
cse541
LOGIC FOR COMPUTER SCIENCE

Professor Anita Wasilewska

Spring 2015

LECTURE 12

Chapter 12
Gentzen Sequent Calculus LI for Intuitionistic Logic

Original Gentzen System LI for Intuitionistic Logic

Part 1

Definition of Gentzen System LI

The proof system LI for Intuitionistic Logic as presented
here was published by G. Gentzen in 1935

It was presented as a particular case of his proof system LK
for the classical logic

We present now the original Gentzen proof system LI and
then we show how it can be extended to the original
Gentzen system LK

Language of LI

Language of LI is

L = L{∪,∩,⇒,¬}

We add a new symbol −→ to the language and call it a
Gentzen arrow

We denote, as before, the finite sequences of formulas by
Greek capital letters

Γ,∆,Σ, . . .

with indices if necessary

Language of LI

Definition Any expression

Γ −→ ∆

where Γ,∆ ∈ F ∗ and

∆ consists of at most one formula

is called a LI sequent

We denote the set of all LI sequents by ISQ , i.e.

ISQ = {Γ −→ ∆ : ∆ consists of at most one formula}

Axioms of LI

Logical Axioms of LI consist of any sequent from the set
ISQ which contains a formula that appears on both sides of
the sequent arrow −→ , i.e any sequent of the form

Γ, A , ∆ −→ A

for Γ,∆ ∈ F ∗

Rules of Inference of LI

The set inference rules of LI is divided into two groups : the
structural rules and the logical rules

There are three Structural Rules of LI: Weakening,
Contraction and Exchange

Weakening structural rule

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→

Γ −→ A

A is called the weakening formula

Remember that ∆ contains at most one formula

Rules of Inference of LI

Contraction structural rule

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

A is called the contraction formula

Remember that ∆ contains at most one formula

The case below is not VALID for LI; we list it as it will be used
in the classical case

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆, A

Rules of Inference of LI

Exchange structural rule

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

Remember that ∆ contains at most one formula

The rule below is not VALID for LI; we list it as it will be used
in the classical case

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2
.

Rules of Inference of LI

Logical Rules

Conjunction rules

(∩ →)
A ,B , Γ −→ ∆

(A ∩ B), Γ −→ ∆
,

(→ ∩)
Γ −→ A ; Γ −→ B

Γ −→ (A ∩ B)

Remember that ∆ contains at most one formula

Rules of Inference of LI

Disjunction rules

(→ ∪)1
Γ −→ A

Γ −→ (A ∪ B)

(→ ∪)2
Γ −→ B

Γ −→ (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆

Remember that ∆ contains at most one formula

Rules of Inference of LI

Implication rules

(→⇒)
A , Γ −→ B

Γ −→ (A ⇒ B)

(⇒→)
Γ −→ A ; B , Γ −→ ∆

(A ⇒ B), Γ −→ ∆

Remember that ∆ contains at most one formula

Gentzen System LI

Negation rules

(¬ →)
Γ −→ A
¬A , Γ −→

(→ ¬)
A , Γ −→

Γ −→ ¬A

We define the Gentzen System LI as

LI = (L, ISQ , LA , Structural rules, Logical rules)

LK - Original Gentzen system
for Classical Propositional Logic

Classical Gentzen System LK

Language of LK

L = L{¬,∩,∪,⇒} and E = SQ

for
SQ = {Γ −→ ∆ : Γ,∆ ∈ F ∗}

Axioms of LK any sequent of the form

Γ1, A , Γ2 −→ Γ3, A , Γ4

Classical Gentzen System LK

Rules of inference of LK

1. We adopt all rules of LI with no restriction that the
sequence ∆ in the succedent of the sequence is at most
one formula

