
process AIRPLANE
 call TOWER giving GATE yielding RUNWA Y
 work TAXI.TIME (GATE, RUNWAY) minutes
 request 1 RUNWAY
 work TAKEOFF.TIME (AIRPLANE) minutes
 relinquish 1 RUNWAY
end " process AIRPLANE

Since 1962S
SIMSCRIPT II.5
User's Manual

SIMSCRIPT II.5 User’s Guide

Copyright © 2003
CACI Products Company

Updated November 2002

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACL

If there are questions regarding the use or availability of this product, please contact CACI at any of the following addresses:

For product Information contact:

CACI Products Company CACI Worldwide Headquarters
1011 Camino Del Rio South, suite 230 1100 North Glebe Road
San Diego, California 92108 Arlington, Virginia 22201
Telephone: (619) 542-5224 Telephone (703) 841-7800
 www.caciasl.com www.caci.com

For technical support contact:

Manager of Technical Support
CACI Products Company
1011 Camino Del Rio South #230
San Diego, CA 92108

Telephone: (619) 542-5224

simscript@caci.com

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the responsibility
for any consequences resulting from the use thereof. The information contained herein is subject to change. Revisions to this
publication or new editions of it may be issued to incorporate such change.

SIMSCRIPT 11.5 is a registered trademark and service mark of CACI Products Company.

 2

TABLE OF CONTENTS

PREFACE.. a

Introduction.. 1

1 Developing Simulation Models with Simstudio.......... 3

1.1 Simstudio Overview.. 4

1.2 Creating a New Project .. 6

1.3 Adding Source code to a Project.. 7
1.3.1 Creating a New File with the Text Editor .. 7
1.3.2 Adding a Directory or a File Using Project Window 8
1.3.3 Adding Multiple Directories and Files .. 10
1.3.4 Adding Graphical Elements to a Project 11

1.4 Opening an Existing Project .. 12

1.5 Building a Project ... 13
1.5.1 Building a Project for Debugging .. 14
1.5.2 Building a Project for Release ... 16
1.5.3 Compiler Listings ... 16

1.6 Executing a Model... 17
1.6.1 Passing Command-Line Arguments .. 17
1.6.2 Running the Executable with the Symbolic Debugger 18

1.7 Closing the Project.. 19

1.8 Setting Simstudio Preferences ... 20

1.9 On-line Help .. 20

1.10 Advanced Compiler/Link Options ... 22

2 Developing Simulation Models Using Command-Line
Interface... 23

2.1 Preparing Source Files ... 23

2.2 Compiling... 23

2.3 Recompiling ... 28

2.4 Linking... 29

2.5 Executing ... 31

2.6 Profiling.. 32

2.7 Makefiles.. 34
2.7.1 Compilation Sequence .. 35

 i

SIMSCRIPT II.5 User’s Guide

2.7.2 Make Description File Format .. 36
2.7.3 Transformation Rules ... 36
2.7.4 Special Notes.. 37
2.7.5 Sample Makefile .. 37

2.8 Obtaining Online Help ... 39

2.9 Example Program ... 39

3 SIMSCRIPT II.5 Language Considerations 42

3.1 Input and Output .. 42

3.2 Modes and Packing Codes.. 44
3.2.1 Alignment of Values ... 45
3.3.1 Calling C Routines.. 45
3.3.2 Calling FORTRAN Routines .. 46

4 SimDebug Symbolic Debugger...................................... 50

4.1 Compiling for Debug and Invoking SimDebug 50
4.1.1 Compiling for Debug .. 50
4.1.2 Invoking SimDebug .. 51

4.2 A Quick Tour of SimDebug ... 52
4.2.1 Tour 1: Showing the Stack and Variables ... 52
4.2.2 Tour 2: Breakpoints and Single Stepping .. 55
4.2.3 Tour 3: Pointer Handling: Entity / Set Display 58

4.4 Advanced Topics... 72
4.4.1 Batchtrace.v ... 72
4.4.2 Signal Handling / External Events ... 73
4.4.3 Reserved Names .. 73
4.4.4 Displaying Arrays .. 73
4.4.5 Permanent Entities and System Owned Variables/Sets 73
4.4.6 Conditional Breakpoints .. 74
4.4.7 Continuous Variables .. 74
4.4.8 Unsupported SIMSCRIPT Features.. 74

Appendix A Compiler Warning and Error Messages 77

Appendix B Runtime Error Messages 91

B.1 Runtime Error Messages .. 91

Appendix C Standard SIMSCRIPT II.5 Names 101

C.1 Functions and Routines ... 101

C.2 Global Variables... 116

 ii

C.3 Attributes .. 120

C.4 Constants... 121

Appendix D ASCII Character Set.................................... 123

 iii

SIMSCRIPT II.5 User’s Guide

FIGURES

Figure 1-1 Opened Project in Simstudio with source and graphics windows 5
Figure 1-2 Project tree .. 7
Figure 1-3 Creating a new source file... 8
Figure 1-4. Creating a new folder in the project tree.. 9
Figure 1-5 Project tree with hierarchical organization of source code 10
Figure 1-6 Adding a new Icon in Simstudio... 11
Figure 1-7 Selecting Project Options.. 14
Figure 1-8 Selecting debugging options in Simstudio.. 15
Figure 1-9 Selecting Release options in Simstudio .. 16
Figure 1-10 Defining command line for model execution.. 18
Figure 1-11 SIMSCRIPT Symbolic Debugger window ... 19
Figure 1-12 Simstudio on-line help window .. 21

 iv

PREFACE

This document contains information on the use of CACI's SIMSCRIPT II.5 compiler for
developing simulation models. Development can be done either using SIMSCRIPT II.5
Development Studio (Simstudio) or Command-line interface.

CACI publishes a series of Manuals and text books that describe the SIMSCRIPT II.5
language and SIMSCRIPTII.5 Simulation Graphics, Development environment, Data Base
connectivity, Combined Discrete-Continuous Simulation, etc. All documentation is available
on SIMSCRIPT II.5 WEB site http://www.caciasl.com/products/simscript.cfm

 • SIMSCRIPT II.5 User’s Manual — This Manual – A detailed description of the
SIMSCRIPT II.5 development environment: usage of SIMSCRIPT II.5 Compiler
and the symbolic debugger from the SIMSCRIPT Development studio, Simstudio
and from the Command-line interface.

• SIMSCRIPT II.5 Simulation Graphics User’s Manual — A detailed description of
the presentation graphics and animation environment for SIMSCRIPT II.5

• SIMSCRIPT II.5 Data Base Connectivity (SDBC) User’s Manual — A description
of the SIMSCRIPT II.5 API for Data Base connectivity using ODBC

• SIMSCRIPT II.5 Operating System Interface — A description of the SIMSCRIPT
II.5 APIs for Operating System Services

• Introduction to Combined Discrete-Continuous Simulation using SIMSCRIPT II.5
— A description of SIMSCRIPT II.5 unique capability to model combined discrete-
continuous simulations.

• SIMSCRIPT II.5 Programming Language — A description of the programming
techniques used in SIMSCRIPT II.5.

• SIMSCRIPT II.5 Reference Handbook — A complete description of the
SIMSCRIPT II.5 programming language, without graphics constructs.

• Introduction to Simulation using SIMSCRIPT II.5 — A book: An introduction to
simulation with several simple SIMSCRIPT II.5 examples.

• Building Simulation Models with SIMSCRIPT II.5 —A book: An introduction to
building simulation models with SIMSCRIPT II.5 with examples.

The SIMSCRIPT II.5 language and its implementations are proprietary program products of
the CACI Products Company. Distribution, maintenance, and documentation of the
SIMSCRIPT II.5 language and compilers are available exclusively from CACI.

 a

SIMSCRIPT II.5 User’s Guide

Free Trial Offer

SIMSCRIPT II.5 is available on a free trial basis. We provide everything needed for a
complete evaluation on your computer. There is no risk to you.

Training Courses

Training courses in SIMSCRIPT II.5 are scheduled on a recurring basis in the following
locations:

La Jolla, California
Washington, D.C.

On-site instruction is available. Contact CACI for details.

For information on free trials or training, please contact the following:

CACI Products Company
1011 Camino Del Rio South, suite 230
San Diego, California 92108
Telephone: (619) 542-5228
 www.caciasl.com

 b

Introduction

As an aid to making important decisions, the use of computer simulation has grown at an
astonishing rate since its introduction. Simulation was first used occasionally in
manufacturing, military, nuclear, and a few other pioneering applications. More recently, its
use has expanded to many other areas of need. The growing list of successful applications
includes models relating to urban growth, hydroelectric planning, transportation systems,
election redistricting, cancer and tuberculosis studies, hospital planning, communications,
and multi-computer networks. SIMSCRIPT II.5 has been used world wide for building high-
fidelity simulation models.

SIMSCRIPT II.5 is a language designed specifically for simulation. It is the most efficient
and effective program development technique for simulation. This is due to the following:

• Portability. SIMSCRIPT II.5 development environment, which includes
SIMSCRIPT II.5 Development Studio, language compiler and Graphical systems are
available on the various computer systems. This facilitates the development of
general-purpose models and simulation applications that can be moved easily from
one site to another and from one organization to another.

• Appropriate Constructs. SIMSCRIPT II.5 provides constructs designed especially
for simulation (e.g., processes, resources, events, attributes, entities, and sets). These
constructs make it easier to formulate a simulation model. Implementation of the
simulation program is also quicker because these powerful tools do not have to be
invented anew.

• Self-Documenting Language. Applications developed using the SIMSCRIPT
II.5 language is characteristically easy to read and understand. The language
encourages this because it is oriented toward the kinds of problems being solved
rather than the machines being used as tools. The very high-level language features of
SIMSCRIPT II.5 were designed to make it possible to manage a complicated
simulation model.

• Error Detection. SIMSCRIPT II.5 performs a number of error checks that help to
assure that a simulation model is running correctly. Powerful inline symbolic
debugger speeds up run-time analysis of model behavior.

When an error in a run is detected, model enters SIMSCRIPT II.5 symbolic
debugger, which allows program status investigation, which includes the names and
values of variables, system status, and other valuable information. This reduces the
time spent in developing and testing programs.

• Statistical Tools. Along with the mathematical and statistical functions most often
used in simulation (exponential functions, random number generators, and so on),
SIMSCRIPT II.5 includes the accumulate and tally statements that allow the
model builder to collect statistics on key variables in his model.

SIMSCRIPT II.5 User’s Guide

• Report Generator. A formatted report generator with headings and page
numbering, along with the print statement, is part of the SIMSCRIPT II.5
language.

• Simulation Graphics. Brings interactive animated and display graphics to new and
existing SIMSCRIPT II.5 models. Graphical entities can be easily tied to program
entities, providing automatic animation and information display. Input/ Output dialog
boxes, menu bars, pallets can easily be added to the model providing elegant and
functional Graphical User Interfaces.

 • Data Base Connectivity. Provides SIMSCRIPT II.5 Application Program
Interfaces (API’s) to the major databases available on the market: Microsoft Access,
SQL Server Oracle, IBM DB2 and IBM Informix.

• Operating System Interface. Provides SIMSCRIPT II.5 Application Program
Interfaces (API’s) to Operating System Services facilitating portable models across
all SIMSCRIPT II.5 supported computer platforms.

• Open System. SIMSCRIPT II.5 provides possibility to call non-simscript
routines/functions from a SIMSCRIPT model. This facilitates usage of libraries
written in C/C++ or FORTRAN from SIMSCRIPT models.

• Complete Methodology. The SIMSCRIPT II.5 approach to simulation model
development provides the complete set of capabilities needed to develop a simulation
model. A simulation model developed in the SIMSCRIPT II.5 programming
language is readable by the analyst familiar with the system under study.

• Support. CACI provides SIMSCRIPT II.5 software, documentation, training and
technical support. Model development services are also available from CACI.

 2

1 Developing Simulation Models with Simstudio

Developing a SIMSCRIPT II.5 model typically involves the following steps:

1. Preparing one or more SIMSCRIPT II.5 source files using a text editor.
2. Preparing graphical elements: Icons, Graphs, Dialog boxes, Menubars, etc
3. Building the model (creating the executable file), checking for compilation or

linking errors
4. Editing and re-building the model, as needed, until there are no errors.
5. Executing the model
6. Debugging the model. In case of errors during execution, the model should be

built with the debugging option, and executed with the interactive SIMSCRIPT
II.5 symbolic debugger, to examine the state of the model and find the cause of
the error.

This development process can be done in the following two ways:

1. Using SIMSCRIPT II.5 Development Studio – Simstudio or
2. Using Command- line interface from cmd window.

Simstudio is an easy to use, user friendly integrated programming development
environment. It is the Graphical User Interface (GUI) to the SIMSCRIPT II.5 compiler,
syntax color coded text editor, graphical editors, automatic project builder and help system.
In Simstudio, editing source files, compiling and linking model executable is controlled
automatically for optimal efficiency. Simstudio provides the most commonly used compiler
switches and link options. It will be explained in detail in Chapter 1.1

Command-line interface can be used from cmd window. It is very convenient for users who
need more control over compilation and link phases and like to make use of make files and
scripts. You can use your own favorite text editor edit, vi, etc to create SIMSCRIPT source
files. To create graphical elements for your model, you have to use Simstudio graphicals
editors. CACI provides a set of commands for compiling and linking graphical and non-
graphical models like: simc, simld, simgld etc. These commands are explained in full detail
in Chapter 2. It also contains description of all available compiler switches.

SIMSCRIPT II.5 User’s Guide

1.1 Simstudio Overview

SIMSCRIPT II.5 Development Studio helps you to organize your model as a project which
can be built automatically using menu options.

When you start a new model development you have to create a new project, add source files,
add graphical elements and define how you want your project to be built. After that, you can
build and execute your model.

For a new project you will define the name of your project and directory where it will be
located. In the project directory a project_name.sp file will be created to hold model
information. Three subdirectories will be created: sources, executable and temp.

sources – will hold all the source files of your project. You can keep all source files
in one directory or organize them as a hierarchical structure of subdirectories.

executable– will hold model executable project_name.exe and graphics.sg2 file
which holds graphical elements used during model execution. Input data files
necessary for model execution should also be placed in this directory.

temp– will hold object files necessary for model build and other temporary files.
Contents of this directory are not important to developers.

This project directory structure helps you during development and deployment of your
model. Subdirectory sources contain the current version of the model source code, directory
executable contains all components necessary for model execution.

Simstudio consists of a Menubar, Toolbar and three windows. The project window is on the
left, Editor window on the right and Status window at the bottom.

Menu bar options: File, Project, Options, Window and Help, facilitate creating a new project,
opening an existing project setting project options and building and executing the model.

 4

Developing Simulation Models with Simstudio

Figure 1-1 Opened Project in Simstudio with source and graphics windows

The project window displays the project tree with current project subdirectories: sources,
executable and temp. The editor window contains windows for text and graphical editing.
The status window displays messages during project build and execution.

The project tree is composed of source code files with the extension ‘.sim’ in the directory
sources. The graphics.sg2 file contains the following graphical elements: icons with
extension ‘.icn’, forms with extension ‘.frm’ , and graphs with extension ‘grf’. These can be
found in the directory executable.

 Simstudio incorporates SIMSCRIPT II.5 Syntax Color Coded Text Editor for
creating/editing source files and Graphical Editors for creating/editing: Icons, Graphs,
Dialogs, Menus and Palettes. When you open a text file with extension “.sim”, all necessary
text editing menus and tool bars will appear. The same applies to graphical editors.

 5

SIMSCRIPT II.5 User’s Guide

The following sections will describe how a to create projects, add source code and graphical
elements, and build and execute the model.

1.2 Creating a New Project

To create a new project, use the Project->New menu option. The dialog box Create New
Project will appear.

Type in the project name, Click Browse…

Go to the directory where the new project will be located, click on Select Directory and
click Create

 6

Developing Simulation Models with Simstudio

The new project will be created with the following project directories: executable, sources
and temp. These appear in the project window. An empty graphics.sg2 file will be created
in the executable directory to hold graphical elements. A file with the project name and .sp
extension will be created in the project directory to hold project information.

Figure 1-2 Project tree

1.3 Adding Source code to a Project

Source code for projects are stored by default in the directory sources. You can create a new
text ‘.sim’ file, add individual directories and files or add the whole subdirectory with
multiple sub-directories to your project.

1.3.1 Creating a New File with the Text Editor

Use File->New to open an untitled text window. Type in the text and use File->Save As
to save it in the directory sources. The new file will appear in the project tree in the
project window and will be saved on the disk.

