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Chapter 2
Introduction to Classical Propositional Logic

PART 1: Classical Propositional Model Assumptions

Very short History

Origins: Stoic school of philosophy (3rd century B.C.), with
the most eminent representative was Chryssipus.

Modern Origins: Mid-19th century

English mathematician G. Boole, who is sometimes regarded
as the founder of mathematical logic.

First Axiomatic System: 1879 by German logician G. Frege.



Classical Propositional Model

Assumption 1

The first assumption of the propositional model of classical
reasoning, and hence of a formalization of classical
propositional logic is the following.

We assume that sentences (statements) are always
evaluated as true or false.

Such sentences are called logical sentences or propositions

Hence the name propositional logic (two valued)



Motivation

Why two logical values only?

We build a model for classical logic to reflect the black and
white qualities of mathematics.

We expect from mathematical theorems to be always either
true or false and the reasonings leading to them should
guarantee this without any ambiguity.



Classical Propositional Model

Assumption 2

1. We combine logical sentences (basic true- false blocks) to
form more complicated sentences, called formulas

2. We combine logical sentences using only only the
following words or phrases:
not; and; or; if ..., then; if and only if

3. We use symbols do denote both logical sentences and
the words or phrases, called logical connectives

Hence the name symbolic logic



Choice of the Symbols

There are different choices of logical symbols; we adopt the
following

Symbols for logical sentences are

a, b , c, p, r , q, ..., with indices, if necessary

They are called propositional variables

Symbols for logical connectives are:

¬ for ”not”,

∩ for ”and”, ∪ for ”or”,

⇒ for ”if ..., then”, and ⇔ for ”if and only if”.

The names for our logical connectives are:

¬ negation

∩ conjunction, ∪ disjunction,

⇒ implication and ⇔ equivalence.



Translation Example

Exercise: Translate a natural language sentence into
corresponding propositional symbolic logic formula.

Sentence

The fact that it is not true that at the same time 2+2 = 4 and
2+2 = 5 implies that 2+2 = 4

Translation Steps

Step 1: identify all logical connectives and we write the
sentence introducing parenthesis to express the meaning of
the sentence
If not (2 + 2 = 4 and 2 + 2 = 5) then 2 + 2 = 4



Translation Example

Step 2: identify basic sentences with no logical connectives
and assign propositional variables to them:

a : 2 + 2 = 4, b : 2 + 2 = 5

Step 3 : we write the (symbolic) formula as

(¬(a ∩ b)⇒ a)



PART 2: Syntax

Syntax of a symbolic language is the formal description of the
symbols we use and the way we construct its set of formulas

A formal language, or just a language, is another word for the
symbolic language

Propositional languages are the syntax of propositional
logics

Predicate languages form the syntax of more complex
logics, called predicate logics or predicate calculi



General Remarks

The formal language symbols and well defined set of formulas
i.e. an established syntax do not directly carry with them any
logical value

We assign a logical value to syntactically defined formulas of
a given language in a separate step

This next step is called a semantics of the given language

We will see that a given language can have different
semantics and the different semantics will define different
logics



Propositional Formulas

Propositional formulas are expressions build recursively by
means of logical connectives and propositional variables as
follows

1. All propositional variables are are formulas

They are called atomic formulas

2. For already defined formulas A ,B , the expressions

(A ∩ B), (A ∪ B), (A ⇒ B), (A ⇔ B), ¬A

are also well defined formulas

They are called non-atomic formulas



Example

By the definition, any propositional variable is a formula. Let’s
take two variables a and b.

By the recursive step we get that

(a ∩ b), (a ∪ b), (a ⇒ b), (a ⇔ b), ¬a, ¬b

are formulas

Recursive step applied again produces for example formulas :

¬(a ∩ b), ((a ⇔ b) ∪ ¬b), ¬¬a, ¬¬(a ∩ b)



Formulas

We didn’t list all formulas we obtained in the first recursive
step.

Moreover, the recursive process could continue.

The set of all formulas is countably infinite.

Remark that we put parenthesis within the formulas in a way
to avoid ambiguity

The expression: a ∩ b ∪ a, is ambiguous.

We don’t know whether it represents (a ∩b)∪a or a ∩ (b ∪a)

Observe that neither of a ∩ b ∪ a, (a ∩ b) ∪ a or a ∩ (b ∪ a)
is a well formed formula



Introduction to Semantics

We explain now how we define propositional connectives in
terms of logical values and discuss the motivations for
presented definitions

The formal description of a process of assigning logical
values to all formulas of a given language is called a
semantics of the language



Conjunction: Motivation and Definition

A conjunction (A ∩ B) is a true formula if both A and B are
true formulas.

If one of the formulas, or both, are false, then the conjunction
is a false formula

Let’s denote statement: formula A is false by A = F and

a statement: formula A is true by A = T



Conjunction: Definition

The logical value of a conjunction depends on the logical
values of its factors in a way which is express in the form of
the following table (truth table).

Conjunction Table:

A B (A ∩ B)

T T T
T F F
F T F
F F F



Disjunction

The word or is used in natural language in two different
senses.

