CSE541 Take-Home FINAL Spring 2013 100pts + 20 extra points

NAME

ID:

- Final is due May 22, or ANY DAY before. Slid it under my door when you are ready- and send me e-mail. "The sooner the better" this is my advise!
- **QUESTION 1** Consider a propositional language $\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$ with a set \mathcal{F} of formulas.

Let $\mathbf{T}\subseteq \mathcal{F}$ be the set of all propositional TAUTOLOGIES under the classical semantics.

Let S be a **COMPLETE Hilbert proof system** with for a classical propositional logic with the language $\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$, i.e.

$$\mathbf{T} = \{A \in \mathcal{F} : \vdash_S A\}$$

Prove that for any $A, B \in F$,

 $Cn(\{A\}) \cap Cn(\{B\}) = Cn(\{(A \cup B)\}),$

where for any Let $X \subseteq F$ we define

$$Cn(X) = \{A \in F : X \vdash_S A\}$$

QUESTION 2

Let S be the proof system from Question 1.

We define two binary relations on \mathcal{F} as follows. For any $A, B \in \mathcal{F}$,

 $A \leq_S B$ if and only if $\vdash_S (A \Rightarrow B)$ and

 $A \leq_{\mathbf{T}} B$ if and only if $\models (A \Rightarrow B)$

- **1.** PROVE that $\leq_S = \leq_{\mathbf{T}}$
- **2.** Prove that $\leq = \leq_S = \leq_T$ is a quasi order relation (reflexive and transitive).

3. Define a non-classical logic semantics M for $\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$ such that the binary relation \leq_M on \mathcal{F} defined as

 $A \leq_M B \quad \text{ if and only if } \quad \models_M (A \Rightarrow B)$

is **NOT** a quasi order. $\models_M A$ reads: a formula A is a tautology under semantics M

QUESTION 3

- Extend the **Proof 2** of Completeness Theorem to the Language that includes \cap and \cup .
- Write specifically all formulas provability of which must be assumed in the system S with extended language.
- **Hint** You must extend the proof of **Property of** v **Lemma** to the language with \cap and \cup .
- **EXTRA CREDIT** Let $\leq = \leq_S = \leq_T$, we define a binary relation \approx on \mathcal{F} as follows.

 $A \approx B$ iff $A \leq B$ and $B \leq A$.

- 1. PROVE that \approx is an equivalence relation (reflexive, symmetric and transitive).
- **2.** Find $[(a \cup \neg a)]$, $[(a \cap \neg a)]$ and [a], where [A] denotes an equivalence class of \approx with a representant A.