 7

SIMSCRIPT II.5 User’s Guide

Figure 1-3 Creating a new source file

To open this file again, click on its name twice with the left mouse-button in the project
tree. When you open a text file for editing the menu option Edit, the toolbar will contain
all necessary options for text editing.

You can open or delete a file from the project tree. Right mouse click on the source file
name in the project tree. This will open a pop-up menu with the options open or delete.
You can open the file for editing or you can delete it from the project and the disk.

1.3.2 Adding a Directory or a File Using Project Window

To add a new directory to the directory sources, right mouse click on the directory
sources. It will bring a pop-up menu with options: add files, new folder and delete.
Chose new folder.

 8

Developing Simulation Models with Simstudio

Enter the new folder name in the dialog box and click OK. The new folder will be
created on the disk and will appear in the project tree.

Figure 1-4. Creating a new folder in the project tree

You can right mouse click on this new folder to delete it from the disk and the project
tree.

When you chose add files from the pop-up menu the browsing dialog box will appear.
This allows you to add any file to your project. The added file will be copied to the
selected directory and will appear in the project tree.

 9

SIMSCRIPT II.5 User’s Guide

1.3.3 Adding Multiple Directories and Files

To add multiple source files that are organized in hierarchical multiple subdirectories, copy
the whole directory structure with the operating system tools to the project sources directory.
Use Project-> Update Project Tree to include all directories and files for the project and
project tree.

Figure 1-5 Project tree with hierarchical organization of source code

Right mouse click in the project window to bring up the pop-up menu with update project
tree option. This can be used to add a file or hierarchical files to the project.

 10

Developing Simulation Models with Simstudio

1.3.4 Adding Graphical Elements to a Project

Graphical elements for your model are located in the graphics.sg2 in directory executable.
An empty graphics.sg2 container will be created with every new project.

Right mouse click on graphics.sg2 in the project window. This brings up a pop-up menu with
the following options: new, import and save. If you click on new, a dialog box will be
presented allowing you to name the new graphical element and to chose its type: Icon, Dialog
Box, Simple message box, Menu bar, Palette, 2D chart, Pie chart, Analog clock, Digital
clock, Dial, Level Meter, Digital display and Text display.

After you define a type and click Create, a new graphical element icon will appear in the
graphics.sg2 project window. This opens the graphics window in the Editor window along
with the toolbar for the corresponding Graphical editor.

Figure 1-6 Adding a new Icon in Simstudio

 11

SIMSCRIPT II.5 User’s Guide

A detailed explanation on how to create and use graphical elements in SIMSCRIPT II.5
models can be found in the SIMSCRIPT II.5 Graphics User Manual.

1.4 Opening an Existing Project

 To open existing projects use the Project->Open menu option. The dialog box Open
Project will appear allowing you to browse to the project directory.

Select project_name.sp and click Open. The selected project will be opened for
development.

 12

Developing Simulation Models with Simstudio

1.5 Building a Project

Building a project can be done in two ways: using menu options: Project->Build or
Project-> Rebuild All.

If you use Project-> Rebuild All, it will recompile all the project source files and re-link the
model. When you use Project->Build only the modules changed after the previous build will
be recompiled and the model will be re-linked.

In SIMSCRIPT II.5 when the preamble is changed, Project->Build will function as Project-
>Rebuild All, meaning all the source files will be recompiled and the model re-linked.

You can influence the model building procedure using menu option Options->Project. It
will bring up a dialog box Project options, where you can define what you want your model
to be built for Release or Debugging.

You can define compiler options for release mode to optimize code generation and to include
run-time checking. For Debugging mode you can define warning messages to be suppressed
or displayed and run-time checking to be performed. You can also request various compiler
listings to be generated.

Linking phase can also be defined. Your model can be linked With Graphics libraries or
Without Graphics libraries. It can also be linked statically or dynamically. Static link will
link all necessary modules in the executable, while dynamic link will link with the dynamic
link libraries. Dynamic link is faster and convenient during model development. Static link is
convenient when you want to link your model to be transferred to another computer for
execution.

The name of the executable, by-default is project_name, but typing the desired name in the
binary text box can change it.

 13

SIMSCRIPT II.5 User’s Guide

Figure 1-7 Selecting Project Options

1.5.1 Building a Project for Debugging

During the development of your model you may want to build your project for debugging.
Select Options->Project to open the Project options dialog box. Check build mode Debug.
This will cause debugging facilities to be incorporated in your model.

You can also define if you would like compiler warnings to be presented or to be suppressed.
During the debug phase, it is advisable that you request run-time checking to be performed –
this will involve entity attribute access checking and array index checking and will generate
run-time error in case of incorrect access. These features will speed-up the testing phase.

 14

Developing Simulation Models with Simstudio

Figure 1-8 Selecting debugging options in Simstudio

To run your model with the debugger use Project->Debug. This will allow you to execute
the model step-by-step and to observe model variables.

A model built for debugging can also be executed with Project->Execute. Project will run
normally but in case of run-time error, control will be transferred to the debugger and you
will have full debugging capabilities.

 15

SIMSCRIPT II.5 User’s Guide

1.5.2 Building a Project for Release

When you finish debugging and your model is ready for the exploitation phase, you may
want to choose to build your model in Release mode.

Use Options->Project to bring up the Project options dialog box and check Build mode
Debug. This time choose Optimization to reduce model size and increase speed. If you are
sure that your model is fully debugged you may exclude run-time checking. This will further
increase execution speed.

Figure 1-9 Selecting Release options in Simstudio

A model built in Release mode should be run with Project->Execute.

1.5.3 Compiler Listings

Checking the appropriate Listing boxes in Project Options generatesone of the following: a

 16

Developing Simulation Models with Simstudio

compiler listing, a compiler listing with local cross-reference, or a full compiler listing with
Global-Cross Reference. All compiler listings will appear in the status window and will be
placed in the project_name.lis file in the temp directory.

1.6 Executing a Model

After building, the model executable is located in the project directory executable. To run it
use the menu option Project->Execute. This is the most common way to execute a model
built in Release mode.

The directory executable will also contain graphics.sg2 with graphical elements. All input
data necessary for a model run should be placed in this directory.

Projects built in Debug mode should be executed using Project->Debug.

1.6.1 Passing Command-Line Arguments

To pass command line arguments to the model, or to redirect model output use the
Command line text box of Project Options to write the command.

 Project_name.exe – arg1 –arg2 …

Here is an example of the redirection of output of the model ed106.exe to a file ed.out.

 17

SIMSCRIPT II.5 User’s Guide

Figure 1-10 Defining command line for model execution

 1.6.2 Running the Executable with the Symbolic Debugger

If the executable was built in Debug mode it can either be executed using menu options
Project->Execute or Project->Debug.

Project->Debug will invoke the symbolic debugger and the user will be able to have full
debugging control during execution like: stepping, setting break points and viewing
model variables. Chapter 4 of this manual explains all debugging commands and
facilities.

 18

Developing Simulation Models with Simstudio

Figure 1-11 SIMSCRIPT Symbolic Debugger window

1.7 Closing the Project

Close an open project before opening another project. To close a project use menu option
Project-> Close.

 19

SIMSCRIPT II.5 User’s Guide

1.8 Setting Simstudio Preferences

If you work on a project and close Simstudio without closing the project it will not remember
the last project you worked on.

If you want Simstudio to open and reload the last project you worked on, when launched
again, you can change its behavior.

Chose menu option Options->Preferences.. and set your preferences in the dialog box .

Marking check box “Reload files when opening project”, allows the user to request
Simstudio to always update project tree when a project is opened.

1.9 On-line Help

Simstudio provides full on-line help for all aspects of developing SIMSCRIPT Models,
including: SIMSCRIPT language constructs, Simulation graphics Editors and graphics
library, Simstudio, Command-line interface for developing models, List of Compiler and
Run-time errors., using Symbolic Debugger, Data Base connectivity, etc.

Use menu option Help to invoke on-line help system.

 20

Developing Simulation Models with Simstudio

Figure 1-12 Simstudio on-line help window

 21

SIMSCRIPT II.5 User’s Guide

1.10 Advanced Compiler/Link Options

Project options dialog box has two buttons very seldom used in more advanced model
developments.

C/C++ Options…

Facilitates preserving C files generated by the SIMSCRIPT compiler.

If you check this option, you will only generate C files. If you want to build the model do not
check this option.

Library options …

Facilitates linking executable with objects from external additional libraries.

 22

2 Developing Simulation Models Using
Command-Line Interface

Developing a SIMSCRIPT II.5 program using command-line interface commands typically
involves the following steps:

1. Preparing one or more SIMSCRIPT II.5 source files using a text editor.
2. Compiling the program and checking for compilation errors.
3. Editing and re-compiling the program, as needed, until there are no

compilation errors.
4. Linking the object files generated by the compiler to produce an executable

file.
5. Executing the program.
6. Debugging the program. In case of errors during execution, the program

should be compiled with the debugging option linked and then executed with
the interactive SIMSCRIPT symbolic debugger to examine the state of the
program and find the cause of the error.

2.1 Preparing Source Files

A SIMSCRIPT II.5 program may be prepared using vi, emacs or any other text editor.
If the program is small, it is convenient to store the entire program within a single file. If the
program is large, it is best to store each routine in a file of its own. Files containing
SIMSCRIPT II.5 source code must be given names that end with .sim or .SIM.

Although not a requirement, it is easier to compile and link a SIMSCRIPT II.5 program that
is stored in a directory of its own; i.e., a directory containing the entire source files of the
program in question and none of the source files of other programs.

2.2 Compiling

The SIMSCRIPT II.5 compiler translates a program written in the SIMSCRIPT II.5
programming language into one or more object files. The compiler uses C as an intermediate
language, but this is transparent to you, the SIMSCRIPT II.5 program developer. The
compiler will write diagnostics — error messages and warning messages — to stderr.
Errors prevent the generation of object files; warnings do not. See Appendix A for a complete
list of error and warning messages that are issued by the compiler.

The simc command is used to invoke the SIMSCRIPT II.5 compiler and linker. Its general
form is:

% simc [option] file.sim ...
For example, to compile and link a program consisting of a single source file named

SIMSCRIPT II.5 User’s Guide

abc.sim, enter:

% simc abc.sim

This command will compile the SIMSCRIPT source file abc.sim, reporting compilation
errors and warnings to the terminal. If the compilation is successful, the object module
abc.o will be linked producing an executable file named a.out.

The SIMSCRIPT compiler options follow the same general format as many C compilers and
other standard UNIX compilers. The options available should be familiar to experienced
UNIX programmers. Below is a brief overview of a few of the most commonly used options:

-c Do not link any object files after compilation.

-d Enable SIMSCRIPT symbolic debugging.

-l Display a routine-by-routine program listing.

-o name When linking, create an executable with the name provided.

-v Compile the preamble as “VERY OLD”. See below for more details.

-w Do not report any compiler warnings.

-x Display a local cross-reference listing for each routine.

Below is a complete list of the options available in the SIMSCRIPT II.5 compiler:

-a For each routine the compiler will produce a file containing the generated
source code for the routine together with the SIMSCRIPT source code as
comments. Produces a .c file with “ALLSTARS” comments, which shows the
expansion of complex SIMSCRIPT statements into simpler ones.

-b N This compiler switch is seldom used. The SIMSCRIPT II.5 compiler
generates C code as an intermediate step during the compilation. This is
transparent to you. On some platforms C compilers cannot compile source
files with a large number of C code lines, because of the static allocation of
the symbol table. By default, the SIMSCRIPT II.5 compiler will generate the
intermediate C code into one file. To enforce splitting of generated
intermediate C code into files with a defined (maximum) number of lines, you
should invoke the SIMSCRIPT II.5 compiler with the optional compiler
switch -b N " (break C code after N number of lines). For example:

simc -b 3000 big.sim

File big.sim will be transformed into big-1.c, big-2.c, etc.
Subsequently generated object modules will be big-1.o, big-2.o, etc.

-c The compiler's default behavior is to link using simld after compilation. If

 24

Developing Simulation Models Using Command-Line Interface

you want to stop this from happening, use this option.

-C The compiler will generate code to perform full runtime checking. This code
validates every array element reference and every attribute reference.
Also, in the event of a runtime error, a more elaborate traceback will be
provided. This option allows SIMSCRIPT II.5 to detect a larger class of
runtime errors and should be used when compiling a program that is not fully
debugged. Both the traceback and runtime error checking will make your
programs run somewhat slower. Note that runtime checking is not enabled by
default.

As of release 1.8 this option has been enhanced in the following way: When
an entity is removed from a set, SIMSCRIPT now checks if this entity is
indeed part of the given set. This is accomplished by changing the contents of
the M.setname attribute of the entity, which not only indicates that this
entity is a member of some set, but also indicates of which set.

When the list is owned by a permanent entity, the field M.setname now
contains the index (integer) to the head of the list. When the list is owned by a
temporary entity, M.setname now contains a pointer to the owner entity.
This means that source code that checks M.setname for 1, should check for
<> 0.

-C0 Provide runtime checking for array element reference only without entity
class checking and set membership checking. Note this is C"zero", not
C"oh".

-d Selects 'compiling for debug'. The compiler is fully integrated with the
SIMSCRIPT II.5 symbolic debugger. After linking, the program can be
activated with the command line switch -debug to provide interactive dialog
with the debugger. The SIMSCRIPT II.5 symbolic debugger allows you to
study and change the behavior of a model at runtime. Debugging features
include the following:

• Setting a break point in a given routine, or in an active

SIMSCRIPT process instance

• Single stepping one source line at a time

• Viewing source code

• Displaying of local, global variables and temporary entities in

various formats and their modifications

• Displaying the status of the program: I/O and memory usage
statistics etc.

To use all the debugger functions, a SIMSCRIPT II.5 program must be

 25

SIMSCRIPT II.5 User’s Guide

compiled with the -d compilation switch. To start a program in “'debugging
mode” where you can set breakpoints etc., the executable should be invoked
with the -debug option:

simc -d prog.sim -o prog
prog –debug

The -debug option is internal to SIMSCRIPT and will not be seen by the
user program.

A runtime error will automatically activate the debugger so that you can
examine the current stack and variables that led to the error. If the program
was not compiled with the -d option, only a minimal set of debugging
functions will be available. If the program was compiled with the -d option,
all debugger functions will be available. An on-line help command h will
display a list of available debug commands and parameters. See chapter 4.

-F This compiler switch is seldom used. SIMSCRIPT II.5 provides an interface

toNON-SIMSCRIPT and FORTRAN routines. FORTRAN routines are
invoked from SIMSCRIPT II.5 programs without appending an underscore to
the FORTRAN routine name. In some computer environments this is
necessary. To generate calls with the appended underscore, the SIMSCRIPT
II.5 compiler should be invoked with the optional compiler switch -F. For
example:

simc -F prog.sim

-g The compiler will provide a detailed traceback listing without enabling

runtime checking. Routines compiled with -g will be shown with the 'current
line number' and all their local variables in a traceback.

-G Link a SIMGRAPHICS program using simgld.

-l The compiler will write a listing to standard output. Typically, standard

output is redirected to a file. For example, to write a listing to a file named
listfile, enter:

% simc -l *.sim > listfile

The listing shows the source statements together with diagnostic messages, if
any. It may also include local and/or global cross-references (see the –x and
-X options).

-L n The compiler will produce output listings with n lines per page. The default
value is 55.

-o name When linking, the executable file created will be called name. If this option

is not specified, a.out is the default executable name. For example, the
following command creates an executable called file after compiling all
the .sim source files in this directory.

 26

Developing Simulation Models Using Command-Line Interface

simc *.sim -o file

-O The C compiler's optimizer will be involved when compiling. This option
will increase compile time, but will reduce model runtime. On very rare
occasions, some optimizers may produce incorrect code, resulting in incorrect
behavior of your program. If this is suspected, try compiling without
optimization. The following command will create an optimized executable
called prog after compiling filename.sim.

simc -O -o prog filename.sim

-p Compile using profiling code. See prof(1) and cc(1) in the man pages

for details. This must be specified at link-time, either through simc or
simld. See paragraph 2.6. This option may not be provided on all computer
platforms.

-S Create only a .c file. Do not produce .o or link.

-temp=dir

Specify the location of compiler temporary files. The default is /tmp. This
does not affect where the C compiler places its own temporary files.

-v This option means a VERY OLD PREAMBLE. It is used during re-compilation
of some SIMSCRIPT routines when there are no changes to the
Preamble.sim. It will speed-up the re-compilation process because
Preamble.o will not be generated. Also, the PREAMBLE will not appear in
the listing.

