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Chapter 9
TWO PROOFS OF COMPLETENESS THEOREM

PART 1: Introduction

PART 2: System S Definition and Proof of the Main Lemma
PART 3: Proof 1: Constructive Proof of Completeness
Theorem

PART 4: Proof 2: General Proof of Completeness
Theorem



PART 1: Introduction



Two Proofs

There are many proof systems that describe classical
propositional logic, i.e. that are complete proof systems
with the respect to the classical semantics.

We present here a Hilbert proof system for the classical
propositional logic and discuss two ways of proving the
Completeness Theorem for it.

Any proof of the Completeness Theorem consists always of
two parts.



Two Proofs

First we have show that all formulas that have a proof are
tautologies.

This implication is also called a Soundness Theorem, or
Soundness Part of the Completeness Theorem

The second implication says: if a formula is a tautology then
it has a proof.

This alone is sometimes called a Completeness Theorem (on
assumption that the system is sound)

Traditionally it is called a Completeness Part of the
Completeness Theorem



Two Proofs

The proof of the soundness part is standard.

We concentrate here on the Completeness Part of the
Completeness Theorem and present two proofs of it

The first proof is straightforward.

It shows how one can use the assumption that a formula A is
a tautology in order to construct its formal proof

It is hence called a proof - construction method.



Two Proofs

The second proof shows how one can prove that a formula
A is not a tautology from the fact that it does not have a proof

It is hence called a counter-model construction method.

All these proofs and considerations are relative to proof
systems we discuss and their semantics

At this moment the semantics is, of course, that for classical
propositional logic

Reminder: we write = A to denote that A is a classical
tautology



Two Proofs

As far as the proof system is concerned we define here a
certain class S of proof systems, instead of one proof
system

We show that the Completeness Theorem holds for any
system S from this class S

In particular, the system H, from chapter 8 is proved to be
complete, as it belongs to the class of systems S



Proof System H,

Reminder: H, is the following proof system:

Ho = ( Lim-y, F, {A1,A2,A3}, MP)

The axioms A1 — A3 are defined as follows.

Al (A= (B=A)),

A2 (A=(B=C))=((A=B)=(A=0)),
A3 ((-B=-A)= ((-B= A) = B)))

A; (A= B)

(mp) 22



Proof System Ho

Obviously, the selected axioms A1,A2, A3 are tautologies,
and the MP rule leads from tautologies to tautologies.

Hence our proof system H, is sound and the following
theorem holds.

Soundness Theorem
For every formula A € 7,
If Fn, A, then = A



System Ho LEMMA

We have proved in Lecture 8 (Chapter 8) the following
Lemma

Lemma

The following formulas a are provable in Ho

1
2
3
4,
5.
6
7
8
9

(A= A)

(-—B = B)

(B = --B)

(-A= (A= B))
((-B=>-A)= (A=B))
((A=B)= (-B=-A))

(A= (-B=(=(A=B)))
(A=B)= ((-A=B)=1B))
(FA=>A)=A)



First Proof

The first proof of Completeness Theorem presented here is
very elegant and simple, butis applicable only to the
classical propositional logic

This proof is, as was the proof of Deduction Theorem, a fully
constructive

The technique it uses , because of its specifics can’t be used
even in a case of classical predicate logic, not to mention
variaty of non-classical logics



Second Proof
The second proof is much more complicated.

Its strength and importance lies in a fact that the methods it
uses can be applied in an extended version to the proof of
completeness for classical predicate logic and some
non-classical propositional and predicate logics

The way we define a counter-model for any non-provable A is
general and non- constructive

We call it a a counter-model existence method



The System S

The two proofs of Completeness Theorem can be
performed for any proof system S for classical propositional
logic in which the formulas 1, 3, 4, and 7-9 stated in the
system H, Lemma of lecture 8 (Chapter 8) and all axioms
of the system H, are provable.

We assume provability of these formulas as they are the
only formulas used in the proof of Deduction Theorem, and in
both proofs of the Completeness Theorem

It means that both proofs are valid for any proof system S
defined on the next slide



PART 2: SYSTEM S DEFINITION
PROOF OF THE MAIN LEMMA



The System S Definition

We define the system S as follows
S= (L=~ F. LA, (MP))

where the set of logical axioms LA C T is such that the
formulas listed below are provable in S

(A= (B=>A))
(A=(B=C)=((A=B)=(A=0())
(-B=-A)= ((-B=> A)=>B))

(A= A)

(B = --B)

(-A = (A=B))

(A= (-B=~(A=B))

(A= B)=((-A=B)=B))
(FA=>A)=A)
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Soundness and Deduction Theorem

Observation 1

We have assumed that logical axioms LA C T and we know
that MP is a sound rule of inference so we have the following

Soundness Theorem for S
For any formula A € 7,

If ts A, then A

Observation 2:
All formulas that were used in its proof of Deduction Theorem
are provable in S, so the following theorem holds.