2. We add the following structural rules to the system LI

Contraction rule

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆, A

2. We add one more

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2

Classical Gentzen System LK

Observe that the added rules become obsolete in LI

The rules of inference of LK are hence as follows

Weakening Structural Rule

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→ ∆

Γ −→ ∆, A

Contraction Structural Rule

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆,A

Classical Gentzen System LK

Exchange Structural Rule

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2

Classical Gentzen System LK

Logical Rules

Conjunction rules

(∩ →)
A ,B , Γ −→ ∆

(A ∩ B), Γ −→ ∆

(→ ∩)
Γ −→ ∆, A ; Γ −→ ∆, B , ∆

Γ −→ ∆, (A ∩ B)

Disjunction rules

(→ ∪)
Γ −→ ∆, A ,B

Γ −→ ∆, (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆

Classical Gentzen System LK

Implication rules

(−→⇒)
A , Γ −→ ∆, B

Γ −→ ∆, (A ⇒ B)

(⇒−→)
Γ −→ ∆, A ; B , Γ −→ ∆

(A ⇒ B), Γ −→ ∆

Classical Gentzen System LK

Negation rules

(¬ −→)
Γ −→ ∆, A
¬A , Γ −→ ∆

(−→ ¬)
A , Γ −→ ∆

Γ −→ ∆, ¬A

We define formally

LK = (L,SQ , LA , Structural rules, Logical rules)

Gentzen Sequent Calculus LI for Intuitionistic Logic
Part 2

Decomposition Trees in LI

Search for proofs in LI is a much more complicated
process then the one in classical logic systems RS or GL

In all systems the proof search procedure consists of
building the decomposition trees

Remark 1

In RS the decomposition tree TA of any formula A is
always unique

Remark 2

In GL the ”blind search” defines, for any formula A a finite
number of decomposition trees,

Nevertheless, it can be proved that the search can be reduced
to examining only one of them, due to the absence of
structural rules

Decomposition Trees in LI

Remark 3

In LI the structural rules play a vital role in the proof
construction and hence, in the proof search

The fact that a given decomposition tree ends with an non-
axiom leaf does not always imply that does not exist

It might only imply that our search strategy was not good

The problem of deciding whether a given formula A does,
or does not have a proof in LI becomes more complex
then in the case of Gentzen system for classical logic

Examples

Example 1

Determine] whether

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))

Observe that

If we find a decomposition tree of A in LI such that all its
leaves are axiom, we have a proof , i.e

`LI A

If all possible decomposition trees have a non-axiom leaf
then the proof of A i n LI does not exist, i.e.

0LI A

Examples

Consider the following decomposition tree T1A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A , ¬B , (A ∪ B) −→

| (¬ −→)

¬B , (A ∪ B) −→ A

| (−→ weak)

¬B , (A ∪ B) −→

| (¬ −→)

(A ∪ B) −→ B∧
(∪ −→)

A −→ B

non − axiom

B −→ B

axiom

Examples

The tree T1A has a non-axiom leaf, so it does not
constitute a proof in LI

Observe that the decomposition tree in LI is not always
unique

Hence this fact does not yet prove that a proof of A does
not exist

Consider the following decomposition tree T2A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(A ∪ B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A ,¬B , (A ∪ B) −→

| (exch −→)

¬A , (A ∪ B),¬B −→

| (exch −→)

(A ∪ B),¬A ,¬B −→∧
(∪ −→)

A ,¬A ,¬B −→

| (exch −→)

¬A ,A ,¬B −→

| (¬ −→)

A ,¬B −→ A

axiom

B ,¬A ,¬B −→

| (exch −→)

B ,¬B ,¬A −→

| (exch −→)

¬B ,B ,¬A −→

| (¬ −→)

B ,¬A −→ B ; axiom

Examples

All leaves of T2A are axioms and hence

T2A is a a proof in LI

Hence we proved that

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))

Examples

Example 2: Show that

1. `LI (A ⇒ ¬¬A)

2. 0LI (¬¬A ⇒ A)

Solution of 1.