For example, enter the following command to re-compile file1.sim into
an object file (which will be called file1.o). The name of the file which
contains the PREAMBLE, Preamble.sim, must always be given because it
contains definitions for SIMSCRIPT data structures. The -c option prevents
linking.

simc -cv Preamble.sim file1.sim

Enter the following command to create an executable called a.out (the
default name) from the object files in this directory after re-compiling
rout1.sim.

simc -v Preamble.sim rout1.sim *.o

-w The compiler will suppress warning messages, i.e., no warning messages
will be displayed.

-x The compiler will write to the listing a local cross-reference for each routine.

A local cross-reference shows the line number of every reference made to
each name in the routine.

-X The compiler will append to the listing a global cross-reference for the entire

 27

SIMSCRIPT II.5 User’s Guide

program. A global cross-reference shows the name of every routine, which
references each globally defined name.

-1 The compiler will not generate code. It is sometimes desirable to quickly

check the syntax of a program and/or produce a listing without generating any
object files. Note, this is a “one” not an “ell”.

The following command compiles a program consisting of three source files: abc.sim,
def.sim and ghi.sim. Warning messages will be suppressed (-w option) and runtime
checking code will be generated (-C option).

% simc -w -C abc.sim def.sim ghi.sim

The compiler expects to find the preamble of the program at the beginning of the first file
specified. Thus, if the program in the above examples contains a preamble, it must be located
at the beginning of file abc.sim or compilation errors will result.

The following is a convenient way to compile a program consisting of many source files
within a single directory:

% simc *.sim

In this example, *.sim is automatically expanded into a list of source files sorted by name.
Since the compiler expects to find the PREAMBLE in the first file it encounters, it is necessary
that the file containing the PREAMBLE be given a name, which precedes all others in sorted
order. Since upper-case names precede lower-case names, one convention, which may be
followed, is to store the PREAMBLE in a file named PREAMBLE.sim and to name the rest of
the files using all lower-case characters.

2.3 Recompiling

Whenever a change is made to the PREAMBLE of a program, it is necessary to re-compile the
entire program. If a change is made only to routines of the program, only those routines that
have been modified need be re-compiled, not the entire program.
Suppose that the routine in file xyz.sim has been modified. If this routine does not require
anything declared in the PREAMBLE, then the following command can be used to re-compile
it:

% simc -c xyz.sim

If this routine does reference something declared in the PREAMBLE, it is necessary to
recompile the PREAMBLE along with it:

% simc -cv PREAMBLE.sim xyz.sim

The -v option is specified to avoid regenerating the scripted routines contained in the
PREAMBLE.o.

 28

Developing Simulation Models Using Command-Line Interface

2.4 Linking

If the -c option is used to suppress linking, the compiler generates object files, which need
to be linked. Each of these files has a name that ends with .o. The simld command is used
to link a SIMSCRIPT II.5 non-graphical program. Its general form is:

% simld file.o ...

If there are any undefined references, the name of each missing routine will be displayed.
If there are no undefined references, an executable file named a.out will be produced.
Suppose a program consists of only three routines: main.sim, sub1.sim and
sub2.sim. Then the object files generated by the compiler are main.o, sub1.o and
sub2.o. The following command will link this program:

% simld main.o sub1.o sub2.o

The following is a convenient way to link a program consisting of many object files within a
single directory:

% simld *.o

Note that it is necessary to link all of the object files generated by the compiler. Even if just a
single routine has been modified and re-compiled, it is necessary to re-link the entire set of
object files.

simld is a shell script which invokes the UNIX C compiler, cc, to link object files. Any
option, which may be specified to cc, may also be specified to simld. The most useful of
these is the -o option. It is used to name the executable file something other than a.out.
For example, to create an executable file named compute, enter:

% simld -o compute *.o

simgld is another shell script which invokes cc. It must be used instead of simld to link
SIMGRAPHICS programs. For example, to link a SIMGRAPHICS II program and name the
executable file animate, enter

% simgld -o animate *.o

It is possible to create a library of SIMSCRIPT II.5 routines using the UNIX archive utility,
ar. To create a library named xyz from the object files in a directory, enter the following
command:

% ar r libxyz.a *.o

To make the library accessible to all users, enter the following sequence of commands:

% mv libxyz.a $SIMHOME/lib
% ranlib $SIMHOME/lib/libxyz.a
% chmod 644 $SIMHOME/lib/libxyz.a

SIMHOME is the environment variable, which contains the full path where SIMSCRIPT II.5
is installed. For more details of the SIMHOME, see the Installation Notes for the current

 29

SIMSCRIPT II.5 User’s Guide

SIMSCRIPT II.5 release.

Note that ranlib is not available on all systems. On systems where it is not available it is
not needed. To link the object files in a directory with this library, enter:

% simld *.o –lxyz

A SIMSCRIPT II.5 program can call routines written in other languages, such as C or
FORTRAN. To link such a program, specify to simld (or simgld if the program makes
use of SIMGRAPHICS features) the name of each object file created by the other compiler,
along with the name of each object file created by the SIMSCRIPT II.5 compiler.

SIMSCRIPT II.5 supports two graphics systems SIMGRAPHICS I and SIMGRAPHICS
II. As of Release 1.9, SIMGRAPHICS II is the default SIMGRAPHICS in SIMSCRIPT
II.5 systems. Compiler switch -G will link graphical models with SIMGRAPHICS II
libraries.

simc -G *.sim

Also simgld will automatically link with SIMGRAPHICS II libraries. If you want to use
SIMGRAPHICS I, you must compile your model with the -c option and use simgld1 as
follows:

simc -c *.sim
simgld1 *.o

SIMSCRIPT II.5 runtime libraries as well as SIMGRAPHICS libraries are distributed in two
versions: dynamic link libraries and archive libraries. This facilitates dynamic and static
linking. By default programs will be linked dynamically.

When a model is linked dynamically, the executable image does not include the entire object
modules it needs for execution. It contains pointers to the dynamic link libraries also called
“shareable libraries”. The benefits of dynamic linking are twofold: first linking time is
shorter, second all SIMSCRIPT models in the same computer platform share the same
runtime libraries which results in substantial savings of disk space. When you use existing
link commands: simld, simgld, simgld1 and simgld2 your model will be linked
dynamically.

If you want to execute your model on some other platform, which does not have the same
release of SIMSCRIPT II.5, or does not have SIMSCRIPT II.5 installed at all, your model
must be linked statically. This means that you have to perform static link or “total link”. In
other words, your executable has to include all object modules in itself.
SIMSCRIPT II.5 provides commands for platform independent static linking or “total
linking” for both non-graphical and graphical SIMSCRIPT models:

tsimld - static link of non-graphical models
tsimgld - static link of graphical models by default with SIMGRAPHICS II
tsimgld1 - static link of graphical models with SIMGRAPHICS I
tsimgld2 - static link of graphical models with SIMGRAPHICS II

 30

Developing Simulation Models Using Command-Line Interface

2.5 Executing

A SIMSCRIPT II.5 program is executed by entering the name of the executable file. For
example:

% a.out

Parameters specified on the command line are available to the SIMSCRIPT II.5 program
in the global text array, parm.v. For example, consider the following command:

% a.out -i 10 WXYZ.dat

Upon entry to this program, parm.v will be set up as follows:

DIM.F(PARM.V(*)) = 3
PARM.V(1) = -i
PARM.V(2) = 10
PARM.V(3) = WXYZ.dat

A SIMSCRIPT II.5 program can read from standard input by reading from UNIT 5. It can
write to standard output by writing to UNIT 6 and can write to standard error by writing to
UNIT 98. Any redirection of these units, which is allowed by the operating system, may
bespecified on the command line.

Internal command line switches used for debugging, like -debug and -batchtrace, will
not be seen by the program in parm.v.

If a runtime error is detected by SIMSCRIPT II.5, the program will be stopped and:

1. A runtime error message will be written to standard error (see Appendix B for a
complete list of runtime error messages) and the interactive debugger dialog will be
entered allowing you to examine the state of the program;

2. If the program was invoked with the command line switch -batchtrace, a runtime

error message, a traceback, a simulation status report, a memory status report and an
I/O status report will be written to a file simerr.trc and the user-supplied
snapshot routine, snap.r, will be called, if it exists. The level of debugging
information included in a traceback depends on the compiler switches used for
compilation: -d and -g will provide routine names with local variables and line
numbers. If none of these switches are used, only routine names will be written,
without other debugging information.

In the event that a runtime error goes undetected by SIMSCRIPT II.5 and a program aborts
with a core dump, it is possible to analyze the core file using the UNIX debugger, adb.

Any SIMSCRIPT II.5 program may be invoked from a shell script. The exit status returned
by the program will be zero if the program was terminated by a stop or end statement, and
will be non-zero if the program was aborted due to a runtime error. However, you may
explicitly call exit.r to terminate your program and return a particular exit status.

 31

SIMSCRIPT II.5 User’s Guide

2.6 Profiling

Profiling is useful when analyzing the performance of a program. Profiling helps determine
where most of the execution time in a program is spent. In the typical program, execution
time is confined to a relatively few sections of code. It may be profitable to concentrate on
improving coding efficiency in only those sections.

Profiling is platform specific, and may not be available on all UNIX platforms. We will
describe a common approach, using the prof command for profiling a SIMSCRIPT II.5
model.

The prof command produces an execution profile of a program. The profile data is taken
from the profile file, which is created by programs compiled with the -p option. That option
also links in versions of the library routines, which are compiled for profiling.

When a program is profiled, the results appear in a file called mon.out (default filename) at
the end of the run. Every time the program is run, a new mon.out file is created overwriting
the old version. The profiled program must exit or return normally for the profiling
information to be saved in the mon.out file. The prof command is then used to interpret
the results of the profile.

 prof Displays the following information for each routine:

%time Percentage of the total time of the program, that was consumed by this
routine.

cumsecs A running sum of the number of seconds accounted for by this function and

those listed above it.

#call The number of times this routine was called.

ms/call How many milliseconds this routine consumed each time it was called.

name The name of the routine.

To obtain a profile of a SIMSCRIPT II.5 program, it is necessary to link the program using
the -p option. To tally the number of calls to a routine, the file that contains the routine must
be compiled with the -p option.

Compile the modules you want profiled with the -p flag:

% simc -c -p file1.sim file2.sim
% simc -c file3.sim

To link the program, type:

% simld -p file1.o file2.o file3.o

 32

Developing Simulation Models Using Command-Line Interface

Or simply:

% simc -p file1.o file2.o file3.o

Run your program:

% a.out

Now use prof to write an execution profile to standard output:

% prof a.out

The following is some sample profile data created by prof. Routines that begin with _H are
SIMSCRIPT library routines. Routines that begin with _R were generated by the
SIMSCRIPT compiler or are user routines. Routines that begin with _Q are SIMSCRIPT or
user left routines. Other routines are C library routines.

 33

SIMSCRIPT II.5 User’s Guide

Note: The symbol mcount is a side effect of profiling, and indicates the overhead incurred
by profiling.

%time cumsecs #call ms/call name

21.4 25.66 _HP_SUSPEND_R

18.6 47.91 _HP_RESUME_R

11.9 62.12 mcount

6.9 70.34 220716 0.04 _HTIM0_R

3.9 75.01 11755 0.40 _RJOB

3.5 79.16 165643 0.03 _HT_EV_S

2.3 81.93 110445 0.03 _HRANDOM_F

2.2 84.62 110419 0.02 _QS_N_X_TRANSPORTER

2.0 87.00 208985 0.01 _HPRQ_R

1.7 89.08 86922 0.02 _QS_N_X_WORK_STATION

1.6 91.00 1 30610 0.01 _calloc

1.5 92.84 86922 0.02 _QS_WS_NUM_MACH_WORKING

1.4 94.51 56318 0.03 _QS_N_Q_WORK_STATION

1.3 96.11 208959 0.01 _HPSU_R

1.3 97.68 98664 0.02 _HRNQ_R

1.2 99.12 5 5303 0.03 _log

1.2 100.52 28165 0.05 _RT_Q_WORK_STATION

1.1 101.84 1 1320.00 _HTIME_R

1.1 103.12 98689 0.01 _HREQ_R

0.9 104.22 220716 0.00 _HPCALL_R

0.9 105.28 208985 0.01 _HPSUSP_R

0.8 106.29 220716 0.00 _HTIM1_R

0.8 107.21 130716 0.01 _malloc

0.7 108.08 241264 0.00 .mul

0.7 108.90 429904 0.00 _HDIM_F

0.7 109.71 55210 0.01 _RT_X_TRANSPORTER

0.6 110.46 43467 0.02 _QS_WS_DELAY_IN_QUEUE

0.6 111.19 43467 0.02 _HERLANG_F

0.6 111.86 55209 0.01 _RZ_X_TRANSPORTER

See the man page for prof(1) for more information.

2.7 Makefiles

The file-naming scheme that this compiler uses is compatible with the naming scheme used
by the C language compiler. Because of this, it is possible to use the UNIX “make” utility.
This utility only recompiles the source files that have changed since the last compilation.

 34

Developing Simulation Models Using Command-Line Interface

This is an easy and reliable way to manage models of medium to large size. Make is not very
good at handling models whose sources are spread over many directories but, with care, it is
possible.

The make utility relies on a special file, called a “make file”, to describe the rules for
rebuilding your particular model. By default, the “make file” is named either makefile or
Makefile. Other file names may be specified with the -f option of make. See the man
page for make(1) for more information.

2.7.1 Compilation Sequence

The compiler knows about the following kinds of file extensions, and treats them as follows:

.sim: Compile as SIMSCRIPT source files.

.SIM: Alternate suffix for SIMSCRIPT source files.

.o: Object files.

.c: C source files, produced in intermediate stage.

.a: Archive libraries to include in linking.

Files must be named using this convention. For other kinds of file extensions, consult the
manual for your C compiler. Files are named after the SIMSCRIPT source using the
following convention

myfile.sim -> myfile.o

This allows the use of makefiles.

The easiest way to use the compiler is to simply specify all the sources you want compiled,
and let the compiler compile and link them into an executable program. However, during
development of a large program, only recompiling those source files that have changed since
the previous compilation can save much time. This is accomplished by saving the object file
for each source file. Then, when a source file is recompiled, the new object file replaces the
old, and all of the object files can be relinked to create a new executable. Linking all of the
object files is much faster than compiling all of the source files.

Make takes this one step further. It checks the modify time of each source file, and only
recompiles it if it is newer that its object file or the target executable. This way, only the
source files that need compiling are actually compiled. The actual compilation and linking
commands are specified in the makefile.

 35

SIMSCRIPT II.5 User’s Guide

2.7.2 Make Description File Format

The descriptions in this section are simplified. For a complete description of the file format,
see the documentation that came with your system.

Entries in a makefile are of the following form:

target1 [target2 ...] : [dependent1 ...]
<tab> command [# comments ...]

Items in square brackets are optional. The <tab> must be a “tab” character. Shell
metacharacters such as '*' and '?' are expanded. The entry is concluded with a blank
line.

Makefiles can also contain simple macros. Macros can be defined in the make command line,
or more commonly, in the makefile. The definition is simple: a macro name, an “equal” sign,
and the macro value. An example is PREAMBLE = Preamble.sim. A macro is invoked by
preceding the name with a dollar sign ($$ is used to represent a real dollar sign). Macro
names longer than one character must be parenthesized like this: “$(PREAMBLE)”. When the
macro is invoked, its text is replaced with its current value, so in our example,
“$(PREAMBLE)” would be replaced with Preamble.sim. Make also has four predefined
macros specific to the job it performs. These special macros are $*, $@, $?, and $<.
These macros are re-evaluated before each command. They are evaluated as follows:

• The $* macro is the root file name of the current file. For example, if the
current file were frequency.sim, $* would equal frequency.

• The $@ macro represents the current “target” file name.

• The $? macro is the string of file names found to be newer than the current

target.

• The $< macro is the name of the file which caused this command to be

executed.

2.7.3 Transformation Rules

A transformation rule is what make uses to “transform” a source file into an object file, or
several object files into an executable. Many useful transformation rules are built into make,
such as rules to compile C, FORTRAN, or even assembler. Unfortunately, the rules for
SIMSCRIPT are not built in.

To provide make with this information, make must first be informed of the new source suffix,
.sim. This is done using a fake target called. SUFFIXES. For our purposes, SUFFIXES:
.sim .o is sufficient. Next, make needs to know how to transform .sim files into .o
files. We do this using a transformation rule called. sim.o. See the sample makefile in

 36

Developing Simulation Models Using Command-Line Interface

paragraph 2.7.5 for an example. In transformation rules, the special macros are set as follows:
$* is set to the file name without the suffix, $< is the name of the file to be transformed,
and $@ is the name of the file to be created (or updated).