Deduction Theorem for S
For any formulas A,Be ¥ and [ C ¥

I, ArsB ifandonlyif Trs (A= B)



PART 2: Proof of the MAIN LEMMA



Completeness Theorem

The proof of the Completeness Theorem presented here is
similar in its structure to the proof of the Deduction Theorem
and is due to Kalmar, 1935

Itis a constructive proof

It shows how one can use the assumption that a formula A is
a tautology in order to construct its formal proof.

We hence call it a proof construction method. It relies
heavily on the Deduction Theorem

It is possible to prove the Completeness Theorem
independently from the Deduction Theorem and we will
present two of such a proofs in later chapters.



Introduction

We first present one definition and prove one lemma
We write + A instead of rs A asthe system S is fixed.

Let A beaformulaand by,bo,..., b, be all propositional
variables that occur in A, i.e.

A = A(b1, ba, ... by)



MAIN LEMMA: Definition 1

Definition 1
Let v be atruth assignment v: VAR — {T,F}

We define, for A, by, bo,....b, and truth assignment v
corresponding formulas A’, By, Bo,...,B, as follows:

(A VA =T
T\ A if V(A)=F

g _ [ b it vb)=T
T b it v(b)=F

for i=1,2,...,n



Example 1

Let A be aformula (a = -b)

Letv besuchthat v(a)=T, v(b)=F

In this case we have that by = a, b, = b, and
Vi(A)=vi(a=>-b)=v(a)=>-v(b)=T=-F=T
The corresponding A’,Bi, By are:

A=A as vi(A)=T

Bi=a asv(a)=T

B, =-b asv(b)=F



Example 2

Let A beaformula ((—a= -b)=c)

andlet v besuchthat v(a)=T, v(b)=F v(c)=F
Evaluate A’, B4, ...B, as defined by the definition 1
Inthiscase n=3 and by =a, bo=b,bg=c
and we evaluate

vi(A) =v*((-a = -b) = c) = ((-v(a) = -v(b)) =
vic)) =((-T=-F)=F)=(T=F)=

The corresponding A’, By, Bo, B> are:
A"=-A=-((na=-b)=c) as V’(A)=F
Bi=a asv(a)=T, Bo=-b asv(b)=F, and
B; =-c asv(c)=F



MAIN LEMMA

The lemma stated below describes a method of transforming
a semantic notion of a tautology into a syntactic notion of
provability

It defines, for any formula A and a truth assignment v a
corresponding deducibility relation

Main Lemma

For any formula A = A(by, bs, ..., b,) and any truth
assignment v

If A", By, Bs, ..., B, are corresponding formulas defined by
definition 1, then

B1, Bg, ooy Bn F A



Examples

Example 3

Let A, v be asdefinedinthe Example 1, ie. A’ = A,
B1 = a, Bz =-b

Main Lemma asserts that

a,-b + (a= —-b)

Example 4

Let A, v be defined as in Example 2, then the Main Lemma
asserts that

a,-b,—c + —|((—|a = —|b) = C)



Proof of the Main Lemma

The proof is by induction on the degree of the formula A

Base Case n=0

In this case A is atomic and so consists of a single
propositional variable, say a

If vi(A) =T then we have by definition 1
AA=A=a, Bi=a

We obtain, by definition of provability fromaset I of
hypothesis for I = {a} that

atr a



Proof of the Main Lemma

If v'(A)=F we have by Definition 1 that
A=-A=-a and B;=-a

We obtain, by definition of provability fromaset I of
hypothesis for [ = {—a} that

-~a + -a

This proves that Main Lemma holds for n=0



Proof of the Main Lemma

Inductive Step

Now assume that the Lemma holds for any formula with

j < n connectives

Need to prove: the Lemma holds for A with n connectives
There are several sub-cases to deal with

Case: A is —-A4

By the inductive assumption we have the formulas

A1’a B17827-"’ Bn
corresponding to the A; and the propositional variables
b1, bo, ..., by in Ay, such that

Bi,B,....,By + A,

Observe that the formulas A and —A; have the same
propositional variables

So the corresponding formulas By , By, ..., B, are the same
for both of them.



