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Chapter 4
Classical Propositional Semantics



Semantics- General Principles

Given a propositional language L = LCON

Symbols for connectives of L always have some intuitive
meaning

Semantics provides a formal definition of the meaning of
these symbols

It also provides a method of defining a notion of a tautology,
i.e. of a formula of the language that is always true under the
given semantics



Extensional Connectives

In Chapter 2 we described the intuitive classical propositional
semantics and its motivation and introduced the following
notion of extensional connectives

Extensional connectives are the propositional connectives
that have the following property:
the logical value of the formulas form by means of these
connectives and certain given formulas depends only on
the logical value(s) of the given formulas

We also assumed that

All classical propositional connectives

¬, ∪, ∩, ⇒, ⇔, ↑, ↓

are extensional



Non-Extensional Connectives

We have also observed the following

Remark

In everyday language there are expressions such as

”I believe that”, ”it is possible that”, ” certainly”, etc....

They are represented by some propositional connectives
which are not extensional

Non- extensional connectives do not play any role in
mathematics and so are not discussed in classical logic
and will be studied separately



Definition of Extensional Connectives

Given a propositional language LCON for the set
CON = C1 ∪ C2, where C1 is the set of all unary
connectives, and C2 is the set of all binary connectives

Let V be a non-empty set of logical values

We adopt now a following formal definition of extensional
connectives

Definition

Connectives 5 ∈ C1, ◦ ∈ C2 are called extensional iff their
semantics is defined by respective functions

5 : V −→ V and ◦ : V × V −→ V



Functional Dependency and Definability of Connectives

In Chapter 2 we talked about functional dependency of
connectives and of definability of a connective in terms of
other connectives

We define these notions formally as follows

Given a propositional language LCON and an extensional
semantics for it; i.e a semantics such that all connectives in
L are extensional
Definition
Connectives ◦ ∈ CON and ◦1, ◦2, ...◦n ∈ CON (for n ≥ 1) are
functionally dependent iff ◦ is a certain function
composition of functions ◦1, ◦2, ...◦n

Definition
A connective ◦ ∈ CON is definable in terms of some
connectives ◦1, ◦2, ...◦n ∈ CON iff ◦ ∈ CON and
◦1, ◦2, ...◦n ∈ CON are functionally dependent



Classical Propositional Semantics Assumptions

Assumptions

A1: We define our semantics for the language

L = L{¬, ∪, ∩, ⇒, ⇔}

A2: Two values: the set of logical values V = {T , F}

Logical values T, F denote truth and falsehood, respectively

There are other notations, for example 0,1

A3: Extensionality: all connectives of L are extensional

Semantics for any language L for which the assumption A3
holds are called extensional semantics



Classical Propositional Semantics Definition

Formal definition of classical semantics consists of providing
definitions of the following four main components:

1. Logical Connectives

2. Truth Assignment

3. Satisfaction, Model, Counter-Model

4. Tautology

We define the main components step by step.

The definition of extensional semantics for some
non-classical logics considered here will follow the same
pattern



Semantics: Classical Connectives Definition

Semantics Definition Step 1
The assumption of extensionality of connectives means
that unary connectives are functions defined on a set {T ,F}
with values in the set {T ,F} and
binary connectives are functions defined on a set
{T ,F} × {T ,F} with values in the set {T ,F}
In particular we adopt the following definitions
Negation Definition
Negation ¬ is a function:

¬ : {T ,F} −→ {T ,F},

such that
¬T = F , ¬F = T



Semantics: Classical Connectives Definition

Notation
When defining connectives as functions we usually write the
name of a function (our connective) between the arguments,
not in front as in function notation, i.e. for example we write
T ∩ T = T instead of ∩(T ,T) = T

Conjunction Definition
Conjunction ∩ is a function:

∩ : {T ,F} × {T ,F} −→ {T ,F},

such that

∩(T ,T) = T , ∩(T ,F) = F , ∩(F ,T) = F , ∩(F ,F) = F

We write it as

T ∩ T = T , T ∩ F = F , F ∩ T = F , F ∩ F = F



Semantics: Classical Connectives Definition

Discjunction Definition

Disjunction ∪ is a function:

∪ : {T ,F} × {T ,F} −→ {T ,F}

such that

∪(T ,T) = T , ∪(T ,F) = T , ∪(F ,T) = T , ∪(F ,F) = F

We write it as

T ∪ T = T , T ∪ F = T , F ∪ T = T , F ∪ F = F



Semantics: Classical Connectives Definition

Implication Definition

Implication ⇒ is a function:

⇒: {T ,F} × {T ,F} −→ {T ,F}

such that

⇒ (T ,T) = T , ⇒ (T ,F) = F , ⇒ (F ,T) = T , ⇒ (F ,F) = T

We write it as

T ⇒ T = T , T ⇒ F = F , F ⇒ T = T , F ⇒ F = T



Semantics: Classical Connectives Definition

Equivalence Definition

Equivalence ⇔ is a function:

⇔: {T ,F} × {T ,F} −→ {T ,F}

such that

⇔ (T ,T) = T , ⇔ (T ,F) = F , ⇔ (F ,T) = F , ⇔ (T ,T) = T

We write it as

T ⇔ T = T , T ⇔ F = F , F ⇔ T = F , T ⇔ T = T



Classical Connectives Truth Tables

We write the functions defining connectives in a form of
tables, usually called the classical truth tables

Negation:

¬T = F , ¬F = T

¬ T F
F T

Conjunction:

T ∩ T = T , T ∩ F = F , F ∩ T = F , F ∩ F = F

∩ T F
T T F
F F F



Classical Connectives Truth Tables

Disjunction:

T ∪ T = T , T ∪ F = T , F ∪ T = T , F ∪ F = F

∪ T F
T T T
F T F

Implication:

T ⇒ T = T , T ⇒ F = F , F ⇒ T = T , F ⇒ F = T

⇒ T F
T T F
F T T



Classical Connectives Truth Tables

Equivalence:

T ⇔ T = T , T ⇔ F = F , F ⇔ T = F , T ⇔ T = T

⇔ T F
T T F
F F T

This ends the Step1 of the semantics definition



Definability of Classical Connectives

We adopted the following definition
Definition
A connective ◦ ∈ CON is definable in terms of some
connectives ◦1, ◦2, ...◦n ∈ CON iff ◦ is a certain function
composition of functions ◦1, ◦2, ...◦n

Example
Classical implication ⇒ is definable in terms of ∪ and ¬
because⇒ can be defined as a composition of functions ¬
and ∪
More precisely, a function h : {T ,F} × {T ,F} −→ {T ,F}
defined by a formula

h(a, b) = ∪(¬a, b)

is a composition of functions ¬ and ∪ and we prove that
the implication function⇒ is equal with h



Short Review: Equality of Functions

Definition

Given two sets A, B and functions f, g such that

f : A −→ B and g : A −→ B

We say that the functions f, g are equal and write is as f = g
iff f(a) = g(a) for all elements a ∈ A

Example: Consider functions

⇒: {T ,F} × {T ,F} −→ {T ,F} and h : {T ,F} × {T ,F} −→ {T ,F}

where ⇒ is classical implication and h is defined by the
formula h(a, b) = ∪(¬a, b)

We prove that ⇒ = h by evaluating that
⇒ (a, b) = h(a, b) = ∪(¬a, b), for all (a, b) ∈ {T ,F} × {T ,F}