2.7.4 Special Notes

Each line in a makefile is executed by a new invocation of the shell, so commands like cd
for example, must be combined into one line using the shell command separator, “;”.

By default, make displays each command before executing it. This can be prevented by
preceding the command with an at sign (@).

If a macro is defined on the make command line, it supersedes the makefile's definition, if
any is present. A typical use of this is to use make SFLAGS=-O to use optimization on any
compiles that need to be performed.

There are several ways to force recompilation:

1. Use touch(1) to update the source file's modify time. Make will then consider
the source file “changed”. This will also force relinking if the corresponding
object file is a dependent of the executable.

2. Delete the corresponding object file. This has the same effect as the above.
3. Delete the executable. This will force relinking, but will not recompile any

sources unless they are out of date.

2.7.5 Sample Makefile

Generic makefile for SIMSCRIPT programs

MAKE ARGUMENTS:
<no arg> : Make executable with the name in the "PRG" parameter.
clean : Remove all non-source files, i.e. object files and
the executable and all intermediate files.
cleanexe : Remove the executable.
#---

#===
FILL IN THE PARAMETERS BELOW UNTIL THE LINE
">>> END OF PARAMETERS <<<"
#===

<<< PARAMETERS >>>
PRG: The name of the executable.
PRG = bounce

PREAMBLE: SIMSCRIPT source file containing the preamble.
SIMFILES: All other SIMSCRIPT source files. A "\" followed

 37

SIMSCRIPT II.5 User’s Guide

immediately by a carriage return must be put at the
end of the line to continue to the next.
PREAMBLE = Preamble.sim
SIMFILES = ball.sim bounce.sim done.sim init.sim main.sim menu.sim \

 menuctl.sim output.sim
SFLAGS: SIMSCRIPT compile flags.
SFLAGS = -d
SIMLINK: Specify link command with SIMGRAPHICS I, SIMGRAPHICS II,
or no graphics; dynamic or static link.

<<< DYNAMIC LINK >>>
SIMGRAPHICS I - simgld1
SIMGRAPHICS II - simgld2 or simgld
NO GRAPHICS - simld

<<< STATIC LINK >>>
SIMGRAPHICS I - tsimgld1
SIMGRAPHICS II - tsimgld2
NO GRAPHICS - tsimld
SIMLINK = simgld
>>> END OF PARAMETERS <<<

#===
#=========== BELOW HERE NO CHANGES SHOULD BE NECESSARY ===============
#===

SIMC: SIMSCRIPT compile command.
SIMC = simc

OBJS: List of .o files.
OBJS = $(PREAMBLE:.sim=.o) $(SIMFILES:.sim=.o)

The first (empty) .SUFFIXES clears the SUFFIXES list. The second
acknowledges only the .sim and .o suffixes. This avoids problems
with extraneous .c files and others.
.SUFFIXES:
.SUFFIXES: .o .sim .c

$(PRG) : $(OBJS)

 @echo "-- Linking ..."
 $(SIMLINK) -o $(PRG) $(OBJS)
 @echo "-- $(PRG) was successfully built!"

clean :
 @echo "-- Removing all intermediate files and the executable."
 rm -f *.o *.c *.i *.s *~ core a.out $(PRG)

cleanexe :
 @echo "--- Removing executables."
 rm -f core a.out $(PRG)

#-------------------------- RULES -----------------------------------

If preamble was changed, we need to recompile everything. Since
after that all *.o will be current, just the link is left in the
target above.

$(PREAMBLE:.sim=.o): $(PREAMBLE)

 @echo "-- $(PREAMBLE:.sim=.o) outdated or missing!"
 @echo "-- Recompiling everything ..."
 $(SIMC) -c $(SFLAGS) $(PREAMBLE) $(SIMFILES)

How to make an individual object file from a simcript source file.

.sim.o:

 $(SIMC) -cv $(SFLAGS) $(PREAMBLE) $*.sim

 38

Developing Simulation Models Using Command-Line Interface

2.8 Obtaining Online Help

Online documentation regarding the use of the SIMSCRIPT II.5 compiler can be obtained by
using the simhelp command, e.g.

% simhelp simc

Simhelp by itself lists all topics for which help is available.

2.9 Example Program

The following is an example of a complete program and compilation.%

m main.sim
SIMU01 job.sim stop.sim
% simc -l *.sim > listing
% ls
Preamble.o a.out* job.o main.o stop.sim

Preamble.sim generator.o job.sim main.sim
SIMU01 generator.sim listing stop.o
% cat listing

PAGE 1
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PREAMBLE
2
3 RESOURCES INCLUDE CPU AND MEMORY
4 PROCESSES INCLUDE GENERATOR AND STOP.SIM
5 EVERY JOB HAS A JB.PRIORITY
6 AND A JB.MEMORY.REQUIREMENT
7 DEFINE JB.PRIORITY AND JB.MEMORY.REQUIREMENT
8 AS INTEGER VARIABLES
9 DEFINE JOB.DELAY.TIME AS A REAL VARIABLE
10 EXTERNAL PROCESS IS JOB
11 EXTERNAL PROCESS UNIT IS 1
12 DEFINE SMALL.JOB.INTERARRIVAL.TIME,
13 MEAN.SMALL.JOB.PROCESSING.TIME, RUN.LENGTH
14 AND STOP.TIME AS REAL VARIABLES
15 DEFINE NO.CPU AND MAX.MEMORY AS INTEGER VARIABLES
16 DEFINE MAX.MEMORY.QUEUE TO MEAN 1MAX.MEMORY.QUEUE
17
18 ACCUMULATE CPU.UTILIZATION AS THE AVG OF N.X.CPU
19 ACCUMULATE MEMORY.UTILIZATION AS THE AVERAGE
20 OF N.X.MEMORY
21 ACCUMULATE AVG.CPU.QUEUE AS THE AVG AND
22 MAX.CPU.QUEUE AS THE MAXIMUM OF N.Q.CPU
23 ACCUMULATE AVG.MEMORY.QUEUE AS THE AVG
24 AND MAX.MEMORY.QUEUE AS THE MAXIMUM OF N.Q.MEMORY
25 TALLY AVG.JOB.TIME AS THE AVERAGE AND NO.JOBS.PROCESSED
AS
26 THE NUMBER OF JOB.DELAY.TIME
27
28 DEFINE HOURS TO MEAN UNITS
29
30 END ''PREAMBLE

 39

SIMSCRIPT II.5 User’s Guide

PAGE 2

CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PROCESS GENERATOR
2
3 UNTIL TIME.V >= STOP.TIME
4 DO
5 ACTIVATE A JOB NOW
6 LET JB.PRIORITY.. = RANDI.F(1,10,1)
7 LET JB.MEMORY.REQUIREMENT.. = RANDI.F(1,MAX.MEMORY,2)
8 WAIT EXPONENTIAL.F(SMALL.JOB.INTERARRIVAL.TIME,3) MINUTES
9 LOOP
10
11 END

PAGE 3
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PROCESS JOB
2
3 DEFINE ARRIVAL.TIME AND PROCESSING.TIME
4 AS REAL VARIABLES
5 IF PROCESS IS EXTERNAL
6 READ JB.PRIORITY..,JB.MEMORY.REQUIREMENT.. AND
7 PROCESSING.TIME
8 ELSE
9 LET PROCESSING.TIME = MIN.F(EXPONENTIAL.F
10 (MEAN.SMALL.JOB.PROCESSING.TIME,4),2 *
11 MEAN.SMALL.JOB.PROCESSING.TIME)
12 ALWAYS
13 LET ARRIVAL.TIME = TIME.V
14 REQUEST JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY(1)
15 WITH PRIORITY JB.PRIORITY..
16 REQUEST 1 CPU(1) WITH PRIORITY JB.PRIORITY..
17 WORK PROCESSING.TIME MINUTES
18 RELINQUISH JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY(1)
19 RELINQUISH 1 CPU(1)
20 LET JOB.DELAY.TIME = TIME.V - ARRIVAL.TIME
21
22 END

 4
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 MAIN
2
3 WRITE AS /, "A COMPUTER CENTER STUDY", /, /
4
5 Open unit 1 for input
6
7 LET HOURS.V = 1
8 CREATE EVERY CPU(1) AND MEMORY(1)
9 Let U.CPU(1) = 1
10 Let U.MEMORY(1) = 6
11 LET NO.CPU = U.CPU(1)
12 LET MAX.MEMORY = U.MEMORY(1)
13
14 Let SMALL.JOB.INTERARRIVAL.TIME = 2.0
15 Let MEAN.SMALL.JOB.PROCESSING.TIME = 0.8
16 Let RUN.LENGTH = 12.0

 40

Developing Simulation Models Using Command-Line Interface

17 LET STOP.TIME = RUN.LENGTH / HOURS.V
18
19 PRINT 6 LINES WITH U.CPU(1), U.MEMORY(1),
20 60/SMALL.JOB.INTERARRIVAL.TIME,
21 MEAN.SMALL.JOB.PROCESSING.TIME AND RUN.LENGTH THUS

A C O M P U T E R C E N T E R S T U D Y
NO. OF CPU'S ** STORAGE AVAILABLE ****
SMALL JOBS ARRIVE AT THE RATE OF *** / HOUR

AND HAVE A MEAN PROCESSING TIME OF ***.*** SECONDS
LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
THE SIMULATION PERIOD IS **.** HOURS
28
29 ACTIVATE A GENERATOR NOW
30 ACTIVATE A STOP.SIM IN STOP.TIME HOURS
31 START SIMULATION
32
33 END ''MAIN

5
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PROCESS STOP.SIM
2
3 SKIP 6 LINES
4 PRINT 9 LINES WITH TIME.V, CPU.UTILIZATION(1)*100/NO.CPU,
5 MEMORY.UTILIZATION(1)*100/MAX.MEMORY,
6 AVG.MEMORY.QUEUE(1), MAX.MEMORY.QUEUE(1),
7 AVG.CPU.QUEUE(1), MAX.CPU.QUEUE(1),
8 NO.JOBS.PROCESSED AND AVG.JOB.TIME * MINUTES.V
9 THUS
A F T E R **.** HOURS
THE CPU UTILIZATION WAS *.** %
THE MEMORY UTILIZATION WAS *.** %
THE AVG QUEUE FOR MEMORY WAS *.** JOBS
THE MAX QUEUE FOR MEMORY WAS *.** JOBS
THE AVG QUEUE FOR A CPU WAS *.** JOBS
THE MAX QUEUE FOR A CPU WAS *.** JOBS
THE TOTAL NUMBER OF JOBS COMPLETED WAS ***
WITH AN AVERAGE PROCESSING TIME OF *.*** MINUTES
19
20 STOP
21
22 END

 41

SIMSCRIPT II.5 User’s Guide

3. SIMSCRIPT II.5 Language Considerations

Some features of the SIMSCRIPT II.5 programming language vary from one implementation
to another. This chapter describes implementation-specific features of
UNIX SIMSCRIPT II.5.

3.1 Input and Output

The open statement associates a SIMSCRIPT I/O unit with a file. Its general form is

open [unit] EXPRESSION1
[for] { input | output } < comma >
[[file] name is TEXT1 |
 binary |
 recordsize is EXPRESSION2 |
 noerror |
 append |
 scratch |
 fixed
] < comma >

EXPRESSION1 specifies the unit number. If input is specified, the unit may appear in
use for input statements. If output is specified, the unit may appear in use for
output statements. If both input and output are specified, the unit may appear in
both use for input statements and use for output statements. However, it is
necessary to execute a rewind statement before reading from an output file or writing to an
input file since the intermingling of I/O operations is not allowed.

TEXT1 specifies the name of the file associated with the unit. If the name phrase is omitted,
the filename SIMUnn is assumed, where nn is the unit number. For example, for unit 3, the
default filename is SIMU03.

The default file type is an ASCII file containing variable-length records. If binary is
specified, the file is treated as a binary file containing fixed-length records. If fixed is
specified, the file is treated as an ASCII file with fixed length records. The free-form read,
formatted read, print, write and list statements are used with ASCII files.
Theread as binary and write as binary statements are used with binary files.

Expression2 specifies the size of records in bytes. If the recordsize phrase is omitted,
the size of records is assumed to be 80. For binary files, this is the actual length of each
record. For files with variable length records, this is the maximum length of a record. Note
that the “newline” character is not counted as part of the record length. Examples are:

open unit 1 for input, recordsize is 132
open 7 for output, binary, name is "datafile"

Normally, if a file cannot be opened for some reason, such as the file does not exist or the
filename is invalid, the program will be aborted with a runtime error. If noerror is
specified, however, the program will not be aborted. Instead, a global variable, ropenerr.v
for the current input unit, or wopenerr.v for the current output unit, will be assigned a non-

SIMSCRIPT II.5 User’s Guide

zero value which may be tested by the program. For example:

open unit 12 for input,
 file name is INPUT.FILENAME, noerror
use unit 12 for input
if ropenerr.v <> 0
 write INPUT.FILENAME as "Unable to open ", T *, /
 close unit 12
always

Note: Ropenerr.v and wopenerr.v will be set after the use unit statement, not after
the open statement.

If a unit, which has not been opened, appears in a use statement, the following statement
will open it automatically:

open UNIT-NUMBER for input and output

The standard units — 5, 6 and 98 — are opened automatically by the system and may not
appear in an open statement. The record size of each is 132. Unit 5 is stdin, the standard
input unit. It is opened for input and is the current input unit when a program begins
execution. Unit 6 is stdout, the standard output unit. It is opened for output and is the
current output unit when a program begins execution. Unit 98 is stderr, the standard error
unit. It is opened for output and is used for writing system error messages. Each of the
standard units is associated with the terminal unless it has been redirected.

The units 1-4 and 7-97 have no predefined meaning and are available for general use. Unit 99
is the buffer. This unit may also appear in an open statement, but the name phrase is
ignored and no physical file is associated with it. The recordsize phrase is also ignored.
The record size for the buffer is obtained from the global variable, buffer.v, with a
default value of 132.

The close statement dissociates a SIMSCRIPT I/O unit from a file. Its general form is:

close [unit] EXPRESSION1

where EXPRESSION1 specifies the unit number.
If the current input unit is closed, unit 5 becomes the current input unit. If the current output
unit is closed, unit 6 becomes the current output unit.

A unit, which is open when a program terminates, is closed automatically. All units,
including unit 99, may be closed, except for the standard units, which must remain open at all
times.

The global variable, lines.v, indicates whether pagination is enabled for the current output
unit. By default, lines.v = 0 which indicates that pagination is disabled. To enable
pagination, initialize lines.v to a non-zero value indicating the desired number of lines per
page. For example, to produce paginated output on unit 1, with 60 lines per page, specify:

use unit 1 for output
let lines.v = 60

 44

SIMSCRIPT II.5 Language Considerations

A record read from a file containing variable-length records will automatically have blanks
appended to it so that it is as long as the record size specified for the unit. Furthermore, each
tab character found in the record will be expanded into one or more blanks following UNIX
convention, i.e. tab stops are set every 8 columns, starting with column 1. The global variable
rreclen.v contains the length of the record last read from the current input unit before
blanks are appended but after tabs have been expanded.

3.2 Modes and Packing Codes

The following modes are supported:

Alpha An 8-bit unsigned integer used to store an ASCII character
code (0 to 255)

Integer2 A 16-bit unsigned integer (0 to 65535)
Signed integer2 A 16-bit signed integer (-32768 to +32767)
Integer A signed integer of at least 32 bits
Real A floating-point number of at least 32 bits
Double A floating-point number of at least 64 bits
Pointer An address
Subprogram An address of a routine
Text An address of a character string

Bit packing is supported. For example, on 32 bit machines, any packing code (a-b) is allowed
provided that:

1 ≤ a ≤ b ≤ 32
Examples: (1-4), (12-12), (21-22)

The following shows each of the available field-packing codes together with its equivalent
bit-packing code:

(1/2) (1-16)
(2/2) (17-32)
(1/4) (1-8)
(2/4) (9-16)
(3/4) (17-24)
(4/4) (25-32)

Intrapacking codes, (*/2) and (*/4), are also supported.

3.2.1 Alignment of Values

Some machines require strict alignment of double-precision floating point values on a double
word boundary. For maximum portability to these systems, variables and permanent
attributes of mode double should be assigned to odd array numbers. Similarly, double
temporary attributes should be assigned to odd word numbers or left for automatic definition.