Proof of the Main Lemma

We are going to show that the inductive assumption allows us
to prove that
B1 , Bg, ceey Bn FA

There are two cases to consider.
Case: Vv'(A)=T

If v*(Ai) =T then by definition 1 A; = A; and by the
inductive assumption

B1, Bg, cees Bn F A1

In this case: Vv*(A) = v*(=A¢) =-v(T)=F
Sowe have that A" = —=A = ——A;



Proof of the Main Lemma

Since we have assumed 5. about S , i.e. we have that that
F (A1 = ﬂ—|A1)
we obtain by the monotonicity that also

B1,Bg,...,Bn F (A-] = —|—|A1)

By inductive assumption B;,B,,...,B, + Ay andby MP
we have
B1,BQ,...,Bn F ﬂﬂA1

andas A =-A=--A; we get

Bi,B,,...B, + -A andso Bi,Bs,...B, + A



Proof of the Main Lemma

Case: V'(Ai)=F
lf v(Aj)=F then A; =-A; and v'(A)=T so A =A
Therefore by the inductive assumption we have that
B1 , Bg, ooy Bn F —|A1
thatisas A = -A;

Bi,Bo,...B, v A’



Proof of the Main Lemma

Case: A is (A= Ay)

If A is(A; = Az) then Ajand A, have less than n
connectives

A = A(b1,...bs) so there are some subsequences
Ci,...Ck and di,...d, for k,m < n of the sequence
by, ...,b, such that

A1 = A1(C1,...,Ck) and A2 = A(d1,...dm)



Proof of the Main Lemma

A; and A, have less than n connectives and so by the
inductive assumption we have appropriate formulas
Ci,...,Cx and D, ...D,, such that

Ci,Co,....,Ck v Ay and Dy,Ds,...,Dpm + A

and Cy, Co,...,Cx, Di,D»,...,D, are subsequences of
formulas By, B, ..., B, corresponding to the propositional
variables in A

By the inductive assumption and monotonicity we have

Bi,Bo,...B, v+ A\ and  Bi.B.,...B, v A

Now we have the following sub-cases to consider



Proof of the Main Lemma

Case: V'(A)=Vv(A)=T

If v(A)=T then Ay =A; and

if vi(A)=T then A =A;

We also have Vv (A1 = A)=T andso A = (A = A))
By the above and the inductive assumption

B1, Bg, ceny Bn F A2

and since we have assumed 1. about S and by
monotonicity we have

B1, Bg, . Bn + (A2 = (A1 = Ag))

By above and MP we have Bi,Bs,....B, + (Aj = Ay)
that is
B1,Bg,...,Bn F A



Proof of the Main Lemma

Case: Vv'(A)=T, vi(A)=F

If v(A)=T then Ay =A; and

if vi(A2)=F then Ay =-A;

Also we have in this case v*(A1 = A2) = F and so

A, = —|(A1 = A2)

By the above, the inductive assumption and monotonicity
B1 , Bg, ooy Bn F —|A2

Since we have assumed 7. about S and by monotonicity
we have

B1, Bg,..., Bn F (A1 = (—|A2 = —|(A1 = Ag)))

By above and MP twice we have
B1, Bg, s Bn = —|(A1 = A2) that is

Bi,Bo,...B, v A’



Proof of the Main Lemma

Case: Vv'(A))=F
Observe that if v*(A;)=F then A; is —A; and,
whatever value v gives Ao, we have

Vi(Ai > A) =T

So A" is (A1 = A)
Therefore
B1,Bg,...,Bn F —|A1

Since by formula 6. is provable in S, we have by monotonicity

B1, Bg,..., Bn + (—|A1 £ (A1 = Ag))



Proof of the Main Lemma

By Modus Ponens we get that
B1, Bg, ooy Bn + (A1 = A2)

that is
B1 s Bg, cees Bn FA

We have covered all cases and, by mathematical induction
on the degree of the formula A we got

Bi,Bo,...B, v A’

The proof of the Main Lemma is complete



PART3
Proof 1: Constructive Proof of Completeness Theorem



Proof of Completeness Theorem

Now we use the Main Lemma to prove the Completeness
Theorem i.e. to prove the following implication

For any formula A € 7
if =A then +A

Proof

Assume that E A

Let by, bo,...,b, be all propositional variables that occur in
the formula A, i.e.

A = A(by, by, ..., by)

By the Main Lemma we know that, for any truth assignment
v, the corresponding formulas A", By, Bo, ..., B, can be
found such that

Bi,Bs,...,B, v A



Proof

Note that A’ inthiscaseis A forany v since = A
Hence,
IF v issuchthat v(b,)=T, then B, =b, and

B1, BQ, v bn FA

IF v issuchthat v(b,) =F, then B, =-b, and by the
Main Lemma
B1 , Bg, . —|bn A

So, by the Deduction Theorem we have
B'],Bz,..., Bn_1 + (bn = A)

and
B1 , Bg, ey Bn_1 F (—|bn £ A)



Proof of Completeness Theorem

By assumed formula 8.
(A = B) = ((-A = B) = B))
and by monotonicity we have that
Bi, Bz, ..., Bp-1 + ((bn = A) = ((=bn = A) = A))
Applying Modus Ponens twice we get that
Bi,Bs,...Bh-1 F A

Similarly, v*(B,-1) maybe T orF
Applying the Main Lemma , the Deduction Theorem,
monotonicity, formula 8. and Modus Ponens twice we can
eliminate B,_¢ just as we have eliminated B,
After n steps, we finally obtain proof of A in S, i.e. we have
that

FA



Constructiveness of the Proof

Observe that our proof of the Completeness Theorem is a
constructive one.

