cse541 LOGIC FOR COMPUTER SCIENCE

Professor Anita Wasilewska

Spring 2015

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

LECTURE 5a

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Short REVIEW Chapters1 -5

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

DEFINITIONS: Chapter 3 and Chapter 4

Here I repeat for you some basic **DEFINITIONS** from Chapters 3, 4 and 5

You have to prepare them for MIDTERM 1

I will ask you to **WRITE** down a full, correct text of 1-3 of them - in EXACTLY the same form as they are presented here

Knowing all basic **Definitions** is the first step to understanding the material

DEFINITIONS

Definition 1

A propositional language is a pair

 $\mathcal{L} = (\mathcal{A}, \mathcal{F})$

where \mathcal{A}, \mathcal{F} are called the **alphabet** and a set of **formulas**, respectively

Definition 2

An **alphabet** is a set $\mathcal{A} = VAR \cup CON \cup PAR$

VAR, CON, PAR are all disjoint sets of propositional variables, connectives and parenthesis, respectively

We assume that

1. $PAR = \{(, 0)\}$

2. VAR is a countably infinite set and denote elements of VAR by *a*, *b*, *c*, *d*, ..., with indices if necessary

DEFINITIONS

2. $CON \neq \emptyset$ contains only unary and binary connectives, i.e. $CON = C_1 \cup C_2$ where

C₁ is the set of all unary connectives, and

C₂ is the set of all binary connectives

Language Notation

We denote the language \mathcal{L} with the set of connectives CON by

\mathcal{L}_{CON}

Metalanguage notation; we use the **set union** symbol \cup when needed; it is clear from the context that it is not the connective \cup symbol from our language \mathcal{L}

DEFINITIONS

Definition 3

The set \mathcal{F} of **all formulas** of a propositional language \mathcal{L}_{CON} is build **recursively** from the elements of the alphabet \mathcal{A} as follows

 $\mathcal{F} \subseteq \mathcal{A}^*$ and \mathcal{F} is the **smallest** set for which the following conditions are satisfied

```
    VAR ⊆ F
    If A ∈ F, ∇ ∈ C<sub>1</sub>, then ∇A ∈ F
    If A, B ∈ F, ∘ ∈ C<sub>2</sub> i.e ∘ is a two argument connective, then
        (A ∘ B) ∈ F
```

Propositional variables are formulas and they are called atomic formulas

Question Example

Question

Use **Definitions 1,2, 3** to **define** the language $\mathcal{L}_{\{\neg, K, \cap, \Rightarrow\}}$ where K is one argument knowledge connective **Solution**

$$\mathcal{L}_{\{\neg, K, \cap, \Rightarrow\}} = (\mathcal{A}, \mathcal{F})$$

The components \mathcal{A} , \mathcal{F} are defined as follows **Alphabet** is

 $\mathcal{A} = VAR \cup \{\neg, K, \cap, \Rightarrow\} \cup \{(,)\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Question Example

The set of all formulas is defined as follows

 $\mathcal{F} \subseteq \mathcal{A}^*$ and \mathcal{F} is the **smallest** set for which the following conditions are satisfied

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

(1) VAR ⊆ F
 (2) If A ∈ F, then ¬A, KA ∈ F
 (3) If A, B ∈ F, then
 (A ∩ B), (A ⇒ B) ∈ F

DEFINITIONS: Extension

Definition 4

Given the truth assignment (in classical semantics)

 $v: VAR \longrightarrow \{T, F\}$

We define its **extension** v^* to the set \mathcal{F} of all formulas of \mathcal{L} as $v^* : \mathcal{F} \longrightarrow \{T, F\}$ such that

(i) for any $a \in VAR$

$$v^*(a) = v(a)$$

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^{*}(\neg A) = \neg v^{*}(A);$$

$$v^{*}((A \cap B)) = \cap (v^{*}(A), v^{*}(B));$$

$$v^{*}((A \cup B)) = \cup (v^{*}(A), v^{*}(B));$$

$$v^{*}((A \Rightarrow B)) = \Rightarrow (v^{*}(A), v^{*}(B));$$

$$v^{*}((A \Leftrightarrow B)) = \Leftrightarrow (v^{*}(A), v^{*}(B))$$

DEFINITIONS: Satisfaction Relation

Definition 5 Let $v: VAR \longrightarrow \{T, F\}$ We say that v satisfies a formula $A \in \mathcal{F}$ iff $v^*(A) = T$ Notation: $v \models A$ **Definition:** We say that v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$ Notation: $v \not\models A$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

