SIMSCRIPT 11.5
User's Manual

CACI

SIMSCRIPT I1.5 User’s Guide

Copyright © 2003
CACI Products Company

Updated November 2002

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACL
If there are questions regarding the use or availability of this product, please contact CACI at any of the following addresses:

For product Information contact:

CACI Products Company CACI Worldwide Headquarters
1011 Camino Del Rio South, suite 230 1100 North Glebe Road

San Diego, California 92108 Arlington, Virginia 22201
Telephone: (619) 542-5224 Telephone (703) 841-7800
www.caciasl.com www.caci.com

For technical support contact:

Manager of Technical Support

CACI Products Company

1011 Camino Del Rio South #230

San Diego, CA 92108

Telephone: (619) 542-5224

simscript@caci.com

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the responsibility
for any consequences resulting from the use thereof. The information contained herein is subject to change. Revisions to this

publication or new editions of it may be issued to incorporate such change.

SIMSCRIPT 11.5 is a registered trademark and service mark of CACI Products Company.

TABLE OF CONTENTS

PREFACK......iineicnnncneicnenissnsissnscssssessassssssssassssassssasessass a
INErOAUCTION....cuconeierniniinisnicnsisssessssassassassassssssssssossssssssssassassns 1
1 Developing Simulation Models with Simstudio.......... 3
1.1 SIMSTUAIO QVEIVIEW cceuueriersuricssaninssnncssssncssssnesssnessssnossssrosssssssssssssssssssssssssssssses 4
1.2 Creating a New Project 6
1.3 Adding Source code t0 a Project......cccvveccsrrccssnrcssnressnsrcssnsncssssscssssscsnsecens 7
1.3.1 Creating a New File with the Text Editor ..., 7
1.3.2 Adding a Directory or a File Using Project Window 8
1.3.3 Adding Multiple Directories and Files...........c.ccccocoeviiivieiennnnn. 10
1.3.4 Adding Graphical Elements to a Project............ccccccoeiiirrenennnn. 11
1.4 Opening an EXisting Projectieiiccicsnnicssssnnrecssssnnnecsssnsssssssssssssssnssns 12
1.5 Building a Projectcueiievveiiniveriivvnncssnncssnncssnncssnsscssnsscssssesssssssssssssssssssssssse 13
1.5.1 Building a Project for Debuggingcccccoveeiivieieeiiieee, 14
1.5.2 Building a Project for Release ..o, 16
1.5.3 Compiler LiStiNgSc.ccoiiiieecieeee e 16
1.6 Executing a Model.........uiiiiieiiicsisnniccsssnniccsssnnsscssssssnessssssssssssssssssssssssssssssnsss 17
1.6.1 Passing Command-Line Argumentsccccceveveeieeeerreenennne. 17
1.6.2 Running the Executable with the Symbolic Debugger 18
1.7 Cl0SING the Project......ccoeicecveicisercssnrcssnncssnnssssnncssssssssssssssssssssssssssssssssasssssns 19
1.8 Setting Simstudio Preferenceseeenneennenssnensensnecsenssncsssesssnscssesssncens 20
1.9 ON-1NE HEIP covveiivniiiiniininnininiinsnicssnncssssnssssissnes 20
1.10 Advanced Compiler/Link OPtionseceeecrennsnensenssnensenssaessncsssecssneesaees 22
2 Developing Simulation Models Using Command-Line
| D117 g £ T 23
2.1 Preparing Source Filesiiininnicnsnicssncsssnncsssnncsssncssssssssssssssssssssassssnes 23
2.2 Compiling 23
23 ReCOMPILING c.cuuveierrnriiirniinisniesssnncsssnncsssnncssssssssansssssnsssssssssssssssssssssssssssssssssasssssas 28
2.4 Linking 29
2.5 EXECULING cuuverrrnrirrerinsercssnncsssnicssanssssasssssssesssssssssssssssssssssssssnsssssnsssssssssssassssnes 31
2,6 ProOfiliN@...cciiiiiiiniiiinnnnnnncssnsnnsesssssssasssssssssssssssssssssassssssssssasasssssss 32
2.7 MAKELIIES ..ccnneeriiiniirnncnnniennnssanssssssssnnssssssssssssssssssssssssssssssssssssssnsssssssess 34
2.7.1 Compilation SEQUENCEc.oovevieerieeeretieeeteeeeeeteeeee et 35

SIMSCRIPT I1.5 User’s Guide

2.7.2 Make Description File Format..............c.ccoovoeioiieeeeeeee 36
2.7.3 Transformation RUIESccooiiiiiiceeeeeeeee e, 36
2.7.4 SPECIal NOES.........cooeeeeeeeeeeeeeeeee e, 37
2.7.5 Sample MaKefile ... 37

2.8 Obtaining Online Helpo.coieneenienninnneeniennnensenssnensessssecsessssessseessasssasees 39
2.9 Example Programeecceicnnsnicisssicsssisses 39
3 SIMSCRIPT II.5 Language Considerations 42
3.1 INput ANd QUELPULeueeiieireriiisnninssniesssnncsssicssssisssssssssssssssssesssssosssssossssssssssssssssssssns 42
3.2 Modes and Packing Codes........cccceeervuricssuricssancsssnncssnrcsssnssssssssssssssssssssssssssssssssnes 44
3.2.1 AlIgNment of VAlUESc.coovovieeeeeeeeeeee e, 45
3.3.1 Calling C ROULINES.........ooiiiiiieceee e 45
3.3.2 Calling FORTRAN ROULINESc.coouiiiiccceecceeee e, 46

4 SimDebug Symbolic Debugger............cccccceveeververreennne. 50
4.1 Compiling for Debug and Invoking SimDebug..................... 50
4.1.1 Compiling for DEBUQGoovovieeeeeeeeeeeeee e, 50
4.1.2 Invoking SIMDebUGc.ooovoviieeeeeeeeeeeeeeee e, 51

4.2 A Quick Tour of SIMDEDUEuererviiiiriinirrinssancsssnncsssnrcsssrssssssssssssssssssssssssssnes 52
4.2.1 Tour 1: Showing the Stack and Variables..........c.ccccccooevevereeenee. 52
4.2.2 Tour 2: Breakpoints and Single Stepping.........ccccoeveeeeceeveveveenee. 55
4.2.3 Tour 3: Pointer Handling: Entity / Set Display...........ccccccooevevevenee... 58

4.4 AAVANCEA TOPICS...cceurrinrrnrnrnnerisnsnsasnssssssssssssssssssssssssssasssssssssssssassassssssssassasassass 72
4.4.1 BAtCRLIACE.V ..veiiieiiiiei e ettt et e e e naeas 72
4.4.2 Signal Handling / External Eventscccooiieiccee, 73
4.4.3 Reserved NAMES ..ottt 73
4.4.4 Displaying AITAQYS ..ot 73
4.4.5 Permanent Entities and System Owned Variables/Sets............... 73
4.4.6 Conditional Breakpoints.............ccooeiieeeeeieceeeeeeeeeeeeeeee, 74
4.4.7 Continuous Variablesccoeveiiiiicieeiecceecee e 74
4.4.8 Unsupported SIMSCRIPT Features.........c.ccooooieveeeeeeeeeeee, 74
Appendix A Compiler Warning and Error Messages 77
Appendix B Runtime Error Messagescccceeveeuencee 91
B.1 Runtime Error MeSSAZESccoveiersnrsssaricssaresssascssnes 91
Appendix C Standard SIMSCRIPT IL.5 Names........ 101
C.1 Functions and Routines 101
C.2 Global Variables....iiiiiiiiiicnnnneniiiccosssssssssnsssssccssssssssssssssssssssssssssssasssssssssssonsens 116

i

£.3 AETHDULLS cvvvve00111111144 R 120
C.4 CONSLANLS.....uueeneereieesnennesenssessnessnessesssessssssnssaessasssessssssssssessassssssaessassassssessassaass 121
Appendix D ASCII Character Set...........coueeveevuecvensuennenns 123

il

SIMSCRIPT I1.5 User’s Guide

FIGURES
Figure 1-1 Opened Project in Simstudio with source and graphics windows 5
FIgUIe 1-2 PrOJECE EE ...cuvieiieeiiieiie ettt ettt ettt et e e e s 7
Figure 1-3 Creating a new SOUICE fll€........ccuiiriiiiiiiiiiieiieiecieceeee e 8
Figure 1-4. Creating a new folder in the project tree..........ccooeeverieneniinicneeneneneeeeen 9
Figure 1-5 Project tree with hierarchical organization of source code...........cccevueeurnnn. 10
Figure 1-6 Adding a new Icon in SIMStUAIOcceeviiriiriiiiiriiiceeeeee e 11
Figure 1-7 Selecting Project OPtioNnSccveeiierieeiieiieeieeiee et esee e eseeeereeseneeseesaneens 14
Figure 1-8 Selecting debugging options in SimsStudio..........cccveeeviiercieeniieeeiee e, 15
Figure 1-9 Selecting Release options in SImStudiocceevveeriieniiienieniiienieeieecie e 16
Figure 1-10 Defining command line for model execution............ccceeeveeerveeneieecceveeenneen. 18
Figure 1-11 SIMSCRIPT Symbolic Debugger Windowccceevueeviieniieniienieeiiennes 19
Figure 1-12 Simstudio on-line help Windowccccouveeiiiieiiiiniicce e 21

v

PREFACE

This document contains information on the use of CACI's SIMSCRIPT IL.5 compiler for
developing simulation models. Development can be done either using SIMSCRIPT I1.5
Development Studio (Simstudio) or Command-line interface.

CACI publishes a series of Manuals and text books that describe the SIMSCRIPT IIL.5
language and SIMSCRIPTILS Simulation Graphics, Development environment, Data Base
connectivity, Combined Discrete-Continuous Simulation, etc. All documentation is available
on SIMSCRIPT I1.5 WEB site http://www.caciasl.com/products/simscript.cfm

* SIMSCRIPT I1.5 User’s Manual — This Manual — A detailed description of the
SIMSCRIPT 1IL.5 development environment: usage of SIMSCRIPT II.5 Compiler
and the symbolic debugger from the SIMSCRIPT Development studio, Simstudio
and from the Command-line interface.

* SIMSCRIPT IL.5 Simulation Graphics User’s Manual — A detailed description of
the presentation graphics and animation environment for SIMSCRIPT II.5

* SIMSCRIPT I1.5 Data Base Connectivity (SDBC) User’s Manual — A description
of the SIMSCRIPT II.5 API for Data Base connectivity using ODBC

* SIMSCRIPT I1.5 Operating System Interface — A description of the SIMSCRIPT
I1.5 APIs for Operating System Services

s Introduction to Combined Discrete-Continuous Simulation using SIMSCRIPT I1.5
— A description of SIMSCRIPT II.5 unique capability to model combined discrete-
continuous simulations.

» SIMSCRIPT I1.5 Programming Language — A description of the programming
techniques used in SIMSCRIPT IL.5.

* SIMSCRIPT 1II.5 Reference Handbook — A complete description of the
SIMSCRIPT II.5 programming language, without graphics constructs.

s Introduction to Simulation using SIMSCRIPT II.5 — A book: An introduction to
simulation with several simple SIMSCRIPT IL.5 examples.

* Building Simulation Models with SIMSCRIPT II.5 —A book: An introduction to
building simulation models with SIMSCRIPT II.5 with examples.

The SIMSCRIPT II.5 language and its implementations are proprietary program products of
the CACI Products Company. Distribution, maintenance, and documentation of the
SIMSCRIPT II.5 language and compilers are available exclusively from CACI.

SIMSCRIPT I1.5 User’s Guide

Free Trial Offer

SIMSCRIPT IL5 is available on a free trial basis. We provide everything needed for a
complete evaluation on your computer. There is no risk to you.

Training Courses

Training courses in SIMSCRIPT II.5 are scheduled on a recurring basis in the following
locations:

La Jolla, California
Washington, D.C.

On-site instruction is available. Contact CACI for details.

For information on free trials or training, please contact the following:

CACI Products Company

1011 Camino Del Rio South, suite 230
San Diego, California 92108
Telephone: (619) 542-5228
www.caciasl.com

Introduction

As an aid to making important decisions, the use of computer simulation has grown at an
astonishing rate since its introduction. Simulation was first used occasionally in
manufacturing, military, nuclear, and a few other pioneering applications. More recently, its
use has expanded to many other areas of need. The growing list of successful applications
includes models relating to urban growth, hydroelectric planning, transportation systems,
election redistricting, cancer and tuberculosis studies, hospital planning, communications,
and multi-computer networks. SIMSCRIPT II.5 has been used world wide for building high-
fidelity simulation models.

SIMSCRIPT IL.5 is a language designed specifically for simulation. It is the most efficient
and effective program development technique for simulation. This is due to the following:

* Portability. SIMSCRIPT II.5 development environment, which includes
SIMSCRIPT II.5 Development Studio, language compiler and Graphical systems are
available on the various computer systems. This facilitates the development of
general-purpose models and simulation applications that can be moved easily from
one site to another and from one organization to another.

» Appropriate Constructs. SIMSCRIPT II.5 provides constructs designed especially
for simulation (e.g., processes, resources, events, attributes, entities, and sets). These
constructs make it easier to formulate a simulation model. Implementation of the
simulation program is also quicker because these powerful tools do not have to be
invented anew.

* Self-Documenting Language. Applications developed using the SIMSCRIPT

II.5 language is characteristically easy to read and understand. The language
encourages this because it is oriented toward the kinds of problems being solved
rather than the machines being used as tools. The very high-level language features of
SIMSCRIPT II.5 were designed to make it possible to manage a complicated
simulation model.

* Error Detection. SIMSCRIPT II.5 performs a number of error checks that help to
assure that a simulation model is running correctly. Powerful inline symbolic
debugger speeds up run-time analysis of model behavior.

When an error in a run is detected, model enters SIMSCRIPT II.5 symbolic
debugger, which allows program status investigation, which includes the names and
values of variables, system status, and other valuable information. This reduces the
time spent in developing and testing programs.

» Statistical Tools. Along with the mathematical and statistical functions most often
used in simulation (exponential functions, random number generators, and so on),
SIMSCRIPT 11.5 includes the accunul ate and tal | y statements that allow the
model builder to collect statistics on key variables in his model.

SIMSCRIPT I1.5 User’s Guide

* Report Generator. A formatted report generator with headings and page
numbering, along with the print statement, is part of the SIMSCRIPT IL5
language.

* Simulation Graphics. Brings interactive animated and display graphics to new and
existing SIMSCRIPT II.5 models. Graphical entities can be easily tied to program
entities, providing automatic animation and information display. Input/ Output dialog
boxes, menu bars, pallets can easily be added to the model providing elegant and
functional Graphical User Interfaces.

* Data Base Connectivity. Provides SIMSCRIPT II.5 Application Program
Interfaces (API’s) to the major databases available on the market: Microsoft Access,
SQL Server Oracle, IBM DB2 and IBM Informix.

* Operating System Interface. Provides SIMSCRIPT II.5 Application Program
Interfaces (API’s) to Operating System Services facilitating portable models across
all SIMSCRIPT IL.5 supported computer platforms.

* Open System. SIMSCRIPT II.5 provides possibility to call non-simscript
routines/functions from a SIMSCRIPT model. This facilitates usage of libraries
written in C/C++ or FORTRAN from SIMSCRIPT models.

* Complete Methodology. The SIMSCRIPT II.5 approach to simulation model
development provides the complete set of capabilities needed to develop a simulation
model. A simulation model developed in the SIMSCRIPT II.5 programming
language is readable by the analyst familiar with the system under study.

* Support. CACI provides SIMSCRIPT II.5 software, documentation, training and
technical support. Model development services are also available from CACI.

1 Developing Simulation Models with Simstudio

Developing a SIMSCRIPT II.5 model typically involves the following steps:

1. Preparing one or more SIMSCRIPT IL.5 source files using a text editor.
Preparing graphical elements: Icons, Graphs, Dialog boxes, Menubars, etc

3. Building the model (creating the executable file), checking for compilation or
linking errors

4. Editing and re-building the model, as needed, until there are no errors.

Executing the model

6. Debugging the model. In case of errors during execution, the model should be
built with the debugging option, and executed with the interactive SIMSCRIPT
1.5 symbolic debugger, to examine the state of the model and find the cause of
the error.

b

This development process can be done in the following two ways:

1. Using SIMSCRIPT II.5 Development Studio — Simstudio or
2. Using Command- line interface from cmd window.

Simstudio is an easy to use, user friendly integrated programming development
environment. It is the Graphical User Interface (GUI) to the SIMSCRIPT II.5 compiler,
syntax color coded text editor, graphical editors, automatic project builder and help system.
In Simstudio, editing source files, compiling and linking model executable is controlled
automatically for optimal efficiency. Simstudio provides the most commonly used compiler
switches and link options. It will be explained in detail in Chapter 1.1

Command-line interface can be used from cmd window. It is very convenient for users who
need more control over compilation and link phases and like to make use of make files and
scripts. You can use your own favorite text editor edit, vi, etc to create SIMSCRIPT source
files. To create graphical elements for your model, you have to use Simstudio graphicals
editors. CACI provides a set of commands for compiling and linking graphical and non-
graphical models like: simc, simld, simgld etc. These commands are explained in full detail
in Chapter 2. It also contains description of all available compiler switches.

SIMSCRIPT I1.5 User’s Guide

1.1 Simstudio Overview

SIMSCRIPT II.5 Development Studio helps you to organize your model as a project which
can be built automatically using menu options.

When you start a new model development you have to create a new project, add source files,
add graphical elements and define how you want your project to be built. After that, you can
build and execute your model.

For a new project you will define the name of your project and directory where it will be
located. In the project directory a project name.sp file will be created to hold model
information. Three subdirectories will be created: sources, executable and temp.

sources — will hold all the source files of your project. You can keep all source files
in one directory or organize them as a hierarchical structure of subdirectories.

executable— will hold model executable project name.exe and graphics.sg2 file
which holds graphical elements used during model execution. Input data files
necessary for model execution should also be placed in this directory.

temp— will hold object files necessary for model build and other temporary files.
Contents of this directory are not important to developers.

This project directory structure helps you during development and deployment of your
model. Subdirectory sources contain the current version of the model source code, directory
executable contains all components necessary for model execution.

Simstudio consists of a Menubar, Toolbar and three windows. The project window is on the
left, Editor window on the right and Status window at the bottom.

Menu bar options: File, Project, Options, Window and Help, facilitate creating a new project,
opening an existing project setting project options and building and executing the model.

#1SIMSCRIPT IL5 Simulation Studio - calship

Developing Simulation Models with Simstudio

Filz Edit Project Options Window Help

=0l x|

| || 2] ¢ |5¥t|@||l|

=- E execltable
== E graphlcs sg2

|

EEE

mPreamhle.sim

=10l

..... - | preamhle '' Pacific Shipping Simulation -
----- frmgl"rler i) .
normally mode iz undefined
----- helg frin
""" i”“'f_"“ processes include FINAL.REPORT
----- ftug ich every TUG
----- tugp ich haz a TUG.PORT
..... pactitle icn and a TUG.STATOS
..... pedro.icn and a TUG.LOCATION
""" poco_sawcn 2 o3 5 TUG. QUEDE.
""" rtug.lc_n Aafine TG BART CTTIG SHTE TW AW
""" tugp icn jlcnn coastin.icn
----- tanker ich
----- valdez.icn
----- valdez_sav.icn

EIE graphics_sav.sg2
"-[:Itemp
El- 'a =OUFCES
E| A PRE

LMD Prearnble sim
E| lalm::uut
i helMD resddsta.sim
EI la|r'|’f|a||zat|u:|r'|
: Lo (MY iritial. gim
E| a outpout
o (M repart.sim
b (M) clock sim
e (MY oty i

object C:\Frogram
Files\Simscripthain exanples’_simstudio_projectshcalshiphexecutablehcalship. exp
Project Built

Ready HB Y1208 Loam:

Figure 1-1 Opened Project in Simstudio with source and graphics windows

The project window displays the project tree with current project subdirectories: sources,
executable and temp. The editor window contains windows for text and graphical editing.
The status window displays messages during project build and execution.

The project tree is composed of source code files with the extension ‘.sim’ in the directory
sources. The graphics.sg2 file contains the following graphical elements: icons with
extension ‘.icn’, forms with extension ‘.frm’ , and graphs with extension ‘grf’. These can be
found in the directory executable.

Simstudio incorporates SIMSCRIPT II.5 Syntax Color Coded Text Editor for
creating/editing source files and Graphical Editors for creating/editing: Icons, Graphs,
Dialogs, Menus and Palettes. When you open a text file with extension “.sim”, all necessary
text editing menus and tool bars will appear. The same applies to graphical editors.

SIMSCRIPT I1.5 User’s Guide

The following sections will describe how a to create projects, add source code and graphical
elements, and build and execute the model.

1.2 Creating a New Project

To create a new project, use the Project->New menu option. The dialog box Create New
Project will appear.

Create New Project ﬂ

Project natme: Ilutu:nrial

Location: IC:Du:u:umerrts andSeﬂingsﬁl Browze. .. |
Create | Cahcel |

Type in the project name, Click Browse...

g{'i Select directory x|

Look it I[:I tutarial ;I g

ktap
AN

by Documerts

File name:; IC:IC.&CI*.simprnjects'ctutnrial Zelect directary

File= of type: IDirEu:tDries arily LI Cancel

Go to the directory where the new project will be located, click on Select Directory and
click Create

Developing Simulation Models with Simstudio

The new project will be created with the following project directories: executable, sources
and temp. These appear in the project window. An empty graphics.sg2 file will be created
in the executable directory to hold graphical elements. A file with the project name and .sp
extension will be created in the project directory to hold project information.

i1 STMSCRIPT 11.5 Simulation Studio - butorial =10l %]

File Project ©ptions indow Help

JE'E“@“! i$.|

Ela execLtakle
E graphics 592
I:I FOUFCES

|:| temp

-_—

Ready

Figure 1-2 Project tree

1.3 Adding Source code to a Project

Source code for projects are stored by default in the directory sources. You can create a new
text ‘.sim’ file, add individual directories and files or add the whole subdirectory with
multiple sub-directories to your project.

1.3.1 Creating a New File with the Text Editor

Use File->New to open an untitled text window. Type in the text and use File->Save As
to save it in the directory sources. The new file will appear in the project tree in the
project window and will be saved on the disk.

SIMSCRIPT I1.5 User’s Guide

i1 SIMSCRIPT IL5 Simulation Studio - tutorial =101 %]

File Edit Project Options ‘Window Help

IEIEEEENEE S

[:I execLtatle mE:"n.,EAEI"-.,simpruie.:ts"-.,l:uturial"-.,suur ;IEIEI
El'a sOUrces
T 115 i
- termp

freamhle
normally mwode is integer
end

nain

write as " Hello ™,/

for I =1 to 10
dao

list I
loop

mmlE®|#|-|

etd

Selected: main.sim Line: 1, Column: 1

Figure 1-3 Creating a new source file

To open this file again, click on its name twice with the left mouse-button in the project
tree. When you open a text file for editing the menu option Edit, the toolbar will contain
all necessary options for text editing.

You can open or delete a file from the project tree. Right mouse click on the source file
name in the project tree. This will open a pop-up menu with the options open or delete.
You can open the file for editing or you can delete it from the project and the disk.

1.3.2 Adding a Directory or a File Using Project Window

To add a new directory to the directory sources, right mouse click on the directory
sources. It will bring a pop-up menu with options: add files, new folder and delete.
Chose new folder.

Developing Simulation Models with Simstudio

x

Enter new Falder name

Im':.:'_fu:ulder

| I I Cancell

Enter the new folder name in the dialog box and click OK. The new folder will be
created on the disk and will appear in the project tree.

{1 SIMSCRIPT I1.5 Simulation Studio - tutorial -0l x|
File Project Options window Help

ols| @) +|8|s|ala| =)

[:I executable
Ea TOUrCEs
: [:| my_folder
e (M) pain zim
- [temp

Selected: my_folder

Figure 1-4. Creating a new folder in the project tree

You can right mouse click on this new folder to delete it from the disk and the project
tree.

When you chose add files from the pop-up menu the browsing dialog box will appear.
This allows you to add any file to your project. The added file will be copied to the
selected directory and will appear in the project tree.