Definability of Classical Implication

We re-write formula ⇒ (a, b) = ∪(¬a, b) in our adopted
notation as

a ⇒ b = ¬a ∪ b for any a, b ∈ {T ,F}

and call it a formula defining ⇒ in terms of ∪ and ¬

We verify correctness of the definition as follows

T ⇒ T = T and ¬T ∪ T = F ∪ T = T yes

T ⇒ F = F and ¬T ∪ F = T ∪ F = T yes

F ⇒ F = T and ¬F ∪ F = T ∪ F = T yes

F ⇒ T = T and ¬F ∪ T = T ∪ T = T yes



Definability of Classical Connectives

Exercise 1

Find a formula defining ∩,⇔ in terms of ∪ and ¬

Exercise 2

Find a formula defining
⇒,∪,⇔ in terms of ∩ and ¬

Exercise 3

Find a formula defining ∩,∪,⇔ in terms of⇒ and ¬

Exercise 4

Find a formula defining ∪ in terms of⇒ alone



Two More Classical Connectives

Sheffer Alternative Negation ↑

↑: {T ,F} × {T ,F} −→ {T ,F}

such that

T ↑ T = F , T ↑ F = T , F ↑ T = T , F ↑ F = T

Łukasiewicz Joint Negation ↓

↓: {T ,F} × {T ,F} −→ {T ,F}

such that

T ↓ T = F , T ↓ F = F , F ↓ T = F , F ↓ F = T



Definability of Classical Connectives

Exercise 4

Show that the Sheffer Alternative Negation ↑ defines all
classical connectives ¬, ⇒, ∪, ∩, ⇔

Exercise 5

Show that Łukasiewicz Joint Negation ↓ defines all
classical connectives ¬, ⇒, ∪, ∩, ⇔

Exercise 6

Show that the two binary connectives: ↓ and ↑ suffice, each
of them separately, to define all classical connectives,
whether unary or binary



Semantics: Truth Assignment

Step 2

We define classical propositional semantics in terms of the
propositional connectives as defined in the Step 1 and a
function called truth assignment

Definition

A truth assignment is any function

v : VAR −→ {T ,F}

Observe that the domain of truth assignment is the set of
propositional variables, i.e. the truth assignment is defined
only for atomic formulas



Truth Assignment Extension

We now extend the truth assignment v to the set of all
formulas F in order define formally the logical value for
any formula A ∈ F

The definition of the extension of the variable assignment v
to the set F follows the same pattern for the all extensional
connectives, i.e. for all extensional semantics



Truth Assignment Extension v∗ to F

Definition

Given the truth assignment

v : VAR −→ {T ,F}

We define its extension v∗ to the set F of all formulas of L
as any function

v∗ : F −→ {T ,F}

such that the following conditions are satisfied

(i) for any a ∈ VAR

v∗(a) = v(a);



Truth Assignment Extension v∗ to F

(ii) and for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = ∩(v∗(A), v∗(B));

v∗((A ∪ B)) = ∪(v∗(A), v∗(B));

v∗((A ⇒ B)) =⇒(v∗(A), v∗(B));

v∗((A ⇔ B)) =⇔(v∗(A), v∗(B))

The symbols on the left-hand side of the equations represent
connectives in their natural language meaning and

the symbols on the right-hand side represent connectives in
their semantical meaning given by the classical truth tables



Extension v∗ Definition Revisited

Notation
For binary connectives (two argument functions) we adopt a
convention to write the symbol of the connective (name of the
2 argument function) between its arguments as we do in a
case arithmetic operations
The condition (ii) of the definition of the extension v∗ can be
hence written as follows
(ii) and for any A ,B ∈ F we put

v∗(¬A) = ¬v∗(A);

v∗((A ∩ B)) = v∗(A)∩v∗(B);

v∗((A ∪ B)) = v∗(A)∪v∗(B);

v∗((A ⇒ B)) = v∗(A)⇒v∗(B);

v∗((A ⇔ B)) = v∗(A)⇔v∗(B)

We will use this notation for the rest of the book



Truth Assignment Extension Example

Consider a formula

((a ⇒ b) ∪ ¬a))

and a truth assignment v such that

v(a) = T , v(b) = F

Observe that we did not specify v(x) of any x ∈ VAR − {a, b},
as these values do not influence the computation of the logical
value v∗(A) of the formula A

We say: ”v such that” - as we consider its values for the set
{a, b} ⊆ VAR

Nevertheless, the domain of v is the set of all variables VAR
and we have to remember that



Truth Assignment Extension Example

Given a formula A:

((a ⇒ b) ∪ ¬a))

and a truth assignment v such that v(a) = T, v(b) = F

We calculate the logical value of the formula A as follows:

v∗(A) = v∗(((a ⇒ b) ∪ ¬a))) = ∪(v∗((a⇒b), v∗(¬a))=

∪(⇒(v∗(a), v∗(b)),¬v∗(a))) = ∪(⇒(v(a), v(b)),¬v(a)))=

∪(⇒(T ,F),¬T)) = ∪(F ,F) = F

We can also calculate it as follows:

v∗(A) = v∗(((a ⇒ b) ∪ ¬a))) = v∗((a⇒b))∪v∗(¬a) =

(v(a)⇒v(b))∪¬v(a) = (T⇒F)∪¬T = F∪F = F

We can also wrote is in a short-hand notation as

(T⇒F)∪¬T = F∪F = F



Semantics: Satisfaction Relation

Step 3

Definition: Let v : VAR −→ {T ,F}

We say that
v satisfies a formula A ∈ F iff v∗(A) = T

Notation: v |= A

Definition: We say that

v does not satisfy a formula A ∈ F iff v∗(A) , T

Notation: v 6|= A

The relation |= is called a satisfaction relation



Semantics: Satisfaction Relation

Observe that v∗(A) , T is is equivalent to the fact that
v∗(A) = F only in 2-valued semantics and

v 6|= A iff v∗(A) = F

Definition

We say that v falsifies the formula A iff v∗(A) = F

Remark

For any formula A ∈ F

v 6|= A iff v falsifies the formula A



Examples

Example 1 : Let A = ((a ⇒ b) ∪ ¬a)) and

v : VAR −→ {T ,F} be such that v(a) = T , v(b) = F

We calculate v∗(A) using a short hand notation as follows

(T ⇒ F) ∪ ¬T = F ∪ F = F

By definitiom
v 6|= ((a ⇒ b) ∪ ¬a))

Observe that we did not need to specify the v(x) of any
x ∈ VAR − {a, b}, as these values do not influence the
computation of the logical value v∗(A)



Examples

Example 2 Let A = ((a ∩ ¬b) ∪ ¬c) and

v : VAR −→ {T ,F} be such that
v(a) = T , v(b) = F , v(c) = T

We calculate v∗(A) using a short hand notation as follows

(T ∩ ¬F) ∪ ¬T = (T ∩ T) ∪ F = T ∪ F = T

By definition
v |= ((a ∩ ¬b) ∪ ¬c)



Examples

Example 3 Let A = ((a ∩ ¬b) ∪ ¬c)

Consider now v1 : VAR −→ {T ,F} such that

v1(a) = T , v1(b) = F , v1(c) = T and

v1(x) = F , for all x ∈ VAR − {a, b , c}

Observe that

v(a) = v1(a), v(b) = v1(b), v(c) = v1(c)

Hence we get
v1 |= ((a ∩ ¬b) ∪ ¬c)



Examples

Example 4 Let A = ((a ∩ ¬b) ∪ ¬c)

Consider now v2 : VAR −→ {T ,F} such that

v2(a) = T , v2(b) = F , v2(c) = T , v2(d) = T and

v1(x) = F , for all x ∈ VAR − {a, b , c, d}

Observe that

v(a) = v2(a), v(b) = v2(b), v(c) = v2(c)

Hence we get
v2 |= ((a ∩ ¬b) ∪ ¬c)



Semantics: Model, Counter-Model

Definition:

Given a formula A ∈ F and v : VAR −→ {T , F}

Any v such that v |= A is called a model for A

Any v such that v 6|= A is called a counter model for A

Observe that all truth assignments v , v1, v2 from our
Examples 1,2, 3 are models for the same formula A



Semantics: Tautology

Step 4

Definition:

For any formula A ∈ F

A is a tautology iff v∗(A) = T , for all v : VAR −→ {T ,F}

i.e. we have that

A is a tautology iff any v : VAR −→ {T ,F} is a model for A

Notation

We write symbolically |= A for the statement ”A is a
tautology”



Semantics: not a tautology

Definition

A is not a tautology iff there is v, such that v∗(A) , T

i.e. we have that

A is not a tautology iff A has a counter-model

Notation

We write 6|= A to denote the statement ”A is not a
tautology”



How Many

We just saw from the Examples 1,2, 3 that given a model v
for a formula A, we defined 2 other models for A

These models were identical with v on the variables in the
formula A

Visibly we can keep constructing in a similar way more and
more of such models

A natural question arises:

Given a model for a the formula A , how many other models
for A can be constructed?