DEFINITIONS: Model, Counter-Model, Tautology

Definition 6

Given a formula $A \in \mathcal{F}$ and $v : VAR \longrightarrow \{T, F\}$ We say that

v is a **model** for **A** iff $v \models A$

v is a **counter-model** for **A** iff $v \not\models A$

Definition 7

A is a **tautology** iff for any $v : VAR \longrightarrow \{T, F\}$ we have that $v \models A$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Notation

We write symbolically $\models A$

DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 8 Given a formula $A \in \mathcal{F}$, any function

 $v_A : VAR_A \longrightarrow \{T, F\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

is called a truth assignment restricted to A

DEFINITIONS: Models for Sets of Formulas

Consider $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$ and let $S \neq \emptyset$ be any non empty set of formulas of \mathcal{L} , i.e.

 $\mathcal{S}\subseteq\mathcal{F}$

Definition 9

A truth truth assignment $v : VAR \longrightarrow \{T, F\}$

is a model for the set S of formulas if and only if

 $v \models A$ for all formulas $A \in S$

We write

$v \models S$

to denote that v is a model for the set S of formulas

DEFINITIONS: Consistent Sets of Formulas

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition 10

A set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model, i.e. we have that

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if **there is v** such that $\mathbf{v} \models \mathcal{G}$

Otherwise \mathcal{G} is called **inconsistent**

DEFINITIONS: Independent Statements

Definition 11

A formula A is called **independent** from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if **there are** truth assignments v_1, v_2 such that

 $v_1 \models \mathcal{G} \cup \{A\}$ and $v_2 \models \mathcal{G} \cup \{\neg A\}$

i.e. we say that a formula A is **independent** if and only if

 $\mathcal{G} \cup \{A\}$ and $\mathcal{G} \cup \{\neg A\}$ are consistent

▲□▶▲□▶▲□▶▲□▶ □ のQ@

DEFINITIONS: Many Valued Extensional Semantics M

The extensional semantics **M** is defined for a non-empty set of **V** of **logical values of any cardinality**

We only **assume** that the set V of logical values of **M** always has a special, distinguished logical value which serves to define a notion of tautology

We denote this distinguished value as T

Formal definition of **many valued extensional semantics M** for the language \mathcal{L}_{CON} consists of giving **definitions** of the following main components:

・ロト・日本・モト・モト・ ヨー のへぐ

- 1. Logical Connectives under semantics M
- 2. Truth Assignment for M

3. Satisfaction Relation, Model, Counter-Model under semantics ${\bf M}$

4. Tautology under semantics M

Definition of **M** - Extensional Connectives

Given a propositional language \mathcal{L}_{CON} for the set $CON = C_1 \cup C_2$, where C_1 is the set of all unary connectives, and C_2 is the set of all binary connectives Let V be a non-empty set of **logical values** adopted by the semantics **M**

Definition

Connectives $\nabla \in C_1$, $\circ \in C_2$ are called **M** -extensional iff their semantics **M** is defined by respective functions

 $\nabla: V \longrightarrow V$ and $\circ: V \times V \longrightarrow V$

DEFINITION: Definability of Connectives under a semantics M

Given a propositional language \mathcal{L}_{CON} and its **extensional** semantics M

We adopt the following definition

Definition

A connective $\circ \in CON$ is **definable** in terms of some connectives $\circ_1, \circ_2, ... \circ_n \in CON$ for $n \ge 1$ **under the semantics M** if and only if the connective \circ is a certain function composition of functions $\circ_1, \circ_2, ... \circ_n$ as they are **defined by the semantics M**

DEFINITION: **M** Truth Assignment Extension v^* to \mathcal{F}

Definition

Given the **M** truth assignment $v : VAR \longrightarrow V$ We define its **M extension** v^* to the set \mathcal{F} of all formulas of \mathcal{L} as any function $v^* : \mathcal{F} \longrightarrow V$, such that the following conditions are satisfied