 45

SIMSCRIPT II.5 User’s Guide

3.3 Non-SIMSCRIPT Routines

This section illustrates how a SIMSCRIPT II.5 program can call a routine written in C or
FORTRAN.

3.3.1 Calling C Routines

Suppose we wish to call a subroutine named sub, which is written in C and has two
arguments:

sub(inarg,outarg)
long inarg;
long *outarg;

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define SUB as a nonsimscript routine

When calling this subroutine, the first argument should evaluate to integer since this is
the SIMSCRIPT II.5 mode, which corresponds to the C type long. The second argument
must be a pointer to an integer. This can be accomplished by passing a pointer to an
integerarray. For example:

define IN.ARG as an integer variable
define OUT.ARG as a 1-dim integer array
write as "Enter the input value:", /
read IN.ARG
reserve OUT.ARG(*) as 1
call sub(IN.ARG, OUT.ARG(*))
write OUT.ARG(1) as "The output value is ", I 10, /

Suppose we wish to call a function named FUNC, which is written in C and has one
argument:

long func(inarg)
double inarg;

The declaration of the function in the preamble specifies the mode of the function:

define FUNC as an integer nonsimscript function

Here is an example of a call to this function:

define IN.ARG as a double variable
define RESULT as an integer variable

write as "Enter the input value:", /
read IN.ARG
let RESULT = FUNC(IN.ARG)

 46

SIMSCRIPT II.5 Language Considerations

write RESULT as "The function result is ", I 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function matches
its C type. Here is a list of C types and the corresponding SIMSCRIPT II.5 modes:

unsigned char alpha
unsigned short integer2
shortsigned integer2
long integer
float real
double double

If an argument is a pointer to a null-terminated character string, pass a text value.

3.3.2 Calling FORTRAN Routines

Suppose we wish to call a subroutine named SUB, which is written in FORTRAN and has
two arguments:

subroutine SUB(inarg,outarg)
integer inarg
integer outarg

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define SUB as a fortran routine

Unlike SIMSCRIPT II.5 and C, FORTRAN passes arguments by reference, i.e., the address
of the argument is passed rather than its value. The compiler for all routines declared as
FORTRAN routines does this automatically.

write as "Enter the input value:", /
read IN.ARG
call SUB(IN.ARG, OUT.ARG)
write OUT.ARG as "The output value is ", I 10, /

Suppose we wish to call a function named FUNC, which is written in FORTRAN and has
one argument:

integer function func(inarg)
double precision inarg

The declaration of the function in the preamble specifies the mode of the function:

define FUNC as an integer fortran function

Here is an example of a call to this function:

write as "Enter the input value:", /
read IN.ARG

 47

SIMSCRIPT II.5 User’s Guide

let RESULT = FUNC(IN.ARG)
write RESULT as "The function result is ", I 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function matches
its FORTRAN type. Here is a list of FORTRAN types and the corresponding SIMSCRIPT
II.5 modes:

integer*2 signed integer2
integer integer
logical integer
real real
double precision double

Calling a FORTRAN routine that returns a real or uses real arguments results in a
special case. Unlike SIMSCRIPT II.5 and C, which interpret real/float function results
and assignments as 64-bit values, FORTRAN uses a 32-bit value. To obtain this value within
a SIMSCRIPT II.5 program, it is necessary to declare the function not as real but as
integer and then “equivalence” an integer and real array to interpret the value as
real. For example, suppose we wish to call a function named RFUNC, which is written in
FORTRAN and has one argument:

real function rfunc(inarg)
real inarg

Declare the function in the preamble as follows:

define RFUNC as an integer fortran function

To call the function:

define IRESULT as a 1-dim integer array
define RRESULT as a 1-dim real array

write as "Enter the input value:", /
read IN.ARG
reserve IRESULT(*) as 1
let IRESULT(1) = RFUNC(IN.ARG)
let RRESULT(*) = IRESULT(*)
write RRESULT(1) as "The function result is", D(10,3),/

 48

4. SimDebug Symbolic Debugger

SimDebug is the SIMSCRIPT II.5 Symbolic Debugger. In contrast to other debuggers that
are separate programs, this debugger is built into the language. Simply compile the modules
you want to debug with debugging and then run your program with the command line
argument -debug. This will bring up the SimDebug dialog before the program starts.
Sincethe debugger is “always there,” any runtime error will also put you into the SimDebug
dialog, where you can examine the stack, local and global variables, etc. SimDebug’s
features include:

• single stepping
• setting breakpoints
• viewing stack and global variables
• displaying temporary and permanent entities
• displaying sets and arrays
• displaying system variables, I/O and memory statistics
• displaying the I/O buffer
• displaying simulation status
• changing variables and attribute values
• stopping at a certain simulation time
• command/dialog logging
• and a lot more.

This chapter describes how to use SimDebug. We first describe how to compile for and run
SimDebug. Then we will give you a quick tour that introduces the usage and major features
of SimDebug in the style of a tutorial. A detailed alphabetical description of all the
SimDebug commands is given in paragraph 4.3. Some advanced topics related to
SimDebug are given in paragraph 4.4.

4.1 Compiling for Debug and Invoking SimDebug

4.1.1 Compiling for Debug

This paragraph describes how to compile for debugging using the SIMSCRIPT II.5.
There are three levels of debugging support that can be selected for compilation. The
debugging level is controlled through a command line option to simc. The three levels of
debugging are none, traceback only, and full debug. The selected debugging level applies to
all routines in the modules supplied to that invocation of simc. The options are -g for
traceback, and -d for full debug.

To be able to look at entities, system variables and global variables you must compile the

SIMSCRIPT II.5 User’s Guide

PREAMBLE with debugging or traceback, i.e. with the -d or -g option.

You should not mix the debug and optimization flags in the simc call. That is, do not
specify -d and -O at the same time, since this can lead to erroneous output from SimDebug.

4.1.2 Invoking SimDebug

To invoke SimDebug simply invoke your program with the command line option -debug.
This option will only be recognized by SimDebug and will not be visible to your
SIMSCRIPT II.5 program as a command line argument. The position of the -debug option
on the command line is irrelevant.

SimDebug Dialog

When you invoke your program with -debug you will be put into the SimDebug dialog.
Here you can examine the source, set breakpoints, and start your program. When you do not
specify the -debug option, your program will run as usual without any interference from
SimDebug.

At the beginning of the SimDebug dialog (whether you invoked it with -debug or entered
the dialog through a runtime error) SimDebug looks for a file simdebug.ini in the current
directory. If this file exists, it is loaded as a SimDebug command file (see READCMDS). This
way you can easily customize the setup and initialization of SimDebug.

SimDebug will always show a SimDebug> prompt when it is ready for a new command.

Runtime Errors

Even when you do not compile your program with the -d option and you do not call your
program with -debug, when SIMSCRIPT detects a run-time error, you are put into the
SimDebug dialog. You can then perform all SimDebug commands to inspect your program,
with one exception: You cannot continue execution from floating point errors, segment
violations and bus errors!

When you do not want to enter the SimDebug dialog in case of a runtime error, you can set
the global system variable batchtrace.v = 1. This results in the traceback being written
to simerr.trc, after which the program exits. This is a change from the behavior of the
previous release 1.9 where the traceback would always be output on the current output device
(according to write.v). However, using the trace statement in your program will still
write the traceback to the current output unit (write.v).

Instead of setting batchtrace.v = 1 in your program, you can also call your program
with the command line argument -batchtrace. This automatically sets
batchtrace.v=1. As with -debug, this command line argument will not be seen by your
SIMSCRIPT program.

50

SimDebug Symbolic Debugger

If you want your program to exhibit the old traceback behavior and have a runtime error, just
write a traceback and then exit. Compile your program with -g and then execute with the
option -batchtrace. The traceback will be written to simerr.trc. For further
information see paragraph 4.4.1.

Interrupting Running Programs

You can interrupt a running program by pressing Ctrl-C (or the INTERRUPT key
combination defined for your system). This will put you in the SimDebug dialog where the
program is currently executing. This is very useful to detect endless loops or recursions. See
the Ctrl-C command in the command reference paragraph for more details.

Text Input/Output

On UNIX platforms, the SimDebug dialog runs in the terminal window from which the
program was started. This means that the program's input/output using units 5,6, or 98 will be
intermixed with the SimDebug dialog, as you would expect.

However, when you redirect input or output when calling your program, this will not affect
the dialog of SimDebug. Thus, even if you type prog -debug < infile > outfile the
SimDebug dialog will still be connected to your terminal (window). This allows you to debug
programs that read a lot of input from unit 5 (standard-in) without the input interfering with
the SimDebug dialog.

4.2 A Quick Tour of SimDebug

In this paragraph we will introduce SimDebug by example. In the following tutorial user
input is shown in bold face Courier, and SimDebug output and example program
source are shown in the regular Courier font. The SimDebug dialog is indented,
our comments appear in between the dialog segments in italic.

We assume that we have recompiled our entire program using the -d compiler option
(including the PREAMBLE so that we can see the attributes of entities).

4.2.1 Tour 1: Showing the Stack and Variables

Our program contains a runtime error. When the error occurs, SimDebug shows the error
message, floating point error. The meaning of the minor error code is machine
specific; here it means division by zero.

OS-prompt$ tst -debug
ERROR: Floating point error. Minor error code = 200
----- R1 (sample.sim) ------------------------------------- Line =
39
. 39> write B/A as I 4,/

 51

SIMSCRIPT II.5 User’s Guide

SimDebug shows that the error occurred in routine R1, source file sample.sim, at line 39.
The actual source code at that line is shown on the next line. To see a traceback of the routine
call hierarchy, type t.

SimDebug> t
===================== call stack ======================

----- R1 (sample.sim) ----------------------------------Line = 39
Given Arguments:

A = 0 (Integer) 00000000]
B = 2 (Integer) [00000002]

Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

----- R1 (sample.sim) ----------------------------------Line = 36
Given Arguments:

A = 1 (Integer) [00000001]
B = 2 (Integer) [00000002]

Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

----- MAIN (sample.sim) --------------------------------Line = 62
Local Variables:
#1 AARR = (null) (Pointer)

I = 6 (Integer) [00000006]
#2 IARR = 00060548 (1-dim Integer array)
#3 IARR2 = 0005C268 (2-dim Pointer array)
#4 LE = 0005C3E8 (Ptr--> class LISTELEM)

We now see that R1 is recursive and that A is 0. Obviously we tried to divide by zero.
A few more comments on the traceback output: The types of variables distinguished in the
output for each routine are: Given Arguments, Yielded Arguments, Local Variables, and
Saved Local Variables. Given and yielded arguments appear in the order in which they were
defined in the routine source code. All other variables (including the global variables) appear
in alphabetical order. Each line that shows a variable has basically the same format:

VarName Variable name
Value The value. Pointers are shown as 8 hex digits.
Mode Mode information for that variable. For pointers, SimDebug shows where it

points to (which kind of entity, array etc.). For integers we also show the
value again as hex in [].

To see the global variables, type glob. They are ordered by name and appear in the same
format as the variables in the traceback.

SimDebug> glob

#1 DSPLY.E = (null) (Pointer)
#2 F.LISTSET = 0005C368 (Ptr--> class LISTELEM)

GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [00000000]

#3 LISTELEM = (null) (Pointer)
#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)
N.LISTSET = 5 (Integer2) [00000005]

52

SIMSCRIPT II.5 User’s Guide

Again, we want to see where we are. The w command shows us the context of the current
line (default ± 5 lines) with a "=>" in front of the current line.

SimDebug> w
----- R1 (sample.sim) --------------------------------- Line = 39
. 34 J = A-B
. 35 if A > 0
. 36 call R1(A-1, B)
. 37 else
. 38 write as "B/A = "
=> 39 write B/A as I 4,/
. 40 endif
. 41 end

All these commands still apply to the current routine or the current frame in the traceback
(called hierarchy). If we want to see where we are in the routine that called this R1, we must
move the current frame one level down (“Top of stack” is the last routine called, “Bottom of
stack” is MAIN). The dn command moves the current frame one level down and SimDebug
shows us the current line on that level. Then we use tc to get a traceback of only the current
routine frame which is now R1 at stack level 2. Note that in this frame, A=1. With pv we
can ask for only one variable. When it is in the current routine, that value is printed.
Otherwise, SimDebug looks at the global variables. Before actually printing the line with the
variable name, value and type, pv first prints whether the found variable is a given or
yielded argument, and whether it is a local, local saved, or a global variable.

SimDebug> dn
----- R1 (sample.sim) ----------------------------------Line = 36

36>. call R1(A-1, B)
SimDebug> tc
----- R1 (sample.sim) ----------------------------------Line = 36
Given Arguments:

A = 1 (Integer) [00000001]
B = 2 (Integer) [00000002]

Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

SimDebug> pv A
Given Argument:

A = 1 (Integer) [00000001]

In large programs, variable names as well as routine names are generally quite long. To avoid
having to type in the whole variable name, you can enter just the first few letters.
SimDebug matches your input with the defined variables. When your input uniquely
identifies a certain variable, it will be printed as usual. When you enter pv G* and there are
several variables (locals or globals) that begin with G, you will be offered a list of matches
from which you can select by number. In the same way, you can select from all variables that
end with a certain suffix by using pv *suffix. When we want to use the input as a prefix
the "*" is optional. pv always looks in the current frame first, and then at global variables to
find variables with a certain name/pattern.

SimDebug> pv g*
---- Matching GLOBAL variable names ----

1 GLOBALD
2 GLOBALI

---> Select variable by number (0=none) > 2

 53

SIMSCRIPT II.5 User’s Guide

Global Variable:
GLOBALI = 0 (Integer) [00000000]

SimDebug> pv li
#1 LISTELEM = (null) (Pointer)
SimDebug> pv *set
---- Matching GLOBAL variable names ----

1 F.LISTSET
2 L.LISTSET
3 N.LISTSET

---> Select variable by number (0=none) > 3
Global Variable:

N.LISTSET = 5 (Integer2)
[00000005]

In the same way you can restrict the output from the GLOB command with a prefix* or a
*suffix argument. The following example ends our first tour:

SimDebug> glob g

GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [00000000]

SimDebug> glob *set
#1 F.LISTSET = 0005C368 Ptr--> class LISTELEM)
#2 L.LISTSET = 0005C3E8 Ptr--> class LISTELEM)
N.LISTSET = 5 (Integer2) [00000005]
SimDebug> quit

Leaving SSDB ...
OS-prompt$

4.2.2 Tour 2: Breakpoints and Single Stepping

We are now going to a different program that will illustrate the use of breakpoints, single
stepping and SimDebug's advanced pointer handling features. This program creates a few
entities and arrays. We call our program with -debug so that we are immediately put into
the SimDebug dialog. With the lr command we get a list of the routines in the program that
were compiled with debugging and their line number range. You can use wildcards at the
beginning and end of a routine name argument in lr in the same way as with variable
names. Note how R2, a left routine, gets displayed. In these routines we can single step, set
breakpoints, etc. With ls we can look at the source of the routine main.

54

SIMSCRIPT II.5 User’s Guide

A “.” in front of a source line means that this line is executable and that you can set a
breakpoint there.

OS-prompt$ tst -debug
SimDebug (SIMSCRIPT Symbolic Debugger) Version 1.0

SimDebug> lr { lists all routines compiled with debug or trace }

MAIN (sample.sim : 44- 64)
R1 (sample.sim : 29- 41)
R2-L (rtns.sim : 1- 32)

SimDebug> lr r{ lists all routines that begin with an "R" }
R1 (sample.sim : 29- 41)
R2-L (rtns.sim : 1- 32)

SimDebug> ls m{ lists the (only) routine that begins with "M" }

---- MAIN -------------------------------------(main.sim: 44-64)
. 44 main

45 define LE as pointer variable
46 define IARR as 1-dim integer array
47 define AARR as 1-dim alpha array
48 define IARR2 as 2-dim integer array
49 define I as integer variable
50

. 51 reserve IARR as 10

. 52 reserve IARR2 as 5 by 5
53

. 54 for I = 1 to 5
55 do

. 56 create a LISTELEM called LE

. 57 ATTRI(LE) = I

. 58 ATTRP(LE) = IARR2(I,*)

. 59 file LE in LISTSET

. 60 loop
61

. 62 call R1(3,2)
 63

. 64 end

We can start our program simply by invoking the s command (single step). But instead we
will set a breakpoint on the line where a new entity gets created and where R1 gets called.
With lb we get a list of the currently set breakpoints. With r we start the program which
runs until it hits the first breakpoint. A message is printed and the source line that will be
executed next is shown.