First: A or B is true if at least one of the statements A, B is
true

Second: A or B is true if one of the statements A and B is
true and the other is false

In mathematics and hence in logic, the word or is used in the
first sense



Disjunction: Definition

We adopt the convention that a disjunction (A ∪ B) is true if
at least one of the formulas A , B is true

Disjunction Table:

A B (A ∪ B)

T T T
T F T
F T T
F F F



Negation: Definition

The negation of a true formula is a false formula, and the
negation of a false formula is a true formula

Negation Table:

A ¬A
T F
F T



Implication: Motivation and Definition

The semantics of the statements in the form

if A, then B

needs a little bit more discussion.

In everyday language a statement if A, then B is interpreted
to mean that B can be inferred from A.

In mathematics its interpretation differs from that in natural
language



Implication: Motivation and Definition

Consider the following

Theorem

For every natural number n,

if 6 DIVIDES n, then 3 DIVIDES n

The theorem is true for any natural number, hence in
particular, it is true for numbers 2, 3, 6

Consider number 2

The following proposition is true

if 6 DIVIDES 2, then 3 DIVIDES 2

It means an implication (A ⇒ B) in which A and B are
false is interpreted as a true statement



Implication: Motivation and Definition

Consider now a number 3

The following proposition is true

if 6 DIVIDES 3, then 3 DIVIDES 3,

It means that an implication (A ⇒ B) in which A is false and
B is true is interpreted as a true statement

Consider now a number 6

The following proposition is true

if 6 DIVIDES 6, then 3 DIVIDES 6.

It means that an implication (A ⇒ B) in which A and B
are true is interpreted as a true statement



Implication: Motivation and Definition

One more case.

What happens when in the implication (A ⇒ B) the formula
A is true and the formula B is false

Consider a sentence

if 6 DIVIDES 12, then 6 DIVIDES 5.

Obviously, this is a false statement



Implication: Definition

The above examples justify adopting the following definition
of a semantics for the implication (A ⇒ B)

Implication Table:
A B (A ⇒ B)

T T T
T F F
F T T
F F T



Equivalence Definition

An equivalence (A ⇔ B) is true if both formulas A and B
have the same logical value

Equivalence Table:

A B (A ⇔ B)

T T T
T F F
F T F
F F T



Extensional Connectives

Extensional connectives are the connectives that have the
following property:
the logical value of the formulas form by means of these
connectives and certain given formulas depends only on
the logical value(s) of the given formulas

All classical propositional connectives

¬, ∪, ∩, ⇒, ⇔

are extensional



Propositional Connectives

Remark

In everyday language there are expressions such as

”I believe that”, ”it is possible that”, ” certainly”, etc....

They are represented by some propositional connectives
which are not extensional

They do not play any role in mathematics and so are not
discussed in classical logic, they belong to non-classical
logics



Connectives Symbols

Other Notations
Negation Disjunction Conjunction Implication Equivalence
−A A ∪ B A ∩ B A ⇒ B A ⇔ B
NA DAB CAB IAB EAB
A A ∨ B A & B A → B A ↔ B
∼ A A ∨ B A · B A ⊃ B A ≡ B
A ′ A + B A · B A → B A ≡ B

The first notation is the closest to ours and is drawn mainly
from the algebra of sets and lattice theory.

The second comes from the Polish logician J. Łukasiewicz
and is called the Polish notation

The third was used by D. Hilbert.

The fourth comes from Peano and Russell

The fifth goes back to Schröder and Pierce



All Extensional Connectives

There are many other extensional propositional connectives!

Here is a table of all unary connectives

A 51A 52A ¬A 54A
T F T F T
F F F T T



All Extensional Connectives

Table of all binary connectives:
A B (A◦1B) (A ∩ B) (A◦3B) (A◦4B)
T T F T F F
T F F F T F
F T F F F T
F F F F F F
A B (A ↓ B) (A◦6B) (A◦7B) (A ↔ B)
T T F T T T
T F F T F F
F T F F T F
F F T F F T
A B (A◦9B) (A◦10B) (A◦11B) (A ∪ B)
T T F F F T
T F T T F T
F T T F T T
F F F T T F
A B (A◦13B) (A ⇒ B) (A ↑ B) (A◦16B)
T T T T F T
T F T F T T
F T F T T T
F F T T T T



Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of
defining some connectives in terms of some others

classical propositional connectives can be defined in terms of
disjunction and negation.

Two binary connectives: ↓ and ↑ suffice, each of them
separately, to define all classical connectives, whether
unary or binary



Functional Dependency

The connective ↑ was discovered in 1913 by H.M. Sheffer,
who called it alternative negation

Now it is often called a Sheffer’s connective

The formula

A ↑ B reads: not both A and B.

Negation ¬A is defined as A ↑ A .

Disjunction (A ∪ B) is defined as (A ↑ A) ↑ (B ↑ B)



Functional Dependency

The connective ↓ was termed by J. Łukasiewicz a joint
negation

The formula

A ↓ B reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no propositional
connective other than ↑ and ↓ suffices to define all the
remaining classical connectives

Write the proof as an exercise