(i) for any $a \in VAR$

$$v^*(a) = v(a);$$

(ii) For any connectives $\nabla \in C_1$, $\circ \in C_2$ and for any formulas $A, B \in \mathcal{F}$ we put

$$v^*(\triangledown A) = \triangledown v^*(A)$$

 $v^*((A \circ B)) = \circ(v^*(A), v^*(B))$

DEFINITION: M Satisfaction, Model, Counter Model, Tautology

Definition: Let $v : VAR \longrightarrow V$ Let $T \in V$ be the **distinguished logical value** We say that $v \in M$ satisfies a formula $A \in \mathcal{F}$ ($v \models_M A$) iff $v^*(A) = T$

Definition:

Given a formula $A \in \mathcal{F}$ and $v : VAR \longrightarrow V$ Any v such that $v \models_{M} A$ is called a **M model** for A Any v such that $v \not\models_{M} A$ is called a **M counter model** for A A is a **M tautology** ($\models_{M} A$) iff $v \models_{M} A$, for all $v : VAR \longrightarrow V$

Chapter 5: Challenge Exercise

1. Define your own propositional language \mathcal{L}_{CON} that contains also **different connectives** that the standard connectives \neg , \cup , \cap , \Rightarrow

Your language \mathcal{L}_{CON} does not need to include all (if any!) of the standard connectives \neg , \cup , \cap , \Rightarrow

2. Describe intuitive meaning of the new connectives of your language

3. Give some motivation for your own semantic

4. Define formally your own extensional semantics M for your language \mathcal{L}_{CON} - it means

write carefully all Steps 1-4 of the definition of your M

Challenge Problems

Work on Challenge Problems posted in Lectures 3-5

Question 1 Write the following natural language statement: From the fact that it is not necessary that a red flower is not a bird we deduce that:

it is not possible that the red flower is a bird or, if it is possible that the red flower is a bird, then it is not necessary that a bird flies

as a formulas of two languages

- **1.** $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \mathbf{C}, \mathbf{I}, \cap, \cup, \Rightarrow\}}$
- **2.** $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Solution The statement is :

From the fact that it is not **necessary** that a red flower is not a bird we deduce that:

it is not possible that the red flower is a bird or, if it is possible that the red flower is a bird, then it is not necessary that a bird flies

1. We translate our statement into a formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \mathbf{C}, \mathbf{I}, \cap, \cup, \Rightarrow\}}$ as follows.

Propositional Variables: a, b, where

- a denotes statement: red flower is a bird ,
- b denotes statement: a bird flies

Propositional Modal Connectives: C, I

C denotes statement: it is possible that, I denotes statement: it is necessary that

Solution The statement is :

From the fact that it is **not** necessary that a red flower is **not** a bird we **deduce** that:

it is **not** possible that the red flower is a bird **or**, if it is possible that the red flower is a bird, then it is **not** necessary that a bird flies

Translation for the language $\mathcal{L}_{\{\neg, C, I, \cap, \cup, \Rightarrow\}}$ is

 $A_1 = (\neg \mathbf{I} \neg a \Rightarrow (\neg \mathbf{C} a \cup (\mathbf{C} a \Rightarrow \neg \mathbf{I} b)))$

Observe that you could also use symbols \Box for necessity and \diamond for possibility but in this case the formula would belong to the language $\mathcal{L}_{\{\neg, \diamond, \Box, \cap, \cup, \Rightarrow\}}$ and hence **not to the language** $\mathcal{L}_{\{\neg, \diamond, \Box, \cap, \cup, \Rightarrow\}}$ as stated in the **Question**

The statement is :

From the fact that it is not necessary that a red flower is not a bird we deduce that:

it is not possible that the red flower is a bird or, if it is possible that the red flower is a bird, then it is not necessary that a bird flies

2. Now we **translate** our statement into a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$ as follows

Propositional Variables: a, b, c

- a denotes statement: *it is necessary that a red flower is not a bird*
- b denotes statement: *it is possible that a red flower is a bird*
- c denotes a statement: *it is necessary that a bird flies*

Translation

$$A_2 = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

Question 2

1. Determine the main connectives and degrees of the formulas from **Q4**, i.e. of

$$\mathsf{A}_1 = (\neg \mathsf{I} \neg a \Rightarrow (\neg \mathsf{C} a \cup (\mathsf{C} a \Rightarrow \neg \mathsf{I} b))),$$

$$A_2 = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution

Main connective of the formula A_1 is: \Rightarrow Main connective of the formula A_2 is also \Rightarrow Degree of the formula A_1 is: 11 Degree of the formula A_2 is: 6