The same question can be asked about counter-models for A,
if they exist



Challenge Problem

Challenge Problem : prove the following

Model Theorem

For any formula A ∈ F ,

If A has a model (counter- model), then it has uncountably
many (exactly as many as real numbers) of models
(counter-models)



How Many

Here is a more general question

Question

Given a formula A ∈ F ,

how many truth assignments satisfy (falsify) the formula A?

We prove in the same way as the Model Theorem that there
are as many of such truth assignments as real numbers

But FORTUNATELY only a finite number of them is differs on
the variables included in the formula A and we do have the
following

Tautology DecidabilityTheorem

The notion of classical propositional tautology |= A is
decidable



Restricted Truth Assignments

To address and to answer these questions formally we first
introduce some notations and definitions
Notation: for any formula A , we denote by VARA a set of all
variables that appear in A
Definition: Given v : VAR −→ {T ,F}, any function
vA : VARA −→ {T ,F} such that v(a) = vA (a) for all
a ∈ VARA is called a restriction of v to the formula A
Fact 1
For any formula A, any v, and its restriction vA

v |= A iff vA |= A

Definition: Given a formula A ∈ F , any function

w : VARA −→ {T ,F}

is called a truth assignment restricted to A



Example

Example
A = ((a ∩ ¬b) ∪ ¬c)

VARA = {a, b , c}

Truth assignment restricted to A is any function:

w : {a, b , c} −→ {T ,F}.

We use the following theorem to count all possible truth
assignment restricted to A



Counting Functions

Counting Functions Theorem

For any finite sets A and B,

if the set A has n elements and B has m elements, then

there are mn possible functions that map A into B

Proof by Mathematical Induction over m

Example:

There are 23 = 8 truth assignments w restricted to

A = ((a ⇒ ¬b) ∪ ¬c)



Counting Theorem

Counting Theorem

For any A ∈ F , there are

2|VARA |

possible truth assignments restricted to A



Example

Let A = ((a ∩ ¬b) ∪ ¬c)

All w restricted to A are listed in the table below
w a b c w∗(A) computation w∗(A)
w1 T T T (T ⇒ T) ∪ ¬T = T ∪ F = T T
w2 T T F (T ⇒ T) ∪ ¬F = T ∪ T = T T
w3 T F F (T ⇒ F) ∪ ¬F = F ∪ T = T T
w4 F F T (F ⇒ F) ∪ ¬T = T ∪ F = T T
w5 F T T (F ⇒ T) ∪ ¬T = T ∪ F = T T
w6 F T F (F ⇒ T) ∪ ¬F = T ∪ T = T T
w7 T F T (T ⇒ F) ∪ ¬T = F ∪ F = F F
w8 F F F (F ⇒ F) ∪ ¬F = T ∪ T = T T

w1,w2,w3,w4w5,w6,w8 are models for A

w7 is a counter- model for A



Restrictions and Extensions

Given a formula A and w : VARA −→ {T ,F}

Definition

Any function v, such that v : VAR −→ {T ,F} and
v(a) = w(a), for all a ∈ VARA is called an extension of w to
the set VAR of all propositional variables

Fact 2

For any formula A, any w restricted to A , and any of its
extensions v

w |= A iff v |= A



Tautology and Decidability

By the definition of a tautology and Facts 1, 2 we get the
following

TautologyTheorem

|= A iff w |= A for all w : VARA −→ {T ,F}

From above and the Counting Theorem we get

Tautology DecidabilityTheorem

The notion of classical propositional tautology |= A is
decidable



Tautology Verification

We just PROVED correctness of the well known

Truth Table Tautology Verification Method :

to verify whether |= A list and evaluate all possible truth
assignments w restricted to A and we have that

|= A if all w evaluate to T

6|= A if there is one w that evaluates to F



Truth Table Example

Consider a formula A:

(a ⇒ (a ∪ b))

We write the Truth Table:

w a b v∗(A) computation w∗(A)
w1 T T (T ⇒ (T ∪ T)) = (T ⇒ T) = T T
w2 T F (T ⇒ (T ∪ F)) = (T ⇒ T) = T T
w3 F T (F ⇒ (F ∪ T)) = (F ⇒ T) = T T
w4 F F (F ⇒ (F ∪ F)) = (F ⇒ F) = T T

We evaluated that for all w restricted to A, i.e. all functions
w : VARA −→ {T ,F}, w |= A
This proves by TautologyTheorem

|= (a ⇒ (a ∪ b))



Tautology Verification

Imagine now that A has for example 200 variables.