Note: The current line in SimDebug is the line that gets executed next. Thus, a breakpoint at
a certain line stops execution before that line.

We also set a breakpoint at the beginning of R2. Note that SimDebug asks for missing
argument information.

SimDebug> sb main 56
SimDebug> sb m* 62{ "M" uniquely identifies MAIN, the "*" is optional}
SimDebug> sb r*

----- List of matching routines -----
1 R1
2 R2-L

 55

SIMSCRIPT II.5 User’s Guide

Enter routine by number > 1
Enter line number > 1
*** No executable source code at that line. Used line 4 instead.
SimDebug> lb

------- List of Breakpoints --------
1 MAIN @ line 56
2 MAIN @ line 62

SimDebug> r

BREAK: User breakpoint

----- MAIN (sample.sim) -----------------------------------
Line = 56
 56># create a LISTELEM called LE

After reaching the breakpoint, we single step through the program for a while. After each s
command, SimDebug shows the new 'current line' (that will be executed next). Since an
empty command repeats the last command we can simply press Return to repeat the
singlestep. If a line contains a routine call, s will step into the routine, whereas n will step
over the routine. After we have stepped enough, we use the c command to continue the
program until the next breakpoint.

SimDebug> s
57 ATTRI(LE) = I
SimDebug> { no input = repeat last command }
58 ATTRP(LE) = IARR2(I,*)
SimDebug>
59 file LE in LISTSET
SimDebug>
60 loop
SimDebug> c { continue execution }
BREAK: User breakpoint
----- MAIN (sample.sim) -----------------------------------
Line = 62
#> 62 call R1(3,2)
SimDebug> ls { lists source of 'current routine' }

. 44 main
45 define LE as pointer variable
46 define IARR as 1-dim integer array
47 define AARR as 1-dim alpha array
48 define IARR2 as 2-dim integer array
49 define I as integer variable
50
. 51 reserve IARR as 10
. 52 reserve IARR2 as 5 by 5
53
. 54 for I = 1 to 5
55 do
56 create a LISTELEM called LE
. 57 ATTRI(LE) = I
. 58 ATTRP(LE) = IARR2(I,*)
. 59 file LE in LISTSET
. 60 loop
61
#> 62 call R1(3,2)
63
. 64 end

Conditional Breakpoints: You can programmatically set conditional breakpoints on

56

SIMSCRIPT II.5 User’s Guide

arbitrarily complex conditions by calling SimDebug itself! See paragraph 4.4.6.

4.2.3 Tour 3: Pointer Handling: Entity / Set Display

Now the set is created and we are ready to look at the set and the entities. The set
LISTSETwas declared in the PREAMBLE as 'owned by the system'. This is why the fields for
the setF.LISTSET, L.LISTSET and N.LISTSET are global variables. We first display
theglobal variables to see the variable F.LISTSET, which holds the pointer to the first
element in the set. Once we are in the set, we follow the pointers using fp (follow pointer
debugger command) along S.LISTSET (successor) to get to the next elements. Observe that
the attribute ATTRI is 1,2,3... and that the ATTRP points to the different arrays as
assigned in the loop.

SimDebug> glob
#1 DSPLY.E = (null) (Pointer)
#2 F.LISTSET = 0005C368 Ptr--> class LISTELEM)

GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [00000000]

#3 LISTELEM = (null) (Pointer)
#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)

N.LISTSET = 5 (Integer2) [00000005]

SimDebug> fp #2
------- Entity #2: 0005C368 (class LISTELEM) ----------

ATTRI = 1 (Integer) [00000001]
ATTRA = 00 (hex) (Alpha)

#1 ATTRP = 0005C2C8 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C388 (Ptr--> class LISTELEM)
#3 P.LISTSET = (null) (Pointer)

M.LISTSET = 1 (Integer2) [00000001]

SimDebug> fp #2
------- Entity #2: 0005C388 (class LISTELEM) ----------

ATTRI = 2 (Integer) [00000002]
ATTRA = 00 (hex) (Alpha)

#1 ATTRP = 0005C2E8 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C3A8 (Ptr--> class LISTELEM)
#3 P.LISTSET = 0005C368 (Ptr--> class LISTELEM)

M.LISTSET = 1 (Integer2) [00000001]

SimDebug> {Pressing Return repeats last FP command. Step through set }
------- Entity #2: 0005C3A8 (class LISTELEM) ----------

ATTRI = 3 (Integer) [00000003]
ATTRA = 00 (hex) (Alpha)

#1 ATTRP = 0005C308 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C3C8 (Ptr--> class LISTELEM)
#3 P.LISTSET = 0005C388 (Ptr--> class LISTELEM)

M.LISTSET = 1 (Integer2) [00000001]

SimDebug> fp #1 { "FP" knows how to interpret pointers ; this is IARR(3,*) }

#1(1) = 0 [00000000]
#1(2) = 0 [00000000]
#1(3) = 0 [00000000]
#1(4) = 0 [00000000]
#1(5) = 0 [00000000]

 57

SIMSCRIPT II.5 User’s Guide

This concludes our quick tour of SimDebug. All commands are fully documented in
paragraph 4.3.

4.3 SimDebug Command Reference

The SimDebug commands and their options are listed below in alphabetical order. When
commands have abbreviations, the abbreviations are given on the next lines below the
command. To list each command with its optional arguments the following notation is
employed:

CMD arg: Command names and keywords are shown in UPPER CASE,
arguments are shown in lower case.

[...] Optional arguments are enclosed in square brackets.

a | b Alternatives are separated by the vertical slash.

For example, LOG [CMDS|DIALOG|START|STOP|CLOSE] means that the LOG command
can have no argument, or can have one of the listed arguments. The notation T [from
[to]] means that the command T (traceback) can have one or two optional arguments,
from and to. Command names and keyword arguments are shown in UPPER CASE,
arguments of commands are shown in lower case (e.g. READCMDS cmdfile).
Basic Syntax: Each SimDebug command consists of the command name followed by one
or more arguments, each seperated from each other by one or more spaces. There are no
parentheses and there is no nesting of expressions needed. SimDebug commands are not case
sensitive. Except for file names, upper/lower case is irrelevant.

Missing Arguments: Whenever possible, SimDebug will ask you for a missing argument
instead of issuing an error message.

Repeat Last Command: When you press Return (no command entered), the last
command will be repeated. This is particularly useful for the S, N and FP commands.

Scrolling Output: The output of SimDebug will appear in the 'terminal window' from
which you invoked your program. If your 'terminal window' does not allow scrolling back,
you can set a parameter SET SCROLLINES n so that the output will pause after every n
lines (press Return to continue).

Routine Names: Several SimDebug commands take routine names as arguments. You can
type the routine name just as you use it in your program (e.g. TACK.ORDER.QUEUE).
Upper/ lower case in routine names is irrelevant.

Variable Names: You may use wildcards, i.e. the "*", when entering variable names, or
may enter just the first few letters of the desired name. When the input matches several
names you will be offered a list from which you can select the desired variable. Whenever
SimDebug looks for a variable, it looks in the 'current frame' first (local variables on the
stack), and when the specified variable is not found there, in the set of global variables.

58

SIMSCRIPT II.5 User’s Guide

List of SimDebug Commands:

Comment: The remainder of this line is discarded. This is useful for inserting
comments in command files (see READCMDS).

?
Help: See HELP command.

BOT
Bottom: Set the 'current frame' to the bottom of the stack, i.e. to MAIN. See note on
'current frame' in the DN command.

BPDIS n
Breakpoint disable: Disables breakpoint n (n comes from the LB command).

BPEN n
Breakpoint enable: Enables breakpoint n. The LB command shows each defined
breakpoint with a number that can be used for BPEN, BPDIS and DB.

BR rtnname
Break in Routine: Sets breakpoint on the first executable line of the given routine.
Execution stops when the routine is entered.

BUF n
Show Buffer: Show the contents of the buffer of unit n. This can also be used to
show the contents of the buffer, i.e. unit 99.

Ctrl-C (INTERRUPT key)
This command interrupts your running program and enters SimDebug so you can see
where you are in the program's execution. The 'current routine' is the currently
executing routine.

INTERRUPT in no-debug routine: When you do not compile the current routine
with debug, you will not be able to see the current line of execution or the local
variables/ arguments. You will only see the routine name. An s (single step)
command in a routine that was not compiled with debug will take you to the next line
of code that was compiled with debug (this may be several levels up in the calling
hierarchy).

INTERRUPT during simulation: When you press the INTERRUPT key while a
simulation is running, SimDebug may report the current line as the line that contains
the start simulation statement. This means that your program is in between the
last and the next process/event. A single-step command s will take you into the next
line of the next process when you compiled that process routine with debug.

C
Continue: Continues execution. When there is no breakpoint set in the 'execution
path' the program runs until completion, until a runtime error occurs, or until you

 59

SIMSCRIPT II.5 User’s Guide

press Ctrl-C to interrupt the running program.

DB n
Delete Breakpoint: Deletes breakpoint n (n is defined from the LB command).

DM [addr [type [count]]]
Display Memory: For the rare cases where you might want to look at memory in an
unstructured way (e.g. for non-SIMSCRIPT data), the DM command allows you to
view areas of memory as Hex values (4 bytes each), as Integers (4 bytes), Reals (4
bytes), 4 Doubles (8 bytes) or 40 characters (1byte each). To display contiguous areas
of memory, you can use DM in two ways: First with DM addr type count, you set
the starting point, the type and the count of your memory display. Then, subsequent
DM commands (with NO ARGUMENTS) will continue memory display where the
previous display left off. The arguments are:

addr Starting address (in hex)
type Type of display of item: H, P: 4 bytes as hex, I: integer, R:real, D:

double, A: alpha. Default is H = hex.

count Number of items to display per command (always 4 per line). For
Alpha mode non-printable characters are shown as ".".

DN [n]
Down: Move 'current frame' n levels down (towards MAIN) in the stack. Default:
n = 1. Note: The current frame is the routine being looked at in the call stack
shown by the T traceback command. When you look at a certain variable with the PV
command, you look first at the current frame, and then at global variables to find this
variable. Thus, with UP and DN you can move the current frame to allow inspection
(e.g. a certain instance of a recursive routine call).

ECHO arg1 arg2 ...

Echo: Echoes the words arg1, arg2, ... to the output. This is useful to output
messages from within a command file.

EV
Event set: Prints information about the simulation, including the event set, the
current simulation time, the current and next process etc. For each process/ event the
time of the next scheduled process/event and of the last scheduled process/event of
that class is shown with pointer numbers [#n] in brackets behind the times. Using
these pointer numbers you can step through the event sets for each process/event type
using the FP command. The event/process that is scheduled next is marked with a
“*” behind the class number. When only one process is scheduled in a class, only
the time.a(First) is printed (so you can easily tell that there is just one).

Entity in process.v: Process.v is a pointer to the process/event notice of the
currently active process/event. For a process 'CUSTOMER' the entity class will be
'CUSTOMER'. This entity contains any user declared attributes as well as some
internal attributes. Never change any of the internal attributes!

FP ptrvariable

60

SIMSCRIPT II.5 User’s Guide

FP ptrvalue

FP #n

Follow Pointer: With this command you can display the contents of an object that a
pointer points to. This will generally be an entity, in which case the entity attributes
are shown, or an array, in which case the array elements are shown. There are three
varieties of the command:

FP ptrvariable: Ptrvariable is the name of a (local or global) pointer
variable.

FP ptrvalue: Ptrvalue is a pointer value (in hex) taken from previous
output.

FP #n: n is a pointer index. Whenever a pointer is shown as output from the
T, FP or other commands, it is displayed with a prefix of the type #n where
n is a running index. This way each pointer can be uniquely identified by #n.
The running index n is 'restarted' by each command that displays a pointer
value. Thus #n applies to the last displayed #n. Thus, with the FP #n
command you can follow a previously displayed pointer. This is very useful
for all data structures that employ pointers, such as lists, sets, your own graph
structures etc.

Example: Walking through a set: To step through all elements of a set,
simply type FP #n where n is the index of the pointer that represents
.setname (pointer to first in set). The first displayed element will have a
pointer field S.setname (to successor), say with index #3. Repeated
commands FP #3 will display one set member after another.

Temporary Entity Display: For temporary entities SimDebug shows the whole
entity with all attributes. Packing (*/2, */4, bit packing, overlap) is fully supported.
To see just one field of an entity, type FP entname attrname.

Note on Destroyed Entities: Remember that when you destroy an entity, the pointer
to that entity is still there. But the storage freed by the 'destroy' command will
generally be reused immediately. Thus, a pointer variable that points to an entity
might suddenly display "Ptr --> Text ! Error !!" in its mode field, or appear
to point to a different entity class even though you did not touch that variable. This is
especially noticeable for the global process entities that are deallocated when the
corresponding process is suspended or terminated.

Note on Global System Variables: When global variables are listed you will also
see several internal/ system variables that are implicitly defined by SIMSCRIPT II.5
(such as resources, temporary entities etc). Instead of hiding these values, SimDebug
shows these internals since they are documented, (such as fields of resources, etc).
However, you should never change a variable that you did not create/define yourself.

Printing Text Values: SimDebug shows only a few characters of the text in the

 61

SIMSCRIPT II.5 User’s Guide

normal PV output. To see the whole text, use FP textvar. See notes on the text
display at the FP command. Note on Integers Used as Pointers: Since many
SIMSCRIPT programs use integer variables to store pointers as well,
SimDebug allows you to 'follow integers' as if they were pointers.

FPN ...

Like FP, but this command does not reset the pointer number counter. This allows
you to keep the 'access handle' #n to the entity after you have displayed it. This is needed for
the SEV command (set entity values). See the notes for the SEV command.

GL [pattern]

GLOB [pattern]

Globals: Prints a list of all global variables and their values (in alphabetical order).
See the T command for a description of the output. Pattern can be prefix or
prefix* which shows all variables that begin with the given prefix, or *suffix
which shows all variables that end with the given suffix.

H

HELP [name]

HELP: Gives an overview (just the names) of all SimDebug commands. When name
is given, SimDebug gives a more detailed description of the topic/command with that
name. Name can be either a command name, or a topic name (such as 'breakpoints').
Both the command and topic names are given in the help overview.

IO
I/O Information: Shows information about the I/O status of your program, i.e. for
each unit used whether it is input or output, which file is attached (if any), how many
records were read/written etc. Use the BUF command to look at buffer contents for
units.

LB
List Breakpoints: Lists all currently defined breakpoints. Disabled breakpoints (see
BPEN, BPDIS) appear in parentheses.

LOG [CMDS|DIALOG|STOP|START|CLOSE] [logfilename]

Command and Dialog Logging: You can have SimDebug write all commands or all
of the dialog (commands and SimDebug output) to a log file. Command and dialog
logging cannot be active at the same time (there is only one log file). The variants of
the command are the only arguments listed:

 (without argument) Show status of logging.

CMDS [logfilename] Start command logging. Default file:

cmdlog.log
DIALOG [logfilename]

Start dialog logging. Default file:dialog.log

62

SIMSCRIPT II.5 User’s Guide

STOP Stop current logging.

START Resume logging

CLOSE Close current log file. Allows you to start a new log
(command or dialog).

When command logging is turned on, only the actual commands and not the
SimDebug> prompts are put into the log file. As a special case, LOG commands are
not put into the command log since you generally do not want them when repeating
the command sequence. They are written to the dialog log, however.

When you press Return to repeat the last command, the full command name will still
be written to the command/dialog log.

LR [rntname|prefix*|*suffix|ALL|NODEBUG]

List Routines: Lists the names of the routines in your program in the following
order: PREAMBLE, MAIN, and then all others in alphabetical order.

LR List all user routines compiled with debug or trace.

LR ALL List all user routines (nodebug routines prefixed with N;

routines compiled with -g are prefixed with T).

LR TRACE List all routines compiled with traceback (-g).

LR NODEBUG List all user routines that were not compiled with debug.

LR prefix*

List user routines that begin with prefix ("*" is optional).

LR prefix*-L
Append -L after the “*” to see only left routines.

LR *suffix
List routines that end with a suffix (e.g. LR *.CTRL)

Note: Continuous variables will display as right and left routines. When you have a
routine with the name ALL, TRACE or NODEBUG, you must use ALL*, TRACE*,
or NODEBUG* to get the routine individually.

LS [rtnname [from [to]]]
List Source: Lists the source lines of the given routine. The default is to show the
whole routine. Line numbers (for from and to) are given relative to the file (not
relative to the routine beginning or the like).