Moreover, we have used in it only Main Lemma and
Deduction Theorem which both have a constructive proofs

We can hence reconstruct proofs in each case when we
apply these theorems back to the original axioms of the
system S, and in particular to the original axioms A1 — A3
of Ho

The same applies to the proofs in H, of all formulas 1. - 9.
of the system S

It means that for any A, suchthat = A, the set V4 ofall v
restricted to A provides us a method of a construction of
the formal proof of A in Hp, or in any system S in which
formulas 1. -9. are provable



Example

Example

The proof of Completeness Theorem defines a method of
efficiently combining v € V4 while constructing the proof of
A

Let’s consider the following tautology A = A(a, b, c)

((ra=>b) = (=(-a=b)=c)

We present on the next slides all steps of the Proof 1 as
applied to A



Example

Given

A(a,b,c)=((ra=b)= (-(-a=b)=c)

By the Main Lemma and the assumption that
= A(a,b,c)
any v € Vp defines formulas B, , By, B. such that
B.,By,B: + A

The proof is based on a method of using all v € V4 (there
is 8 of them) to define a process of elimination of all
hypothesis B, By, B. 1o construct the proof of A, 1.e. to
prove that

FA



Example

Step 1: elimination of B,

Observe that by definition, B, is ¢ or -c¢ depending on
the choice of ve Vy

We choose two truth assignments vy # vo € V4 such that

vil{a,b}=wvo|{a,b} and wvi(c)=T, w(c)=F
Case1: vi(c)=T
By by definition B; =c¢
By our choice, the assumption that = A and the Main
Lemma applied to v4

Bs,Bp,c F A

By Deduction Theorem we have that
Ba,By + (c = A)



Example

Case2: vy(c)=F
By definition B, = —c

By our choice, assumption that = A, and the Main Lemma
applied to v»
Ba,Bp,—c + A

By the Deduction Theorem we have that

Ba.Bp + (mc = A)



Example

By the assumed provability of the formula 8. for
A =c¢, B=A we have that

Fl(c=A)=((-c=A)=A))
By monotonicity we have that
Ba,Bp + ((c= A) = ((mc = A) = A))
Applying Modus Ponens twice to the above property and
properties on the previous slide we get that

Bs,By A

We have eliminated B;



Example

Step 2: elimination of B, from B,,By, + A
We repeat the Step 1
As before we have 2 cases to consider: B, = b or B, = =b

We choose two truth assignments wy # ws € V4 such
that

wil{a} = wo [{a} = vy [{a} = v2 [ {a} and wi(b) =T, wa(b) = F

Case 1: wi(b) = T and by definiton B, = b
By our choice, assumption that = A and the Main Lemma
applied to wjq

B.,b + A

By Deduction Theorem we have that

Ba + (b= A)



Example

Case 2: w»(b) = F and by definition B, = -b

By choice, assumptionthat = A and the Main Lemma
applied to
W2

Bs,-b + A

By the Deduction Theorem we have that

B, v (b= A)



Example

By the assumed provability of the formula 8. for
A =b, B=A we have that

F(b=A)=((-b=A)=A))
By monotonicity
Ba F (b=>A)=((-b=A)=A))

Applying Modus Ponens twice to the above property and
properties from the previous slide we get that

B, v A

We have eliminated B,



Example

Step 3: elimination] of B, from B, + A

We repeat the Step 2

As before we have 2 cases to consider: B, = a or By = —a
We choose two truth assignments g1 # g» € V4 such that

gi(a)=T and g(a)=F

Case 1: gi(a) = T, and by definiton B, = a
By the choice, assumption that = A, and the Main Lemma
applied to gy

ar A

By Deduction Theorem we have that

F(a=A)



Example

Case 2: g.(a) = F and by definition B, = —a

By the choice, assumption that = A, and the Main Lemma
applied to go

-at+ A

By the Deduction Theorem we have that

F (mra=A)



Example

By the assumed provability of the formula 8. for
A =a, B= A we have that

Flla=A)=((ra=A)=A))

Applying Modus Ponens twice to the above property and
properties from previous slides we get that

A

We have eliminated B., By, B, and constructed the proof
of Ain S



EXERCISES

Exercise 1

The formulas 1. - 9. that we assumed to be provable in S are
those needed for 2 proofs of the Completeness Theorem.

List the formulas that are are needed for the Proof 1 only

Exercise 2
We proved Completeness Theorem for the language - -,

Extend this proof to the language - . -, by adding all
new CASES and needed PROVABLE formulas to our list 1. -
9. or to a shorter list from solution of the Exercise 1