We construct some, or all decomposition trees of

−→ (A ⇒ ¬¬A)

The tree TA that ends with all axioms leaves is a proof of
A in LI

Examples

We construct TA as follows

−→ (A ⇒ ¬¬A)

| (−→⇒)

A −→ ¬¬A

| (−→ ¬)

¬A ,A −→

| (¬ −→)

A −→ A

axiom

All leaves of TA are axioms what proves that we have found
a proof
We don’t need to construct any other decomposition trees.

Examples

Solution of 2.

In order to prove that

0LI (¬¬A ⇒ A)

we have to construct all decomposition trees of

−→ (¬¬A ⇒ A)

and show that each of them has an non-axiom leaf

Examples

Here is T1A

−→ (¬¬A ⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

one of 3 choices

¬¬A −→

| (¬ −→)

one of 3 choices

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→

non − axiom

Here is T2A

−→ (¬¬A ⇒ A)

| (−→⇒) one of 2 choices

¬¬A −→ A

| (contr −→) second of 2 choices

¬¬A ,¬¬A −→ A

| (−→ weak) first of 2 choices

¬¬A ,¬¬A −→

| (¬ −→) first of 2 choices

¬¬A −→ ¬A

| (−→ ¬) one of 2 choices

A ,¬¬A −→

| (exch −→) one of 2 choices

¬¬A ,A −→

| (¬ −→)one of 2 choices

A −→ ¬A

| (−→ ¬) first of 2 choices

A ,A −→

non − axiom

Structural Rules

We can see from the above decomposition trees that the
”blind” construction of all possible trees only leads to more
complicated trees

This is due to the presence of structural rules ”blind”
application of the rule (contr →) gives always an infinite
number of decomposition trees

In order to decide that none of them will produce a proof we
need some extra knowledge about patterns of their
construction, or just simply about the number o useful of
application of structural rules within the proofs.

Structural Rules

In this case we can just make an ”external” observation that
the our first tree T1A is in a sense a minimal one

It means that all other trees would only complicate this one
in an inessential way, i.e. the we will never produce a tree
with all axioms leaves

One can formulate a deterministic procedure giving a finite
number of trees, but the proof of its correctness is needed
and that requires some extra knowledge

Within the scope of this book we accept the ”external
explanation as a sufficient solution, provided its correctness
had been proved elsewere

Structural Rules

As we can see from the above examples the structural rules
and especially the (contr −→) rule complicates the proof
searching task.

Both Gentzen type proof systems RS and GL from the
previous chapter don’t contain the structural rules

They also are as we have proved, complete with respect to
classical semantics.

The original Gentzen system LK which does contain the
structural rules is also, as proved by Gentzen, complete

Structural Rules

Hence all three classical proof system RS, GL, LK are
equivalent

This proves that the structural rules can be eliminated
from the system LK

A natural question of elimination of structural rules from the
Intutionistic Gentzen system LI arises

The following example illustrates the negative answer

Connection Between Classical and Intuitionistic Logics

Here is the connection between Intuitionistic logic and the
Classical one

Theorem 1

For any formula A ∈ F ,

|= A if and only if `I ¬¬A

where

|= A means that A is a classical tautology

`IS A means that A is Intutionistically provable in any
Intuitionistically complete proof system IS

Connection Between Classical and Intuitionistic Logics

A Gentzen system LI has been proved to be
Intuitionistically complete so have that the following

Theorem 2

For any formula A ∈ F ,

|= A if and only if `LI ¬¬A

Example

Example 3

Obviously
|= (¬¬A ⇒ A)

so by Theorem 2 we must have that

`LI ¬¬(¬¬A ⇒ A)

We are going to prove now that the structural rule (contr −→)
is essential to the existence of the proof, i.e

We show now that the formula We ¬¬(¬¬A ⇒ A) is not
provable in LI without the rule (contr −→)

The following decomposition tree TA is a proof of
A = ¬¬(¬¬A ⇒ A) in LI with use of the contraction rule
(contr −→)

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (contr −→)

¬(¬¬A ⇒ A),¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ (¬¬A ⇒ A)

| (−→⇒)

