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PART 1: Propositional Languages Intuitive Introduction

We define now a general notion of a propositional language.

We show how to obtain, as specific cases, various languages
for propositional classical logic and some non-classical logics

We assume the following:

All propositional languages contain an infinitely countable set
of variables VAR, which elements are denoted by

a, b , c, ....

with indices, if necessary

All propositional languages share the general way their sets
of formulas are formed



Propositional Languages

We distinguish one propositional language from the other is
the choice of its set of propositional connectives.

We adopt a notation
LCON

where CON stands for the set of connectives

We use a notation
L

when the set of connectives is fixed



Propositional Languages

For example, the language

L{¬}

denotes a propositional language with only one connective ¬

The language
L{¬,⇒}

denotes that a language with two connectives ¬ and⇒
adopted as propositional connectives

Remember: formal languages deal with symbols only and
are also called symbolic languages



General Principles

Symbols for connectives do have intuitive meaning.

Semantics provides a formal meaning of the connectives and
is defined separately.

One language can have many semantics.

Different logics can share the same language.

For example: the language

L{¬,∩,∪,⇒}

is used as a propositional language of classical and
intuitionistic logics, some many- valued logics, and we
extend it to the language of many modal logics



General Principles

Several languages can share the same semantics.

The classical propositional logic is the best example of such
situation.

Due to the functional dependency of classical logical
connectives the languages:

L{¬, ⇒}, L{¬, ∩}, L{¬, ∪}, L{¬, ∩, ∪, ⇒},

L{¬, ∩, ∪,⇒, ⇔}, L{↑}, L{↓}

are all equivalent under the classical semantics

We will define formally the languages equivalency later



General Principles

Propositional connectives have well established names
and the way we read them, even if their semantics may differ

We use names negation, conjunction, disjunction and
implication for ¬, ∩, ∪, ⇒, respectively

The connective ↑ is called alternative negation and

A ↑ B reads: not both A and B

The connective ↓ is called joint negation

and A ↓ B reads: neither A nor B



Some Non-Classical Propositional Connectives

Other most common propositional connectives are modal
connectives of possibility and necessity

Modal connectives are not extensional

Standard modal symbols are: � for necessity and ♦ for
possibility.

We will also use symbols C and I for modal connectives of
possibility and necessity, respectively.

The formula CA, or ♦A reads: it is possible that A or A is
possible and

�A reads: it is necessary that A or A is necessary



Modal Propositional Connectives

Symbols C and I are used for their topological meaning in the
semantics of standard modal logics S4 and S5

In topology C is a symbol for a set closure operation

CA means a closure of a set A

I is a symbol for a set interior operation

IA denotes an interior of the set A

Modal logics extend the classical logic

A modal logic languages are for example

L{C ,I,¬,∩,∪,⇒} or L{�,♦,¬,∩,∪,⇒}



Some More Non-Extensional Connectives

Knowledge logics also extend the classical logic by adding
a new one argument knowledge connective

The knowledge connective is often denoted by K

A formula KA reads: it is known that A or A is known

A language of a knowledge logic is for example

L{ K , ¬, ∩, ∪, ⇒}



Some More Non-Extensional Connectives

Autoepistemic logics extend classical logic by adding an
one argument believe connective, often denoted by B

A formula BA reads: it is believed that A

A language of an autoepistemic logic is for example

L{ B , ¬, ∩, ∪, ⇒}



Some More Non-Extensional Connectives

Temporal logics also extend classical logic by adding one
argument temporal connectives

Some of temporal connectives are: F, P, G, H.