2. Determine all proper, non-atomic sub-formulas of A_1 , and non-atomic sub-formulas of A_2

Solution

All proper, non-atomic sub-formulas of A_1 are

 $\neg I \neg a, (\neg Ca \cup (Ca \Rightarrow \neg Ib)), I \neg a, \neg a, \neg Ca, (Ca \Rightarrow \neg Ib), Ca, \neg Ib, Ib$

All non-atomic sub-formulas of A_2 are:

 $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)), \neg a, (\neg b \cup (b \Rightarrow \neg c)), \neg b, (b \Rightarrow \neg c), \neg c$

CHAPTER 4: Question 3

Question 3

1. Find a restricted model for formula A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can't use short-hand notation

Show each step of solution

Solution

For any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A : VAR_A \longrightarrow \{T, F\}$ is called a truth assignment restricted to A

Let $v: VAR \longrightarrow \{T, F\}$ be any truth assignment such that

 $v(a) = v_A(a) = T, v(b) = v_A(b) = T, v(c) = v_A(c) = F$

We evaluate the value of the **extension** v^* of v on the formula A as follows

 $v^{*}(A) = v^{*}((\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))))$ = $v^{*}(\neg a) \Rightarrow v^{*}((\neg b \cup (b \Rightarrow \neg c)))$ = $\neg v^{*}(a) \Rightarrow (v^{*}(\neg b) \cup v^{*}((b \Rightarrow \neg c)))$ = $\neg v(a) \Rightarrow (\neg v(b) \cup (v(b) \Rightarrow \neg v(c)))$ = $\neg v_{A}(a) \Rightarrow (\neg v_{A}(b) \cup (v_{A}(b) \Rightarrow \neg v_{A}(c)))$ $(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T, i.e.$

 $v_A \models A$ and $v \models A$

Question 4

1. Find a restricted model and a restricted counter-model for A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You **can use** short-hand notation. Show work **Solution**

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A : VAR_A \longrightarrow \{T, F\}$ is called a truth assignment restricted to A

We define now $v_A(a) = T$, $v_A(b) = T$, $v_A(c) = F$, in shorthand: a = T, b = T, c = F and evaluate

 $(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T$, i.e.

 $v_A \models A$

・ロト・西ト・ヨト・ヨー うらぐ

Observe that

 $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = T$ when a = T and b, c any truth values as by definition of implication we have that $F \Rightarrow$ anything = T

Hence $\mathbf{a} = T$ gives us 4 models as we have 2² possible values on **b** and **c**

We take as a restricted counter-model: a=F, b=T and c=TEvaluation: observe that

 $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = F$ if and only if $\neg a = T$ and $(\neg b \cup (b \Rightarrow \neg c)) = F$ if and only if $a = F, \neg b = F$ and $(b \Rightarrow \neg c) = F$ if and only if a = F, b = T and $(T \Rightarrow \neg c) = F$ if and only if a = F, b = T and $\neg c = F$ if and only if a = F, b = T and c = T

The above proves also that a=F, b=T and c=T is the only restricted counter -model for A

Question 5 Justify whether the following statements **true** or **false**

S1 There are more then 3 possible restricted counter-models for *A*

S2 There are more then 2 possible restricted models of A

Solution

Statement: There are more then 3 possible restricted counter-models for *A* is **false**

We have just proved that there is only one possible restricted counter-model for $\ensuremath{\textit{A}}$

Statement: There are more then 2 possible restricted models of *A* is **true**

(日)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

There are 7 possible restricted models for A

Justification: $2^3 - 1 = 7$

Question 6

1. List 3 models and 2 counter-models for A from Question 3, i.e.

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

that are **extensions** to the set *VAR* of all variables of **one** the restricted models and of **one** of the restricted counter-models that you have found in **Questions 3, 4**

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution

One of the restricted models is, for example a function

 v_A : {a, b, c} \longrightarrow {T, F} such that

 $v_A(a) = T$, $v_A(b) = T$, $v_A(c) = F$

We **extend** v_A to the set of all propositional variables *VAR* to obtain a (non restricted) **models** as follows

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Model W_1 is a function W_1 : VAR \longrightarrow {T, F} such that $w_1(a) = v_A(a) = T, \ w_1(b) = v_A(b) = T,$ $w_1(c) = v_A(c) = F$, and $w_1(x) = T$, for all $x \in VAR - \{a, b, c\}$ **Model** w_2 is defined by a formula $w_2(a) = v_A(a) = T$, $w_2(b) = v_A(b) = T$, $w_2(c) = v_A(c) = F$, and $w_2(x) = F$, for all $x \in VAR - \{a, b, c\}$