When the program is active the rtnname can be omitted in which case the 'current
routine' (the source of the current frame) is shown.

 63

SIMSCRIPT II.5 User’s Guide

Source Listing Format: Each output line consists of four fields:

1. A "." for executable source lines (you can set breakpoints

there) or a "#"
 when a breakpoint is set on that line
2. A ">" when this is the current line (of execution)
3. The source line number of the line (in the source file), and
4. The first 72 characters of the source line itself.

Note: Only the first 72 characters of a source line are printed so that all output fits on
one line.

MEM

Memory Information: Shows memory statistics, such as how many entities of each
type are currently created, and how many strings and arrays there are.

Note: Since string and array counters are for both SIMSCRIPT internal use and for
user data, the numbers do not directly reflect your program's memory usage. Also,
since SimDebug uses strings, the numbers will be higher when compiling with debug.
A good way to find out if your program has a 'memory leak' is to write down the
number of strings, arrays etc. at the beginning of the program, and then let it run for
awhile. Interrupt the program with Ctrl-C and look again.

N [n]
Next: Execute the next n (default: 1) SIMSCRIPT source lines and then return to the
SimDebug dialog. N steps over a routine call. This routine and all routines called
from this command execute until you are returned to the SimDebug dialog. Unless, of
course, there is a breakpoint set somewhere in the called routines.

Also, see comment on "Specifying Repeat index n" in the S command.

Context Switch: When a context switch occurs during a N or S or SR command, a
message is printed accordingly.

PAV arrvarname [selvec]
Print array variable: With this command you can display all or part of a multi-
dimensional array or parts thereof. Arrvarname must be an array variable name and
the whole array is printed by default. Selvec is the 'selection vector' that allows you
to limit the output. It consists of several elements with the following meanings:
n Show only this element from the current dimension

* Show all elements of this dimension

+ Stop display at this dimension.

A few examples will clarify this command. Assume ARR3I is a 3-dimensional
integer array, reserved as (5,5,5). Then:

64

SIMSCRIPT II.5 User’s Guide

PAV ARR3I 1 Prints all elements of ARR3I(1,*,*) (25 integers)

PAV ARR3I 2 3 Prints ARR3I(2,3,*) (5 integers)

PAV ARR3I * 4 5

Prints ARR3I(1,4,5), (2,4,5), (3,4,5), ... (5
integers)

PAV ARR3I 3 + Prints 5 pointers to the integer arrays of the last dimension, ie.
(3,1,*), (3,2,*), (3,3,*),...

Equivalencing: An array may be defined and reserved as a 5-by-5 integer array. But
if you assign this pointer to an array variable of mode "2-dim alpha array" you
can look at the data as alphas. The PAV command uses the mode of the given array
variable (arrvarname) to determine how to interpret the data.

PDV arrvarname [selvec]

PDV ptrvariable [selvec]

PDV ptrvalue [selvec]

Print descriptor variable: Same as PAV except that the array is printed from the
information contained in the array descriptors. That is, the array will be printed with
the mode it was first reserved as.

PT textvar|textptr
Print text values in full: This command prints the whole text of a text variable or a
pointer pointing to a text value. This command is needed since PVonly prints the first
few characters of a text string. The whole text value isprinted with string quotes
around it and a "-" at the end of each line whenthe text continues on the next line.
Thus, on an 80-character line you can see77 characters of text (with two string quotes
around it, and a "-" at the end).

Text attributes: If the text you want to see in full length is an attribute of an entity,
you can use the address of the text that is given with the attribute output as an
argument for FP. The same holds for arrays of text pointers.

PV varname
Print Variable: Prints the value and type information for the variable varname.
SimDebug first searches the current frame, and if varname is not defined there,
then the global variables for varname. As described at the beginning of this
paragraph, you can use wildcards to specify the variable name (prefix, prefix*,
*suffix). When several variables match, a selection list is shown.

Format of output: Before printing the line with the actual variable, SimDebug prints
the type of variable it found: Given Argument, YieldingArgument, Local Variable,
Local Saved Variable, or Global Variable.

Then each line follows basically the same format:

ptrnum varname = value (mode information)

 65

SIMSCRIPT II.5 User’s Guide

where the fields contain:

ptrnum For pointers: The #n entries for the FP (follow pointer)
command.

varname The variable name.

value The value. Text is shown to the extent that it fits in the space,

where internal string quotes are not doubled (i.e. a string
containing a single string quote is printed as """). Integers and
alpha characters are printed as usual, where nonprintable
alpha values are also printed in hex. For reals and
doubles you can define the output format with SET OREALF
(see SET command). Pointers and subprogram variables are
shown in hex.

mode info

Mode information. For integers, the value in "[]" in hex is
appended. For pointers, pointer destination information (e.g.
entity class, array type) is shown. *** Bad pointer ***
means that this is an illegal address, i.e. an address that would
cause a segment violation if it were used. For subprogram
variables the subprogram name is shown. Use SET EXTINFO
0 when you do not want this extended information for
pointers.

Array mode info

Normally, arrays mode information is shown as the array was
declared in the program, e.g. "2-dim integer array".
With the SET parameter SHOWARRAYPTRS you can choose to
see the internal structure of the arrays, instead. That is, you
can see the pointer structure (arrays of pointers) that makes up
multi-dimensional arrays. This is necessary when dealing with
ragged arrays or assigning array fragments.

Printing Text Variables: The normal output of PV and T shows just the first 10
characters of the text. If you want to see the whole text, use PT textvar.

QUIT
Quit: Quit/exit from SimDebug. All open log files will be closed. Synonyms are: Q,

EXIT, END, BYE.

R
Run: Run/start your program from the beginning. You cannot start your program 'in
the middle', or restart the program with the R command. To restart for debugging you
must call your program again with -debug.

66

SIMSCRIPT II.5 User’s Guide

READCMDS cmdfilename
Read Commands from File: With this command you can put a series of commands
into a file and read them in just as if you had interactively typed them at SimDebug.
This is useful in conjunction with command logging (see LOG) when you want to
store and then replay a sequence of commands that got you to a certain place.

Normally SimDebug does not echo commands read from a file, even though output
from these commands (e.g. LR) is, of course, visible. When you want to see the
commands read from a command file you can SET OREADCMDS 1.

Init Command File: At the beginning of the SimDebug dialog, SimDebug looks for
a file simdebug.ini in the current directory. When this file exists, it is read as a
SimDebug command file before you enter the SimDebug dialog. In this file you can
store your preferred SimDebug parameter settings (see SET command).

Empty lines in a command file are ignored. Commands from a command file are
not remembered in the "last command" buffer. However, since 'empty commands'
that re-execute the last command are still written to the command log file in full, you
will still get exactly the same behavior when reading a command file previously
written as a command log.

S [n]

Step: Single step. It executes the next n (default: 1) SIMSCRIPT source lines and
then returns to the SimDebug dialog. S steps in to routines when the next instruction
is a routine call. That is, it stops on the first instruction in the called routine.

Specifying Repeat Index n: After a single step command, SimDebug will show you
the next executable source line. This is the source line that will be executed by the
next S command. When you specify a repeat index n you generally do not want to
see the output of the n source lines executed. However, if you do, you can enable the
output for repeatable commands (S,N, UP, DN) with SET OREPCMDS 1.

Context Switch: When a context switch occurs during a N or S or SR command, a
message is printed accordingly and the current simulation time is printed.

SET [[parname] [newvalue]]

Set SimDebug Parameter: Several aspects of SimDebug commands are controlled
by parameters that you can change. SET without arguments lists the values of all
SimDebug parameters. When a paremeter name (parname) is given, you can change
its value. For example, SET OREPCMDS 1. You only have to type the first few letters
of a SET parameter that make it unique.

SimDebug "SET parameters" and their meanings (n: integer > 0; m: 0 or 1; defaults
are given in []):

SET WW n [5] (WhereWidth) Show ± n lines with W command.

[5]

SET OREALF de a b

 67

SIMSCRIPT II.5 User’s Guide

(OutRealFormat): Output format for Reals/ Doubles. They are
output as de(a,b), e.g. "E(14,4)" [D 17 6]

SET OREPCMDS m
Show output from repeated commands (n=1) or not.
[0]

SET OREADCMDS m
Show output from read commands (n=1) or not. [0]

SET EXTINFO m
Show extended information for pointer in mode field.
[1]

SET GLOBWTRACE m
Show global variables (GLOB) with trace command
(T). [0]

SET SHOWINTGL m
m=1: Show internal global variables with GL. [0] Internal
global variables (A.*, I.*, G.*) are created by
SIMSCRIPT and are, in general, not useful to see.

SET SCROLLINES n
n>0: Output pauses after n lines. Press Return to continue. [0]

SET SHOWARRAYPTRS m
m=1: Show array mode information not as '2-dim integer
array' but as the internal pointers that implement this array.
[0]

SET SHOWSTACKLEVELS m
m=1: Show SL=.., (the stack level in traceback). [0]

SET SHOWLIBRTNS m
m=1: Show library routines in traceback [0].

SET NAMECOMPLETION m
m=1: Variable and routine names are automatically completed
by SimDebug. That is, FP CU will follow the pointer that
begins with CU. In case of multiple matches, you are offered a
choice.

Note on OREPCMDS and OREADCMDS: Even when output from read or
repeated commands is turned off, the output from the last command that was
read or repeated will be shown so that you can see 'where you landed'.

SEV entname attrname value

Set Entity Values: Allows you to change the attribute value of a temporary entity.
For quoting rules to set text values see the SV command. For entname you can

68

SIMSCRIPT II.5 User’s Guide

enter the same values as for FP: an entity pointer name, an entity pointer value (in
hex) or a #n (pointer number).

Using #n for entname: When you get to an entity using FP (follow pointer)
commands, the display of the pointer attributes in the entity will 'overwrite' the
pointer number n you used to display this entity (with FP #n). Thus, there is no
longer a valid #n to use for entname. You should 'go back outside' of the entity (e.g.
back one element in a list) and then use FPN #n to display the entity. FPN works
like FP except that it does not reset the pointer numbers. This way you will keep all
pointers along the way for use by SEV.

Limitations: It is currently impossible to change values of permanent entities (i.e.
arrays). Also, you cannot set the values of packed temporary entity attributes.

SB rtnname lineno
Set Breakpoint: Sets a breakpoint in routine rtnname at line lineno. You can use
"." for the routine name to denote the current routine (routine in the current frame).

SNAP
Snap: Calls your specified 'snap routine' SNAP.R. This is useful for debugging
complicated data structures that require special (user) code to display relevant
information. You can use normal write statements to output your data.

Note that the output from this ‘snap routine’ will NOT appear in the log file (see LOG)
but in the normal program’s output. Thus, when output is redirected, the ‘snap
routine’ will write into your output file.

SRCDIRS [src_dir_list]

Allow you to specify alternate directories where SimDebug can find the SIMSCRIPT
source files (for LS, W etc.). src_dir_list is a list of directories separated by
spaces. When no src_dir_list is given, the current source directory list is shown.

In searching for source files, SimDebug always starts at the current directory. If the
source file is not found there, SimDebug looks into the directories in the order they
were given in the src_dir_list. When your executable runs in a directory other
than where it was built, it is advisable to specify the source directories as absolute
paths.

Example:

SRCDIRS /src/d1 /src/d2 /src/d3

STOPTIME [stoptime]
Stop at Simulation Time: Allows you to stop execution (and call SimDebug) when
the simulation time reaches the given stoptime. A stoptime of 0.0 means that there 'is
no stoptime active'. The stoptime is only valid for 'one stop'. It is then reset to zero
(set inactive again).

SV varname value

 69

SIMSCRIPT II.5 User’s Guide

Set Value: Allows you to the change values in your program! Use SV to change
values of simple variables of any type. You can change local variables, arguments
and global variables.

For text values: Enter the text enclosed in string (double) quotes. When the string
you want to enter should contain a string quote itself, it must be doubled, i.e. a single
string quote is denoted by """". Use SEV to set attributes of entities.

SYSVARS
System Variables: Shows the values of several system variables such as read.v,

write.v, buffer.v, prompt.v, and hours.v.

T [from [to]]
Traceback: Prints a traceback of the current call stack (the hierarchy of called
routines) starting at the last called routine down to MAIN. The arguments from and
to can be given to limit the traceback to a range of routines (useful for deep
recursions). From and to are specified as the level numbers given in the traceback
for each routine (MAIN is at level 1), where "." as a level number means the 'current
frame'.

By default, the level numbers ([SL=...] in the routine header in traceback) are not
given in the traceback. However, they are useful for deep tracebacks (when you want
to see only part of the traceback) and for recursion. You can enable the display of
these stack levels with SET SHOWSTACKLEVELS 1. See SET command.

Global variables: Generally the global variables are not considered a part of the
traceback and hence are not shown with the T command. If you SET GLOBWTRACE
1 (see SET command) you will also get the global variables at the end of each
traceback (implicit GLOB command).

Output: For each routine, SimDebug first prints a line with the routine name, the file
name, possibly the stack level and the current line number. When a routine is
compiled with debug, all its local variables are shown with its values and modes.
When a routine is not compiled with debug, only the routine name is shown. The
variables are given in a sequence of sections: Given Arguments (ordered as in
routine definition), Yielding Arguments (ordered as in routine definition), Local
Variables (ordered alphabetically) and Local Saved Variables (also ordered
alphabetically).

Several SimDebug controls the extent of the output for each variable parameter. See
the SET command. The format of the output for each variable is described by the PV
command.

The 'current frame' and 'current routine': The T command shows you the whole
traceback, i.e. all routines in the call stack. Each invocation of a routine that is on the
stack is called a (stack) frame. Initially, after a T command, the top routine on the
stack (farthest away from MAIN) is called the current routine, which is in the
current frame. Since a routine can be called recursively we must destinguish
between 'routine' (the source code) and the 'frame' (invocation of the routine [its

70

SIMSCRIPT II.5 User’s Guide

arguments and local variables]). When PV looks up a variable, it starts at the current
frame and when the variable is not found there, it looks at global variables. The
commands up. dn. top. bot move the 'current frame' up, down, to the top (last
routine called), or bottom (MAIN).

TC
Traceback Current: Write trace of current frame.

TOP
Top Frame: Set 'current frame' to the top of the stack, which is the last user routine,
called (farthest away from MAIN). See note on 'current frame' in the DN command.

UP [n]
Up Frame: Set 'current frame' n levels up (away from MAIN) in the stack. Default: n
= 1. [SL=...] in the header line shows the stack level. See note on 'current frame'
in the DN command.

W [n]
Where: Shows where you are in the source in the current frame. It shows n source
lines around the current line. The default n is taken from the SimDebug parameter
WW (see SET command). The 'current source line' is shown with a ">" in front of it.
Breakpoints appear with "#" in front of the line.

WT [filename [from [to]]]
Write traceback (output of T) and the output from the IO, MEM, and EV commands
to a file. The default filename is trace.out. By specifying from and to you can
limit the traceback to those levels. When the trace file exists it is overwritten.

WTA [filename [from [to]]]
Write Trace Append: Same as WT except that the output is appended to the trace
file.

4.4 Advanced Topics

4.4.1 Batchtrace.v

Normally, when a SIMSCRIPT program runs into a runtime error, SimDebug will be called
so you can examine the stack and variables to find out what went wrong. Sometimes you may
want to just get a traceback into a file and want the program to terminate on a runtime error,
e.g. when you run i t in batch mode. When you set the system variable batchtrace.v = 1,
a runtime error will cause the traceback. The I/O, event and memory information will be
written to a fixed file simerr.trc.

Another way of setting batchtrace.v to 1 is to call your executable with the command
line option -batchtrace. As with -debug your application program does not see this
option.
Setting batchtrace.v = 2 causes an immediate exit in case of a runtime error or a user

 71

SIMSCRIPT II.5 User’s Guide

interrupt (e.g. Ctrl-C). No traceback is written.

4.4.2 Signal Handling / External Events

SimDebug uses the signal handling facilities of the operating system to catch events like
floating point errors, segment violations etc. If your program uses C code that sets its own
signal() handling routines, you must comment out that code as long as you want to use
SimDebug on that program. Any mix will not work.

4.4.3 Reserved Names

In SIMSCRIPT all names that begin with "<letter>." or end with ".<letter>", where
"<letter>" is any letter, are reserved for the system's usage. This is why they do not appear
in SimDebug.

If you use such an illegal name, e.g., for a routine, it will not appear as a user routine in
SimDebug. You cannot see it with the LR command. Thus, even if such a routine name does
not clash with a system routine, you should not use these kinds of names.