Their intuitive meanings are:

FA reads A is true at some future time,

PA reads A was true at some past time,

GA reads A will be true at all future times,

HA reads A has always been true in the past



Propositional Connectives

It is possible to create connectives with more then one or two
arguments

We consider here only one or two argument connectives



Chapter 3
Propositional Languages

PART 2: Formal Definitions



Propositional Language

Definition

A propositional language is a pair

L = (A,F )

where A,F are called an alphabet and a set of formulas,
respectively

Definition

Alphabet is a set

A = VAR ∪ CON ∪ PAR

VAR, CON, PAR are all disjoint sets and VAR, CON are
non-empty sets



Alphabet Components

VAR is a countably infinite set of propositional variables

We denote elements of VAR by

a, b , c, d, ...

with indices if necessary

CON , ∅ is a finite set of logical connectives

We assume that the set CON of logical connectives is
non-empty, i.e. that a propositional language always has at
least one logical connective



Alphabet Components

Notation

We denote the language L with the set of connectives CON
by

LCON

Observe that propositional languages differ only on the
choice of the logical connectives hence our notation



Alphabet Components

PAR is a set of auxiliary symbols

This set may be empty; for example in case of Polish notation

Assumptions

We assume here that PAR contains only 2 parenthesis and

PAR = {(, )}

We also assume that the set CON of logical connectives
contains only unary and binary connectives, i.e.

CON = C1 ∪ C2

where C1 is the set of all unary connectives, and C2 is the
set of all binary connectives



Formulas Definition

Definition

The set F of all formulas of a propositional language LCON

is build recursively from the elements of the alphabet A as
follows.

F ⊆ A∗ and F is the smallest set for which the following
conditions are satisfied

(1) VAR ⊆ F
(2) If A ∈ F , 5 ∈ C1, then 5A ∈ F
(3) If A ,B ∈ F , ◦ ∈ C2 i.e ◦ is a two argument

connective, then
(A ◦ B) ∈ F

By (1) propositional variables are formulas and they are
called atomic formulas

The set F is also called a set of all well formed formulas
(wff) of the language LCON



Set of Formulas

Observe that the the alphabet A is countably infinite

Hence the set A∗ of all finite sequences of elements ofA is
also countably infinite

By definition F ⊆ A∗ and hence we get that the set of all
formulas F is also countably infinite

We state as separate fact

Fact

For any propositional language L = (A,F ), its sets of
formulas F is always a countably infinite set

We hence consider here only infinitely countable languages



Main Connectives and Direct Sub-Formulas

5 is called a main connective of the formula 5A ∈ F

A is called its direct sub-formula of 5A

◦ is called a main connective of the formula (A ◦ B) ∈ F

A ,B are called direct sub-formulas of (A ◦ B)



Examples

E1 Main connective of (a ⇒ ¬Nb) is ⇒

a,¬Nb are direct sub-formulas

E2 Main connective of N(a ⇒ ¬b) is N

(a ⇒ ¬b) is the direct sub-formula

E3 Main connective of ¬(a ⇒ ¬b) is ¬

(a ⇒ ¬b) is the direct sub-formula

E4 Main connective of of (¬a ∪ ¬(a ⇒ b)) is ∪

¬a, ¬(a ⇒ b)) are direct sub-formulas



Sub-Formulas

We define a notion of a sub-formula in two steps:

Step 1

For any formulas A and B, the formula A is a proper
sub-formula of B if there is sequence of formulas, beginning
with A , ending with B, and in which each term is a direct
sub-formula of the next

Step 2]

A sub-formula of a given formula A is any proper sub-formula
of A , or A itself



Sub-Formulas Example

The formula (¬a ∪ ¬(a ⇒ b))
has two direct sub-formulas: ¬a, ¬(a ⇒ b)

The direct sub-formulas of ¬a, ¬(a ⇒ b)

are respectively a, (a ⇒ b)

The direct sub-formulas of a, (a ⇒ b), are a, b

END of the process



Example

Given a formula
(¬a ∪ ¬(a ⇒ b))

Its set of all proper sub-formulas is:

S = {¬a,¬(a ⇒ b), a, (a ⇒ b , )b}

The set of all its sub-formulas is

S ∪ {(¬a ∪ ¬(a ⇒ b))}



Formula Degree Definition

We define a degree of a formula as a number of occurrences
of logical connectives in the formula.