Model w_3 is defined by a formula $w_3(a) = v_A(a) = T$, $w_3(b) = v_A(b) = T$, $w_3(c) = v(c) = F$, $w_3(d) = F$ and $w_3(x) = T$ for all $x \in VAR - \{a, b, c, d\}$ There is as many of such models, as extensions of v_A to the set VAR, i.e. as many as real numbers

A counter-model for a formula **A**, by **definition**, is any function

 $v: VAR \longrightarrow \{T, F\}$

such that $v^*(A) = F$

A restricted counter-model for *A* (only one as proved in **question 5**) is a function

 $v_A : \{a, b\} \longrightarrow \{T, F\}$

such that such that

 $v_A(a) = F$, $v_A(b) = T$, $v_A(c) = T$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We extend v_A to the set of all propositional variables *VAR* to obtain (non restricted) some counter-models.

Here are two of such extensions

Counter-model w1:

 $w_1(a) = v_A(a) = F$, $w_1(b) = v_A(b) = T$, $w_1(c) = v(c) = T$, and $w_1(x) = F$, for all $x \in VAR - \{a, b, c\}$

Counter- model w2:

 $w_2(a) = v_A(a) = T$, $w_2(b) = v_A(b) = T$, $w_2(c) = v(c) = T$, and $w_2(x) = T$ for all $x \in VAR - \{a, b, c\}$

There is as many of such **counter- models**, as extensions of v_A to the set *VAR*, i.e. as many as real numbers

Chapter 4: Models for Sets of Formulas

Definition

A truth assignment v is a model for a set $\mathcal{G} \subseteq \mathcal{F}$ of formulas of a given language $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$ if and only if

 $v \models B$ for all $B \in \mathcal{G}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We denote it by $v \models \mathcal{G}$

Observe that the set $\mathcal{G} \subseteq \mathcal{F}$ can be finite or infinite

Chapter 4: Consistent Sets of Formulas

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

A set $\mathcal{G} \subseteq \mathcal{F}$ of **formulas** is called **consistent** if and only if \mathcal{G} has a model, i.e. we have that

 $\mathcal{G} \subseteq \mathcal{F}$ is **consistent** if and only if **there is v** such that $\mathbf{v} \models \mathcal{G}$

Otherwise \mathcal{G} is called **inconsistent**

Chapter 4: Independent Statements

Definition

A formula A is called **independent** from a set $\mathcal{G} \subseteq \mathcal{F}$ if and only if **there are** truth assignments v_1, v_2 such that

 $v_1 \models \mathcal{G} \cup \{A\}$ and $v_2 \models \mathcal{G} \cup \{\neg A\}$

i.e. we say that a formula A is **independent** if and only if

 $\mathcal{G} \cup \{A\}$ and $\mathcal{G} \cup \{\neg A\}$ are consistent

Question 7

Given a set

$$\mathcal{G} = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$$

Show that \mathcal{G} is **consistent** Solution We have to find $v : VAR \longrightarrow \{T, F\}$ such that

 $v \models G$

It means that we need to bf find v such that

 $v^*((a \cap b) \Rightarrow b) = T$, $v^*(a \cup b) = T$, $v^*(\neg a) = T$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Observe that $\models ((a \cap b) \Rightarrow b)$, hence we have that

1. $v^*((a \cap b) \Rightarrow b) = T$ for any v

 $v^*(\neg a) = \neg v^*(a) = \neg v(a) = T$ only when v(a) = F hence 2. v(a) = F

 $v^*(a \cup b) = v^*(a) \cup v^*(b) = v(a) \cup v(b) = F \cup v(b) = T$ only when v(b) = T so we get

3. v(b) = T

This **means** that for any $v : VAR \longrightarrow \{T, F\}$ such that v(a) = F, v(b) = T $v \models G$

and we proved that \mathcal{G} is consistent

Question 8

Show that a formula $A = (\neg a \cap b)$ is **not independent** of

$$\mathcal{G} = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$$

Solution

We have to show that it is impossible to construct v_1, v_2 such that

 $v_1 \models \mathcal{G} \cup \{A\}$ and $v_2 \models \mathcal{G} \cup \{\neg A\}$