To find whether A is a tautology by using the Truth Table
Method one would have to evaluate 200 variables long
expressions - not to mention that one would have to list 2200

restricted truth assignments

I want you to use now and later in case of many valued
semantics a more intelligent ( and much faster!) method
called Proof by Contradiction Method

In fact, I will not accept the Truth Tables verifications on
any TEST and students using it will get 0 pts for the problem



Tautology - Proof by Contradiction Method

Proof by Contradiction Method:

One works backwards, trying to find a restricted truth
assignment v which makes a formula A false

If we find one, it means that A is not a tautology

if we prove that it is impossible

it means that the formula is a tautology



Example

Let A = (a ⇒ (a ∪ b)

Step 1: Assume that 6|= A , i.e. we write in a shorthand
notion A = F

Step 2: Analyze Strep 1

(a ⇒ (a ∪ b)) = F iff a = T and (a ∪ b) = F

Step 3: Analyze Step 2

a = T and (a ∪ b) = F , i.e. (T ∪ b) = F

This is impossible by the definition of ∪

We got a contradiction , hence

|= (a ⇒ (a ∪ b))



Example

Observe that exactly the same reasoning proves that for
any formulas A ,B ∈ F ,

|= (A ⇒ (A ∪ B))

The following formulas are also tautologies

((((a ⇒ b) ∩ ¬c)⇒ ((((a ⇒ b) ∩ ¬c) ∪ ¬d))

(((a ⇒ b)∩¬c)∪d)∩¬e)⇒ (((a ⇒ b)∩¬c)∪d)∩¬e)∪((a ⇒ ¬e)))

because they are substitutions of (A ⇒ (A ∪ B))



Tautologies, Contradictions

Set of all Tautologies

T = {A ∈ F : |= A }

Definition

A formula A ∈ F is called a contradiction if it does not
have a model

Contradiction Notation: = | A

Directly from the definition we have that

= |A iff v 6|= A for all v : VAR −→ {T ,F}

Set of all Contradictions

C = {A ∈ F : = | A }



Examples

Tautology (A ⇒ (B ⇒ A))

Contradiction (A ∩ ¬A)

Neither (a ∪ ¬b)

Consider the formula (a ∪ ¬b)

Any v such that v(a) = T is a model for (a ∪ ¬b), so it is
not a contradiction
Any v such that v(a) = F , v(b) = T is a counter-model
for (a ∪ ¬b) so 6|= (a ∪ ¬b)



Simple Properties

Theorem 1 For any formula A ∈ F the following
conditions are equivalent.

(1) A ∈ T

(2) ¬A ∈ C

(3) For all v, v |= A

Theorem 2 For any formula A ∈ F the following conditions
are equivalent.

(1) A ∈ C

(2) ¬A ∈ T

(6) For all v, v 6|= A



Constructing New Tautologies

We now formulate and prove a theorem which describes
validity of a method of constructing new tautologies from
given tautologies
First we introduce some convenient notations.
Notation 1: for any A ∈ F we write

A(a1, a2, ...an)

to denote that a1, a2, ...an are fall propositional variables
appearing in A
Notation 2: let A1, ...An be any formulas, we write

A(a1/A1, ..., an/An)

to denote the result of simultaneous replacement
(substitution) all variables a1, a2, ...an in A by formulas
A1, ...An, respectively.