¬(¬¬A ⇒ A),¬¬A −→ A

| (−→ weak)

¬(¬¬A ⇒ A),¬¬A −→

| (exch −→)

¬¬A ,¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ ¬A

| (−→ ¬)

A ,¬(¬¬A ⇒ A) −→

| (exch −→)

¬(¬¬A ⇒ A),A −→

| (¬ −→)

A −→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A ,A −→ A

axiom

Contraction Rule

Assume now that the Contraction rule (contr −→) is not
available
All possible decomposition trees are as follows
Tree T1A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ ¬)

A −→

non − axiom

Contraction Rule

The next is T2A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom

Contraction Rule

The next is T3A

−→ ¬¬(¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom

Contraction Rule

The last one is T4A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

]

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ weak)

−→

non − axiom

Contraction Rule

We have considered all possible decomposition trees that do
not involve the Contraction Rule and none of them was a
proof

This shows that the formula

¬¬(¬¬A ⇒ A)

is not provable in LI without (contr −→) rule, i.e. that

Fact

The Contraction Rule can’t be eliminated from LI

Exercise

Use Gentzen system LI to prove the following

Theorem (Gödel, Gentzen)

A disjunction (A ∪ B) is intuitionistically provable if and
only if either A or B is intuitionistically provable i.e.

`I (A ∪ B) if and only if `I A or `I B

Proof Search Heuristic Method

Before we define a heuristic method of searching for proof in
LI let’s put together some observations

Observation 1: the logical rules of LI are similar to those in
Gentzen type classical formalizations we examined in
previous chapters in a sense that each of them introduces a
logical connective

Observation 2: The process of searching for a proof is, as
before a decomposition process in which we use the inverse
of logical and structural rules as decomposition rules

Observation 3: We write our proofs in as trees, instead of
sequences of expressions, so the proof search process is a
process of building a decomposition tree

To facilitate the process we write, as before, the
decomposition rules, structural rules in a ”tree ” form

Proof Search Heuristic Method

We define, as before the notion of decomposable and
indecomposable formulas and sequents as follows

Decomposable formula is any formula of the degree ≥ 1

Decomposable sequent is any sequent that contains a
decomposable formula

Indecomposable formula is any formula of the degree 0, i.e.
any propositional variable

Indecomposable sequent is a sequent formed from
indecomposable formulas only.

Proof Search Heuristic Method

Decomposition tree TA construction for a given a formula
A ∈ calF is as follows

Root of the tree is the sequent −→ A

Given a node n of the tree we identify a decomposition rule
applicable at this node and write its premisses as the leaves
of the node n

We stop the decomposition process when we obtain axioms
on all branches or all leaves of the tree are i ndecomposable

Proof Search Heuristic Method

Observation 4

We can see from previous examples of decomposition trees
that the above ”blind” construction of all possible trees only
leads to more complicated trees, due to the presence of
structural rules

Observation 5

The ”blind” application of structural rule (contr −→) gives an
infinite number of infinite decomposition trees

In order to decide that none of them would produce a proof
we need some extra knowledge about patterns of their
construction, or just simply about the number useful of
application of structural rules within the search for the proofs

Proof Search Heuristic Method

One can formulate a deterministic procedure (and we will
do so) giving a finite number of trees

But the proof of correctness of such procedure requires some
extra knowledge and theorems to be proved

We are going to discuss here a motivation and argue validity
of such a heuristic

The main point is, as we can see from our examples, that the
structural rules and especially the (contr →) rule complicate
in often useless way the proof searching task

Proof Search Heuristic Method

Observation 6

Our goal while constructing the decomposition tree is to
obtain axiom or indecomposable leaves

With respect to this goal the use logical decomposition rules
has a priority over the use of the structural rules

We use this information while describing the proof search
heuristic

Proof Search Heuristic Method

Observation 7

All logical decomposition rules (◦ →), where ◦ denotes any
connective, must have a formula we want to decompose as
the first formula at the decomposition node