Example

The degree of (¬a ∪ ¬(a ⇒ b)) is 4

The degree of ¬(a ⇒ b)) is 2

The degree of ¬a is 1

The degree of a is 0



Formula Degree

A degree of a formula is number of occurrences of logical
connectives in the formula.

Observation: the degree of any proper sub-formula of A
must be one less than the degree of A .

This is the central fact upon which mathematical induction
arguments are based.

Proofs of properties of formulas are usually carried by
mathematical induction on their degrees



Exercise 1

Exercise 1
Consider a language

L = L{¬, ♦, �, ∪, ∩, ⇒}

and a set S ⊆ A∗ such that

S = {♦¬a ⇒ (a ∪ b), (♦(¬a ⇒ (a ∪ b))),

♦¬(a ⇒ (a ∪ b))}

1. Determine which of the elements of S are, and which are
not well formed formulas (wff) of L
2. If a formula A is a well formed formula, i.e. A ∈ F ,
determine its its main connective.
3. If A < F write the correct formula and then determine its
main connective



Exercise 1 Solution

Solution
The formula ♦¬a ⇒ (a ∪ b) is not a well formed formula
The correct formula is

(♦¬a ⇒ (a ∪ b))

The main connective is ⇒

The correct formula says:

If negation of a is possible, then we have a or b

Another correct formula in is

♦(¬a ⇒ (a ∪ b))

The main connective is ♦

The corrected formula says:

It is possible that not a implies a or b



Exercise 1 Solution

The formula (♦(¬a ⇒ (a ∪ b))) is not correct

The correct formula is

♦(¬a ⇒ (a ∪ b))

The main connective is ♦

The correct formula says:

It is possible that not a implies a or b

♦¬(a ⇒ (a ∪ b)) is a correct formula

The main connective is ♦

The formula says:

It is possible that it is not true that a implies a or b



Exercise 2

Exercise 2

Given a set S of formulas:
S = {((a ⇒ ¬b)⇒ ¬a), �(¬♦a ⇒ ¬a)}

Define the smallest language L to which all formulas in S
belong, i.e. a language determined by the set S

Solution:

All connectives appearing in the formulas in S are:

⇒, ¬, �, ♦

The language determined by the set S is

L{¬, ⇒, �, ♦}



Exercise 3

Exercise 3

Given a formula:
♦((a ∪ ¬a) ∩ b)

1. Determine its degree

2. Write down all its sub-formulas

Solution:

The degree is 4

All sub-formulas are:

♦((a ∪ ¬a) ∩ b), ((a ∪ ¬a) ∩ b),

(a ∪ ¬a), ¬a, b , a



Exercise 4

Exercise 4

Write the following natural language statement:

From the fact that it is possible that Anne is not a boy we
deduce that it is not possible that Anne is not a boy or, if it is
possible that Anne is not a boy, then it is not necessary that
Anne is pretty

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}



Exercise 4 Solution

1.We translate our statement into a formula
A1 ∈ F1 of the language L{¬, �, ♦, ∩, ∪, ⇒} as follows

Propositional Variables: a,b

a denotes statement: Anne is a boy,

b denotes a statement: Anne is pretty

Propositional Modal Connectives: �, ♦

♦ denotes statement: it is possible that

� denotes statement: it is necessary that

Translation 1: the formula A1 is

(♦¬a ⇒ (¬♦¬a ∪ (♦¬a ⇒ ¬�b)))



Exercise 4 Solution

2. We translate our statement into a formula
A2 ∈ F2 of the language L{¬, ∩, ∪, ⇒} as follows

Propositional Variables: a,b

a denotes statement: it is possible that Anne is not a boy

b denotes a statement: it is necessary that Anne is pretty

Translation 2: the formula A2 is

(a ⇒ (¬a ∪ (a ⇒ ¬b)))



Exercise 5

Write the following natural language statement:

From the fact that each natural number is greater than zero
we deduce that it is not possible that Anne is a boy or, if it is
possible that Anne is not a boy, then it is necessary that it is
not true that each natural number is greater than zero

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}