Constructing NewTautologies

Theorem For any formulas A , A1, ...An ∈ F ,

IF |= A(a1, a2, ...an) and B = A(a1/A1, ..., an/An),

THEN |= B

Proof: Let B = A(a1/A1, ..., an/An) and let b1, b2, ...bm be
all propositional variables which occur in A1, ...An

Given a truth assignment v : VAR −→ {T ,F}, the values
v(b1), v(b2), ...v(bm) define v∗(A1), ...v∗(An) and, in turn

define v∗(A(a1/A1, ..., an/An))



Constructing NewTautologies

Let now w : VAR −→ {T ,F} be a truth assignment such that
w(a1) = v∗(A1), w(a2) = v∗(A2), ...w(an) = v∗(An).

Obviously, v∗(B) = w∗(A).

Since |= A , w∗(A) = T , for all possible w,

hence v∗(B) = w∗(A) = T for all truth assignments w and

we have |= B



Models for Sets of Formulas

Consider L = LCON and let S , ∅ be any non empty set of
formulas of L, i.e.

S ⊆ F

We adopt the following definition.

Definition

A truth truth assignment v : VAR −→ {T ,F}

is a model for the set S of formulas if and only if

v |= A for all formulas A ∈ S

We write
v |= S

to denote that v is a model for the set S of formulas



Counter- Models for Sets of Formulas

Similarly, we define a notion of a counter-model

Definition

A truth assignment v : VAR −→ {T ,F}

is a counter-model for the set S , ∅

of formulas if and only if

v 6|= A for some formula A ∈ S

We write
v 6|= S

to denote that v is a counter- model for the set S of
formulas



Restricted Model for Sets of Formulas

Remark that the set S can be infinite, or finite

In a case when S is a finite subset of formulas we define, as
before, a notion of restricted model and restricted
counter-model.

Definition

Let S be a finite subset of formulas and v |= S

Any restriction of the model v to the domain

VARS =
⋃

A∈S
VARA

is called a restricted model for S



Restricted Counter - Model for Sets of Formulas

Definition

Any restriction of a counter-model v of a set S , ∅ of
formulas to the domain

VARS =
⋃

A∈S
VARA

is called a restricted counter-model for S



Example

Example

Let L = L{¬,∩} and let

S = {a, (a ∩ ¬b), c, ¬b}

We have now VARS = {a, b , c}

and v : VARS → {T ,F} such that

v(a) = T , v(c) = T , v(b) = F} is a restricted model for S

and v : VARS → {T ,F} such that v(a) = F

is a restricted counter-model for S



Models for Infinite Sets

The set S from the previous example was a finite set

Natural question arises:

Question

Give an example of an infinite set S that has a model

Give an example of an infinite set S that does not have
model

Ex1 Consider set T of all tautologies

It is a countably infinite set and by definition of a tautology
any v is a model for T, i.e. v |= T

Ex2 Consider set C of all contradictions

It is a countably infinite set and

for any v, v 6|= C by definition of a contradiction, i.e. any
any v is a counter-model for C



Challenge Problems

P1 Give an example of an infinite set S, such that S , T
and S has a model

P2 Give an example of an infinite set S, such that
S ∩ T = ∅ and S has a model

P3 Give an example of an infinite set S, such that S , C
and S does not have a model

P4 Give an example of an infinite set S, such that S , C
and S has a counter model

P5 Give an example of an infinite set S, such that
S ∩ C = ∅ and S has a counter model



Chapter 4: Consistent Sets of Formulas

Definition

A set G ⊆ F of formulas is called consistent

if and only if G has a model, i.e. we have that

G ⊆ F is consistent if and only if

there is v such that v |= G

Otherwise G is called inconsistent



HALF Challenge Problems

P6 Give an example of an infinite set S, such that S , T
and S is consistent

P7 Give an example of an infinite set S, such that
S ∩ T = ∅ and S is consistent

P8 Give an example of an infinite set S, such that S , C
and S is inconsistent

P9 Give an example of an infinite set S, such that
S ∩ C = ∅ and S is inconsistent