It means that if we want to decompose a formula ◦A the
node must have a form ◦A , Γ −→ ∆

Remember: order of decomposition is important

Also sometimes it is necessary to decompose a formula
within the sequence Γ first, before decomposing ◦A in order
to find a proof

Proof Search Heuristic Method

For example, consider two nodes

n1 = ¬¬A , (A ∩ B) −→ B

and
n2 = (A ∩ B), ¬¬A −→ B

We are going to see that the results of decomposing n1 and
n2 differ dramatically

Let’s decompose the node n1

Observe that the only way to be able to decompose the
formula ¬¬A is to use the rule (→ weak) as a first step

The two possible decomposition trees that starts at the node
n1 are as follows

Proof Search Heuristic Method

First Tree
T1n1

¬¬A , (A ∩ B) −→ B

| (→ weak)

¬¬A , (A ∩ B) −→

| (¬ →)

(A ∩ B) −→ ¬A

| (∩ →)

A ,B −→ ¬A

| (→ ¬)

A ,A ,B −→

non − axiom

Proof Search Heuristic Method

Second Tree
T2n1

¬¬A , (A ∩ B) −→ B

| (→ weak)

¬¬A , (A ∩ B) −→

| (¬ →)

(A ∩ B) −→ ¬A

| (→ ¬)

A , (A ∩ B) −→

| (∩ →)

A ,A ,B −→

non − axiom

Proof Search Heuristic Method

Let’s now decompose the node n2

Observe that following our Observation 6 we start by
decomposing the formula (A ∩ B) by the use of the rule
(∩ →) as the first step
A decomposition tree that starts at the node n2 is as follows

Tn2

(A ∩ B),¬¬A −→ B

| (∩ →)

A ,B ,¬¬A −→ B

axiom

This proves that the node n2 is provable in LI, i.e.

`LI (A ∩ B),¬¬A −→ B

Proof Search Heuristic Method

Observation 8

The use of structural rules is important and necessary while
we search for proofs

Nevertheless we have to use them on the ”must” basis and
set up some guidelines and priorities for their use

For example, the use of weakening rule discharges the
weakening formula, and hence we might loose an
information that may be essential to finding the proof

We should use the weakening rule only when it is absolutely
necessary for the next decomposition steps

Proof Search Heuristic Method

Hence, the use of weakening rule (→ weak) can, and should
be restricted to the cases when it leads to possibility of the
future use of the negation rule (¬ →)

This was the case of the decomposition tree T1n1

We used the rule (→ weak) as an necessary step, but it
discharged too much information and we didn’t get a proof,
when proof on this node existed

Proof Search Heuristic Method

Here is such a proof

T3n1

¬¬A , (A ∩ B) −→ B

| (exch −→)

(A ∩ B),¬¬A −→ B

| (∩ →)

A ,B ,¬¬A −→ B

axiom

Proof Search Heuristic Method

Method
For any A ∈ F we construct the set of decomposition trees
T→A following the rules below.
1. Use first logical rules where applicable.
2. Use (exch →) rule to decompose, via logical rules , as
many formulas on the left side of −→ as possible
Remember that the order of decomposition matters! so you
have to cover different choices
3. Use (→ weak) only on a ”must” basis and in connection
with (¬ →) rule
4. Use (contr →) rule as the last recourse and only to
formulas that contain ¬ as a main connective
5. Let’s call a formula A to which we apply (contr →) rule a
a contraction formula we need to consider are the formulas
containing ¬ between theirs logical connectives

Proof Search Heuristic Method

7. Within the process of construction of all possible trees use
(contr →) rule only to contraction formulas

8. Let C be a contraction formula appearing on a node n
of the decomposition tree of T→A

For any contraction formula C, any node n, we apply
(contr →) rule the the formula C at most as many times as
the number of sub-formulas of C

If we find a tree with all axiom leaves we have a proof, i.e.

`LIA

If all trees (finite number) have a non-axiom leaf we have
proved that proof of A does not exist, i.e.

0LI A

