Proving Predicate Tautologies with TRUTH Sets

Prove:

$$\neg \forall x A(x) \equiv \exists x \neg A(x)$$

```
Case1: \exists x \neg A(x) = T in X \neq \varphi iff \{x: \neg A(x)\} \neq \varphi iff X - \{x: A(x)\} \neq \varphi iff \{x: A(x)\} \neq \varphi iff Y \times A(x) = F iff Y \times A(x) = G Case2: \exists x \neg A(x) = F in X \neq \varphi iff \{x: \neg A(x)\} = \varphi iff \{x: A(x)\} = \varphi iff \{x:
```

Prove

$$\exists x(A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$$

Case 1:
$$\exists x(A(x) \lor B(x)) = T \text{ iff}$$

 $\{x: (A(x) \lor B(x)) \neq \varphi \text{ (definition)}$
 $= \{x: (A(x)) \lor \{x: (B(x)) \neq \varphi \text{ iff}$
 $\{x: A(x)\} \neq \varphi \text{ or } \{x: B(x)\} \neq \varphi \text{ iff}$
 $= \exists x A(x) = T \text{ or } \exists x B(x) = T$
We used: for any sets, $A \lor B \neq \varphi \text{ iff}$
 $A \neq \varphi \text{ or } B \neq \varphi$
Case2 — similar

Russell's Paradox

We assumed in our approach that for any statement A(x)

the TRUTH set

 $\{x \in X: A(x)\}$ exists

Russell Antinomy showed that that technique of TRUTH sets is **not sufficient**

This is why we need a proper semantics!