Observe that we have just proved that any v such that v(a) = F, and v(b) = T is **the only** model restricted to the set of variables $\{a, b\}$ for \mathcal{G} so we have to check now if it is **possible** that $v \models A$ and $v \models \neg A$

We have to evaluate $v^*(A)$ and $v^*(\neg A)$ for v(a) = F, and v(b) = T $v^*(A) = v^*((\neg a \cap b) = \neg v(a) \cap v(b) = \neg F \cap T = T \cap T = T$ and so $v \models A$ $v^*(\neg A) = \neg v^*(A) = \neg T = F$ and so $v \not\models \neg A$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

This end the proof that A is **not independent** of \mathcal{G}

Question 9

2. Find an infinite number of formulas that are independent of $\mathcal{G} = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$

This **my solution** - there are many others- this one seemed to me the **most simple**

Solution

We just proved that any v such that v(a) = F, v(b) = T is the only model restricted to the set of variables $\{a, b\}$ and so all other possible models for \mathcal{G} must be **extensions** of v

We **define** a countably infinite set of formulas (and their negations) and corresponding **extensions** of v (restricted to to the set of variables $\{a, b\}$) such that $v \models G$ as follows **Observe** that **all extensions** of v restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

 $VAR - \{a, b\} = \{a_1, a_2, \dots, a_n, \dots\}$

We take as a set of formulas (to be proved to be independent) the set of atomic formulas

 $\mathcal{F}_0 = \{a_1, a_2, \ldots, a_n \ldots\}$

- コン・1日・1日・1日・1日・1日・

We define now two sequences

 $\{v_i\}_{n\geq 1}$ and $\{w_i\}_{n\geq 1}$ of **extensions** of v as follows $v_i : VAR - \{a, b\} \longrightarrow \{T, F\}$ is such that $v_i(a_i) = T$ $w_i : VAR - \{a, b\} \longrightarrow \{T, F\}$ is such that $w_i(a_i) = F$ By definition of the **extension** we have that $v_i \models \mathcal{G}$ $w_i \models \mathcal{G}$ for all $i \geq 1$ and

 $v_i \models \mathcal{G} \cup \{a_i\}$ and $w_i \models \mathcal{G} \cup \{\neg a_i\}$

This **proves** that each formula $a_i \in \mathcal{F}_0$ is **independent** of the set \mathcal{G}

CHAPTER 5 Some Extensional Many Valued Semantics

Question 10

We define a 4 valued H_4 logic semantics as follows

The language is $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$

The logical connectives $\neg, \Rightarrow, \cup, \cap$ of H_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$ and are defined as follows

Conjunction \cap is a function

 $\cap: \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\},$ such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$

 $a \cap b = min\{a, b\}$

Chapter 5: Many Valued Semantics

Disjunction \cup is a function \cup : $\{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$

 $a \cup b = max\{a, b\}$

Implication \Rightarrow is a function $\Rightarrow: \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\},\$ such that for any $a, b \in \{F, \bot_1, \bot_2, T\},\$

$$a \Rightarrow b = \begin{cases} T & \text{if } a \leq b \\ b & \text{otherwise} \end{cases}$$

 $\neg a = a \Rightarrow F$

Negation:

Part 1 Write Truth Tables for IMPLICATION and NEGATION in **H**₄ **Solution**

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

H₄ Implication

Part 2 Verify whether

$$\models_{\mathbf{H}_4}((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$

Solution

Take any v such that

 $v(a) = \bot_1 \quad v(b) = \bot_2$

Evaluate

 $v * ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) = (\bot_1 \Rightarrow \bot_2) \Rightarrow (\neg \bot_1 \cup \bot_2) = T \Rightarrow (F \cup \bot_2)) = T \Rightarrow \bot_2 = \bot_2$

This proves that our v is a **counter-model** and hence

$$\not\models_{\mathbf{H}_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$

Chapter 6: Classical Propositional Tautologies

Question 11

Show that (can't use TTables!)

 $\models ((\neg a \cup b) \Rightarrow (((c \cap d) \Rightarrow \neg d) \Rightarrow (\neg a \cup b)))$

Solution

Denote $A = (\neg a \cup b)$, and $B = ((c \cap d) \Rightarrow \neg d)$

Our formula becomes a substitution of a basic tautology

 $(A \Rightarrow (B \Rightarrow A))$

and hence is a tautology