SIMSCRIPT I1.5 User’s Guide

1.3.3 Adding Multiple Directories and Files

To add multiple source files that are organized in hierarchical multiple subdirectories, copy
the whole directory structure with the operating system tools to the project sources directory.
Use Project-> Update Project Tree to include all directories and files for the project and
project tree.

{1 SIMSCRIPT I1.5 Simulation Studio - tutorial -0l x|
File Project Options window Help

ols| @) +|8|s|ala| =)

[:I execUtable
El'a TOUrCEs
F_I'a my_folder
= PRE
(M) Preatble.sim
El'a inpLt
(M) readdata.zim
=13 irtislization
o el intialsim
Ea output
o M reportsim
Ea processes

(M) clock.zim

(M et zim
(M) harbot it
M) moveta sim
(M ghip sim
S (M) gy zim
- (ML main gim
EI"'I:Itemp

Selected: Mew_icon.ich

Figure 1-5 Project tree with hierarchical organization of source code

Right mouse click in the project window to bring up the pop-up menu with update project
tree option. This can be used to add a file or hierarchical files to the project.

10

Developing Simulation Models with Simstudio

1.3.4 Adding Graphical Elements to a Project

Graphical elements for your model are located in the graphics.sg2 in directory executable.
An empty graphics.sg2 container will be created with every new project.

Right mouse click on graphics.sg2 in the project window. This brings up a pop-up menu with
the following options: new, import and save. If you click on new, a dialog box will be
presented allowing you to name the new graphical element and to chose its type: Icon, Dialog
Box, Simple message box, Menu bar, Palette, 2D chart, Pie chart, Analog clock, Digital
clock, Dial, Level Meter, Digital display and Text display.

i1 Create new icon, graph, or form x|

Matne Iunt'rtled1 ich

Type oon _H
Creste | Cancel |

After you define a type and click Create, a new graphical element icon will appear in the
graphics.sg2 project window. This opens the graphics window in the Editor window along
with the toolbar for the corresponding Graphical editor.

&1 SIMSCRIPT IL5 Simulation Studio - tutorial =10l x|

File Edit Projeck Options ‘Window Help

D) B ¢ |i|@||l|_|_||l|l|
Eaexecutable
_injx

B- ﬁ graphics S92

H e ittt ion
I D FOUFrCES

l Cltemp

Selected: untitied?.icn 0.0 Zoom:1

Figure 1-6 Adding a new Icon in Simstudio

11

SIMSCRIPT I1.5 User’s Guide

A detailed explanation on how to create and use graphical elements in SIMSCRIPT II.5
models can be found in the SIMSCRIPT I1.5 Graphics User Manual.
1.4 Opening an Existing Project

To open existing projects use the Project->Open menu option. The dialog box Open
Project will appear allowing you to browse to the project directory.

:;{E Open Project El
Look in: ID calzhip ;I I'ji
|:| executable
1 sources
|:I temp

|:| valdez-SanPedro

File name: Icalship.sp CIpEn

AN Files of type: ISimscript Projects (*.2p) ll Cancel

Select project_ name.sp and click Open. The selected project will be opened for
development.

12

Developing Simulation Models with Simstudio

1.5 Building a Project

Building a project can be done in two ways: using menu options: Project->Build or
Project-> Rebuild All.

If you use Project-> Rebuild All, it will recompile all the project source files and re-link the
model. When you use Project->Build only the modules changed after the previous build will
be recompiled and the model will be re-linked.

In SIMSCRIPT II.5 when the preamble is changed, Project->Build will function as Project-
>Rebuild All, meaning all the source files will be recompiled and the model re-linked.

You can influence the model building procedure using menu option Options->Project. It
will bring up a dialog box Project options, where you can define what you want your model
to be built for Release or Debugging.

You can define compiler options for release mode to optimize code generation and to include
run-time checking. For Debugging mode you can define warning messages to be suppressed
or displayed and run-time checking to be performed. You can also request various compiler
listings to be generated.

Linking phase can also be defined. Your model can be linked With Graphics libraries or
Without Graphics libraries. It can also be linked statically or dynamically. Static link will
link all necessary modules in the executable, while dynamic link will link with the dynamic
link libraries. Dynamic link is faster and convenient during model development. Static link is
convenient when you want to link your model to be transferred to another computer for
execution.

The name of the executable, by-default is project_name, but typing the desired name in the
binary text box can change it.

13

SIMSCRIPT I1.5 User’s Guide

1 SIMSCRIPT I1.5 Simulation Studio - calship =10l x|
File Project ©Options indow Help
| D[=| 3] 1 [®]e]m]E] =
[:I execltable
B3 sources 4 - :
: 1 Project options x
- E2 Pre g1 Project op x|
[:l input Build mode
: Ok
= D irtialization & Release
D output Cancel
T clock gim " Debug
woee M dtug.sim HEIFJ
-+ [M) harbor zim —iCarmpile
< [HL main.sim Releaze Diebug Listing
- (M) moveto sim » _ -
M) ship.sim v Optitrize - Supress warnings ¥ Generste listing CiC++ Options .
Fo (H tug sim Rurtime checkin Runtime checkin v Local Kref
EII:I termp r . r . I Library aptions...

|:| valdez-ZanPedro

v Glabal xref

Compiler Isimc Retinlry
~Link

' With graphics ' Static

 Without graphics ¢ Dynamic

Binarylcalship

~Execute

Command Iinelcalship.exe

Ready

Figure 1-7 Selecting Project Options

1.5.1 Building a Project for Debugging

During the development of your model you may want to build your project for debugging.
Select Options->Project to open the Project options dialog box. Check build mode Debug.
This will cause debugging facilities to be incorporated in your model.

You can also define if you would like compiler warnings to be presented or to be suppressed.
During the debug phase, it is advisable that you request run-time checking to be performed —
this will involve entity attribute access checking and array index checking and will generate
run-time error in case of incorrect access. These features will speed-up the testing phase.

14

Developing Simulation Models with Simstudio

&1 Project options x|
~Build mode
QK
" Releaze
Cancel
¥ Dehug
Help
—Camile
Release——— (Debug———— Listing
| Optimize | SUpress warnings ¥ Gererste lizting CiC++ Options .

[Rurtime checking V¥ Runtime checking ¥ Local xret
IV Glokal xret

Library aptions. ..

Compiler Isimu: -l

~Link
% \nith graphics
i~ nithout graphics

Binarylcalship

~Execute

Command Iinelcalship.exe

Figure 1-8 Selecting debugging options in Simstudio

To run your model with the debugger use Project->Debug. This will allow you to execute
the model step-by-step and to observe model variables.

A model built for debugging can also be executed with Project->Execute. Project will run
normally but in case of run-time error, control will be transferred to the debugger and you
will have full debugging capabilities.

15

SIMSCRIPT I1.5 User’s Guide

1.5.2 Building a Project for Release

When you finish debugging and your model is ready for the exploitation phase, you may
want to choose to build your model in Release mode.

Use Options->Project to bring up the Project options dialog box and check Build mode
Debug. This time choose Optimization to reduce model size and increase speed. If you are
sure that your model is fully debugged you may exclude run-time checking. This will further
increase execution speed.

&1 Project options x|
~Build mode
Il
% Releaze
Cancel
" Debug
Help
—Campile
Release——— (Debug——— Listing
v Qptimize [SUpress warnings ¥ Gererste liztirg CiC++ Options .
Rurtime checki R g | ¥ Local Kref
r u ImE I: EI: Ing r R.u E r I:":a rE Librarl:fl Dptil:lnS
IV Glokal Xret
Compiler Isimu: -y
~Link
i+ With graphics ¥ Static
" without graphics (8 Dwharmic
Eiinarg.-'ln:alship
Execute
Cornimarnd Iinelcalship.exe

Figure 1-9 Selecting Release options in Simstudio

A model built in Release mode should be run with Project->Execute.

1.5.3 Compiler Listings

Checking the appropriate Listing boxes in Project Options generatesone of the following: a

16

Developing Simulation Models with Simstudio

compiler listing, a compiler listing with local cross-reference, or a full compiler listing with
Global-Cross Reference. All compiler listings will appear in the status window and will be
placed in the project_name.lis file in the temp directory.

1.6 Executing a Model
After building, the model executable is located in the project directory executable. To run it
use the menu option Project->Execute. This is the most common way to execute a model

built in Release mode.

The directory executable will also contain graphics.sg2 with graphical elements. All input
data necessary for a model run should be placed in this directory.

Projects built in Debug mode should be executed using Project->Debug.

1.6.1 Passing Command-Line Arguments

To pass command line arguments to the model, or to redirect model output use the
Command line text box of Project Options to write the command.

Project name.exe —argl —arg?2 ...

Here is an example of the redirection of output of the model ed106.exe to a file ed.out.

17

SIMSCRIPT I1.5 User’s Guide

&1 Project options

1K

Cancel

Help

CHC++ Options...

Library aptions. ..

~Build mode
% Releasze
" Debug
—iCompile
Release——— (Debug———— Listing
v Optimize [T Gererste lizting
[Rurtime checking [Runtime checking [~ Local xret
[Glokbal xret
Compiler Isimu: -y
~Link
i~ nith graphics £ Static

¥ nithout graphics 7 Dynamic

Binaryllaw1 1]

~Execute

Command Iinellaw1 06 exe = ed.out

Figure 1-10 Defining command line for model execution

1.6.2 Running the Executable with the Symbolic Debugger

If the executable was built in Debug mode it can either be executed using menu options

Project->Execute or Project->Debug.

Project->Debug will invoke the symbolic debugger and the user will be able to have full
debugging control during execution like: stepping, setting break points and viewing
model variables. Chapter 4 of this manual explains all debugging commands and

facilities.

18

Developing Simulation Models with Simstudio

i simDebug: law106

SimDebug> 1= main

1 MATM use 1 for input

z

2 write as f, "Test LAWIOSE - Port Operations model",
4 CALL READ DATA

5

& FOR REP _NUMEEER = 1 TO NUM.BREPLICATIONS
7 Lo

2 CALL IMNITIALIZE

] START STMULATION
10 LOoOPp
11 write a=s f, f, "End of Test LAW1OE", F
1z

5 13 END» ''HMAIH
SimDebugs= w
————— MATN fmain.sim) ——-——————-——————————————————\————\————————

== 1 MATM use 1 for input
Z
a2 write as S, "Test LAWIOSE - Port Operations model",
4 CALL BREAD DATAL
L
. & FOE REP _NUMEEER = 1 TO NUM. EEPLICATIONS
SimDebuags=

1]

==-—- MATN (main.sim: 1-13) ——--—--=—-—--—-—-—————— - —————————————

Cammarid: Stepn Memt Continue Help |

£

Figure 1-11 SIMSCRIPT Symbolic Debugger window

1.7 Closing the Project

Close an open project before opening another project. To close a project use menu option

Project-> Close.

19

SIMSCRIPT I1.5 User’s Guide

1.8 Setting Simstudio Preferences

If you work on a project and close Simstudio without closing the project it will not remember
the last project you worked on.

If you want Simstudio to open and reload the last project you worked on, when launched
again, you can change its behavior.

Chose menu option Options->Preferences.. and set your preferences in the dialog box .

g{'i Preferences El
v Reload last project st startup Ok

v Reload files when opening project Cancel

Marking check box “Reload files when opening project”, allows the user to request
Simstudio to always update project tree when a project is opened.

1.9 On-line Help

Simstudio provides full on-line help for all aspects of developing SIMSCRIPT Models,
including: SIMSCRIPT language constructs, Simulation graphics Editors and graphics
library, Simstudio, Command-line interface for developing models, List of Compiler and

Run-time errors., using Symbolic Debugger, Data Base connectivity, etc.

Use menu option Help to invoke on-line help system.

20

% SIMSCRIPT I1.5 Online Help

=

|| &

Developing Simulation Models with Simstudio

=101 %]

3|3

_] Sitnzcrigt 115 Progratnming Lar;l
------ # Lexical Eletents

------ # hodes

------ * Varighles

------ # Expressions

------ # Statementz by Category
------ # Routines by Category

------ # Ertties and Sets

------ # Inputioutput

------ # Simulation Concepts

------ # Operating System Interfac
_J Sitnzcrigt Simulation Graphics
] Introduction to SIMSCRIPT
_| Icons

_| Segments

3 _| Creating Presentation Gra
_| Dialog Boxes

_| Menu Bars

| Palettes

_| Windowes

J Sitnzcrigt Database Connectiv
M Sefting Up a Database
~# Declaring the SDEC Funct

=4 Connecting to & Database T
K1 — >

SIMSCRIPT I1.5 Online Help

Simscript Simulation Studio
Dwerview
The SimStudio Editor Wind o

Compiling for Debugding
Text InputiCutput

Exernal Unit Azsignments
Internal Files

Errors in C-Cormpile or Link
Printing and External Editing

Menu

SimDebug

Figure 1-12 Simstudio on-line help window

21

SIMSCRIPT I1.5 User’s Guide

1.10 Advanced Compiler/Link Options

Project options dialog box has two buttons very seldom used in more advanced model
developments.

C/C++ Options...

Facilitates preserving C files generated by the SIMSCRIPT compiler.

x

[Produce < files Ok

Cancel

If you check this option, you will only generate C files. If you want to build the model do not
check this option.
Library options ...

Facilitates linking executable with objects from external additional libraries.

=

Libraries and objects

I Cancel

22

2 Developing Simulation Models Using
Command-Line Interface

Developing a SIMSCRIPT IL.5 program using command-line interface commands typically
involves the following steps:

1. Preparing one or more SIMSCRIPT II.5 source files using a text editor.
Compiling the program and checking for compilation errors.

3. Editing and re-compiling the program, as needed, until there are no
compilation errors.

4. Linking the object files generated by the compiler to produce an executable

file.

Executing the program.

6. Debugging the program. In case of errors during execution, the program
should be compiled with the debugging option linked and then executed with
the interactive SIMSCRIPT symbolic debugger to examine the state of the
program and find the cause of the error.

b

2.1 Preparing Source Files

A SIMSCRIPT II.5 program may be prepared using vi , enmacs or any other text editor.

If the program is small, it is convenient to store the entire program within a single file. If the
program is large, it is best to store each routine in a file of its own. Files containing
SIMSCRIPT IL.5 source code must be given names that end with . sim or. SIM

Although not a requirement, it is easier to compile and link a SIMSCRIPT I1.5 program that
is stored in a directory of its own; i.e., a directory containing the entire source files of the
program in question and none of the source files of other programs.

2.2 Compiling

The SIMSCRIPT IL.5 compiler translates a program written in the SIMSCRIPT II.5
programming language into one or more object files. The compiler uses C as an intermediate
language, but this is transparent to you, the SIMSCRIPT II.5 program developer. The
compiler will write diagnostics — error messages and warning messages — to stderr.
Errors prevent the generation of object files; warnings do not. See Appendix A for a complete
list of error and warning messages that are issued by the compiler.

The si nt command is used to invoke the SIMSCRIPT II.5 compiler and linker. Its general
form is:

%sinc [option] file.sim...
For example, to compile and link a program consisting of a single source file named

SIMSCRIPT I1.5 User’s Guide

abc. sim enter:

% sinc abc.sim

This command will compile the SIMSCRIPT source file abc. si m reporting compilation
errors and warnings to the terminal. If the compilation is successful, the object module
abc. o will be linked producing an executable file named a. out .

The SIMSCRIPT compiler options follow the same general format as many C compilers and
other standard UNIX compilers. The options available should be familiar to experienced
UNIX programmers. Below is a brief overview of a few of the most commonly used options:

Do not link any object files after compilation.

Enable SIMSCRIPT symbolic debugging.

Display a routine-by-routine program listing.

When linking, create an executable with the name provided.
Compile the preamble as “VERY OLD”. See below for more details.
Do not report any compiler warnings.

Display a local cross-reference listing for each routine.

Below is a complete list of the options available in the SIMSCRIPT II.5 compiler:

24

-a

For each routine the compiler will produce a file containing the generated
source code for the routine together with the SIMSCRIPT source code as
comments. Produces a . ¢ file with “ALLSTARS” comments, which shows the
expansion of complex SIMSCRIPT statements into simpler ones.

This compiler switch is seldom used. The SIMSCRIPT II.5 compiler
generates C code as an intermediate step during the compilation. This is
transparent to you. On some platforms C compilers cannot compile source
files with a large number of C code lines, because of the static allocation of
the symbol table. By default, the SIMSCRIPT II.5 compiler will generate the
intermediate C code into one file. To enforce splitting of generated
intermediate C code into files with a defined (maximum) number of lines, you
should invoke the SIMSCRIPT II.5 compiler with the optional compiler
switch-b N " (break C code after N number of lines). For example:

sinc -b 3000 big.sim

File bi g. si m will be transformed into bi g- 1. ¢, bi g- 2. ¢, etc.
Subsequently generated object modules will be bi g- 1. o, bi g- 2. o, etc.

The compiler's default behavior is to link using si ml d after compilation. If

Developing Simulation Models Using Command-Line Interface

you want to stop this from happening, use this option.

The compiler will generate code to perform full runtime checking. This code
validates every array element reference and every attribute reference.

Also, in the event of a runtime error, a more elaborate traceback will be
provided. This option allows SIMSCRIPT IL.5 to detect a larger class of
runtime errors and should be used when compiling a program that is not fully
debugged. Both the traceback and runtime error checking will make your
programs run somewhat slower. Note that runtime checking is not enabled by
default.

As of release 1.8 this option has been enhanced in the following way: When
an entity is removed from a set, SIMSCRIPT now checks if this entity is
indeed part of the given set. This is accomplished by changing the contents of
the M set nane attribute of the entity, which not only indicates that this
entity is a member of some set, but also indicates of which set.

When the list is owned by a permanent entity, the field M set nanme now
contains the index (integer) to the head of the list. When the list is owned by a
temporary entity, M set name now contains a pointer to the owner entity.
This means that source code that checks M set nanme for 1, should check for
<> 0.

Provide runtime checking for array element reference only without entity
class checking and set membership checking. Note this is C'zero", not

C”Oh".

Selects 'compiling for debug'. The compiler is fully integrated with the
SIMSCRIPT II.5 symbolic debugger. After linking, the program can be
activated with the command line switch - debug to provide interactive dialog
with the debugger. The SIMSCRIPT II.5 symbolic debugger allows you to
study and change the behavior of a model at runtime. Debugging features
include the following:

e Setting a break point in a given routine, or in an active
SIMSCRIPT process instance

e Single stepping one source line at a time
e Viewing source code

e Displaying of local, global variables and temporary entities in
various formats and their modifications

e Displaying the status of the program: I/O and memory usage
statistics etc.

To use all the debugger functions, a SIMSCRIPT IL.5 program must be

25

SIMSCRIPT I1.5 User’s Guide

26

-0 nane

compiled with the - d compilation switch. To start a program in *“‘debugging
mode” where you can set breakpoints etc., the executable should be invoked
with the - debug option:

sinc -d prog.sim-o0 prog
prog —debug

The - debug option is internal to SIMSCRIPT and will not be seen by the
user program.

A runtime error will automatically activate the debugger so that you can
examine the current stack and variables that led to the error. If the program
was not compiled with the -d option, only a minimal set of debugging
functions will be available. If the program was compiled with the - d option,
all debugger functions will be available. An on-line help command h will
display a list of available debug commands and parameters. See chapter 4.

This compiler switch is seldom used. SIMSCRIPT I1.5 provides an interface
toNON-SIMSCRIPT and FORTRAN routines. FORTRAN routines are
invoked from SIMSCRIPT II.5 programs without appending an underscore to
the FORTRAN routine name. In some computer environments this is
necessary. To generate calls with the appended underscore, the SIMSCRIPT
I1.5 compiler should be invoked with the optional compiler switch - F. For
example:

sinc -F prog.sim

The compiler will provide a detailed traceback listing without enabling
runtime checking. Routines compiled with - g will be shown with the 'current
line number' and all their local variables in a traceback.

Link a SIMGRAPHICS program using si ngl d.

The compiler will write a listing to standard output. Typically, standard
output is redirected to a file. For example, to write a listing to a file named
listfile,enter:

%sinc -1 *.sim> listfile
The listing shows the source statements together with diagnostic messages, if
any. It may also include local and/or global cross-references (see the —x and
- X options).

The compiler will produce output listings with n lines per page. The default
value is 55.

When linking, the executable file created will be called nane. If this option
is not specified, a. out is the default executable name. For example, the
following command creates an executable called fil e after compiling all
the . si m source files in this directory.

-S

Developing Simulation Models Using Command-Line Interface

sint *.sim-o0 file

The C compiler's optimizer will be involved when compiling. This option
will increase compile time, but will reduce model runtime. On very rare
occasions, some optimizers may produce incorrect code, resulting in incorrect
behavior of your program. If this is suspected, try compiling without
optimization. The following command will create an optimized executable
called pr og after compiling fi | ename. sim

sint -O -0 prog filenane.sim

Compile using profiling code. See prof (1) and cc(1) in the man pages
for details. This must be specified at link-time, either through sint or
si m d. See paragraph 2.6. This option may not be provided on all computer
platforms.

Create only a . ¢ file. Do not produce . o or link.

-tenmp=dir

Specify the location of compiler temporary files. The default is / t np. This
does not affect where the C compiler places its own temporary files.

This option means a VERY OLD PREAMBLE. It is used during re-compilation
of some SIMSCRIPT routines when there are no changes to the
Pr eanbl e. si m It will speed-up the re-compilation process because

Preanbl e. o will not be generated. Also, the PREAMBLE will not appear in
the listing.

For example, enter the following command to re-compile fil el. si m into
an object file (which will be called fi | el. 0). The name of the file which
contains the PREAMBLE, Pr eanbl e. si m must always be given because it
contains definitions for SIMSCRIPT data structures. The - ¢ option prevents
linking.

sinc -cv Preanble.simfilel.sim
Enter the following command to create an executable called a. out (the

default name) from the object files in this directory after re-compiling
routl.sim

sinc -v Preanble.simroutl.sim*.o0

The compiler will suppress warning messages, i.€., N0 warning messages
will be displayed.

The compiler will write to the listing a local cross-reference for each routine.
A local cross-reference shows the line number of every reference made to

each name in the routine.

The compiler will append to the listing a global cross-reference for the entire

27

SIMSCRIPT I1.5 User’s Guide

program. A global cross-reference shows the name of every routine, which
references each globally defined name.

-1 The compiler will not generate code. It is sometimes desirable to quickly
check the syntax of a program and/or produce a listing without generating any
object files. Note, this is a “one” not an “ell”.

The following command compiles a program consisting of three source files: abc. si m
def . si m and ghi . si m Warning messages will be suppressed (- w option) and runtime
checking code will be generated (- C option).

%sintc -w -C abc.simdef.simghi.sim

The compiler expects to find the preamble of the program at the beginning of the first file
specified. Thus, if the program in the above examples contains a preamble, it must be located
at the beginning of file abc. si m or compilation errors will result.

The following is a convenient way to compile a program consisting of many source files
within a single directory:

% sinc *.sim

In this example, *. si m is automatically expanded into a list of source files sorted by name.
Since the compiler expects to find the PREAMBLE in the first file it encounters, it is necessary
that the file containing the PREAMBLE be given a name, which precedes all others in sorted
order. Since upper-case names precede lower-case names, one convention, which may be
followed, is to store the PREAMBLE in a file named PREAMBLE. si m and to name the rest of
the files using all lower-case characters.

2.3 Recompiling

Whenever a change is made to the PREAMBLE of a program, it is necessary to re-compile the
entire program. If a change is made only to routines of the program, only those routines that
have been modified need be re-compiled, not the entire program.

Suppose that the routine in file xyz. si m has been modified. If this routine does not require
anything declared in the PREAMBLE, then the following command can be used to re-compile
it:

%sinc -c xyz.sim

If this routine does reference something declared in the PREAMBLE, it is necessary to
recompile the PREAMBLE along with it:

% sinc -cv PREAMBLE. sim xyz.sim

The - v option is specified to avoid regenerating the scripted routines contained in the
PREAMBLE. o.

28

Developing Simulation Models Using Command-Line Interface

2.4 Linking

If the - ¢ option is used to suppress linking, the compiler generates object files, which need
to be linked. Each of these files has a name that ends with . 0. The si M d command is used
to link a SIMSCRIPT II.5 non-graphical program. Its general form is:

%sinmMd file.o ...