Chapter 4: Independent Statements

Definition

A formula A is called independent from a set G ⊆ F

if and only if there are truth assignments v1, v2 such that

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

i.e. we say that a formula A is independent

if and only if

G ∪ {A } and G ∪ {¬A } are consistent



Example

Example

Given a set

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Show that G is consistent

Solution

We have to find v : VAR −→ {T ,F} such that

v |= G

It means that we need to bf find v such that

v∗((a ∩ b)⇒ b) = T , v∗(a ∪ b) = T , v∗(¬a) = T



Consistent: Example

Observe that |= ((a ∩ b)⇒ b), hence we have that

1. v∗((a ∩ b)⇒ b) = T for any v

v∗(¬a) = ¬v∗(a) = ¬v(a) = T only when v(a) = F hence

2. v(a) = F

v∗(a ∪ b) = v∗(a) ∪ v∗(b) = v(a) ∪ v(b) = F ∪ v(b) = T
only when v(b) = T so we get

3. v(b) = T

This means that for any v : VAR −→ {T ,F} such that
v(a) = F , v(b) = T

v |= G

and we proved that G is consistent



Independent: Example

Example

Show that a formula A = ((a ⇒ b) ∩ c) is independent of

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Solution

We construct v1, v2 : VAR −→ {T ,F} such that

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

We have just proved that any v : VAR −→ {T ,F} such that
v(a) = F , v(b) = T is a model for G



Independent: Example

Take as v1 any truth assignment such that

v1(a) = v(a) = F , v1(b) = v(b) = T , v1(c) = T

We evaluate v1
∗(A) = v1

∗((a ⇒ b) ∩ c) = (F ⇒ T) ∩ T = T

This proves that v1 |= G ∪ {A }

Take as v2 any truth assignment such that

v2(a) = v(a) = F , v2(b) = v(b) = T , v2(c) = F

We evaluate v2
∗(¬A) = v2

∗(¬(a ⇒ b) ∩ c)) = T ∩ T = T

This proves that v2 |= G ∪ {¬A }

It ends the proof that A is independent of G



Not Independent: Example

Example

Show that a formula A = (¬a ∩ b) is not independent of

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}

Solution

We have to show that it is impossible to construct v1, v2

such that
v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

Observe that we have just proved that any v such that
v(a) = F , and v(b) = T is the only model restricted to the
set of variables {a, b} for G so we have to check now if it is
possible that v |= A and v |= ¬A



Not Independent: Example

We have to evaluate v∗(A) and v∗(¬A) for

v(a) = F , and v(b) = T

v∗(A) = v∗((¬a ∩ b) = ¬v(a) ∩ v(b) = ¬F ∩ T = T ∩ T = T
and so v |= A

v∗(¬A) = ¬v∗(A) = ¬T = F

and so v 6|= ¬A

This end the proof that A is not independent of G



Independent: Another Example

Example
Given a set G = {a, (a ⇒ b)}, find a formula A that is
independent from G

Observe that v such that v(a) = T , v(b) = T is the only
restricted model for G
So we have to come up with a formula A such that there are
two different truth assignments, v1 and v2, and

v1 |= G ∪ {A } and v2 |= G ∪ {¬A }

Let’s consider A = c, then G ∪ {A } = {a, a ⇒ b , c}
A truth assignment v1, such that v1(a) = T , v1(b) = T and
v1(c) = T is a model for G ∪ {A }
Likewise for G ∪ {¬A } = {a, a ⇒ b ,¬c}
Any v2, such that v2(a) = T , v2(b) = T and v2(c) = F is a
model for G ∪ {¬A } and so the formula A is independent



Challenge Problem

Challenge Problem

Find an infinite number of formulas that are independent of
a set

G = {((a ∩ b)⇒ b), (a ∪ b),¬a}



Challenge Problem Solution

This my solution - there are many others- this one seemed to
me the most simple

Solution

We just proved that any v such that v(a) = F , v(b) = T is
the only model restricted to the set of variables {a, b} and so
all other possible models for G must be extensions of v



Challenge Problem Solution

We define a countably infinite set of formulas (and their
negations) and corresponding extensions of v (restricted to
to the set of variables {a, b}) such that v |= G as follows

Observe that all extensions of v restricted to to the set of
variables {a, b} have as domain the infinitely countable set

VAR = {a1, a2, . . . , an. . . . }

We take as an infinite set of formulas in which every formula
independent of G the set of atomic formulas

F0 = {a1, a2, . . . , an. . . . } − {a, b}