If there are any undefined references, the name of each missing routine will be displayed.
If there are no undefined references, an executable file named a. out will be produced.
Suppose a program consists of only three routines: mai n. si m subl. si m and

sub2. si m Then the object files generated by the compiler are nai n. o, subl. o and
sub2. o. The following command will link this program:

% sinmd main.o subl. o sub2.0

The following is a convenient way to link a program consisting of many object files within a
single directory:

%simd *.o0

Note that it is necessary to link all of the object files generated by the compiler. Even if just a
single routine has been modified and re-compiled, it is necessary to re-link the entire set of
object files.

sim d is a shell script which invokes the UNIX C compiler, cc, to link object files. Any
option, which may be specified to cc, may also be specified to si ml d. The most useful of
these is the - 0 option. It is used to name the executable file something other than a. out .
For example, to create an executable file named conput e, enter:

%simd -o conpute *.0

si ngl d is another shell script which invokes cc. It must be used instead of si m d to link
SIMGRAPHICS programs. For example, to link a SIMGRAPHICS II program and name the
executable file ani nmat e, enter

%singld -0 animate *. 0

It is possible to create a library of SIMSCRIPT II.5 routines using the UNIX archive utility,
ar . To create a library named xyz from the object files in a directory, enter the following
command:

%ar r libxyz.a *.o0
To make the library accessible to all users, enter the following sequence of commands:

% v |ibxyz.a $SIMHOVE/ |i b
%ranlib $SIMHOVE/ lib/libxyz.a
% chnmod 644 $SIMHOVE/ 1i b/ 11 bxyz. a

SI MVHOVE is the environment variable, which contains the full path where SIMSCRIPT I1.5
is installed. For more details of the SI MHOVE, see the Installation Notes for the current

29

SIMSCRIPT I1.5 User’s Guide

SIMSCRIPT I1.5 release.

Note that ranl i b is not available on all systems. On systems where it is not available it is
not needed. To link the object files in a directory with this library, enter:

%simd *. o —I xyz

A SIMSCRIPT IL.5 program can call routines written in other languages, such as C or
FORTRAN. To link such a program, specify to si m d (or si ngl d if the program makes
use of SIMGRAPHICS features) the name of each object file created by the other compiler,
along with the name of each object file created by the SIMSCRIPT I1.5 compiler.

SIMSCRIPT IL.5 supports two graphics systems SIMGRAPHICS I and SIMGRAPHICS

II. As of Release 1.9, SIMGRAPHICS 11 is the default SIMGRAPHICS in SIMSCRIPT

IL.5 systems. Compiler switch - G will link graphical models with SIMGRAPHICS II
libraries.

sint -G *.sim

Also si ngl d will automatically link with SIMGRAPHICS II libraries. If you want to use
SIMGRAPHICS I, you must compile your model with the - ¢ option and use si ngl d1 as
follows:

sinc -c *.sim
sinmgldl *.0

SIMSCRIPT I1.5 runtime libraries as well as SIMGRAPHICS libraries are distributed in two
versions: dynamic link libraries and archive libraries. This facilitates dynamic and static
linking. By default programs will be linked dynamically.

When a model is linked dynamically, the executable image does not include the entire object
modules it needs for execution. It contains pointers to the dynamic link libraries also called
“shareable libraries”. The benefits of dynamic linking are twofold: first linking time is
shorter, second all SIMSCRIPT models in the same computer platform share the same
runtime libraries which results in substantial savings of disk space. When you use existing
link commands: sim d, singld, sinmgldl and sinmgl d2 your model will be linked
dynamically.

If you want to execute your model on some other platform, which does not have the same
release of SIMSCRIPT IL5, or does not have SIMSCRIPT I1.5 installed at all, your model
must be linked statically. This means that you have to perform static link or “total link”. In
other words, your executable has to include all object modules in itself.

SIMSCRIPT IL.5 provides commands for platform independent static linking or “total
linking” for both non-graphical and graphical SIMSCRIPT models:

tsimd - static link of non-graphical models

tsingld - static link of graphical models by default with SIMGRAPHICS II
tsi ngl d1 - static link of graphical models with SIMGRAPHICS 1

tsi ngl d2 - static link of graphical models with SIMGRAPHICS II

30

Developing Simulation Models Using Command-Line Interface

2.5 Executing

A SIMSCRIPT II.5 program is executed by entering the name of the executable file. For
example:

% a. out

Parameters specified on the command line are available to the SIMSCRIPT I1.5 program
in the global t ext array, par m v. For example, consider the following command:

% a.out -i 10 WKYZ. dat
Upon entry to this program, par m v will be set up as follows:

DI M F(PARM V(*)) = 3

PARM V(1) = -i
PARM V(2) = 10
PARM V(3) = WKYZ. dat

A SIMSCRIPT IL.5 program can read from standard input by reading from UNIT 5. It can
write to standard output by writing to UNIT 6 and can write to standard error by writing to
UNIT 98. Any redirection of these units, which is allowed by the operating system, may
bespecified on the command line.

Internal command line switches used for debugging, like - debug and - bat chtrace, will
not be seen by the program in parm v.

If a runtime error is detected by SIMSCRIPT I1.5, the program will be stopped and:

1. A runtime error message will be written to standard error (see Appendix B for a
complete list of runtime error messages) and the interactive debugger dialog will be
entered allowing you to examine the state of the program;

2. If the program was invoked with the command line switch - bat cht r ace, a runtime
error message, a traceback, a simulation status report, a memory status report and an
I/O status report will be written to a file simerr.trc and the user-supplied
snapshot routine, snap.r, will be called, if it exists. The level of debugging
information included in a traceback depends on the compiler switches used for
compilation: -d and -g will provide routine names with local variables and line
numbers. If none of these switches are used, only routine names will be written,
without other debugging information.

In the event that a runtime error goes undetected by SIMSCRIPT II.5 and a program aborts
with a core dump, it is possible to analyze the core file using the UNIX debugger, adb.

Any SIMSCRIPT II.5 program may be invoked from a shell script. The exit status returned
by the program will be zero if the program was terminated by a st op or end statement, and
will be non-zero if the program was aborted due to a runtime error. However, you may
explicitly call exi t. r to terminate your program and return a particular exit status.

31

SIMSCRIPT I1.5 User’s Guide

2.6 Profiling

Profiling is useful when analyzing the performance of a program. Profiling helps determine
where most of the execution time in a program is spent. In the typical program, execution
time is confined to a relatively few sections of code. It may be profitable to concentrate on
improving coding efficiency in only those sections.

Profiling is platform specific, and may not be available on all UNIX platforms. We will
describe a common approach, using the pr of command for profiling a SIMSCRIPT IL.5
model.

The prof command produces an execution profile of a program. The profile data is taken
from the profile file, which is created by programs compiled with the - p option. That option
also links in versions of the library routines, which are compiled for profiling.

When a program is profiled, the results appear in a file called non. out (default filename) at
the end of the run. Every time the program is run, a new non. out file is created overwriting
the old version. The profiled program must exit or return normally for the profiling
information to be saved in the mon. out file. The pr of command is then used to interpret
the results of the profile.

pr of Displays the following information for each routine:
% i me Percentage of the total time of the program, that was consumed by this
routine.

cunsecs A running sum of the number of seconds accounted for by this function and
those listed above it.

#cal | The number of times this routine was called.
ns/ cal | How many milliseconds this routine consumed each time it was called.
nane The name of the routine.

To obtain a profile of a SIMSCRIPT II.5 program, it is necessary to link the program using
the - p option. To tally the number of calls to a routine, the file that contains the routine must
be compiled with the - p option.

Compile the modules you want profiled with the - p flag:

%sinc -c -p filel.simfile2.sim
%sinc -c file3.sim

To link the program, type:

%simd -p filel.o file2.0 file3.0

32

Developing Simulation Models Using Command-Line Interface

Or simply:
%sinc -p filel.o file2.0 file3.0

Run your program:
% a. out

Now use pr of to write an execution profile to standard output:
% prof a.out

The following is some sample profile data created by pr of . Routines that begin with _H are
SIMSCRIPT library routines. Routines that begin with _R were generated by the
SIMSCRIPT compiler or are user routines. Routines that begin with _Q are SIMSCRIPT or
user left routines. Other routines are C library routines.

33

SIMSCRIPT I1.5 User’s Guide

Note: The symbol ntount

by profiling.

% i ne cunsecs

21. 4 25.
18.6 47.
62.
70.
75.
79.
81.
84.
87.
89.
91.
92.
94.
96.
97.
99.

=
-
©

©COO00O00000ORRRERRERRERERREPREENNN®®O
OO 0O OO NN N0 oW OW O FRP FPFDNMNDNWWPMOIOOONODNWO © O

100.
101.
103.
104.
105.
106.
107.
108.
108.
109.
110.
111.
111.

66
91
12
34
01
16
93
62
00
08
00
84
51
11
68
12
52
84
12
22
28
29
21
08
90
71
46
19
86

5

#cal |

220716
11755
165643
110445
110419
208985
86922
30610
86922
56318
208959
98664
5303
28165

98689
220716
208985
220716
130716
241264
429904
55210
43467
43467
55209

ns/ cal |

04
40
03
03
.02
.01
02
01
02
03
01
02
.03
.05

©Coo0o0O00O00O00O0OO0OO0O

1320.

.01
. 00
.01
.00
.01
00
00
.01
.02
.02
.01

OO0 000000 oo

00

See the man page for pr of (1) for more information.

2.7 Makefiles

is a side effect of profiling, and indicates the overhead incurred

name
_HP_SUSPEND_R
_HP_RESUME_R

ncount

_HTIM_R

_RICB

_HT_EV_S

_HRANDOM F

_@S_N_X TRANSPORTER
_HPRQ R

_ @S _N_X WORK_STATI ON
_calloc

_ QS W8 _NUM_MACH WORKI NG
_QS_N_Q WORK_STATI ON
_HPSU R

_HRNQ R

_log

_RT_Q WORK_STATI ON
_HTIME_R

_HREQ R

_HPCALL_R

_HPSUSP_R

_HTIML_R

_mal | oc

. mul

_HDIM F
_RT_X_TRANSPORTER

_@S W5 _DELAY_ | N QUEUE
_HERLANG F

_RZ X _TRANSPORTER

The file-naming scheme that this compiler uses is compatible with the naming scheme used
by the C language compiler. Because of this, it is possible to use the UNIX “make” utility.
This utility only recompiles the source files that have changed since the last compilation.

34

Developing Simulation Models Using Command-Line Interface

This is an easy and reliable way to manage models of medium to large size. Make is not very
good at handling models whose sources are spread over many directories but, with care, it is
possible.

The make utility relies on a special file, called a “make file”, to describe the rules for
rebuilding your particular model. By default, the “make file” is named either makefil e or
Makefile. Other file names may be specified with the - f option of make. See the man
page for make(1) for more information.

2.7.1 Compilation Sequence

The compiler knows about the following kinds of file extensions, and treats them as follows:
.sim Compile as SIMSCRIPT source files.
. SI' M Alternate suffix for SIMSCRIPT source files.
. 0: Object files.
. ¢: C source files, produced in intermediate stage.
.a: Archive libraries to include in linking.

Files must be named using this convention. For other kinds of file extensions, consult the
manual for your C compiler. Files are named after the SIMSCRIPT source using the
following convention

nyfile.sim-> nyfile.o

This allows the use of makefiles.

The easiest way to use the compiler is to simply specify all the sources you want compiled,
and let the compiler compile and link them into an executable program. However, during
development of a large program, only recompiling those source files that have changed since
the previous compilation can save much time. This is accomplished by saving the object file
for each source file. Then, when a source file is recompiled, the new object file replaces the
old, and all of the object files can be relinked to create a new executable. Linking all of the
object files is much faster than compiling all of the source files.

Make takes this one step further. It checks the modify time of each source file, and only
recompiles it if it is newer that its object file or the target executable. This way, only the
source files that need compiling are actually compiled. The actual compilation and linking
commands are specified in the makefile.

35

SIMSCRIPT I1.5 User’s Guide

2.7.2 Make Description File Format

The descriptions in this section are simplified. For a complete description of the file format,
see the documentation that came with your system.

Entries in a makefile are of the following form:

targetl [target2 ...] : [dependentl ...]
<tab> comand [# conments ...]

Items in square brackets are optional. The <tab> must be a “tab” character. Shell
metacharacters such as ' *' and ' ?' are expanded. The entry is concluded with a blank
line.

Makefiles can also contain simple macros. Macros can be defined in the make command line,
or more commonly, in the makefile. The definition is simple: a macro name, an “equal” sign,
and the macro value. An example is PREAMBLE = Preanbl e. si m A macro is invoked by
preceding the name with a dollar sign ($$ is used to represent a real dollar sign). Macro
names longer than one character must be parenthesized like this: “$(PREAVBLE) ”. When the
macro is invoked, its text is replaced with its current value, so in our example,
“$(PREAMBLE) ” would be replaced with Preanbl e. si m Make also has four predefined
macros specific to the job it performs. These special macros are $*, $@ $?, and $<.
These macros are re-evaluated before each command. They are evaluated as follows:

. The $* macro is the root file name of the current file. For example, if the
current file were f r equency. si m $* would equal f r equency.

. The $@ macro represents the current “target” file name.

. The $? macro is the string of file names found to be newer than the current
target.

. The $< macro is the name of the file which caused this command to be
executed.

2.7.3 Transformation Rules

A transformation rule is what make uses to “transform” a source file into an object file, or
several object files into an executable. Many useful transformation rules are built into make,
such as rules to compile C, FORTRAN, or even assembler. Unfortunately, the rules for
SIMSCRIPT are not built in.

To provide make with this information, make must first be informed of the new source suffix,
. si m This is done using a fake target called. SUFFIXES. For our purposes, SUFFIXES:
.sim .o is sufficient. Next, make needs to know how to transform . si m files into . o
files. We do this using a transformation rule called. sim.o. See the sample makefile in

36

Developing Simulation Models Using Command-Line Interface

paragraph 2.7.5 for an example. In transformation rules, the special macros are set as follows:
$* is set to the file name without the suffix, $< is the name of the file to be transformed,
and $@ is the name of the file to be created (or updated).

2.7.4 Special Notes

Each line in a makefile is executed by a new invocation of the shell, so commands like cd

. I

for example, must be combined into one line using the shell command separator, *; ”.

By default, make displays each command before executing it. This can be prevented by
preceding the command with an at sign (@.

If a macro is defined on the make command line, it supersedes the makefile's definition, if
any is present. A typical use of this is to use make SFLAGS=- O to use optimization on any
compiles that need to be performed.

There are several ways to force recompilation:

1. Usetouch(1) toupdate the source file's modify time. Make will then consider
the source file “changed”. This will also force relinking if the corresponding
object file is a dependent of the executable.

2. Delete the corresponding object file. This has the same effect as the above.

Delete the executable. This will force relinking, but will not recompile any

sources unless they are out of date.

(98]

2.7.5 Sample Makefile

#

Generic nakefile for SIMSCRIPT prograns

#

MAKE ARGUMENTS

<no arg> : Make executable with the nane in the "PRG' paraneter.
cl ean : Renmove all non-source files, i.e. object files and

the executable and all internediate files.

cl eanexe . Renove the executabl e.

He m m e oo
#:::
FILL I N THE PARAVETERS BELOW UNTI L THE LI NE

">>> END OF PARAMETERS <<<"
#:::
#

<<< PARAMETERS >>>
PRG The name of the executable.
PRG = bounce

PREAMBLE: SI MSCRI PT source file containing the preanble.
SI MFILES: All other SIMSCRIPT source files. A "\" followed

37

SIMSCRIPT I1.5 User’s Guide

i medi ately by a carriage return nust be put at the
end of the line to continue to the next.
PREAMBLE Preanbl e. sim

S| MFI LES bal | . si m bounce.simdone.siminit.simnmain.simnmenu.sim\
menuct | . si moutput.sim

SFLAGS: S| MSCRIPT conpile flags.

SFLAGS = -d

SI MLI NK: Specify link command with SIMGRAPH CS |, SIMGRAPHI CS |11,

or no graphics; dynanmic or static |ink.
#

<<< DYNAM C LI NK >>>

SI MGRAPHI CS | - singldl

SIMGRAPHICS || - singld2 or singld
NO GRAPHICS - sinmd

#

<<< STATI C LI NK >>>

SI MGRAPHI CS | - tsingldl

SIMGRAPHICS || - tsingld2

#

NO GRAPHICS - tsinmd
SIMLINK = singld
>>> END OF PARAMETERS <<<

SI MC SI MSCRI PT conpi | e conmand.
SIMC = sintT

OBJS: List of .o files.
OBJS = $(PREAMBLE: . si mr. 0) $(SI MFI LES: . si me. 0)

The first (enpty) .SUFFIXES clears the SUFFI XES |ist. The second
acknow edges only the .simand .o suffixes. This avoids problens
with extraneous .c files and others.

. SUFFI XES:

.SUFFI XES: .0 .sim.c

$(PRG : $(0OBIS)

@cho "-- Linking ..."
$(SIMINK) -0 $(PRG $(0BIS)
@cho "-- $(PRG was successfully built!"
cl ean :
@cho "-- Renobving all internmediate files and the executable.”
rm-f *.0*.¢c *.i *.s *~ core a.out $(PRG
cl eanexe :
@cho "--- Renpvi ng executabl es.”
rm-f core a.out $(PRG
e I
#

If preanmbl e was changed, we need to reconpile everything. Since
after that all *.o will be current, just the link is left in the
target above.

$(PREAMBLE: . si mF. 0): $(PREAMBLE)
@cho "-- $(PREAMBLE: . sime. 0) outdated or m ssing!"
@cho "-- Reconpiling everything ..."
$(SIMC) -c $(SFLAGS) $(PREAMBLE) $(SI MFI LES)
How to make an individual object file froma sincript source file.

.Simo:
$(SIMC) -cv $(SFLAGS) $(PREAMBLE) $*.sim

38

Developing Simulation Models Using Command-Line Interface

2.8 Obtaining Online Help

Online documentation regarding the use of the SIMSCRIPT II.5 compiler can be obtained by
using the si mhel p command, e.g.

% si mhel p sint

Simhelp by itself lists all topics for which help is available.

2.9 Example Program

The following is an example of a complete program and compilation.%
m mai n. sim

SI MJ01 job.sim stop.sim

%sinc -1 *.sim> listing

%ls

Preanble.o a.out* job.o mai n. o stop.sim
Preanbl e. sim generator.o job.sim mai n. sim
SI MJ01 generator.sim listing stop.o
%cat |isting

PAGE 1

CACl SIMSCRIPT II.5 (R) v2.0 6/ 26/ 1997 15:23:42

1 PREAMBLE

2

3 RESOURCES | NCLUDE CPU AND MEMORY

4 PROCESSES | NCLUDE GENERATOR AND STOP. SI M

5 EVERY JOB HAS A JB.PRICRITY

6 AND A JB. MEMORY. REQUI REMENT

7 DEFI NE JB. PRIORI TY AND JB. MEMORY. REQUI REMENT

8 AS | NTEGER VARI ABLES

9 DEFI NE JOB. DELAY. TI ME AS A REAL VARI ABLE

10 EXTERNAL PROCESS IS JOB

11 EXTERNAL PROCESS UNNT IS 1

12 DEFI NE SMALL. JOB. | NTERARRI VAL. TI ME,

13 MEAN. SMVALL. JOB. PROCESSI NG. TI ME, RUN. LENGTH

14 AND STOP. TI ME AS REAL VARI ABLES

15 DEFI NE NO CPU AND MAX. MEMORY AS | NTEGER VARI ABLES
16 DEFI NE MAX. MEMORY. QUEUE TO MEAN 1MAX. MEMORY. QUEUE

18 ACCUMULATE CPU. UTI LI ZATI ON AS THE AVG OF N. X. CPU
19 ACCUMULATE MEMORY. UTI LI ZATI ON AS THE AVERAGE

20 OF N. X. MEMCRY

21 ACCUMULATE AVG CPU. QUEUE AS THE AVG AND

22 MAX. CPU. QUEUE AS THE MAXI MUM OF N. Q CPU

23 ACCUMULATE AVG MEMORY. QUEUE AS THE AVG

24 AND MAX. MEMCORY. QUEUE AS THE MAXI MUM OF N. Q MEMCORY
25 TALLY AVG JOB. TI ME AS THE AVERAGE AND NO JOBS. PROCESSED
AS

26 THE NUMBER OF JOB. DELAY. TI ME

27

28 DEFI NE HOURS TO MEAN UNI TS

29

30 END ' ' PREAMBLE

39

SIMSCRIPT I1.5 User’s Guide

PAGE 2
CACI SIMSCRIPT I1.5 (R v2.0 6/ 26/ 1997 15:23:42
1 PROCESS GENERATOR
2
3 UNTIL TIME V >= STOP. TI ME
4 DO
5 ACTI VATE A JOB NOW
6 LET JB.PRICRITY.. = RANDI.F(1, 10, 1)
7 LET JB. MEMORY. REQUI REMENT. . = RANDI . F(1, MAX. MEMORY, 2)
8 WAI T EXPONENTI AL. F(SMALL. JOB. | NTERARRI VAL. TI ME, 3) M NUTES
9 LOooP
10
11 END
PAGE 3
CACI SIMSCRIPT I1.5 (R v2.0 6/ 26/ 1997 15:23:42
1 PROCESS JOB
2
3 DEFI NE ARRI VAL. TI ME AND PROCESSI NG. TI ME
4 AS REAL VARI ABLES
5 | F PROCESS | S EXTERNAL
6 READ JB. PRIORITY. ., JB. MEMORY. REQUI REMENT. . AND
7 PRCCESSI NG. Tl ME
8 ELSE
9 LET PROCESSI NG TI ME = M N. F(EXPONENTI AL. F
10 (MEAN. SMALL. JOB. PROCESSI NG TI ME, 4), 2 *
11 MEAN. SVALL. JOB. PROCESSI NG. Tl ME)
12 ALVAYS

13 LET ARRIVAL.TIME = TIME. V

14 REQUEST JB. MEMORY. REQUI REMENT.. UNITS OF MEMORY(1)

15 W TH PRI ORI TY JB. PRI ORI TY. .

16 REQUEST 1 CPU(1) WTH PRI ORI TY JB. PRI ORI TY. .

17 WORK PROCESSI NG. TI ME M NUTES

18 RELI NQUI SH JB. MEMORY. REQUI REVMENT. . UNI TS OF MEMORY(1)
19 RELINQUISH 1 CPU(1)

20 LET JOB.DELAY.TIME = TIME. V - ARRI VAL. TI ME

21
22 END
4
CACI SIMSCRIPT I1.5 (R) v2.0 6/ 26/ 1997 15: 23: 42
1 MAIN
2
3 WRI TE AS /, "A COWUTER CENTER STUDY", [/, [/
4
5 Open unit 1 for input
6
7 LET HOURS. V = 1
8 CREATE EVERY CPU(1) AND MEMORY(1)

9 Let U CPU(1) = 1

10 Let U MEMORY(1) = 6

11 LET NO. CPU = U.CPU(1)

12 LET MAX. MEMORY = U. MEMORY(1)

14 Let SMALL. JOB. | NTERARRI VAL. TIME = 2.0

15 Let MEAN. SMALL. JOB. PROCESSI NG Tl R/E = 0.8
16 Let RUN. LENGTH = 12.0

40

Developing Simulation Models Using Command-Line Interface

17 LET STOP. TIME = RUN. LENGTH / HOURS. V

18

19 PRINT 6 LINES WTH U.CPU(1), U. MEMORY(1),

20 60/ SMALL. JOB. | NTERARRI VAL. TI ME,

21 MEAN. SMALL. JOB. PROCESSI NG TI ME AND RUN. LENGTH THUS
ACOMPUTERCENTERSTUDY

NO OF CPU S ** STORAGE AVAI LABLE ****

SMALL JOBS ARRI VE AT THE RATE COF *** / HOUR

AND HAVE A MEAN PROCESSI NG TI ME OF *** *** SECONDS
LARGE JOBS ARE SUPPLI ED AS EXTERNAL DATA
THE SI MULATION PERIOD 1S *x ** HOURS
28
29 ACTI VATE A GENERATOR NOW
30 ACTI VATE A STOP. SIM I N STOP. TI ME HOURS
31 START SI MULATI ON
32
33 END "' MAIN

5

CACI SIMSCRIPT I1.5 (R v2.0 6/ 26/ 1997 15:23:42

PROCESS STCP. SIM

SKIP 6 LI NES

PRINT 9 LINES WTH TIME.V, CPU. UTI LI ZATI ON(1) * 100/ NO. CPU,
MENMORY. UTI LI ZATI ON(1) * 100/ MAX. MENORY,
AVG. MEMORY. QUEUE(1), MAX. MEMORY. QUEUE(1) ,
AVG. CPU. QUEUE(1), MAX. CPU. QUEUE(1),
NO. JOBS. PROCESSED AND AVG JOB. TI ME * M NUTES. V
THUS

AFTER** ** HOURS

O©CoO~NOUITR_RWNE

THE CPU UTI LI ZATI ON WAS EE %
THE MEMORY UTI LI ZATI ON WAS FLEE %
THE AVG QUEUE FOR MEMORY WAS *oxx JOBS
THE MAX QUEUE FOR MEMORY WAS * ** JOBS

THE AVG QUEUE FOR A CPU WAS *_ ** JOBS

THE MAX QUEUE FOR A CPU WAS *. ** JOBS

THE TOTAL NUMBER OF JOBS COVPLETED WAS ***

W TH AN AVERACGE PROCESSI NG TI ME OF *.*** M NUTES

41

SIMSCRIPT I1.5 User’s Guide

3. SIMSCRIPT II.5 Language Considerations

Some features of the SIMSCRIPT II.5 programming language vary from one implementation
to another. This chapter describes implementation-specific features of
UNIX SIMSCRIPT I1.5.

3.1 Input and Output

The open statement associates a SIMSCRIPT I/O unit with a file. Its general form is

open [unit] EXPRESSI ON1
[for] { input | output } < comua >
[[file] nane is TEXT1 |
bi nary |
recordsi ze i s EXPRESSI ON2 |
noerror |
append |
scratch |
fixed
] < comma >

EXPRESSI ON1 specifies the unit number. If i nput is specified, the unit may appear in
use for input statements. If out put 1is specified, the unit may appear in use for
out put statements. If both i nput and out put are specified, the unit may appear in
both use for input statements and use for output statements. However, it is
necessary to execute a r ewi nd statement before reading from an output file or writing to an
input file since the intermingling of I/O operations is not allowed.

TEXT1 specifies the name of the file associated with the unit. If the name phrase is omitted,
the filename SI MUnn is assumed, where nn is the unit number. For example, for unit 3, the
default filename is SI MJO3.

The default file type is an ASCII file containing variable-length records. If bi nary is
specified, the file is treated as a binary file containing fixed-length records. If fi xed 1is
specified, the file is treated as an ASCII file with fixed length records. The free-form r ead,
formatted read, print, wite and |ist statements are used with ASCII files.
Theread as binary andwite as binary statements are used with binary files.

Expr essi on2 specifies the size of records in bytes. If the r ecor dsi ze phrase is omitted,
the size of records is assumed to be 80. For binary files, this is the actual length of each
record. For files with variable length records, this is the maximum length of a record. Note

that the “newline” character is not counted as part of the record length. Examples are:
open unit 1 for input, recordsize is 132
open 7 for output, binary, nane is "datafile"

Normally, if a file cannot be opened for some reason, such as the file does not exist or the
filename is invalid, the program will be aborted with a runtime error. If noerror is
specified, however, the program will not be aborted. Instead, a global variable, r openerr. v
for the current input unit, or wopenerr . v for the current output unit, will be assigned a non-

SIMSCRIPT I1.5 User’s Guide

zero value which may be tested by the program. For example:

open unit 12 for input,
file nane is | NPUT. FI LENAME, noerror

use unit 12 for input

if ropenerr.v <> 0
wite | NPUT. FI LENAME as "Unable to open ", T *, [/
close unit 12

al ways

Note: Ropenerr.v and wopenerr.v will be set after the use unit statement, not after
the open st at ement .

Ifauni t, which has not been opened, appears in a use statement, the following statement
will open it automatically:

open UNI T- NUMBER for input and out put

The standard units — 5, 6 and 98 — are opened automatically by the system and may not
appear in an open statement. The record size of each is 132. Unit 5 is st di n, the standard
input unit. It is opened for input and is the current input unit when a program begins
execution. Unit 6 is st dout , the standard output unit. It is opened f or out put and is the
current output unit when a program begins execution. Unit 98 is st der r, the standard error
unit. It is opened f or out put and is used for writing system error messages. Each of the
standard units is associated with the terminal unless it has been redirected.

The units 1-4 and 7-97 have no predefined meaning and are available for general use. Unit 99
is t he buf f er. This unit may also appear in an open statement, but the name phrase is
ignored and no physical file is associated with it. The r ecor dsi ze phrase is also ignored.
The record size for t he buffer is obtained from the global variable, buf f er. v, with a
default value of 132.

The cl ose statement dissociates a SIMSCRIPT I/O unit from a file. Its general form is:
close [unit] EXPRESSI ON1

where EXPRESSI ON1 specifies the unit number.
If the current input unit is closed, unit 5 becomes the current input unit. If the current output
unit is closed, unit 6 becomes the current output unit.

A unit, which is open when a program terminates, is closed automatically. All units,
including unit 99, may be closed, except for the standard units, which must remain open at all
times.

The global variable, | i nes. v, indicates whether pagination is enabled for the current output
unit. By default, | ines.v = 0 which indicates that pagination is disabled. To enable
pagination, initialize | i nes. v to a non-zero value indicating the desired number of lines per
page. For example, to produce paginated output on unit 1, with 60 lines per page, specify:

use unit 1 for output
let lines.v = 60

44

SIMSCRIPT I1.5 Language Considerations

A record read from a file containing variable-length records will automatically have blanks
appended to it so that it is as long as the record size specified for the unit. Furthermore, each
tab character found in the record will be expanded into one or more blanks following UNIX
convention, i.e. tab stops are set every 8 columns, starting with column 1. The global variable
rrecl en. v contains the length of the record last read from the current input unit before
blanks are appended but after tabs have been expanded.

3.2 Modes and Packing Codes

The following modes are supported:

Al pha An 8-bit unsigned integer used to store an ASCII character
code (0 to 255)

| nt eger 2 A 16-bit unsigned integer (0 to 65535)

Si gned integer?2 A 16-bit signed integer (-32768 to +32767)

I nt eger A signed integer of at least 32 bits

Real A floating-point number of at least 32 bits

Doubl e A floating-point number of at least 64 bits

Poi nt er An address

Subpr ogr am An address of a routine

Text An address of a character string

Bit packing is supported. For example, on 32 bit machines, any packing code (a-b) is allowed
provided that:

1 <a <b <32
Examples: (1-4), (12-12), (21-22)

The following shows each of the available field-packing codes together with its equivalent
bit-packing code:

(1/2) (1-16)
(2/2) (17-32)
(1/4) (1-8)
(2/4) (9-16)
(3/4) (17-24)
(4/4) (25-32)

Intrapacking codes, (*/2) and (*/4), are also supported.

3.2.1 Alignment of Values

Some machines require strict alignment of double-precision floating point values on a double
word boundary. For maximum portability to these systems, variables and permanent
attributes of mode doubl e should be assigned to odd array numbers. Similarly, doubl e
temporary attributes should be assigned to odd word numbers or left for automatic definition.

45

SIMSCRIPT I1.5 User’s Guide

3.3 Non-SIMSCRIPT Routines

This section illustrates how a SIMSCRIPT IL.5 program can call a routine written in C or
FORTRAN.

3.3.1 Calling C Routines

Suppose we wish to call a subroutine named sub, which is written in C and has two
arguments:

sub(i narg, outarg)
| ong i narg;
| ong *outarg;

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define SUB as a nonsinscript routine

When calling this subroutine, the first argument should evaluate to i nt eger since this is
the SIMSCRIPT I1.5 mode, which corresponds to the C type | ong. The second argument
must be a pointer to an i nt eger. This can be accomplished by passing a pointer to an

i nt eger array. For example:
define I N. ARG as an integer variable
define QUT. ARG as a 1-diminteger array
wite as "Enter the input value:", /
read | N. ARG
reserve QUT. ARG *) as 1
call sub(IN ARG OUT. ARG(*))
wite OUT. ARG 1) as "The output value is ", | 10, /

Suppose we wish to call a function named FUNC, which is written in C and has one
argument:

| ong func(inarg)
doubl e i narg;

The declaration of the function in the preamble specifies the mode of the function:

define FUNC as an integer nonsinmscript function

Here is an example of a call to this function:

define I N. ARG as a doubl e variabl e
define RESULT as an integer variable

wite as "Enter the input value:", /

read | N. ARG
l et RESULT = FUNC(I N. ARG

46

SIMSCRIPT I1.5 Language Considerations

wite RESULT as "The function result is ", | 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function matches
its C type. Here is a list of C types and the corresponding SIMSCRIPT II.5 modes:

unsigned char al pha
unsigned short i nt eger 2
shortsigned i nt eger 2

long i nt eger
float real
double doubl e

If an argument is a pointer to a null-terminated character string, pass at ext value.

3.3.2 Calling FORTRAN Routines

Suppose we wish to call a subroutine named SUB, whi ch is written in FORTRAN and has
two arguments:

subroutine SUB(i narg, outarg)
i nteger inarg
i nteger outarg

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define SUB as a fortran routine

Unlike SIMSCRIPT II.5 and C, FORTRAN passes arguments by reference, i.e., the address
of the argument is passed rather than its value. The compiler for all routines declared as

FORTRAN routines does this automatically.

wite as "Enter the input value:", /

read | N. ARG

call SUB(IN ARG OUT. ARG

wite OQUT. ARG as "The output value is ", | 10, /

Suppose we wish to call a function named FUNC, which is written in FORTRAN and has
one argument:

i nteger function func(inarg)
doubl e precision inarg

The declaration of the function in the preamble specifies the mode of the function:
define FUNC as an integer fortran function

Here is an example of a call to this function:
wite as "Enter the input value:", /

read | N. ARG

47

SIMSCRIPT I1.5 User’s Guide

| et RESULT = FUNC(I| N. ARG
wite RESULT as "The function result is ", | 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function matches
its FORTRAN type. Here is a list of FORTRAN types and the corresponding SIMSCRIPT
I1.5 modes:

i nteger*2 signed integer?2
i nt eger i nt eger

| ogi cal i nt eger

real real

doubl e precision doubl e

Calling a FORTRAN routine that returns a real or uses real arguments results in a
special case. Unlike SIMSCRIPT II.5 and C, which interpret r eal / f | oat function results
and assignments as 64-bit values, FORTRAN uses a 32-bit value. To obtain this value within
a SIMSCRIPT II.5 program, it is necessary to declare the function not as real but as
i nt eger and then “equivalence” an i nt eger and real array to interpret the value as
real . For example, suppose we wish to call a function named RFUNC, whi ch is written in
FORTRAN and has one argument:

real function rfunc(inarg)
real inarg

Declare the function in the preamble as follows:
define RFUNC as an integer fortran function
To call the function:

define I RESULT as a 1-diminteger array
define RRESULT as a 1-dimreal array

wite as "Enter the input value:", /

read | N. ARG

reserve | RESULT(*) as 1

et IRESULT(1) = RFUNC(IN. ARG

et RRESULT(*) = | RESULT(*)

wite RRESULT(1) as "The function result is", D(10,3),/

48

4. SimDebug Symbolic Debugger

SimDebug is the SIMSCRIPT II.5 Symbolic Debugger. In contrast to other debuggers that
are separate programs, this debugger is built into the language. Simply compile the modules
you want to debug with debugging and then run your program with the command line
argument - debug. This will bring up the SimDebug dialog before the program starts.
Sincethe debugger is “always there,” any runtime error will also put you into the SimDebug
dialog, where you can examine the stack, local and global variables, etc. SimDebug’s
features include:

single stepping

setting breakpoints

viewing stack and global variables
displaying temporary and permanent entities
displaying sets and arrays

displaying system variables, I/O and memory statistics
displaying the I/O buffer

displaying simulation status

changing variables and attribute values
stopping at a certain simulation time
command/dialog logging

and a lot more.

This chapter describes how to use SimDebug. We first describe how to compile for and run
SimDebug. Then we will give you a quick tour that introduces the usage and major features
of SimDebug in the style of a tutorial. A detailed alphabetical description of all the
SimDebug commands is given in paragraph 4.3. Some advanced topics related to

SimDebug are given in paragraph 4.4.

4.1 Compiling for Debug and Invoking SimDebug

4.1.1 Compiling for Debug

This paragraph describes how to compile for debugging using the SIMSCRIPT IL.5.

There are three levels of debugging support that can be selected for compilation. The
debugging level is controlled through a command line option to si nt. The three levels of
debugging are none, traceback only, and full debug. The selected debugging level applies to
all routines in the modules supplied to that invocation of si nt. The options are -g for
traceback, and - d for full debug.

To be able to look at entities, system variables and global variables you must compile the

SIMSCRIPT I1.5 User’s Guide

PREAMBLE with debugging or traceback, i.e. with the - d or-g option.

You should not mix the debug and optimization flags in the si nt call. That is, do not
specify - d and - O at the same time, since this can lead to erroneous output from SimDebug.

4.1.2 Invoking SimDebug

To invoke SimDebug simply invoke your program with the command line option - debug.
This option will only be recognized by SimDebug and will not be visible to your
SIMSCRIPT II.5 program as a command line argument. The position of the - debug option
on the command line is irrelevant.

SimDebug Dialog

When you invoke your program with - debug you will be put into the SimDebug dialog.
Here you can examine the source, set breakpoints, and start your program. When you do not
specify the - debug option, your program will run as usual without any interference from
SimDebug.

At the beginning of the SimDebug dialog (whether you invoked it with - debug or entered
the dialog through a runtime error) SimDebug looks for a file si ndebug. i ni in the current
directory. If this file exists, it is loaded as a SimDebug command file (see READCVDS). This
way you can easily customize the setup and initialization of SimDebug.

SimDebug will always show a Si nrDebug> prompt when it is ready for a new command.
Runtime Errors

Even when you do not compile your program with the - d option and you do not call your
program with - debug, when SIMSCRIPT detects a run-time error, you are put into the
SimDebug dialog. You can then perform all SimDebug commands to inspect your program,
with one exception: You cannot continue execution from floating point errors, segment
violations and bus errors!

When you do not want to enter the SimDebug dialog in case of a runtime error, you can set
the global system variable bat cht race. v = 1. This results in the traceback being written
to si merr. trc, after which the program exits. This is a change from the behavior of the
previous release 1.9 where the traceback would always be output on the current output device
(according to wri t e. v). However, using the trace statement in your program will still
write the traceback to the current output unit (wri te. v).

Instead of setting bat chtrace.v = 1 in your program, you can also call your program
with the command line argument - bat cht r ace. This automatically sets

bat chtrace. v=1. As with - debug, this command line argument will not be seen by your
SIMSCRIPT program.

50

SimDebug Symbolic Debugger

If you want your program to exhibit the old traceback behavior and have a runtime error, just
write a traceback and then exit. Compile your program with - g and then execute with the
option -batchtrace. The traceback will be written to sinerr.trc. For further
information see paragraph 4.4.1.

Interrupting Running Programs

You can interrupt a running program by pressing Ctrl-C (or the INTERRUPT key
combination defined for your system). This will put you in the SimDebug dialog where the
program is currently executing. This is very useful to detect endless loops or recursions. See
the Ctrl-C command in the command reference paragraph for more details.

Text Input/Output

On UNIX platforms, the SimDebug dialog runs in the terminal window from which the
program was started. This means that the program's input/output using units 5,6, or 98 will be
intermixed with the SimDebug dialog, as you would expect.

However, when you redirect input or output when calling your program, this will not affect
the dialog of SimDebug. Thus, even if you type prog -debug < infile > outfile the
SimDebug dialog will still be connected to your terminal (window). This allows you to debug
programs that read a lot of input from unit 5 (standard-in) without the input interfering with
the SimDebug dialog.

4.2 A Quick Tour of SimDebug

In this paragraph we will introduce SimDebug by example. In the following tutorial user
input is shown in bol d face Couri er, and SimDebug out put and example pr ogr am
sour ce are shown in the r egul ar Couri er font. The SimDebug dialog is indented,
our comments appear in between the dialog segments in italic.

We assume that we have recompiled our entire program using the -d compiler option
(including the PREAMBLE so that we can see the attributes of entities).

4.2.1 Tour 1: Showing the Stack and Variables

Our program contains a runtime error. When the error occurs, SimDebug shows the error
message, fl oating point error. The meaning of the minor error code is machine
specific; here it means division by zero.

CS-pronpt $ tst -debug
ERROR: Floating point error. Mnor error code = 200
----- Rl (sanple.sin) =-----------------cucuu-u-o-------- Line =

39> wite BIAas | 4,/

51

SIMSCRIPT I1.5 User’s Guide

SimDebug shows that the error occurred in routine R1, source file sanpl e. si m at line 39.
The actual source code at that line is shown on the next line. To see a traceback of the routine
call hierarchy, type t .

Si mDebug> t
————— Rl (sample.sim -------------c-ccmuo------line = 39
G ven Argunents
A = 0 (I nteger) 00000000]
B = 2 (I nteger) [00000002]
Local Vari abl es:
I = 5 (I nteger) 00000005
J = 1 (I nteger) 00000001
————— Rl (sample.sim ----------------c-cscc-----------Line = 36
G ven Argunents
A = 1 (I nteger) 00000001
B = 2 (I nteger) 00000002
Local Vari abl es:
I = 5 (I nteger) 00000005
J = 1 (I nteger) 00000001
----- MAIN (sanple.sim --------------------------------line = 62
Local Vari abl es:
#1 AARR = (null) (Pointer)
I = 6 (I nteger) [00000006]
#2 1 ARR = 00060548 (1-dimlnteger array)
#3 | ARR2 = 0005C268 (2-di mPointer array)
#4 LE = 0005C3ES8 (Ptr--> class LI STELEM

We now see that R1 is recursive and that A is 0. Obviously we tried to divide by zero.

A few more comments on the traceback output: The types of variables distinguished in the
output for each routine are: Given Arguments, Yielded Arguments, Local Variables, and
Saved Local Variables. Given and yielded arguments appear in the order in which they were
defined in the routine source code. All other variables (including the global variables) appear
in alphabetical order. Each line that shows a variable has basically the same format:

VarName Variable name

Value The value. Pointers are shown as 8 hex digits.

Mode Mode information for that variable. For pointers, SimDebug shows where it
points to (which kind of entity, array etc.). For integers we also show the
value again as hex in [].

To see the global variables, type gl ob. They are ordered by name and appear in the same
format as the variables in the traceback.

Si mDebug> gl ob

#1 DSPLY. E = (null) (Poi nter)
#2 F. LI STSET = 0005C368 (Ptr--> class LI STELEM
GLOBALD = 0. (Doubl e)
GLOBALI = 0 (I nteger) [00000000]
#3 LI STELEM = (null) (Pointer)
#4 L. LI STSET = 0005C3ES8 (Ptr--> class LI STELEM
N. LI STSET = 5 (I nteger2) [00000005]

52

SIMSCRIPT I1.5 User’s Guide

Again, we want to see where we are. The w command shows us the context of the current
line (default + 5 lines) with a "=>" in front of the current line.

Si mDebug> w
----- Rl (sample.sim --------------------------------- Line = 39
. 3 J = A-B
35 if A>0
36 call RL(A-1, B)
37 el se
. 38 wite as "B/A ="
=> 39 wite BFAas | 4,/
40 endi f
41 end

All these commands still apply to the current routine or the current frame in the traceback
(called hierarchy). If we want to see where we are in the routine that called this R1, we must
move the current frame one level down (“Top of stack™ is the last routine called, “Bottom of
stack” is MAI N). The dn command moves the current frame one level down and SimDebug
shows us the current line on that level. Then we use t ¢ to get a traceback of only the current
routine frame which is now R1 at stack level 2. Note that in this frame, A=1. With pv we
can ask for only one variable. When it is in the current routine, that value is printed.
Otherwise, SimDebug looks at the global variables. Before actually printing the line with the
variable name, value and type, pv first prints whether the found variable is a given or
yielded argument, and whether it is a local, local saved, or a global variable.

Si mDebug> dn
----- Rl (sample.sin ----------------------------------Line = 36
36>. call RI(A-1, B)
Si mDebug> tc
----- Rl (sample.sinm ----------------c--u--------------Line = 36
G ven Argunents:
A = 1 (I nteger) [00000001]
B = 2 (I nteger) [00000002]
Local Vari abl es:
I = 5 (I nteger) [00000005]
J = 1 (I nteger) [00000001]
Si mDebug> pv
G ven Argunent:
A = 1 (I nteger) [00000001]

In large programs, variable names as well as routine names are generally quite long. To avoid
having to type in the whole variable name, you can enter just the first few letters.

SimDebug matches your input with the defined variables. When your input uniquely
identifies a certain variable, it will be printed as usual. When you enter pv G* and there are
several variables (locals or globals) that begin with G you will be offered a list of matches
from which you can select by number. In the same way, you can select from all variables that
end with a certain suffix by using pv *suf fi x. When we want to use the input as a prefix
the "* " is optional. pv always looks in the current frame first, and then at global variables to
find variables with a certain name/pattern.

Si mDebug> pv g*
---- Matching GLOBAL variable names ----
1 G.OBALD
2 GLOBALI
---> Sel ect variable by nunber (0=none) > 2

33

SIMSCRIPT I1.5 User’s Guide

d obal Vari abl e:

GLOBALI = 0 (I nteger) [00000000]
Si mDebug> pv i
#1 LI STELEM = (null) (Pointer)

Si nDebug> pv *set
---- Matching GLOBAL variable names ----

1 F.LISTSET
2 L.LISTSET
3 N LI STSET

---> Sel ect variable by nunber (0O=none) > 3
G obal Vari abl e:

N. LI STSET = 5 (I nteger?2)
[00000005]

In the same way you can restrict the output from the G_OB command with a prefi x* ora
*suf fi x argument. The following example ends our first tour:

Si mDebug> gl ob g
GLOBALD
GLOBALI

Si mDebug> gl ob *set

#1 F. LI STSET

#2 L. LI STSET

N. LI STSET

Si mDebug> quit

0. (Doubl €e)
0 (I nteger) [00000000]

0005C368 Ptr--> class LI STELEM
0005C3E8 Ptr--> class LI STELEM
5 (I nteger2) [00000005]

Leaving SSDB ...
CS- pronpt $

4.2.2 Tour 2: Breakpoints and Single Stepping

We are now going to a different program that will illustrate the use of breakpoints, single
stepping and SimDebug's advanced pointer handling features. This program creates a few
entities and arrays. We call our program with - debug so that we are immediately put into
the SimDebug dialog. With the | r command we get a list of the routines in the program that
were compiled with debugging and their line number range. You can use wildcards at the
beginning and end of a routine name argument in | r in the same way as with variable
names. Note how R2, a left routine, gets displayed. In these routines we can single step, set
breakpoints, etc. With | s we can look at the source of the routine mai n.

54

SIMSCRIPT I1.5 User’s Guide

A “.” in front of a source line means that this line is executable and that you can set a
breakpoint there.

CS-prompt $ tst -debug
Si mDebug (SI MSCRI PT Synbol i c Debugger) Version 1.0

Si mDebug> | r {lists all routines compiled with debug or trace }

MAI N (sanpl e.sim : 44- 64)
R1 (sanpl e.sim : 29- 41)
R2- L (rtns.sim 1- 32)
Si mDebug> |1 r/{lists all routines that begin with an ”R ”}
R1 (sanple.sim 29- 41)
R2- L (rtns.sim 1- 32)
Si nDebug> | s ny lists the (only) routine that begins wzth "M”}
- MAIN - - - e - m e (rmain.sim 44-64)
. 44 main

45 define LE as pointer variable

46 define IARR as 1-diminteger array
47 define AARR as 1-di m al pha array

48 define |1 ARR2 as 2-diminteger array
49 define | as integer variable

50

51 reserve | ARR as 10

52 reserve |ARR2 as 5 by 5
53

54 for 1| =1to 5

55 do

56 create a LI STELEM cal |l ed LE
57 ATTRI (LE) =1

58 ATTRP(LE) = I ARR2(1,*)
59 file LE in LISTSET

60 | oop

61

62 call RL(3,2)

63

64 end

We can start our program simply by invoking the s command (single step). But instead we
will set a breakpoint on the line where a new entity gets created and where R1 gets called.
With | b we get a list of the currently set breakpoints. With r we start the program which
runs until it hits the first breakpoint. A message is printed and the source line that will be
executed next is shown.

Note: The current line in SimDebug is the line that gets executed next. Thus, a breakpoint at
a certain line stops execution before that line.

We also set a breakpoint at the beginning of R2. Note that SimDebug asks for missing
argument information.

Si mDebug> sb nmain 56
Si nDebug> sb nt 62{ "M" uniquely identifies MAIN, the "*" is optional}
Si mDebug> sb r*
————— List of matching routines -----
1Rl
2 R-L

55

SIMSCRIPT I1.5 User’s Guide

Enter routine by nunber > 1
Enter |ine nunber > 1
*** No executable source code at that line. Used |line 4 instead.
Si nDebug> | b
------- Li st of Breakpoints --------
1 MMIN @line 56
2 MAIN @line 62
Si mDebug> r

BREAK: User breakpoi nt
----- MAIN (sanple.Sim ---------mmmmm oo - -
Li ne = 56

56># create a LI STELEM call ed LE

After reaching the breakpoint, we single step through the program for a while. After each s
command, SimDebug shows the new 'current line' (that will be executed next). Since an
empty command repeats the last command we can simply press Return to repeat the
singlestep. If a line contains a routine call, s will step info the routine, whereas n will step
over the routine. After we have stepped enough, we use the ¢ command to continue the
program until the next breakpoint.

Si mDebug> s

57 ATTRI(LE) = I

Si mDebug> { no input = repeat last command }
58 ATTRP(LE) = I ARR2(I,*)

Si mDebug>

59 file LE in LISTSET

Si mDebug>

60 | oop

Si nDebug> ¢ { continue execution }

BREAK: User breakpoi nt

————— MAIN (sanple.sim -------mmmmm oo
Line = 62

#> 62 call R1(3,2)

Si mDebug> | s {lists source of 'current routine' }

44 main
45 define LE as pointer variable
46 define I ARR as 1-di minteger array
47 define AARR as 1-di mal pha array
48 define I ARR2 as 2-diminteger array
49 define | as integer variable
50
51 reserve I ARR as 10
. 52 reserve |ARR2 as 5 by 5
53
. 54 for I =1to5
55 do
56 create a LI STELEM cal l ed LE
. 57 ATTRI (LE) I

58 ATTRP(LE) I ARR2(1, *)

59 file LE in LI STSET

. 60 | oop
61
#> 62 call R1(3,2)
63
64 end

Conditional Breakpoints: You can programmatically set conditional breakpoints on

56

SIMSCRIPT I1.5 User’s Guide

arbitrarily complex conditions by calling SimDebug itself! See paragraph 4.4.6.

4.2.3 Tour 3: Pointer Handling: Entity / Set Display

Now the set is created and we are ready to look at the set and the entities. The set
LI STSETwas declared in the PREAMBLE as 'owned by the system'. This is why the fields for
the setF. LI STSET,
theglobal variables to see the variable F. LI STSET, which holds the pointer to the first
element in the set. Once we are in the set, we follow the pointers using f p (follow pointer
debugger command) along S. LI STSET (successor) to get to the next elements. Observe that

the attribute ATTRl is 1,2, 3. ..
assigned in the loop.
Si mDebug> gl ob
#1 DSPLY.E = (null)
#2 F. LI STSET = 0005C368
GLOBALD = 0.
GLOBALI =0
#3 LISTELEM = (null)
#4 L. LI STSET = 0005C3ES8
N.LISTSET =5
Si nDebug> fp #2
——————— Entity #2: 0005C368
ATTRI =1
ATTRA = 00 (hex)
#1 ATTRP = 0005C2C8
#2 S. LI STSET = 0005C388
#3 P.LISTSET = (null)
MLISTSET =1
Si nDebug> fp #2
——————— Entity #2: 0005C388
ATTRI =2
ATTRA = 00 (hex)
#1 ATTRP = 0005C2E8
#2 S. LI STSET = 0005C3A8
#3 P. LI STSET = 0005C368
MLISTSET =1

L. LI STSET and N. LI STSET are global variables. We first display

and that the ATTRP points to the different arrays as

(Poi nter)
Ptr--> class LI STELEM

(Doubl €)

(I nteger) [00000000]

(Pointer)
(Ptr--> class LI STELEM

(I nteger2) [00000005]

(class LISTELEM) ----------

(I nteger) [00000001]
(Al pha)
(Ptr--> Array (5) of Integer)
(Ptr--> class LI STELEM

(Pointer)

(I nteger2) [00000001]

(class LISTELEM) ----------

(I nteger) [00000002]
(Al pha)
(Ptr--> Array (5) of Integer)
(Ptr--> class LI STELEM
(Ptr--> class LI STELEM

(I nteger2) [00000001]

Si nDebug> {Pressing Return repeats last FP command. Step through set }

Si mDebug> fp #1 {

ATTRI
ATTRA
ATTRP
S. LI STSET
P. LI STSET
M LI STSET

(I T V|
[eleololole]

Entity #2: 0005C3A8 (class LISTELEM
3

00 (hex)
0005C308
0005C3C8
0005C388
1

(I nteger) [00000003]
(Al pha)
(Ptr--> Array (5) of Integer)
(Ptr--> class LI STELEM
(Ptr--> class LI STELEM

(I nteger2) [00000001]

"FP" knows how to interpret pointers ; this is IARR(3,%*) }

[00000000]
[00000000]
[00000000]
[00000000]
[00000000]

57

SIMSCRIPT II.5 User’s Guide

This concludes our quick tour of SimDebug. All commands are fully documented in
paragraph 4.3.

4.3 SimDebug Command Reference

The SimDebug commands and their options are listed below in alphabetical order. When
commands have abbreviations, the abbreviations are given on the next lines below the
command. To list each command with its optional arguments the following notation is
employed:

C\VD arg: Command names and keywords are shown in UPPER CASE,
arguments are shown in lower case.

[...] Optional arguments are enclosed in square brackets.
al b Alternatives are separated by the vertical slash.

For example, LOG [CVDS| DI ALOG START| STOP| CLOSE] means that the LOG command
can have no argument, or can have one of the listed arguments. The notation T [from
[to]] means that the command T (traceback) can have one or two optional arguments,
from and to. Command names and keyword arguments are shown in UPPER CASE,
arguments of commands are shown in lower case (e.g. READCMDS cndfi | e).

Basic Syntax: Each SimDebug command consists of the command name followed by one
or more arguments, each seperated from each other by one or more spaces. There are no
parentheses and there is no nesting of expressions needed. SimDebug commands are not case
sensitive. Except for file names, upper/lower case is irrelevant.

Missing Arguments: Whenever possible, SimDebug will ask you for a missing argument
instead of issuing an error message.

Repeat Last Command: When you press Return (no command entered), the last
command will be repeated. This is particularly useful for the S, N and FP commands.

Scrolling Output: The output of SimDebug will appear in the 'terminal window' from
which you invoked your program. If your 'terminal window' does not allow scrolling back,
you can set a parameter SET SCROLLI NES n so that the output will pause after every n
lines (press Return to continue).

Routine Names: Several SimDebug commands take routine names as arguments. You can
type the routine name just as you use it in your program (e.g. TACK. ORDER. QUEUE) .
Upper/ lower case in routine names is irrelevant.

Variable Names: You may use wildcards, i.e. the "*", when entering variable names, or
may enter just the first few letters of the desired name. When the input matches several
names you will be offered a list from which you can select the desired variable. Whenever
SimDebug looks for a variable, it looks in the 'current frame' first (local variables on the
stack), and when the specified variable is not found there, in the set of global variables.

58

SIMSCRIPT I1.5 User’s Guide

List of SimDebug Commands:

#
Comment: The remainder of this line is discarded. This is useful for inserting
comments in command files (see READCNMDS).
?
Help: See HELP command.
BOT
Bottom: Set the 'current frame' to the bottom of the stack, i.e. to MAI N. See note on
'current frame' in the DN command.
BPDI S n
Breakpoint disable: Disables breakpoint n (n comes from the LB command).
BPEN n

Breakpoint enable: Enables breakpoint n. The LB command shows each defined
breakpoint with a number that can be used for BPEN, BPDI S and DB.

BR rt nnane
Break in Routine: Sets breakpoint on the first executable line of the given routine.
Execution stops when the routine is entered.

BUF n
Show Buffer: Show the contents of the buffer of unit n. This can also be used to
show the contents of t he buf f er, i.e. unit 99.

ctrl-C (INTERRUPT key)
This command interrupts your running program and enters SimDebug so you can see
where you are in the program's execution. The 'current routine' is the currently
executing routine.

INTERRUPT in no-debug routine: When you do not compile the current routine
with debug, you will not be able to see the current line of execution or the local
variables/ arguments. You will only see the routine name. An s (single step)
command in a routine that was not compiled with debug will take you to the next line
of code that was compiled with debug (this may be several levels up in the calling
hierarchy).

INTERRUPT during simulation: When you press the INTERRUPT key while a
simulation is running, SimDebug may report the current line as the line that contains
the start sinul ati on statement. This means that your program is in between the
last and the next process/event. A single-step command s will take you into the next
line of the next process when you compiled that process routine with debug.

Continue: Continues execution. When there is no breakpoint set in the 'execution
path' the program runs until completion, until a runtime error occurs, or until you

59

SIMSCRIPT I1.5 User’s Guide

DB n

press Ctrl-C to interrupt the running program.

Delete Breakpoint: Deletes breakpoint n (n is defined from the LB command).

DM [addr [type [count]]]

DN [n]

Display Memory: For the rare cases where you might want to look at memory in an
unstructured way (e.g. for non-SIMSCRIPT data), the DM command allows you to
view areas of memory as Hex values (4 bytes each), as Integers (4 bytes), Reals (4
bytes), 4 Doubles (8 bytes) or 40 characters (1byte each). To display contiguous areas
of memory, you can use DM in two ways: First with DM addr type count, you set
the starting point, the type and the count of your memory display. Then, subsequent
DM commands (with NO ARGUMENTS) will continue memory display where the
previous display left off. The arguments are:

addr Starting address (in hex)
type Type of display of item: H, P: 4 bytes as hex, | : integer, Rreal, D:
double, A: alpha. Default is H = hex.

count Number of items to display per command (always 4 per line). For
Alpha mode non-printable characters are shown as ". ".

Down: Move 'current frame' n levels down (towards MAI N) in the stack. Default:

n = 1. Note: The current frame is the routine being looked at in the call stack
shown by the T traceback command. When you look at a certain variable with the PV
command, you look first at the current frame, and then at global variables to find this
variable. Thus, with UP and DN you can move the current frame to allow inspection
(e.g. a certain instance of a recursive routine call).

ECHO argl arg2 ...

Echo: Echoes the words argl, arg2, ... to the output. This is useful to output
messages from within a command file.

Event set: Prints information about the simulation, including the event set, the
current simulation time, the current and next process etc. For each process/ event the
time of the next scheduled process/event and of the last scheduled process/event of
that class is shown with pointer numbers [#n] in brackets behind the times. Using
these pointer numbers you can step through the event sets for each process/event type
using the FP command. The event/process that is scheduled next is marked with a
“*” behind the class number. When only one process is scheduled in a class, only
the t i me. a(First) is printed (so you can easily tell that there is just one).

Entity in process. v: Process. v is a pointer to the process/event notice of the
currently active process/event. For a process ' CUSTOVER the entity class will be
" CUSTOMVER . This entity contains any user declared attributes as well as some
internal attributes. Never change any of the internal attributes!

FP ptrvariabl e

60

SIMSCRIPT I1.5 User’s Guide

FP ptrval ue
FP #n

Follow Pointer: With this command you can display the contents of an object that a
pointer points to. This will generally be an entity, in which case the entity attributes
are shown, or an array, in which case the array elements are shown. There are three
varieties of the command:

FP ptrvariabl e: Ptrvari abl e is the name of a (local or global) pointer
variable.

FP ptrval ue: Ptrval ue is a pointer value (in hex) taken from previous
output.

FP #n:n is a pointer index. Whenever a pointer is shown as output from the
T, FP or other commands, it is displayed with a prefix of the type #n where
n is a running index. This way each pointer can be uniquely identified by #n.
The running index n is 'restarted’ by each command that displays a pointer
value. Thus #n applies to the last displayed #n. Thus, with the FP #n
command you can follow a previously displayed pointer. This is very useful
for all data structures that employ pointers, such as lists, sets, your own graph
structures etc.

Example: Walking through a set: To step through all elements of a set,
simply type FP #n where n is the index of the pointer that represents
. setnane (pointer to first in set). The first displayed element will have a
pointer field S.setnane (to successor), say with index #3. Repeated
commands FP #3 will display one set member after another.

Temporary Entity Display: For temporary entities SimDebug shows the whole
entity with all attributes. Packing (*/2, */4, bit packing, overlap) is fully supported.
To see just one field of an entity, type FP ent nane attr nane.

Note on Destroyed Entities: Remember that when you destroy an entity, the pointer
to that entity is still there. But the storage freed by the 'destroy' command will
generally be reused immediately. Thus, a pointer variable that points to an entity
might suddenly display "Ptr --> Text ! Error !!"in its mode field, or appear
to point to a different entity class even though you did not touch that variable. This is
especially noticeable for the global process entities that are deallocated when the
corresponding process is suspended or terminated.

Note on Global System Variables: When global variables are listed you will also
see several internal/ system variables that are implicitly defined by SIMSCRIPT I1.5
(such as resources, temporary entities etc). Instead of hiding these values, SimDebug
shows these internals since they are documented, (such as fields of resources, etc).
However, you should never change a variable that you did not create/define yourself.

Printing Text Values: SimDebug shows only a few characters of the text in the

61

SIMSCRIPT I1.5 User’s Guide

normal PV output. To see the whole text, use FP t extvar. See notes on the text
display at the FP command. Note on Integers Used as Pointers: Since many
SIMSCRIPT programs use integer variables to store pointers as well,
SimDebug allows you to 'follow integers' as if they were pointers.

FPN . ..

Like FP, but this command does not reset the pointer number counter. This allows

you to keep the 'access handle' #n to the entity after you have displayed it. This is needed for
the SEV command (set entity values). See the notes for the SEV command.

G [pattern]

GLOB [pattern]

H

Globals: Prints a list of all global variables and their values (in alphabetical order).
See the T command for a description of the output. Pattern can be prefix or
prefi x* which shows all variables that begin with the given prefix, or *suf fi x
which shows all variables that end with the given suffix.

HELP [name]

LB

HELP: Gives an overview (just the names) of all SimDebug commands. When nane
is given, SimDebug gives a more detailed description of the topic/command with that
name. Nanme can be either a command name, or a topic name (such as 'breakpoints').
Both the command and topic names are given in the help overview.

I/O Information: Shows information about the I/O status of your program, i.e. for
each unit used whether it is input or output, which file is attached (if any), how many
records were read/written etc. Use the BUF command to look at buffer contents for
units.

List Breakpoints: Lists all currently defined breakpoints. Disabled breakpoints (see
BPEN, BPDI S) appear in parentheses.

LOG [CVDS| DI ALOGE STOP| START| CLOSE] [ogfi | enane]

62

Command and Dialog Logging: You can have SimDebug write all commands or all
of the dialog (commands and SimDebug output) to a log file. Command and dialog
logging cannot be active at the same time (there is only one log file). The variants of
the command are the only arguments listed:

(without argument) Show status of logging.

CVDS [| ogfi | enane] Start command logging. Default file:
cmdl og. | og
DI ALOG [| ogfi | enane]

Start dialog logging. Default file:di al og. | og

SIMSCRIPT I1.5 User’s Guide

STOP Stop current logging.
START Resume logging
CLCSE Close current log file. Allows you to start a new log

(command or dialog).

When command logging is turned on, only the actual commands and not the
Si nDebug> prompts are put into the log file. As a special case, LOG commands are
not put into the command log since you generally do not want them when repeating
the command sequence. They are written to the dialog log, however.

When you press Return to repeat the last command, the full command name will still
be written to the command/dialog log.

LR [rnt nane| prefix*| *suf fi x| ALL| NODEBUG

List Routines: Lists the names of the routines in your program in the following
order: PREAMBLE, MAI N, and then all others in alphabetical order.

LR List all user routines compiled with debug or trace.

LR ALL List all user routines (nodebug routines prefixed with N;
routines compiled with - g are prefixed with T).

LR TRACE List all routines compiled with traceback (- g).

LR NODEBUG List all user routines that were not compiled with debug.

LR prefix*
List user routines that begin with prefi x ("*" is optional).

LR prefix*-L
Append - L after the “*” to see only left routines.

LR *suffix
List routines that end with a suffix (e.g. LR *. CTRL)

Note: Continuous variables will display as right and left routines. When you have a
routine with the name ALL, TRACE or NODEBUG you must use ALL*, TRACE*,
or NODEBUG* to get the routine individually.

LS [rtnnane [from[to]]]
List Source: Lists the source lines of the given routine. The default is to show the
whole routine. Line numbers (for f rom and t 0) are given relative to the file (not
relative to the routine beginning or the like).

When the program is active the rt nname can be omitted in which case the 'current
routine' (the source of the current frame) is shown.

63

SIMSCRIPT I1.5 User’s Guide

MVEM

N [n]

Source Listing Format: Each output line consists of four fields:

1. A "." for executable source lines (you can set breakpoints
there) or a "#"
when a breakpoint is set on that line

2. A ">" when this is the current line (of execution)
3. The source line number of the line (in the source file), and
4. The first 72 characters of the source line itself.

Note: Only the first 72 characters of a source line are printed so that all output fits on
one line.

Memory Information: Shows memory statistics, such as how many entities of each
type are currently created, and how many strings and arrays there are.

Note: Since string and array counters are for both SIMSCRIPT internal use and for
user data, the numbers do not directly reflect your program's memory usage. Also,
since SimDebug uses strings, the numbers will be higher when compiling with debug.
A good way to find out if your program has a 'memory leak' is to write down the
number of strings, arrays etc. at the beginning of the program, and then let it run for
awhile. Interrupt the program with Ctrl-C and look again.

Next: Execute the next n (default: 1) SIMSCRIPT source lines and then return to the
SimDebug dialog. N steps over a routine call. This routine and all routines called
from this command execute until you are returned to the SimDebug dialog. Unless, of
course, there is a breakpoint set somewhere in the called routines.

Also, see comment on "Specifying Repeat index n" in the S command.

Context Switch: When a context switch occurs during a N or S or SR command, a
message is printed accordingly.

PAV arrvarnane [selvec]

64

Print array variable: With this command you can display all or part of a multi-
dimensional array or parts thereof. Arr var name must be an array variable name and
the whole array is printed by default. Sel vec is the 'selection vector' that allows you
to limit the output. It consists of several elements with the following meanings:

n Show only this element from the current dimension
* Show all elements of this dimension
+ Stop display at this dimension.

A few examples will clarify this command. Assume ARR3!l is a 3-dimensional
integer array, reserved as (5,5,5). Then:

SIMSCRIPT I1.5 User’s Guide

PAV ARR3I 1 Prints all elements of ARR31 (1, *, *) (25 integers)

PAV ARR3l 2 3 Prints ARR31 (2, 3, *) (5 integers)

PAV ARR3l * 4 5
Prints ARR3I (1,4,5), (2,4,5), (3,4,5), ... (5
integers)

PAV ARR3l 3 + Prints 5 pointers to the integer arrays of the last dimension, ie.
(311!*)1 (3121*)! (3!31*)1'--

Equivalencing: An array may be defined and reserved as a 5-by-5 integer array. But
if you assign this pointer to an array variable of mode "2- di m al pha array" you
can look at the data as alphas. The PAV command uses the mode of the given array
variable (ar r var nane) to determine how to interpret the data.

PDV arrvarnane [selvec]
PDV ptrvari abl e [sel vec]

PDV ptrval ue [sel vec]
Print descriptor variable: Same as PAV except that the array is printed from the
information contained in the array descriptors. That is, the array will be printed with
the mode it was first reserved as.

PT textvar|textptr
Print text values in full: This command prints the whole text of a text variable or a
pointer pointing to a text value. This command is needed since PVonly prints the first
few characters of a text string. The whole text value isprinted with string quotes
around it and a "- " at the end of each line whenthe text continues on the next line.
Thus, on an 80-character line you can see77 characters of text (with two string quotes
around it, and a "- " at the end).

Text attributes: If the text you want to see in full length is an attribute of an entity,
you can use the address of the text that is given with the attribute output as an
argument for FP. The same holds for arrays of text pointers.

PV var name
Print Variable: Prints the value and type information for the variable var nane.
SimDebug first searches the current frame, and if var name is not defined there,
then the global variables for varnanme. As described at the beginning of this
paragraph, you can use wildcards to specify the variable name (prefi x, prefix*,
*suf fi x). When several variables match, a selection list is shown.

Format of output: Before printing the line with the actual variable, SimDebug prints
the type of variable it found: Given Argument, YieldingArgument, Local Variable,
Local Saved Variable, or Global Variable.

Then each line follows basically the same format:

ptrnum varnanme = val ue (node infornmation)

65

SIMSCRIPT I1.5 User’s Guide

where the fields contain:

QUT

EXIT,

66

ptrnum For pointers: The #n entries for the FP (follow pointer)
command.

var nane The variable name.

val ue The value. Text is shown to the extent that it fits in the space,

where internal string quotes are not doubled (i.e. a string
containing a single string quote is printed as """). Integers and
alpha characters are printed as usual, where nonprintable
al pha values are also printed in hex. For reals and
doubl es you can define the output format with SET OREALF
(see SET command). Pointers and subprogram variables are
shown in hex.

node i nfo

Mode information. For integers, the value in "[]" in hex is
appended. For pointers, pointer destination information (e.g.
entity class, array type) is shown. *** Bad pointer ***
means that this is an illegal address, i.e. an address that would
cause a segment violation if it were used. For subprogram
variables the subprogram name is shown. Use SET EXTI NFO
0 when you do not want this extended information for
pointers.

Array node info

Normally, arrays mode information is shown as the array was
declared in the program, e.g. "2-dim integer array".
With the SET parameter SHOMRRAYPTRS you can choose to
see the internal structure of the arrays, instead. That is, you
can see the pointer structure (arrays of pointers) that makes up
multi-dimensional arrays. This is necessary when dealing with
ragged arrays or assigning array fragments.

Printing Text Variables: The normal output of PV and T shows just the first 10
characters of the text. If you want to see the whole text, use PT t ext var.

Quit: Quit/exit from SimDebug. All open log files will be closed. Synonyms are: Q
END, BYE.

Run: Run/start your program from the beginning. You cannot start your program 'in
the middle', or restart the program with the R command. To restart for debugging you
must call your program again with - debug.

SIMSCRIPT I1.5 User’s Guide

READCMDS cndfi | enane

S [n]

SET [

Read Commands from File: With this command you can put a series of commands
into a file and read them in just as if you had interactively typed them at SimDebug.
This is useful in conjunction with command logging (see LOG) when you want to
store and then replay a sequence of commands that got you to a certain place.

Normally SimDebug does not echo commands read from a file, even though output
from these commands (e.g. LR) is, of course, visible. When you want to see the
commands read from a command file you can SET OREADCMDS 1.

Init Command File: At the beginning of the SimDebug dialog, SimDebug looks for
a file si ndebug. i ni in the current directory. When this file exists, it is read as a
SimDebug command file before you enter the SimDebug dialog. In this file you can
store your preferred SimDebug parameter settings (see SET command).

Empty lines in a command file are ignored. Commands from a command file are
not remembered in the "last command" buffer. However, since 'empty commands'
that re-execute the last command are still written to the command log file in full, you
will still get exactly the same behavior when reading a command file previously
written as a command log.

Step: Single step. It executes the next n (default: 1) SIMSCRIPT source lines and
then returns to the SimDebug dialog. S steps in to routines when the next instruction
is a routine call. That is, it stops on the first instruction in the called routine.

Specifying Repeat Index n: After a single step command, SimDebug will show you
the next executable source line. This is the source line that will be executed by the
next S command. When you specify a repeat index n you generally do not want to
see the output of the n source lines executed. However, if you do, you can enable the
output for repeatable commands (S, N, UP, DN) with SET OREPCMDS 1.

Context Switch: When a context switch occurs during a N or S or SR command, a
message is printed accordingly and the current simulation time is printed.

[parnane] [newal ue]]

Set SimDebug Parameter: Several aspects of SimDebug commands are controlled
by parameters that you can change. SET without arguments lists the values of all
SimDebug parameters. When a paremeter name (par nane) is given, you can change
its value. For example, SET OREPCNDS 1. You only have to type the first few letters
of a SET parameter that make it unique.

SimDebug "SET parameters' and their meanings (n: integer > 0; m 0 or 1; defaults
are given in []):

SET WV n [5] (WhereWidth) Show + n lines with W command.
[5]
SET OREALF de a b

67

SIMSCRIPT I1.5 User’s Guide

SET

SET

SET

SET

SET

SET

SET

SET

SET

SET

(OutRealFormat): Output format for Reals/ Doubles. They are
output as de(a, b),e.g."E(14,4)" [D 17 6]

OREPCNVDS m
Show output from repeated commands (n=1) or not.

[0]
OREADCMDS m

Show output from read commands (n=1) or not. [0]

EXTI NFO m
Show extended information for pointer in mode field.

[1]

GLOBWRACE m
Show global variables (GLOB) with trace command

(M. [0]

SHOW NTGL m
nm1: Show internal global variables with GL. [0] Internal
global variables (A.*, 1.*, G *) are created by

SIMSCRIPT and are, in general, not useful to see.

SCROLLI NES n
n>0: Output pauses after n lines. Press Return to continue. [0]

SHOMRRAYPTRS m
nm¥1: Show array mode information not as '2- di m i nt eger
array' but as the internal pointers that implement this array.

[0]

SHOANSTACKLEVELS m
m=1: Show SL=. ., (the stack level in traceback). [0]

SHOALI BRTNS m
n¥1: Show library routines in traceback [0].

NAMECOMPLETI ON m
n¥1: Variable and routine names are automatically completed
by SimDebug. That is, FP CU will follow the pointer that
begins with CU. In case of multiple matches, you are offered a
choice.

Note on OREPCMDS and OREADCMDS: Even when output from read or
repeated commands is turned off, the output from the last command that was
read or repeated will be shown so that you can see 'where you landed'.

SEV ent nane attrnane val ue

Set Entity Values: Allows you to change the attribute value of a temporary entity.
For quoting rules to set text values see the SV command. For ent nane you can

68

SIMSCRIPT I1.5 User’s Guide

enter the same values as for FP: an entity pointer name, an entity pointer value (in
hex) or a #n (pointer number).

Using #n for ent nanme: When you get to an entity using FP (follow pointer)
commands, the display of the pointer attributes in the entity will 'overwrite' the
pointer number n you used to display this entity (with FP #n). Thus, there is no
longer a valid #n to use for ent nane. You should 'go back outside' of the entity (e.g.
back one element in a list) and then use FPN #n to display the entity. FPN works
like FP except that it does not reset the pointer numbers. This way you will keep all
pointers along the way for use by SEV.

Limitations: It is currently impossible to change values of permanent entities (i.e.
arrays). Also, you cannot set the values of packed temporary entity attributes.

SB rtnnane |ineno

SNAP

Set Breakpoint: Sets a breakpoint in routine rt nname at line | i neno. You can use
". " for the routine name to denote the current routine (routine in the current frame).

Snap: Calls your specified 'snap routine' SNAP. R This is useful for debugging
complicated data structures that require special (user) code to display relevant
information. You can use normal write statements to output your data.

Note that the output from this ‘snap routine’ will NOT appear in the log file (see LOG)
but in the normal program’s output. Thus, when output is redirected, the ‘snap
routine’ will write into your output file.

SRCDIRS [src_dir _list]

Allow you to specify alternate directories where SimDebug can find the SIMSCRIPT
source files (for LS, W etc.). src_dir_list is a list of directories separated by
spaces. Whenno src_dir _|i st is given, the current source directory list is shown.

In searching for source files, SimDebug always starts at the current directory. If the
source file is not found there, SimDebug looks into the directories in the order they
were given in the src_dir_| i st. When your executable runs in a directory other
than where it was built, it is advisable to specify the source directories as absolute
paths.

Example:

SRCDI RS /src/dl /src/d2 /src/d3

STOPTI ME [st opti nme]

Stop at Simulation Time: Allows you to stop execution (and call SimDebug) when
the simulation time reaches the given stoptime. A stoptime of 0.0 means that there 'is
no stoptime active'. The stoptime is only valid for 'one stop'. It is then reset to zero
(set inactive again).

SV var nane val ue

69

SIMSCRIPT I1.5 User’s Guide

Set Value: Allows you to the change values in your program! Use SV to change
values of simple variables of any type. You can change local variables, arguments
and global variables.

For text values: Enter the text enclosed in string (double) quotes. When the string
you want to enter should contain a string quote itself, it must be doubled, i.e. a single
string quote is denoted by """". Use SEV to set attributes of entities.

SYSVARS

System Variables: Shows the values of several system variables such as r ead. v,

wite.v, buffer.v, pronpt.v, andhours.v.

T [from[to]]

70

Traceback: Prints a traceback of the current call stack (the hierarchy of called
routines) starting at the last called routine down to MAI N. The arguments f r om and
to can be given to limit the traceback to a range of routines (useful for deep
recursions). From and t o are specified as the level numbers given in the traceback

for each routine (MAI N is at level 1), where ". " as a level number means the 'current
frame'.

By default, the level numbers ([SL=...] in the routine header in traceback) are not
given in the traceback. However, they are useful for deep tracebacks (when you want

to see only part of the traceback) and for recursion. You can enable the display of
these stack levels with SET SHOANSTACKLEVELS 1. See SET command.

Global variables: Generally the global variables are not considered a part of the
traceback and hence are not shown with the T command. If you SET GLOBWIRACE
1 (see SET command) you will also get the global variables at the end of each
traceback (implicit GLOB command).

Output: For each routine, SimDebug first prints a line with the routine name, the file
name, possibly the stack level and the current line number. When a routine is
compiled with debug, all its local variables are shown with its values and modes.
When a routine is not compiled with debug, only the routine name is shown. The
variables are given in a sequence of sections: Given Arguments (ordered as in
routine definition), Yielding Arguments (ordered as in routine definition), Local
Variables (ordered alphabetically) and Local Saved Variables (also ordered
alphabetically).

Several SimDebug controls the extent of the output for each variable parameter. See
the SET command. The format of the output for each variable is described by the PV
command.

The 'current frame' and 'current routine': The T command shows you the whole
traceback, i.e. all routines in the call stack. Each invocation of a routine that is on the
stack is called a (stack) frame. Initially, after a T command, the top routine on the
stack (farthest away from MAI N) is called the current routine, which is in the
current frame. Since a routine can be called recursively we must destinguish
between 'routine' (the source code) and the 'frame' (invocation of the routine [its

SIMSCRIPT I1.5 User’s Guide

arguments and local variables]). When PV looks up a variable, it starts at the current
frame and when the variable is not found there, it looks at global variables. The
commands up. dn. top. bot move the 'current frame' up, down, to the top (last
routine called), or bottom (MAI N).

TC
Traceback Current: Write trace of current frame.

TOP
Top Frame: Set 'current frame' to the top of the stack, which is the last user routine,
called (farthest away from MAI N). See note on 'current frame' in the DN command.

UP [n]
Up Frame: Set 'current frame' n levels up (away from MAI N) in the stack. Default: n
= 1.[SL=...] in the header line shows the stack level. See note on 'current frame'
in the DN command.

W[n]

Where: Shows where you are in the source in the current frame. It shows n source
lines around the current line. The default n is taken from the SimDebug parameter
WV (see SET command). The 'current source line' is shown with a ">" in front of it.
Breakpoints appear with "#" in front of the line.

W [filenanme [from[to]]]
Werite traceback (output of T) and the output from the | O, MEM and EV commands
to a file. The default filename is t r ace. out . By specifying f rom and t 0 you can
limit the traceback to those levels. When the trace file exists it is overwritten.

WA [filenanme [from[to]]]
Write Trace Append: Same as WI' except that the output is appended to the trace
file.

4.4 Advanced Topics

4.4.1 Batchtrace.v

Normally, when a SIMSCRIPT program runs into a runtime error, SimDebug will be called
so you can examine the stack and variables to find out what went wrong. Sometimes you may
want to just get a traceback into a file and want the program to terminate on a runtime error,
e.g. when you run i t in batch mode. When you set the system variable bat chtrace.v = 1,
a runtime error will cause the traceback. The 1/O, event and memory information will be
written to a fixed file si merr. trc.

Another way of setting bat chtrace. v to 1 is to call your executable with the command
line option - bat chtrace. As with - debug your application program does not see this
option.

Setting bat chtrace. v = 2 causes an immediate exit in case of a runtime error or a user

71

SIMSCRIPT I1.5 User’s Guide

interrupt (e.g. Ctrl-C). No traceback is written.

4.4.2 Signal Handling / External Events

SimDebug uses the signal handling facilities of the operating system to catch events like
floating point errors, segment violations etc. If your program uses C code that sets its own
signal() handling routines, you must comment out that code as long as you want to use
SimDebug on that program. Any mix will not work.

4.4.3 Reserved Names

In SIMSCRIPT all names that begin with "<l ett er>. " or end with ". <l et t er >", where
"<| et t er>" is any letter, are reserved for the system's usage. This is why they do not appear
in SimDebug.

If you use such an illegal name, e.g., for a routine, it will not appear as a user routine in
SimDebug. You cannot see it with the LR command. Thus, even if such a routine name does
not clash with a system routine, you should not use these kinds of names.

4.4.4 Displaying Arrays

Before discussing SimDebug's array display capabilities we must discuss some background
information. Each SIMSCRIPT object that a pointer can point to, such as arrays, text or
dynamic entities, has a descriptor that contains information on what this 'object' is and how to
interpret the data. For instance, an entity descriptor contains the entity ID and, an array
contains the size of the array and the type of its elements. This means that the FP (follow
pointer) command can always follow a pointer to anything and display what it finds.

Apart from that, SIMSCRIPT supports array equivalencing. You can define an array | A(*)
for instance as a 1-dim integer array, and then assign the pointer | A(*) to a variable of type

I-dim al pha array AA(*) and look at the data as characters.

The command PAV (Print Array Variable) looks at the array 'through the eyes of the array
variable', i.e. in the above example AA(*) as al pha.

The command PDV (Print from Descriptor Variable) always looks at the array with the data
given in the descriptor. It looks at how the array was first created, and, in the example above,
looks at the array as i nt eger.

4.4.5 Permanent Entities and System Owned Variables/Sets

Permanent entities are implemented as a set of 1-dimensional arrays that will appear as global

72

SIMSCRIPT I1.5 User’s Guide

arrays. Use the GLOB command. At this point the different fields of a permanent entity are
not shown together (e.g. with the entity name), but appear separately in the al phabetical
listing of all global variables.

'The system owns' ... variables and sets show up as global variables, in al phabetical order.

4.4.6 Conditional Breakpoints

Certain problems only appear after a large amount of data has been processed. For example,
after 10000 iterations in a loop. To allow you to break the process and go into the debugger
upon any arbitrarily complex condition, SimDebug offers you a direct call to SI MDEBUG. R.

When you call this routine from your application program you are put into the SimDebug
dialog just as if you had set a breakpoint. You can examine the stack, global variables,
entities, and single step through the program in the usual manner.

Example:

for i =1 to 10000
do
.... do sonething
if i>10000 and A+B-C > DATTR(ENTPTR)
call SI MDEBUG R
endi f
| oop

4.4.7 Continuous Variables

Continuous variables (for continuous simulation) are implemented as right and left functions.
Therefore, they will show as right and left routines in the LR command, but not as variables.

4.4.8 Unsupported SIMSCRIPT Features

SimDebug Release 1.0 supports all SIMSCRIPT features, with the exception of packed
permanent entities. However, packed temporary entities are supported.

WARNING

Simdebug Recursion: SimDebug protects itself from errors
that normally cause a program to fail, such as attempting to
use a bad pointer, or having unaligned accesses. However,
in some rare cases it can happen that SimDebug does not

73

SIMSCRIPT I1.5 User’s Guide

74

catch an error condition that then causes another error 'within'
SimDebug. Since SimDebug is a program that is called

when an error occurs, SimDebug will be called from within
SimDebug! You will get a warning message.

You can look at some more variables, but you cannot continue
the execution. Exit from SimDebug with QUI T and restart
your program to find the error.

Appendix A Compiler Warning and Error Messages

A.1 Warning and Error Messages
During compilation, warning messages and error messages may be produced. The text of
each message appears below:

1001 Invalid syntax

A word found in the input stream did not conform to the syntax requirements of the
SIMSCRIPT II.5 language. The unrecognized word is ignored and the error scan resumes
with the next statement keyword in the input stream.

1002 Missing ")’
An arithmetic expression or subscript is missing a right parenthesis. A (possibly misplaced)
right parenthesis is assumed.

1003 Missing terminal " in ALPHA literal
An ALPHAnumeric string must be contained on one line.

1004 More format specifications than variables

In formatted read and write statements, there must be a one-to-one correspondence
between variables and format descriptors. The format descriptors, including “/,” must be
separated by commas. In a pri nt statement, fields are defined by “*” or a sequence of at
least 8 contiguous periods.

1005 More variables than format specifications
See message 1004.

1006 Conflicting or redundant properties in def i ne
More than one MODE, DI MENSI ON or TYPE specification appears in the same defi ne
statement. The indicated statement is ignored.

1007 Number of subscripts different from definition or previous use
A subscripted variable is redefined with a different number of subscripts than originally, or a
setnameinafile orrenpve statement is improperly subscripted.

1008 el se or al ways without matching i f
The indicated statement is misplaced in the program.

1009 i f not terminated by al ways
This error is detected at the end of a routine.

1010 Use conflicts with definition
The previous definition or use of this name precludes its use in this context. This message
can apply in a number of cases. The most common are described below.

SIMSCRIPT I1.5 User’s Guide

e A bel ong clause in an every statement does not refer to a set name.
e Common membership in sets is limited to temporary entities.

e An every statement attempts to define an entity but the name has already
been defined differently.

e A define statement attempts to define a variable, a procedure or a set, but
the name has already been defined differently.

e The variable in an external unit statement has already been defined
differently.

e The attribute of a has clause has already been defined differently or a
common attribute is defined with a different wor d assignment or packing
code.

e Attempttoread orwite avariable defined as a set.

e Attempt to rel ease a quantity, which is not an array, a routine or a
subprogram variable.

e Attempt to store in a r andom variable.

1011 Illegal assignment target

This error is caused by an illegal attempt to store information in a built-in function. Builtin
functions include abs.f, div.f, int.f, real.f, nod.f, max.f, mn.f andall
t ext -related functions. Except for substr. f, these functions cannot be used on the left-
hand side of assignment statements or as yi el ded arguments.

1012 Array number out of range

Application has more than 8000 variables and/or permanent entities. The maximum
permissible array or word number for global variables or permanent attributes is 8000. Use of
an array number larger than this is not permitted in this implementation.

1013 Context requires routine name
A routine statement uses an incorrect name or the name appearing is not a routine name.

1014 return wi th not allowed here
Event routines and left-handed routines cannot return any values.

76

Compiler Warning and Error Messages

1015 loop without a matching do
The conpi | er ignores the loop statement.

1016 Implied subscripting attempted on a common attribute
Common attributes must be explicitly subscripted.

1017 Number of given arguments inconsistent with definition
A cal | or function reference uses a number of arguments different than that defined for the
subject routine.

1018 Multiple definition of label
The label has been defined elsewhere in the routine.

1019 Subscript required on label
The label name was previously encountered with a subscript.

1020 Name repeated in parameter list
The names in the gi ven arguments list or in the yi el ded arguments list may each appear
only once in the list.

1021 Undefined label
This error 1s detected at the end of a routine.

1022 do without a matching | oop
This error is detected at the end of a routine.

1023 MAI N routine should use st op
The MAI N routine should not use a return statement. The compiler substitutes a st op
statement.

1024 Missing end
The compiler supplies the end statement and completes the processing for the routine.

1025 define to nean orsubstitute incomplete

An end-of-file was encountered during the processing of a substitute statement or no
substitutable text was found. Blanks and comments (") are invalid substitutable text. The
statement is ignored.

1026 Inappropriate mode or dimension for implicit subscript
Due to local redefinition, the mode or dimensionality for this implied subscript is
inappropriate. The compiler ignores the dimensionality but uses the new mode.

1027 Attribute in first 5 words of event notice is illegal

The first five words of an event notice contain the time.a, mev.s, p.ev.s, S.ev.s
and euni t.a attributes. These attributes cannot be redefined. The compiler ignores the
specification.

77

SIMSCRIPT I1.5 User’s Guide

1028 Context requires an unsubscripted subpr ogr am variable

An indirect call to a function using the $ name feature requires that the subprogram
variable name be unsubscripted, as the subscripts are treated as given arguments for the
indirect call.

1029 Attribute in first 8 words of pr ocess noti ce is illegal
See message 1027. In addition, a pr ocess noti ce contains thei pc. a, rsa. a,
sta.a andf.rs.s attributes.

1030 Temporary attribute word number out of range
The maximum permissible entity length is 1023 words. Entities of this size should never be
required.

1031 Subscripts not permitted for this variable
A variable defined as unsubscripted is used with a subscript.

1032 Non-integer subscript on a temporary attribute
Temporary attribute subscripts must be pointers.

1033 Negative constant used as a subscript
This illegal condition cannot be compiled.

1034 Subscript not permitted on label
A label is used with a subscript in a go t o statement or is defined as subscripted although it
has already appeared without a subscript.

1035t hen if statement appears outside i f
The t hen keyword can only be used within an i f block. The compiler ignores the t hen

word.

1036 Missing ")' in logical expression
A (possibly misplaced) right parenthesis is assumed.

1037 di v. f valid only with integer values
A floating-point division is performed.

1038 Number of yielding arguments inconsistent with definition
See message 1017.

1039 Attribute of mixed compound entity must be a function

Attributes of mixed compound entities (compound of at least one permanent entity and at
least one temporary entity) must be functions. The compiler assumes a function definition.

1040 Attempt to equivalence function attributes
Function attributes are not assigned any storage and therefore cannot be equivalenced.

1041 Missing ')’ in equivalence attribute group

78

Compiler Warning and Error Messages

A (possibly misplaced) right parenthesis is assumed.

1042 Attempt to pack function attribute
Function attributes are not assigned any storage and therefore cannot be packed.

1043 Attempt to pack unsubscripted system attribute
The packing definition cannot be honored.

1044 Illegal packing code
For bit packing, the bit numbers should satisfy the inequality 1 <n <m <32. For field
packing and intra-packing, the denominator must be 2 or 4.

1045 Packing code (*/ n) illegal for temporary attribute
The */ N packing codes can only be used for arrays (such as attributes of permanent entities
or subscripted attributes of t he syst em). A field packing of 1/ N is assumed.

1046 Compound entity may not belong to a set
The compiler ignores the bel ong clause.

1047 Attempt to define non-local variable as saved or recursive
This is an attempt to define a local variable in the PREAMBLE. The definition is not processed.

1048 Incorrect mode specified for packed variable
Packing applies only to | NTEGER quantities.

1049 Defining set not previously declared in every statement
Set definitions must be placed after the owns and bel ongs clauses defining their owner
and members. The definition of the set is ignored. This may cause follow-on errors.

1050 Statement should be preceded by a control phrase
A conput e statement, fi nd statement, when statement or a controlled read or write
statement must be withinafor, while oruntil block.

1051 wi t e format used in r ead statement
A character string appears in the as clause of ar ead statement.

1052 Illegal or out of place '*'
Either an attribute of a temporary entity or an argument to a function call is subscripted by an
* or an array reference has an * before the last subscript.

1053 Attempt to perform set operation on a non-set
Afile statement, arenpve statement,afor each of set statement,anif Set is
enpty orabefore orafter statement references a quantity not defined as a set.

1054 Statement requires attributes not defined for named set
Afile statement,arenpove statement,anif Set is enpty orafor each of set

phrase is used, but the necessary set attributes were deleted by aw t hout phrase.

1055 Name of a permanent entity required in this context

79

SIMSCRIPT I1.5 User’s Guide

A create each statementorafor each statement must refer to a permanent entity.

1056 al so statement outsidedo ... | oop
An al so statement appeared outside of a do block. The compiler assumes a do statement
after the al so block.

1057 Name of a temporary entity required in this context
A creat e statement, destroy statement or bef ore or after statement must refer to a
temporary entity.

1058 gr oup used without column repetition
Anin groups of phrase must be controlled by af or phrase. The statement is ignored.

1059 Name of an event required in this context

The event, process, activates, cause, cancel, break ties and priority
statements must refer to an event or process name. In the case of an event or process
statement, a routine named RO is assumed.

1060 Misuse of suppression amid column repetition group
The suppression phrase is misplaced.

1061 Context requires a f or phrase to follow the word pri nti ng
The pri nti ng phrase is not properly programmed.

1062 Column repetition context requires i n gr oups of phrase
The column repetition clause must include ani n groups of phrase.

1063 Column repetition group size is illegal
Thein groups of phrase specifiesa O group size. The compiler assumes a value of 1

in its subsequent error scan.

1064 end statement required to terminate report heading
The compiler assumes an end statement at this point.

1065 end statement required to terminate report
The compiler assumes an end statement at this point.

1066 print O |ines statement is ignored
Subsequent error messages may refer to form lines.

1067 Too few formats or too many expressions in pri nt
There must be a one-to-one correspondence between expressions and format specifications.

1068 Set owner or member not defined
A set name must appear in both an owns clause and a bel ongs clause to be defined. Both

the owns and the bel ongs clauses must precede the set definition.

1069 Attributes of common set must be declared in an every statement

80

Compiler Warning and Error Messages

The set pointers must appear in an every statement. No attribute definition takes place.

1070 Mode of quantity conflicts with automatic definition
The M or N attribute for a set, or the N. enti ty name for a permanent entity were explicitly
defined with r eal mode. They must be i nt eger .

1071 Number of subscripts conflicts with automatic definition
The attributes of a set were explicitly defined with an incorrect dimension, or the
N. entity name for a permanent entity was defined as a subscripted variable.

1072 Explicit definition conflicts with automatic definition
One of several conditions has appeared:

e The owner or member attributes of a set were explicitly defined and their
definition conflicts with the owns or bel ongs clause for the set.

e The N.entity name for a permanent entity is neither a global variable nor
apermanent attribute oft he system

e The F. nane or S. nanme of a random variable should be left for automatic
definition.

1073 Ranking attribute must be declared in an every statement
The ranking attribute in the def i ne set statement is not an attribute of the member entity.

1074 Illegal f i | e statement for ranked set
The file first, file last, file before,and file after statements are not
permitted on ranked sets.

1075 Number of given arguments exceeds the maximum allowed
The combined number of gi ven and yi el di ng arguments cannot exceed 127.

1076 Number of yielding arguments exceeds the maximum allowed
See message 1075.

1077 Number of subscripts exceeds the maximum allowed
The maximum number of subscripts allowed is 254.

1078 Label subscript must be between 1 and 3000

The maximum subscript allowed on a label is 3000. Since subscripted labels require a table
as large as the maximum subscript value, smallest program size suggests that subscripts
should normally range from 1 to n in increments of 1.

1079 Number of recursive local variables exceeds available space.
Each routine has 1024 words of storage available for recursive local variables. Some of

this total is used by variables which the compiler generates internally.

1080 Context requires subscripted label

81

SIMSCRIPT I1.5 User’s Guide

A subscripted label is required at this point.

1081 Yielding arguments illegal in left-function
Yi el di ng arguments are not allowed in monitoring routines or left-handed functions.
Ignoring the yielding argument list scans the routine.

1082 ent er statement permitted only in left-functions
This statement should be the first executable statement in a left-handed routine.

1083 Global properties specified in local def i ne
Local variables cannot be monitored, packed, or defined as st r eam variables.

1084 Incorrect number of given arguments in left-function
A routine monitoring a variable must be given the same number of arguments as the number
of subscripts originally defined for the variable.

1085 nove statement not allowed here
A nove to statement can only appear in a right-handed routine. A nove from can only
appear in a left-handed routine. The statement is out of place.

1086 bef ore creating and after destroyi ng options not allowed
After creating andbefore destroying canbe used to collect usage statistics.

1087 More arguments than defined attributes in pr ocess or event
It is necessary to define an attribute to hold each argument received by the event. The excess
arguments supplied can receive no values.

1088 More arguments than defined attributes in act i vat e
It is necessary to define an attribute to hold each argument received by the event. The excess
arguments supplied cannot be stored anywhere.

1089 Context requires name of an entity
Alist attributes of statementdoes notrefer to a temporary entity.

1090 Illegal attempt to br eak ti es on an external event
External events cannot appear in br eak ties statements.

1091 Illegal attempt to equivalence random attributes
Random attributes cannot be equivalenced with other variables of any type.

1092 Illegal mode for a random variable
A random variable cannot be of al pha ort ext mode.

1093 st r eam phrase ignored - variable not defined as r andom
The define nane as stream statement should be placed after the definition of the

variable as a r andom variable.

1095 cycl e orl eave ignored - no loop in effect

82

Compiler Warning and Error Messages

Either cycl e or| eave must appear withinado ... |oop block.

1096 Missing here for aj unp back
A her e statement must exist prior to the occurrence of a matching j unp back statement.

1097 Missing her e for ajunp ahead
A her e statement must appear after a j unp ahead. This error is detected at the end of
the routine.

1098 Both accunul ate andtal |y illegal on the same variable
The mixing of statistics type is not allowed for a given variable. See message 1099.

1099 accunul at e/ t al | y illegal for noni t or ed/ r andom variables
These operations are in fact implemented by constructing monitoring routines.

1100 Statistic requested twice for the same variable
One statistical keyword appeared more than once for a given variable.

1101 Improper type of variable for accunul ate ortal ly

Accunul ate ortally can be requested for unsubscripted global variables, attributes of
permanent entities, temporary entities, event notices, processes, resources and compound
entities. They cannot be requested for subscripted global variables, subscripted attributes of
t he syst em or common attributes of temporary entities.

1102 Attribute for accunul ate ortal |l y improperly pre-defined
The variables containing the accumulated or tallied statistics should be left for automatic
definition by the compiler. They should not appear in def i ne statements.

1103 Accunul ate ortal |l y on an undefined variable
The name of the variable is probably spelled wrong.

1104 Hi st ogr am of attribute of a temporary entity is forbidden
Hi st ograns may be requested for global variables, system attributes, and attributes of
permanent entities.

1105 Improper word boundary for a variable of mode doubl e

Certain systems — the Gould and IBM mainframes among them — require that all
doubleprecision floating point numbers be aligned on a double-word boundary. This requires
that unsubscripted doubl e permanent attributes be assigned to odd-numbered i n array
numbers, and that doubl e temporary attributes be assigned to odd i n word numbers.
Other systems — such as the VAX — do not require such assignments, but are compatible
with them.

1106 Multiple el se statements not allowed on a i f
The language allows only one el se statement. Other diagnostic messages may indicate

the priori f statement was not processed.

1107 Then i f statement after el se - obscure structure

83

SIMSCRIPT I1.5 User’s Guide

The then if construction is not permitted on a structured i f . Correct by explicitly using
el se and al ways statements as appropriate instead of using t hen i f .

1108 El se statement after t hen i f - obscure structure
See message 1107.

1109 A statement above this point is unreachable
An unlabeled statement or group of statements follows a r et ur n or an unconditional
transfer. This may be due to a missing label, el se, or case statement.

1110 Pr ocess not declared - r out i ne assumed
The pr ocess routine has not been declared in the PREAMBLE.

1111 This statement may appear only in a pr ocess

1115 Illegal implied conversion between t ext and other modes
Usettoa.f oratot.f oraccess conversion routines by wite and read using the
buffer.

1116 Improper argument mode for intrinsic function
An argument of mode t ext was expected and not found, or a t ext argument was given
where a numeric argument was expected.

1119 Packed variable cannot be passed in this context

Array rows of variables that are bit packed, or packed (n/m), cannot be passed as arguments
to NONSIMSCRIPT routines. Individual elements or arrays packed (*/m) are valid
arguments.

1120 Improper first argument to left substr. f
The first argument to subst r. f must be an unmonitored text variable.

1121 Attempt to equivalence t ext variable
Text variables cannot be equivalenced with other variables.

1124 Conflicting parameters in open or cl ose
The open orcl ose statement was used improperly.

1126 open does not specify either i nput or out put
Either i nput or out put (or both) must be specified as an open statement option.

1127 t ext function illegal in st or e statement

The st or e statement should generally not be used with t ext data. In this instance, its use
would result in permanent loss of a block of memory.

1128 doubl e variable overlap caused by equivalencing

A double variable occupies two successive array number locations. The second of these

should not be assigned to any other use.

1129 al ways is preferred usage in this context

84

Compiler Warning and Error Messages

The el se (ot herwi se) statement should be changed to an al ways.

1130 Number of labels exceeds allowed maximum
Implementation constraints impose a limit on the allowed number of statement labels. The
routine should be subdivided into two or more routines.

1131 Subpr ogr am variable used out of context
A subpr ogr am variable may not be used within a computation.

1132 Implicit conversion of subpr ogr am variable
Only subpr ogr am variables or subpr ogr am literal values may be assigned to a variable
declared as mode subpr ogr am

1133 Dimensioning of attributes not permitted

Attributes of temporary and permanent entities are implicitly 1-dimensional, subscripted by
an entity pointer value. The explicit dimensioning of these may cause ambiguity. A
dimension of 1 is substituted.

1134 Illegal use of st or e with quantities of differing mode
This usage of st or e may have undesirable side effects and is no longer permitted.

1135 Use of st or e witht ext quantities may have undesired effect

The use of the store statement between text quantities is allowed, but strongly
discouraged, because it disables the automatic actions that assure the integrity of t ext
values.

1136 Variable is undefined or not fully defined
This message appears when the background mode has been explicitly set to undef i ned
using a nor mal | y statement.

1137 Parameter in open statement not supported

Differences in operating systems do not allow complete compatibility between
SIMSCRIPT II.5 implementations of the open statement. Unsupported parameters are
ignored.

1138 Rel ease routine statement no longer supported
The statement is ignored.

1139 Reset references variable not accunul ated ortal | yed

Totals do not exist for a variable which has not been the object of an accunul at e or
tal |l y statement.

1140 Reset uses qualifier not declared as such

Only a qualifier defined for an accunul at ed ort al | yed statistic may be specified in a

reset statement.

1141 This statement not supported or no longer required

85

SIMSCRIPT I1.5 User’s Guide

1142 Local variable used only once
The indicated local variable appears only once in the routine. This could be due to a
typographical error.

1143 Local variable never modified
The indicated local variable has not been modified by the routine. This means that its value is
always zero (or " ", if at ext wvariable). This could be due to a typographical error.

1144 Bad Block structure - overlapping do andi f
The statement violates SIMSCRIPT IL.5's structured programming nesting rules, by
overlapping one of the following three control structures:

e do ... loop
e if ... else ... endif
e select ... case ... default ... endsel ect

For example, if the statement in error is a | oop statement, then an i f block was not
terminated by an endi f, or a sel ect was not terminated by an endsel ect . The error will
also be seen when one block overlaps a portion of another block, as inif ... do ...
else ... loop ... endif.

1145 Variable or function name required

A non-numeric quantity — such as a set — cannot be the object of aread, print,or
| i st statement. A statement suchaslist attributes of each entity in set
may have been intended.

1146 Assignment between incompatible data types
Check the modes on both sides of the equal sign in an assignment (I et) statement.

1147 Implicit conversion of poi nt er variable
The indicated variable must be either mode poi nt er or mode i nt eger .

1148 Name of a r esour ce required
The request andrel i nqui sh statements apply to resources only.

1150 Multiple MAI N routines encountered
Only one MAI N routine may be included in any compilation.

1151 case control outside sel ect. . . endsel ect
A case ordefaul t statement can be used only between a corresponding sel ect
endsel ect pair.

1152 Mode of case term does not match sel ect

The mode of the term is incompatible with the mode of the sel ect expression. Some
mode conversion is performed. A r eal expression may include integer terms, and both
t ext and al pha expressions require string literal case terms. If necessary, assign the
expression to a variable of the appropriate mode.

86

Compiler Warning and Error Messages

1153 case term duplicates previous term(s)

This term is unreachable because it is completely blocked by corresponding terms in an
earlier case statement. This message will not be given for sel ect expressions with a
mode of real , doubl e, ort ext.

1154 Statement not allowed after def aul t
The case or def aul t statement is not valid within a sel ect block after the use of the
def aul t statement.

1155 No case statements appear within sel ect
Each sel ect ... endsel ect block must include at least one case statement.

1156 Sel ect case without matching endsel ect
Each sel ect case block must be terminated by a matching endsel ect statement.

1158 Symbol redefinition

A local define to nean isredefining a global defi ne to nean, without an intervening
suppress substitution. This may have unexpected consequences. For example, if the
PREAMBLE contains the statement def i ne . NUMBER to nmean 10, and a routine contains
the statement define . NUMBER to mean 20, the compiler will first substitute 10 for
. NUMBER in the routine, making the statement read define 10 to nean 20, and will
then substitute 10 for 20 throughout the remainder of the routine.

1161 Changing PROCESS pointer may affect implicit subscripting

Changing the pointer to a PROCESS within its PROCESS routine will prevent the routine
from later accessing the attributes of the current process. Such attributes are often referenced
through implied subscripts. This warning may be the result of an act i vat e,

create orrenove statement intended to point to a different process notice. Use a

different pointer name to avoid this problem.

1162 Storage may not be deallocated on destroy of a process

When a PROCESS terminates normally, SIMSCRIPT II.5 automatically performs some
memory management functions. By explicitly dest r oying the PROCESS pointer, these
functions are disabled. In general, if a PROCESS may be terminated prematurely, the
PROCESS itself should check for the conditions requiring termination, rather than having
the PROCESS pointer destroyed by a separate routine.

1163 Context requires the name of a H STOGRAM

A statement of the form accunul ate H STOGRAM NAME (LO to H by | NCREMENT)
as the histogram of VARI ABLE. NAVE must appear in the PREAMBLE. Also see
messagel104.

1164 Name of routine is not a monitored variable

SIMSCRIPT II.5 monitors global variables by defining routines with the same name. In

this case, you have provided a routine with the same name as a global variable, but the
variable is not being monitored. Rename the variable or the routine.

1165 Statement out of place
A PREAMBLE type statement appeared in a routine, or vice versa. The unrecognized word

87

SIMSCRIPT I1.5 User’s Guide

is ignored and the error scan resumes with the next statement keyword in the input stream.

1166 Invalid literal value
The value of the literal provided is too large to hold in a variable location.

1167 Returned Function mode undefined

The mode of the value returned by a function must be declared in the PREAMBLE (defi ne
FN as a FN. MODE function). If the mode is not explicitly included in the defi ne
statement, the background (i.e., nornmal |y node is...) mode currently in effect is
assumed.

1168 Function should return a value
1169 Statement incomplete
1170 Pointers can test for equality only

1171 Used as imlicit subscript

SIMSCRIPT I1.5 is free format and allows for usage of implicit subscripts. This increases

the expressive power of the language but sometimes is error prone. You can suppress implicit
subscripts by using the SIMSCRIPT I1.5 language statement:

suppress inplicit subscripts

The compiler will generate warning message 1171 whenever it detects implicit subscripts
usage. The scope of the suppr ess statement is global if used in a PREAMBLE or local if
used in a routine. Usage of implicit subscripts can be resumed by the statement:

resune inplicit subscripts Any number of suppress/resune statements are
allowed in a routine.

1172 Subscript should be pointer mode

88

Appendix B Runtime Error Messages

B.1 Runtime Error Messages

When a runtime error is detected, a runtime error message is written to standard error. The
text of each message appears below:

2001 zero raised to a negative power
2003 negative number raised to a real power

2004 invalid I/O unit
The unit number is less than 1 or greater than 99.

2005 negative expression in SKIP INPUT statement

2006 attempt to file an entity in a set it is already in
The M set attribute of an entity being FI LEd in a set is not equal to zero.

2007 attempt to file before or after an entity that is not in the set
The M set attribute of the entity in the bef or e or af t er phrase is equal to zero.

2009 attempt to remove from an empty set
The F. set attribute is equal to zero when ar enbve operation is attempted.

2010 attempt to remove an entity that is not in a set
The M set attribute is equal to zero when a r enove specific operation is attempted.

2011 invalid random number stream
The absolute value of the stream number is less than 1 or greater than the number of random
number streams (normally 10).

2013 attempt to schedule an event/process already scheduled
The m ev. s attribute of the event/process is not equal to zero when a schedul e operation
is attempted.

2014 attempt to cancel an event/process not scheduled
The m ev. s attribute of the event/process is equal to zero when a cancel operation is
attempted.

2016 no memory space available

The program is attempting to dynamically allocate more memory than the operating system
will allow.

2017 negative argument ini t oa. f

SIMSCRIPT I1.5 User’s Guide

2018 argument>9initoa. f

2019 attempt to use a write-only I/O unit for i nput
An I/O unit opened for output only appears in ause for input statement.

2020 attempt to use a read-only I/O unit for out put
An I/0 unit opened for input only appears in ause for out put statement.

2021 attempt to use a unit for i nput that is in the output state

An I/O unit last used for output appears in ause for input statement without an
intervening r ewi nd.

2022 attempt to use a unit for out put that is in the input state

An /O unit last used for input appearsinause for output statement without an

intervening r ewi nd.

2023 unable to open existing file
See the UNIX error message on the line following this message for more information.

2024 unable to create new file
See the UNIX error message on the line following this message for more information.

2025 subscript out-of-range
An array subscript is less than 1 or greater than the number of array elements.

2027 range error on computed go to
The index value used in a computed go to statement is less than 1 or greater than the

number of labels.

2028 formatted read goes beyond the end of input record
An attempt is made to read characters beyond the record size specified for the unit.

2030 formatted write goes beyond the end of output record
An attempt is made to write characters beyond the record size specified for the unit.

2032 negative field width in input format
2036 negative field width in output format

2040 mixed binary and character 1/0
An I/O operation allowed only on an ASCII file is attempted on a binary file, or vice versa.

2041 invalid character while reading 'C' format
A character is read which is not one of the following: blank, 0-9, A-F, or a-f.

2044 output format field width greater than record size

90

Runtime Error Messages

2048 input format field width greater than record size

2051 zero entity pointer
The pointer used to identify a temporary entity is equal to zero.

2052 reference to destroyed entity

This error can be caused by keeping copies of an entity pointer in several variables,
destroying one copy, and referencing attributes of another copy. This error is detected by the
runtime checking option. If the option (- C) is omitted, a “bus error” may occur instead, or
bad values may enter a computation, causing a delayed failure. This is actually a special case
of error “2053: invalid entity pointer.” It is not always possible to detect a destroyed entity,
since the memory may have been reused since it was destroyed. If this is the case, you will
get error 2053 instead.

2053 invalid entity pointer
The pointer used to identify a temporary entity does not contain the address of a temporary
entity.

2054 wrong temporary entity class
The pointer used to identify a temporary entity contains the address of a temporary entity
which belongs to an entity class different from the one that was expected.

2058 reference to unreserved array
The pointer used to identify an array is equal to zero.

2060 zero or negative subscript specification in r eser ve statement
The number of array elements specified in ar eser ve statement is less than 1.

2061 di m f for array is > 65535
The number of array elements specified in a r eser ve statement is greater than 65535.

2062 attempt to cr eat e invalid entity class
The entity class is not recognized when attempting to cr eat e an entity, which is usually
caused by failing to link the compiler-generated routine set up. r.

2066 invalid array pointer
The pointer used to identify an array does not contain the address of an array.

2067 reference to a released array.
This error also appears for references to attributes of a permanent entity that has been
destroyed. The error is detected by the runtime checking option. The comments that apply to
destroyed entities apply here as well.

2068 end of file encountered during read operation while eof . v=0

2069 fatal I/O error during read
See the UNIX error message on the line following this message for more information.

91

SIMSCRIPT I1.5 User’s Guide

2070 fatal I/O error during write
See the UNIX error message on the line following this message for more information.

2071 record length exceeds specified r ecor dsi ze
A record is read from the current input unit, which is longer than the record size specified
for the unit.

2072 'B' format input column is not within record
The column number is less than 1 or greater than the record size specified for the unit.

2076 'B' format output column is not within record
See error 2072.

2077 incomplete record on a fixed format file
The last record read from a binary file is shorter than the record size specified for the unit.

2084 invalid character in 'I' format during input
A character is read which is not one of the following: blank, +, -, or 0-9.

2088 integer number too large for input
A value is read which falls outside the range of i nt eger values: - 2147483648 to
+2147483647.

2093 attempt to create t ext string > 32,000 characters

2094 attempt to erase non-t ext entity
A value which is not t ext is encountered in a situation where a t ext value is required.

2095 position zero or negative in substr. f
2096 length negative in substr . f

2097 offset negative in nat ch. f

2101 transfer to missing case in sel ect

In a sel ect statement, the expression is not equal to any of the values specified in any of
the case statements and no def aul t statement has been specified.

2103 wild transfer in subpr ogr am variable CALL
The value of the subpr ogr am variable is not equal to the address of a routine.

2104 wild transfer in subscripted go t o statement
An attempt is made to go t o an undefined subscripted label.

2106 attempt to suspend when no process is active

A wait, work, suspend, request or relinquish statement is executed by a
routine which is neither a process nor a routine called from a process.

92

Runtime Error Messages

2107 attempt to r el i nqui sh more resources than r equest ed
An attempt is made to r el i nqui sh units of a resource that were not previously obtained by
arequest.

2112 parameter 2 negative in 'D' or 'E' format
A negative number of decimal places is specified.

2116 parameter 2 > parameter 1 in 'D' or 'E' output format
The number of decimal places exceeds the total width of the field.

2122 parameter 2 > parameter 1 in 'D' or 'E' input format
See error 2116.

2124 real number too large for input
A value is read which falls outside the range of doubl e values.

2128 invalid character in 'D' or 'E' format during input
A character is read which is not one of the following: blank, period, +, -, E, e, or 0-9.

2130 negative argument to ski p fi el ds — cannot skip backwards
2132 mean in exponential . f call<0

2133 meaninerl ang.f call<0

2134 number of stages iner |l ang. f call<0

2135 meaninl og. nornal . f call<0

2136 standard deviation in | og. nornmal . f call<0

2137 standard deviation in nornmal . f call<0

2138 mean in poi sson. f call<0

2139 second parameter less than first in r andi . f call
2140 second parameter less than first in uni form f call
2141 number of trials in bi nomi al . f call<0

2142 probability in bi nonmi al . f call<0

2143 shape parameter <=0 in wei bul | . f call

2144 scale parameter <0 in wei bul | . f call

93

SIMSCRIPT I1.5 User’s Guide

2145 mean in gama. f <0

2146 shape parameter in ganma. f <0

2147 first parameter in bet a. f call <0

2148 second parameter in beta. f call<0

2152 value of | 0g. e. f orlog. 10.f argument<0
2153 absolute value of arcsi n. f orarccos.f argument>1
2154 values of ar ct an. f arguments = (0,0)

2155 value of sqrt . f argument <0

2159 negative time expression in call of nday. f

2160 negative time expression in call of weekday. f

2161 negative time expression in call of hour . f

2162 negative time expression in call of mi nut e. f

2169 (minimum < mean < maximum) is falsein tri ang. f
2171 attempt to open a unit already open

2173 invalid r ecor dsi ze in open statement
The record size is less than 1 or greater than 65534.

2176 attempt to close a file already closed
An attempt is made to cl ose orrew nd a unit that is not open.

2177 attempt to close a standard SIMSCRIPT unit
An attempt is made to cl ose orrew nd unit 5, 6 or 98.

2178 unable to close file
See the UNIX error message on the line following this message for more information.

2185 unable torecord nenory
2186 unable tor est ore nenory
2188 unable to reopen or reposition a file during r est ore nenory

2193 system service error
For VMS systems only - unexpected error condition from VMS received by SIMSCRIPT

94

Runtime Error Messages

library procedure.
2213 Ori gi n. r must be called before calendar functions

2217 negative argument to out . f
An attempt is made to reference a column position less than 1.

2218 argument to out . f exceeds buffer length
An attempt is made to reference a column position greater than the record size specified for

the unit.

2220 simulation time decrease attempted
The value of ti me. v has decreased since the last event occurred.

2221 no event/process to match name in external event data

The external event data contains the name of an external event/process, which has not been
defined in the preamble.

2222 invalid external event name

2224 error in use of calendar time format

2225 attempt to destroy an entity owning a non-empty set

An F.set attribute of the entity is not equal to zero when a destroy operation is
attempted.

2226 attempt to destroy an entity that is in a set

An M set attribute of the entity is not equal to zero when a destroy operation is
attempted.

2227 attempt to use a random variable that has not been read

2228 Al pha probability encountered in random variable data

2229 probability not between 0.0 and 1.0 in random variable data

2230 end of file while reading value field in random variable data

2231 Al pha value encountered in random variable data

2232 Real value where i nt eger expected in random variable data

2233 first cumulative probability not zero in data for random linear variable

2234 cumulative probability values not in increasing order

2235 individual probability values not allowed for random linear variables

2236 sum of probability values more than 1 plus rounding margin

95

SIMSCRIPT I1.5 User’s Guide

2237 Junp to missing Her e statement
See compilation warning.

2238 Ti ne. v decreased since last r eset

2239 month origin error
A month is specified which is less than 1 or greater than 12.

2240 day origin error
A day of the month is specified which is less than 1 or greater than the number of days in the
month.

2241 invalid event/process class
An event/process class is specified which is less than 1 or greater than the number of event/
process classes.

2300 graphics system error
See the error message on the line preceding this message for more information.

2301 value of vxf orm v is invalid
The number of the current viewing transformation is less than 1 or greater than 15 when an
attempt is made to define a window or viewport.

2302 invalid viewport dimensions

An attempt is made to define a viewport having dimensions, which do not satisfy the
following requirement:

0 <xlo <xhi <£32767 and0<ylo <yhi <£32767

2303 invalid window dimensions
An attempt is made to define a window having dimensions, which do not satisfy the
following requirement:

xlo #xhi and ylo =#yhi

2304 attempt to delete the open segment

2305 segment already open
An attempt is made to open a segment when there already is an open segment.

2306 segment already closed
An attempt is made to close a segment when there is no open segment.

2307 segment does not exist

2308 invalid segment priority
The segment priority is less than zero or greater than 255.

96

Runtime Error Messages

2309 invalid POINTS argument
The poi nt's array is unreserved or does not contain enough points.

2310 form/graph/icon not found

97

SIMSCRIPT I1.5 User’s Guide

98

Appendix C Standard SIMSCRIPT II.5 Names

C.1 Functions and Routines

Function abs. f (arg)

Arguments:
arg Aninteger ordoubl e value

Description: Returns the absolute value of ar g.
Mode: The mode of ar g.
Function and. f (argl, arg2)

Arguments:
argl Aninteger value.
arg2 Aninteger value.

Description: Returns the logical product of ar g1 and ar g2.
Mode: | nt eger
Function arccos. f (arg)

Arguments:
arg A doubl e value between-1 and +1.

Description: Returns the arc cosine of ar g.
Mode: Doubl e
Function arcsin.f (arg)

Arguments:
arg A doubl e value between-1 and +1.

Description: Returns the arc sine of ar g.
Mode: Doubl e

Function arctan.f (argl, arg2)

Arguments:
argl A doubl e value
arg2 A doubl e value

Description: Returns the arc tangent of ar g1/ ar g2.

SIMSCRIPT I1.5 User’s Guide

Mode:
Function at

Arguments:
arg

Description:

Mode:

Doubl e

ot.f (arg)

An al pha value.

Returns at ext value of length 1 containing ar g.

Text

Function beta. f (kl1l, k2, stream

Arguments:
k1l
k2
stream

Description:

Mode:

Function bi

A doubl e value greater than zero specifying the power of X.

A doubl e value greater than zero specifying the power of (1-X).
Ani nt eger value specifying the random number stream.
Returns a random sample from a beta distribution.

Doubl e

nomal.f (n, p, strean)

Arguments:
n Ani nt eger value specifying the number of trials.
P A doubl e value specifying the probability of success.
stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a binomial distribution.
Mode: | nt eger
Function concat . f (argl, arg2, ...)
Arguments:
argl,
arg2, ...Two ormoretext values.
Description: Returns the concatenation of ar g1, ar g2,
Mode: Text
Function cos. f (arg)
Arguments:
arg A doubl e value specifying an angle in radians.
Description: Returns the cosine of ar g.

Mode: Doub

le

Function date.f (nonth, day, year)

100

Standard SIMSCRIPT I1.5 Names

Arguments:
nont h Ani nt eger value specifying the month.
day Ani nt eger value specifying the day within the month.
year Anint eger value specifying the year.

Description: Returns the cumulative simulation time for the given calendar date based on
values giventoorigin.r.

Mode: | nt eger

Routine date.r yielding date, tine

Arguments:
dat e A text value containing the current date in the form MM DDY YYYY.
tinme At ext value containing the current time in the form HH: MM SS.

Description: Returns the current date and time.

Function day. f (tine)

Arguments:
tinme A doubl e value specifying a cumulative simulation time.
Description: Returns the day portion corresponding to the simulation time based on values
giventoorigin.r.

Mode: | nt eger

Function descr.f (string)
Arguments:
string A textvalue,text variable or expression.

Description: Indicates an argument to a NONSIMSCRIPT routine is passed by descriptor.
Used for VMS, ignored by UNIX systems.

Mode: n.a.
Functiondim f (array(*))
Arguments:

array(*) An array pointer.

Description: Returns the number of elements in the array.

Mode: | nt eger

Function di v. f (argl, arg2)

Arguments:
argl Ani nt eger value.
arg2 Ani nt eger value not equal to zero.

101

SIMSCRIPT I1.5 User’s Guide

Description: Returns the truncated value of ar g1/ ar g2.
Mode: | nt eger
Function ef i el d. f

Arguments: None

Description: Returns the ending column of the next data field to be read by a free-form
read statement. Returns zero if there are no more data fields.

Mode: I nt eger

Function erl ang. f (mu, k, strean)

Arguments:
nmu A doubl e value greater than zero specifying the mean.
k Ani nt eger value greater than zero specifying the number of stages.

stream Aninteger value specifying the random number stream.
Description: Returns a random sample from an Erlang distribution.
Mode: Doubl e
Routineexit.r (status)

Arguments:
status Aninteger value specifying an exit status.

Description: ~ Terminates program execution passing the exit status to the command level.

Function exp. f (arg)

Arguments:
arg A doubl e value.

Description: Returns “e to the ar g”.
Mode: Doubl e

Function exponential . f (nu, stream

Arguments:
nmu A doubl e value greater than zero specifying the mean.
stream Aninteger value specifying the random number stream.

Description: Returns a random sample from an exponential distribution.

Mode: Doubl e

102

Standard SIMSCRIPT I1.5 Names

Function fi xed.f (txt, len)

Arguments:
t xt Atext value.
I en A non-negative i nt eger value.

Description: Returns a copy of t xt, which is either space-padded or truncated so that its
length is | en.

Mode: Text
Functionfrac.f (arg)

Arguments:
arg A doubl e value.

Description: Returns the fractional part of ar g.

Mode: Doubl e

Function ganma. f (nu, k, stream

Arguments:
mu A doubl e value greater than zero specifying the mean.
k A doubl e value greater than zero specifying the shape.

stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a gamma distribution.
Mode: Doubl e

Function hour . f (tine)

Arguments:
tinme A doubl e value specifying a cumulative event time.

Description: Returns the hour portion corresponding to the event time.

Mode: | nt eger
Functionint.f (arg)

Arguments:
arg A doubl e value.

Description: Returns ar g rounded to the nearest integer.

Mode: | nt eger

Functionitoa.f (arg)

103

SIMSCRIPT I1.5 User’s Guide

Arguments:
arg Ani nteger value in the range 0 to 9.

Description: Returns an al pha value containing the ASCII representation of the given
digit.

Mode: al pha
Functionitot.f (arg)

Arguments:
arg Aninteger value.

Description: Returns a text value containing the ASCII representation of the given
value.

Mode: Text
Function | engt h. f (arg)

Arguments:
arg Atext value.

Description: Returns the number of characters in ar g.
Mode: | nt eger
Function | og. e. f (arg)

Arguments:
arg A doubl e value greater than zero.

Description: Returns the natural logarithm of ar g.
Mode: Doubl e
Function | og. normal . f (rmu, sigm, stream

Arguments:
mu A doubl e value greater than zero specifying the mean.
si gma A doubl e value greater than zero specifying the standard deviation.
stream Aninteger value specifying the random number stream.

Description: Returns a random sample from a log normal distribution.

Mode: Doubl e
Function | og. 10.f (arg)

Arguments:
arg A doubl e value greater than zero.

104

Standard SIMSCRIPT I1.5 Names

Description: Returns the base 10 logarithm of ar g.
Mode: Doubl e
Function | ower . f (arg)

Arguments:
arg A text value.

Description: Returns a copy of arg with each upper-case character converted to
lowercase.

Mode: Text
Function mat ch.f (string, pattern, offset)

Arguments:
string Atext value.
pattern Atext value.
of fset A non-negativei nt eger value.

Description: Returns the position within stri ng of the first occurrence of pattern, or
zero if there is no such occurrence. The search begins after skipping the first
of f set characters of stri ng.

Mode: | nt eger
Function mex. f (argl, arg2, ...)
Arguments:
argil,
arg2, ...Anycombination of two or more i nt eger or doubl e values.

Description: Returns the maximum of ar g1, ar g2,

Mode: I nt eger if each of the arguments is i nt eger . Otherwise, doubl e.
Functionm n.f (argl, arg2, ...)
Arguments:

argl,

arg2, ...Anycombination of two or more i nt eger or doubl e values.

Description: Returns the minimum of ar g1, arg2,
Mode: I nt eger if each of the arguments is i nt eger . Otherwise, doubl e.
Function mi nute.f (tine)

Arguments:
tine A doubl e value specifying a cumulative event time.

105

SIMSCRIPT I1.5 User’s Guide

Description:
Mode:
Function nod.
Arguments:
argl
arg2
Description:

Mode:

Returns the minute portion corresponding to the event time.

| nt eger

f (argl, arg2)

Aninteger ordoubl e value.
Aninteger ordoubl e value not equal to zero.

Returns a remainder computed as:
argl - (trunc.f(argl/arg2) * arg2)
I nt eger if both arguments are i nt eger . Otherwise, doubl e.

Function nronth. f (tine)

Arguments:
tine

Description:

Mode:

A doubl e value specifying a cumulative simulation time.

Returns the month portion corresponding to the simulation time based on
values giventoorigin.r.

| nt eger

Function nday. f (time)

Arguments:
tinme

Description:

Mode:

A doubl e value specifying a cumulative event time.
Returns the day portion corresponding to the event time.

| nt eger

Function normal . f (nmu, sigma, stream

Arguments:
mu
si gma
stream

Description:

Mode:

A doubl e value specifying the mean.
A doubl e value greater than zero specifying the standard deviation.
Ani nt eger value specifying the random number stream.

Returns a random sample from a normal distribution.

Doubl e

Function or . f (argl, arg2)

Arguments:
argl
arg2

106

Anint eger value.
Anint eger value.

Standard SIMSCRIPT I1.5 Names

Description: Returns the logical sum of ar g1 and ar g2.
Mode: | nt eger

Routineorigin.r (nonth, day, year)

Arguments:
nont h Ani nt eger value specifying the month.
day Ani nt eger value specifying the day within the month.
year An i nt eger value specifying the year.

Description: Defines the calendar date of the start of simulation.

Right function out . f (col um)

Arguments:
colum Aninteger value specifying a column position.

Description: Returns the character in the specified column of the current record of the
current output unit.

Mode: Al pha
Left function out . f (col um)

Arguments:
colum Aninteger value specifying a column position.

Enter with: An al pha value.
Description: Stores the assigned character in the specified column of the current record
of the current output unit.

Function poi sson. f (nmu, stream

Arguments:
nmu A doubl e value greater than zero specifying the mean.
stream Aninteger value specifying the random number stream.

Description: Returns a random sample from a Poisson distribution.

Mode: | nt eger

Functionrandi . f (1l ow, high, strean)

Arguments:
| ow Ani nt eger value specifying the beginning value.
hi gh Ani nteger value specifying the ending value.

stream Aninteger value specifying the random number stream.

Description: Returns a random sample uniformly distributed between | ow and hi gh

107

SIMSCRIPT I1.5 User’s Guide

inclusive.
Mode: I nt eger
Function random f (strean)
Arguments:
stream Aninteger value specifying the random number stream.
Description: Returns a pseudo-random number between 0 and 1.
Mode: Doubl e
Functionreal .f (arg)

Arguments:
arg Ani nt eger value.

Description: Returns ar g as a doubl e value.

Mode: Doubl e
Function ref . f (any)

Arguments:
Description: Indicates an argument to a NONSIMSCRIPT routine is passed by reference.
Mode: n.a

Function repeat . f (txt, count)

Arguments:
t xt Atext value.
count A non-negative i nt eger value.

Description: Returns at ext value which is the concatenation of count copies of t xt .
Mode: Text
Function sfi el d. f
Arguments: None

Description: Returns the starting column of the next data field to be read by a free-form
read statement. Returns zero if there are no more data fields.

Mode: | nt eger

Function shl . f (argl, arg2)

108

Standard SIMSCRIPT I1.5 Names

Arguments:

argl Aninteger value.

arg2 Aninteger value.

Description: Returns the value of ar g1 shifted left ar g2 bit positions.
Mode: | nt eger

Function shr.f (argl, arg2)

Arguments:

argl Aninteger value.

arg2 Aninteger value.

Description: Returns the value of ar g1 shifted right ar g2 bit positions.
Mode: | nt eger

Function si gn. f (arg)

Arguments:
arg A doubl e value.

Description: Returns +1 ifar g is positive, -1 ifarg is negative, and 0 ifarg is zero.
Mode: | nt eger
Function si n. f (arg)

Arguments:
arg A doubl e value specifying an angle in radians.

Description: Returns the sine of ar g.
Mode: Doubl e

Routine sl eep.r (tine)
Arguments:

tinme A doubl e value specifying time in seconds.

Description: Suspends execution of your program for a specified time period. Implemented
on VMS platforms only.
Routine snap. r

Arguments: None

Description: User-supplied snapshot routine that is called when a runtime error is detected.

109

SIMSCRIPT I1.5 User’s Guide

Functionsqrt.f (arg)

Arguments:
arg A non-negative doubl e value.

Description: Returns the square root of ar g.
Mode: Doubl e

Right function substr.f (txt, pos, |en)

Arguments:
t xt A text value.
pos Ani nteger value greater than zero.
I en A non-negative i nt eger value.

Description: Returns the substring of t xt of length | en starting at position pos.

Mode: Text

Left function substr.f (txt, pos, |en)

Arguments:
t xt Atext value.
pos Ani nteger value greater than zero.
LEN A non-negative i nt eger value.
Enter with: A text value.

Description: Replaces the substring of t xt of length | en starting at position pos with
the assigned t ext value.

Routine system r (conmand, st atus)
Arguments:
command A text value specifying command string.
status Aninteger value specifying VMS return status.
Description: Implemented on VMS platforms only. Executes VMS DCL command.

Functiontan.f (arg)

Arguments:
arg A doubl e value specifying an angle in radians.

Description: Returns the tangent of ar g.

110

Mode:

Standard SIMSCRIPT I1.5 Names

Doubl e

Functiontriang.f (mn, nmu, nmax, strean)

Arguments:
mn
mu
max
stream

Description:

Mode:

A doubl e value specifying the minimum.

A doubl e value specifying the mean.

A doubl e value specifying the maximum.

Anint eger value specifying the random number stream.

Returns a random sample from a triangular distribution.

Doubl e

Functiontrimf (txt, flag)

Arguments:
t xt
fl ag

Description:

Mode:

A text value.
Ani nt eger value.

Returns a copy of t xt which has leading and/or trailing blanks removed. If
flag <0, leading blanks are removed; if fl ag >0, trailing blanks are

removed.

Text

Functiontrunc.f (arg)

Arguments:

arg A doubl e value.

Description: Returns the truncated value of ar g.

Mode: | nt eger

Functionttoa.f (arg)

Arguments:
arg

Description:

Mode:

A text wvalue.
Returns the first character of ar g.

Al pha

Function uni formf (low, high, stream

Arguments:

111

SIMSCRIPT I1.5 User’s Guide

| ow A doubl e value specifying the beginning value.

hi gh A doubl e value specifying the ending value.

stream Aninteger value specifying the random number stream.
Description: Returns a random sample uniformly-distributed between | ow and hi gh.
Mode: Doubl e

Function upper . f (arg)

Arguments:
arg A text value.

Description: Returns a copy of arg with each lower-case character converted to
uppercase.

Mode: Text
Functionval . f (any)
Arguments:

Description: Indicates an argument to a FORTRAN routine is passed by value.

Mode: n.a.
Function weekday. f (ti ne)

Arguments:
tinme A doubl e value specifying a cumulative event time.

Description: Returns the weekday portion corresponding to the event time.
Mode: | nt eger

Function wei bul | . f (shape, scale, stream

Arguments:
shape A doubl e value greater than zero specifying the shape.
scal e A doubl e value greater than zero specifying the scale .

stream Aninteger value specifying the random number stream.
Description: Returns a random sample from a Weibull distribution.
Mode: Doubl e

Function xor . f (argl, arg2)

112

Standard SIMSCRIPT I1.5 Names

Arguments:
argl Ani nt eger value.
arg2 Ani nt eger value.

Description: Returns the logical difference of ar g1 and ar g2.
Mode: | nt eger
Function year.f (tine)

Arguments:
time A doubl e value specifying a cumulative simulation time.

Description: Returns the year portion corresponding to the simulation time based on values
giventoorigin.r.

Mode: | nt eger

113

SIMSCRIPT I1.5 User’s Guide

C.2 Global Variables

bet ween. v

Description:

Mode:

buffer.v
Description:

Mode:

di r.name.v
Description:

Mode:

eof.v

Description:

Mode:

event.v
Description:

Mode:

events.v
Description:

Mode:

f.ev.s(i)

Description:

Mode:

headi ng. v

114

If non-zero, specifies a routine which is called before each event or process is
executed. The default is zero.

subprogram

Specifies the length of t he buf f er. The default is 132.

| nt eger

Contains the directory the program was run from.

Text

For the current input unit, specifies, the action to take when end-of-file is
encountered. If eof . v = 0 (the default), the program is aborted with a

runtime error. If eof . v. = 1, the program is not aborted and eof . v is set to
2.

| nt eger

Contains the event/process class of the event or process to occur next.

| nt eger

Contains the number of event/process classes.

| nt eger

Contains the first-in-set pointer of the event set, ev. s, for event/process
class “i ”.

Poi nt er

Description:

Mode:

hours. v

Description:

Mode:

I.ev.s(i)

Description:

Mode:

line.v

Description:

Mode:

lines.v

Description:

Mode:

mar k. v

Description:

Mode:

m nutes. v
Description:

Mode:
n.ev.s(i)

Description:

Standard SIMSCRIPT I1.5 Names

If non-zero, specifies for the current output unit a page-heading routine
which is called for each new page. The default is zero.

Subpr ogram

Specifies the number of hours per simulated day. The default is 24. O.

Doubl e

Contains the last-in-set pointer of the event set, ev. s, for event/process
class “i ”.

Poi nt er

Contains, for the current output unit, the line number of the current line
within the current page.

| nt eger

Specifies whether pagination is enabled for the current output unit. If
l'i nes.v=0 (the default), pagination is disabled. If | i nes. v>0, pagination
is enabled and | i nes. v specifies the number of lines per page.

| nt eger

Specifies the termination character for external event data and random
variable data. The default is “*”.

Al pha

Specifies the number of minutes per simulated hour. The default is 60. O.

Doubl e

€y 9
|

Contains the number of events or processes of event/process class in the

event set, ev. S.

115

SIMSCRIPT I1.5 User’s Guide

Mode

page. v

Description:

Mode:

pagecol . v

Description:

Mode:

parm v(i)

Description:

Mode:

process. v

Description:

Mode:

pr og. name.

Description:

Mode:
pronpt. v
Description:

Default is

Mode:

rcol um. v

Description:

Mode:

116

;1 nteger

For the current output unit, contains the page number of the current page.

| nt eger

Specifies for the current output unit whether a line containing the page
number should be written automatically as the first line of each page. If
pagecol .v > 0, this feature is enabled and pagecol . v specifies the
starting column of the phrase, “PAGE nnnn”. If pagecol.v = 0 (the
default), this feature is disabled.

| nt eger

ey 9
|

Contains the “i ”’th command-line parameter.

Text

If non-zero, contains a pointer to the process notice of the currently-executing
process. If zero, no process is executing.

Poi nt er

Contains program name. Any directory information is removed.

Text

The string of characters to be output when reading an input from terminal.

(Y344

Text

For the current input unit, contains the column number of the last character
read from the current record, or zero if no character has been read from the
current record.

| nt eger

read. v
Description:

Mode:

record. v(i)
Description:

Mode:

ropenerr.v
Description:

Mode:

rreclen.v
Description:
Mode:

rrecord.v
Description:

Mode:

seed. v(i)

Standard SIMSCRIPT I1.5 Names

Contains the unit number of the current input unit.

I nt eger

cer 9
1.

Contains the number of records read from or written to unit number

I nt eger

If non-zero indicates that an error occurred opening the current input unit.

| nt eger

For the current input unit, contains the length of the current record.

| nt eger

Contains the number of records read from the current input unit.

| nt eger

ce; 9

Description: Contains the seed value used to generate a random number from stream “i .

Mode: | nt eger

tine.v
Description:

Mode:

wcol um. v

Description:

Mode:

wopenerr.v

Contains the current simulated time.

Doubl e

For the current output unit, contains the column number of the last character
written to the current record, or zero if no character has been written to the
current record.

| nt eger

117

SIMSCRIPT I1.5 User’s Guide

Description: If non-zero indicates that an error occurred opening the current output unit.

Mode: | nt eger

wrecord. v
Description: ~ Contains the number of records written to the current output unit.

Mode: | nt eger

wite.v
Description: Contains the unit number of the current output unit.
Mode: I nt eger

C.3 Attributes

The following attributes are automatically declared for an event or process notice:
eunit.a

Description: Contains zero for an endogenous event. Contains the unit number for an
exogenous event.

Mode: I nt eger
mev.s

Description: Contains 1 if the notice is in the event set, ev. s. Contains 0 if it is not in
the event set.

Mode: I nt eger

p.ev.s
Description: Contains a pointer to the event set predecessor.

Mode: Poi nt er

s.ev.s
Description: Contains a pointer to the event set successor.

Mode: Poi nt er

tine. a

Description: ~ Contains the simulated time at which the event or process is to occur, or for
an i nt er r upt ed process, the amount of time left to wor k orwai t .

118

Mode:

Standard SIMSCRIPT I1.5 Names

Doubl e

The following attributes are automatically declared for a process notice only:

f.rs.s

Description:

Mode:

i pc. a

Description:

Mode:

rsa. a

Description:

Mode:

sta.a

Description:

Mode:

Contains the first-in-set pointer for the set of resources owned by the process.

Poi nt er

Contains the process class corresponding to “I . process”.

| nt eger

Contains a pointer to the recursive storage save area for a suspended process.

Poi nt er

Contains the state of the process - O if passive (wai ting), 1 if active

(wor king), 2 if suspended, or 3 ifi nterrupt ed.

| nt eger

C.4 Constants

exp. ¢

Description:

Mode:

inf.c

Description:

Mode:

pi.c

Description:

Mode:

radi an. c

The value of “e”, 2. 718281828459045.

Doubl e

The largest representable i nt eger value.

| nt eger

The value of pi, 3. 141592653589793.

Doubl e

119

SIMSCRIPT I1.5 User’s Guide

Description: The number of degrees per radian, 57. 29577951308232.

Mode: Doubl e

rinf.c
Description: The largest representable r eal value.

Mode: Doubl e

120

Appendix D ASCII Character Set

0 NULL 32 Space 64 @ 96

1 SOH 33 65 A 97 a
2 STX 34 66 B 98 b
3 ETX 35 # 67 C 9 ¢
4 EOT 36 8 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 3 & 70 F 102 f
7 BEL 39 71 G 103 ¢
8 BS 40 72 H 104 h
9 HT a1) 731 105 i
10 LF 2 x 74] 106]
11 VT 43+ 75 K 107k
12 FF 44 76 L 108 1
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 sl 47 79 O 11 o
16 DLE 48 0 80 P 112 p
17 DCI 49 1 81 Q 113 g
18 DC2 50 2 82 R 114 ¢
19 DC3 513 8 S 115 s
20 DC4 52 4 84 T 116t
21 NAK 53 5 8 U 117 u
22 SYN 54 6 8 V 118 v
23 ETB 55 7 87 W 119w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121y
26 SUB 58 90 Z 122 2
27 ESC 59 o1 [123 ¢
28 FS 60 < 92 124 @
29 GS 61 = 93] 125}
30 RS 62 > 94 A 126 ~
31 US 63 2 95 127 DEL

SIMSCRIPT I1.5 User’s Guide

124

	PREFACE
	Introduction
	Developing Simulation Models with Simstudio
	Simstudio Overview
	Creating a New Project
	Adding Source code to a Project
	Creating a New File with the Text Editor
	Adding a Directory or a File Using Project Window
	Adding Multiple Directories and Files
	Adding Graphical Elements to a Project

	Opening an Existing Project
	Building a Project
	Building a Project for Debugging
	Building a Project for Release
	Compiler Listings

	Executing a Model
	Passing Command-Line Arguments
	1.6.2 Running the Executable with the Symbolic Debugger

	Closing the Project
	Setting Simstudio Preferences
	On-line Help
	Advanced Compiler/Link Options

	Developing Simulation Models Using Command-Line Interface
	Preparing Source Files
	Compiling
	Recompiling
	Linking
	Executing
	Profiling
	Makefiles
	Compilation Sequence
	Make Description File Format
	Transformation Rules
	Special Notes
	Sample Makefile

	Obtaining Online Help
	Example Program
	3.1 Input and Output
	3.2 Modes and Packing Codes
	3.2.1 Alignment of Values
	3.3.1 Calling C Routines
	3.3.2 Calling FORTRAN Routines

	4.1 Compiling for Debug and Invoking SimDebug
	4.1.1 Compiling for Debug
	4.1.2 Invoking SimDebug

	4.2 A Quick Tour of SimDebug
	4.2.1 Tour 1: Showing the Stack and Variables
	4.2.2 Tour 2: Breakpoints and Single Stepping
	4.2.3 Tour 3: Pointer Handling: Entity / Set Display

	4.4 Advanced Topics
	4.4.1 Batchtrace.v
	4.4.2 Signal Handling / External Events
	4.4.3 Reserved Names
	4.4.4 Displaying Arrays
	4.4.5 Permanent Entities and System Owned Variables/Sets
	4.4.6 Conditional Breakpoints
	4.4.7 Continuous Variables
	4.4.8 Unsupported SIMSCRIPT Features

	Appendix ACompiler Warning and Error Messages
	Appendix BRuntime Error Messages
	B.1 Runtime Error Messages

	Appendix CStandard SIMSCRIPT II.5 Names
	C.1 Functions and Routines
	C.2 Global Variables
	C.3 Attributes
	C.4 Constants

	Appendix DASCII Character Set
	Sec 2.pdf
	Developing Simulation Models Using Command-Line Interface
	Preparing Source Files
	Compiling
	Recompiling
	Linking
	Executing
	Profiling
	Makefiles
	Compilation Sequence
	Make Description File Format
	Transformation Rules
	Special Notes
	Sample Makefile

	Obtaining Online Help
	Example Program

	Sec 3.pdf
	3.1 Input and Output
	3.2 Modes and Packing Codes
	3.2.1 Alignment of Values
	3.3.1 Calling C Routines
	3.3.2 Calling FORTRAN Routines