4.4.4 Displaying Arrays

Before discussing SimDebug's array display capabilities we must discuss some background
information. Each SIMSCRIPT object that a pointer can point to, such as arrays, text or
dynamic entities, has a descriptor that contains information on what this 'object' is and how to
interpret the data. For instance, an entity descriptor contains the entity ID and, an array
contains the size of the array and the type of its elements. This means that the FP (follow
pointer) command can always follow a pointer to anything and display what it finds.

Apart from that, SIMSCRIPT supports array equivalencing. You can define an array IA(*)
for instance as a 1-dim integer array, and then assign the pointer IA(*) to a variable of type
1-dim alpha array AA(*) and look at the data as characters.

The command PAV (Print Array Variable) looks at the array 'through the eyes of the array
variable', i.e. in the above example AA(*) as alpha.

The command PDV (Print from Descriptor Variable) always looks at the array with the data
given in the descriptor. It looks at how the array was first created, and, in the example above,
looks at the array as integer.

4.4.5 Permanent Entities and System Owned Variables/Sets

Permanent entities are implemented as a set of 1-dimensional arrays that will appear as global

72

SIMSCRIPT II.5 User’s Guide

arrays. Use the GLOB command. At this point the different fields of a permanent entity are
not shown together (e.g. with the entity name), but appear separately in the alphabetical
listing of all global variables.

'The system owns' ... variables and sets show up as global variables, in alphabetical order.

4.4.6 Conditional Breakpoints

Certain problems only appear after a large amount of data has been processed. For example,
after 10000 iterations in a loop. To allow you to break the process and go into the debugger
upon any arbitrarily complex condition, SimDebug offers you a direct call to SIMDEBUG.R.

When you call this routine from your application program you are put into the SimDebug
dialog just as if you had set a breakpoint. You can examine the stack, global variables,
entities, and single step through the program in the usual manner.

Example:

for i = 1 to 10000
do
 do something
 if i>10000 and A+B-C > DATTR(ENTPTR)

 call SIMDEBUG.R
 endif
loop

4.4.7 Continuous Variables

Continuous variables (for continuous simulation) are implemented as right and left functions.
Therefore, they will show as right and left routines in the LR command, but not as variables.

4.4.8 Unsupported SIMSCRIPT Features

SimDebug Release 1.0 supports all SIMSCRIPT features, with the exception of packed
permanent entities. However, packed temporary entities are supported.

WARNING

Simdebug Recursion: SimDebug protects itself from errors
that normally cause a program to fail, such as attempting to
use a bad pointer, or having unaligned accesses. However,
in some rare cases it can happen that SimDebug does not

 73

SIMSCRIPT II.5 User’s Guide

catch an error condition that then causes another error 'within'
SimDebug. Since SimDebug is a program that is called
when an error occurs, SimDebug will be called from within
SimDebug! You will get a warning message.

You can look at some more variables, but you cannot continue
the execution. Exit from SimDebug with QUIT and restart
your program to find the error.

74

Appendix A Compiler Warning and Error Messages

A.1 Warning and Error Messages
During compilation, warning messages and error messages may be produced. The text of
each message appears below:

1001 Invalid syntax
A word found in the input stream did not conform to the syntax requirements of the
SIMSCRIPT II.5 language. The unrecognized word is ignored and the error scan resumes
with the next statement keyword in the input stream.

1002 Missing ')'
An arithmetic expression or subscript is missing a right parenthesis. A (possibly misplaced)
right parenthesis is assumed.

1003 Missing terminal " in ALPHA literal
An ALPHAnumeric string must be contained on one line.

1004 More format specifications than variables
In formatted read and write statements, there must be a one-to-one correspondence
between variables and format descriptors. The format descriptors, including “/,” must be
separated by commas. In a print statement, fields are defined by “*” or a sequence of at
least 8 contiguous periods.

1005 More variables than format specifications
See message 1004.

1006 Conflicting or redundant properties in define
More than one MODE, DIMENSION or TYPE specification appears in the same define
statement. The indicated statement is ignored.

1007 Number of subscripts different from definition or previous use
A subscripted variable is redefined with a different number of subscripts than originally, or a
set name in a file or remove statement is improperly subscripted.

1008 else or always without matching if
The indicated statement is misplaced in the program.

1009 if not terminated by always
This error is detected at the end of a routine.

1010 Use conflicts with definition
The previous definition or use of this name precludes its use in this context. This message
can apply in a number of cases. The most common are described below.

SIMSCRIPT II.5 User’s Guide

• A belong clause in an every statement does not refer to a set name.

• Common membership in sets is limited to temporary entities.

• An every statement attempts to define an entity but the name has already

been defined differently.

• A define statement attempts to define a variable, a procedure or a set, but
the name has already been defined differently.

• The variable in an external unit statement has already been defined

differently.

• The attribute of a has clause has already been defined differently or a
common attribute is defined with a different word assignment or packing
code.

• Attempt to read or write a variable defined as a set.

• Attempt to release a quantity, which is not an array, a routine or a

subprogram variable.

• Attempt to store in a random variable.

1011 Illegal assignment target
This error is caused by an illegal attempt to store information in a built-in function. Builtin
functions include abs.f, div.f, int.f, real.f, mod.f, max.f, min.f and all
text-related functions. Except for substr.f, these functions cannot be used on the left-
hand side of assignment statements or as yielded arguments.

1012 Array number out of range
Application has more than 8000 variables and/or permanent entities. The maximum
permissible array or word number for global variables or permanent attributes is 8000. Use of
an array number larger than this is not permitted in this implementation.

1013 Context requires routine name
A routine statement uses an incorrect name or the name appearing is not a routine name.

1014 return with not allowed here
Event routines and left-handed routines cannot return any values.

 76

Compiler Warning and Error Messages

1015 loop without a matching do
The compiler ignores the loop statement.

1016 Implied subscripting attempted on a common attribute
Common attributes must be explicitly subscripted.

1017 Number of given arguments inconsistent with definition
A call or function reference uses a number of arguments different than that defined for the
subject routine.

1018 Multiple definition of label
The label has been defined elsewhere in the routine.

1019 Subscript required on label
The label name was previously encountered with a subscript.

1020 Name repeated in parameter list
The names in the given arguments list or in the yielded arguments list may each appear
only once in the list.

1021 Undefined label
This error is detected at the end of a routine.

1022 do without a matching loop
This error is detected at the end of a routine.

1023 MAIN routine should use stop
The MAIN routine should not use a return statement. The compiler substitutes a stop
statement.

1024 Missing end
The compiler supplies the end statement and completes the processing for the routine.

1025 define to mean or substitute incomplete
An end-of-file was encountered during the processing of a substitute statement or no
substitutable text was found. Blanks and comments ('') are invalid substitutable text. The
statement is ignored.

1026 Inappropriate mode or dimension for implicit subscript
Due to local redefinition, the mode or dimensionality for this implied subscript is
inappropriate. The compiler ignores the dimensionality but uses the new mode.

1027 Attribute in first 5 words of event notice is illegal
The first five words of an event notice contain the time.a, m.ev.s, p.ev.s, s.ev.s
and eunit.a attributes. These attributes cannot be redefined. The compiler ignores the
specification.

 77

SIMSCRIPT II.5 User’s Guide

1028 Context requires an unsubscripted subprogram variable
An indirect call to a function using the $ name feature requires that the subprogram
variable name be unsubscripted, as the subscripts are treated as given arguments for the
indirect call.

1029 Attribute in first 8 words of process notice is illegal
See message 1027. In addition, a process notice contains the ipc.a, rsa.a,
sta.a and f.rs.s attributes.

1030 Temporary attribute word number out of range
The maximum permissible entity length is 1023 words. Entities of this size should never be
required.

1031 Subscripts not permitted for this variable
A variable defined as unsubscripted is used with a subscript.

1032 Non-integer subscript on a temporary attribute
Temporary attribute subscripts must be pointers.

1033 Negative constant used as a subscript
This illegal condition cannot be compiled.

1034 Subscript not permitted on label
A label is used with a subscript in a go to statement or is defined as subscripted although it
has already appeared without a subscript.

1035 then if statement appears outside if
The then keyword can only be used within an if block. The compiler ignores the then
word.

1036 Missing ')' in logical expression
A (possibly misplaced) right parenthesis is assumed.

1037 div.f valid only with integer values
A floating-point division is performed.

1038 Number of yielding arguments inconsistent with definition
See message 1017.

1039 Attribute of mixed compound entity must be a function
Attributes of mixed compound entities (compound of at least one permanent entity and at
least one temporary entity) must be functions. The compiler assumes a function definition.

1040 Attempt to equivalence function attributes
Function attributes are not assigned any storage and therefore cannot be equivalenced.

1041 Missing ')' in equivalence attribute group

 78

Compiler Warning and Error Messages

A (possibly misplaced) right parenthesis is assumed.

1042 Attempt to pack function attribute
Function attributes are not assigned any storage and therefore cannot be packed.

1043 Attempt to pack unsubscripted system attribute
The packing definition cannot be honored.

1044 Illegal packing code
For bit packing, the bit numbers should satisfy the inequality 1 ≤ n ≤ m ≤ 32. For field
packing and intra-packing, the denominator must be 2 or 4.

1045 Packing code (*/n) illegal for temporary attribute
The */N packing codes can only be used for arrays (such as attributes of permanent entities
or subscripted attributes of the system). A field packing of 1/N is assumed.

1046 Compound entity may not belong to a set
The compiler ignores the belong clause.

1047 Attempt to define non-local variable as saved or recursive
This is an attempt to define a local variable in the PREAMBLE. The definition is not processed.

1048 Incorrect mode specified for packed variable
Packing applies only to INTEGER quantities.

1049 Defining set not previously declared in every statement
Set definitions must be placed after the owns and belongs clauses defining their owner
and members. The definition of the set is ignored. This may cause follow-on errors.

1050 Statement should be preceded by a control phrase
A compute statement, find statement, when statement or a controlled read or write
statement must be within a for, while or until block.

1051 write format used in read statement
A character string appears in the as clause of a read statement.

1052 Illegal or out of place '*'
Either an attribute of a temporary entity or an argument to a function call is subscripted by an
*, or an array reference has an * before the last subscript.

1053 Attempt to perform set operation on a non-set
A file statement, a remove statement, a for each of set statement, an if set is
empty or a before or after statement references a quantity not defined as a set.

1054 Statement requires attributes not defined for named set
A file statement, a remove statement, an if set is empty or a for each of set
phrase is used, but the necessary set attributes were deleted by a without phrase.

1055 Name of a permanent entity required in this context

79

SIMSCRIPT II.5 User’s Guide

A create each statement or a for each statement must refer to a permanent entity.

1056 also statement outside do ... loop
An also statement appeared outside of a do block. The compiler assumes a do statement
after the also block.

1057 Name of a temporary entity required in this context
A create statement, destroy statement or before or after statement must refer to a
temporary entity.

1058 group used without column repetition
An in groups of phrase must be controlled by a for phrase. The statement is ignored.

1059 Name of an event required in this context
The event, process, activates, cause, cancel, break ties and priority
statements must refer to an event or process name. In the case of an event or process
statement, a routine named R0 is assumed.

1060 Misuse of suppression amid column repetition group
The suppression phrase is misplaced.

1061 Context requires a for phrase to follow the word printing
The printing phrase is not properly programmed.

1062 Column repetition context requires in groups of phrase
The column repetition clause must include an in groups of phrase.

1063 Column repetition group size is illegal
The in groups of phrase specifies a 0 group size. The compiler assumes a value of 1
in its subsequent error scan.

1064 end statement required to terminate report heading
The compiler assumes an end statement at this point.

1065 end statement required to terminate report
The compiler assumes an end statement at this point.

1066 print 0 lines statement is ignored
Subsequent error messages may refer to form lines.

1067 Too few formats or too many expressions in print
There must be a one-to-one correspondence between expressions and format specifications.

1068 Set owner or member not defined
A set name must appear in both an owns clause and a belongs clause to be defined. Both
the owns and the belongs clauses must precede the set definition.

1069 Attributes of common set must be declared in an every statement

 80

Compiler Warning and Error Messages

The set pointers must appear in an every statement. No attribute definition takes place.

1070 Mode of quantity conflicts with automatic definition
The M or N attribute for a set, or the N.entity name for a permanent entity were explicitly
defined with real mode. They must be integer.

1071 Number of subscripts conflicts with automatic definition
The attributes of a set were explicitly defined with an incorrect dimension, or the
N.entity name for a permanent entity was defined as a subscripted variable.

1072 Explicit definition conflicts with automatic definition
One of several conditions has appeared:

• The owner or member attributes of a set were explicitly defined and their
definition conflicts with the owns or belongs clause for the set.

• The N.entity name for a permanent entity is neither a global variable nor

apermanent attribute of the system.

• The F.name or S.name of a random variable should be left for automatic
definition.

1073 Ranking attribute must be declared in an every statement
The ranking attribute in the define set statement is not an attribute of the member entity.

1074 Illegal file statement for ranked set
The file first, file last, file before, and file after statements are not
permitted on ranked sets.

1075 Number of given arguments exceeds the maximum allowed
The combined number of given and yielding arguments cannot exceed 127.

1076 Number of yielding arguments exceeds the maximum allowed
See message 1075.

1077 Number of subscripts exceeds the maximum allowed
The maximum number of subscripts allowed is 254.

1078 Label subscript must be between 1 and 3000
The maximum subscript allowed on a label is 3000. Since subscripted labels require a table
as large as the maximum subscript value, smallest program size suggests that subscripts
should normally range from 1 to n in increments of 1.

1079 Number of recursive local variables exceeds available space.
Each routine has 1024 words of storage available for recursive local variables. Some of
this total is used by variables which the compiler generates internally.

1080 Context requires subscripted label

 81

SIMSCRIPT II.5 User’s Guide

A subscripted label is required at this point.

1081 Yielding arguments illegal in left-function
Yielding arguments are not allowed in monitoring routines or left-handed functions.
Ignoring the yielding argument list scans the routine.

1082 enter statement permitted only in left-functions
This statement should be the first executable statement in a left-handed routine.

1083 Global properties specified in local define
Local variables cannot be monitored, packed, or defined as stream variables.

1084 Incorrect number of given arguments in left-function
A routine monitoring a variable must be given the same number of arguments as the number
of subscripts originally defined for the variable.

1085 move statement not allowed here
A move to statement can only appear in a right-handed routine. A move from can only
appear in a left-handed routine. The statement is out of place.

1086 before creating and after destroying options not allowed
After creating and before destroying can be used to collect usage statistics.

1087 More arguments than defined attributes in process or event
It is necessary to define an attribute to hold each argument received by the event. The excess
arguments supplied can receive no values.

1088 More arguments than defined attributes in activate
It is necessary to define an attribute to hold each argument received by the event. The excess
arguments supplied cannot be stored anywhere.

1089 Context requires name of an entity
A list attributes of statement does not refer to a temporary entity.

1090 Illegal attempt to break ties on an external event
External events cannot appear in break ties statements.

1091 Illegal attempt to equivalence random attributes
Random attributes cannot be equivalenced with other variables of any type.

1092 Illegal mode for a random variable
A random variable cannot be of alpha or text mode.

1093 stream phrase ignored - variable not defined as random
The define name as stream statement should be placed after the definition of the
variable as a random variable.

1095 cycle or leave ignored - no loop in effect

 82

Compiler Warning and Error Messages

Either cycle or leave must appear within a do ... loop block.

1096 Missing here for a jump back
A here statement must exist prior to the occurrence of a matching jump back statement.

1097 Missing here for a jump ahead
A here statement must appear after a jump ahead. This error is detected at the end of
the routine.

1098 Both accumulate and tally illegal on the same variable
The mixing of statistics type is not allowed for a given variable. See message 1099.

1099 accumulate/tally illegal for monitored/random variables
These operations are in fact implemented by constructing monitoring routines.

1100 Statistic requested twice for the same variable
One statistical keyword appeared more than once for a given variable.

1101 Improper type of variable for accumulate or tally
Accumulate or tally can be requested for unsubscripted global variables, attributes of
permanent entities, temporary entities, event notices, processes, resources and compound
entities. They cannot be requested for subscripted global variables, subscripted attributes of
the system, or common attributes of temporary entities.

1102 Attribute for accumulate or tally improperly pre-defined
The variables containing the accumulated or tallied statistics should be left for automatic
definition by the compiler. They should not appear in define statements.

1103 Accumulate or tally on an undefined variable
The name of the variable is probably spelled wrong.

1104 Histogram of attribute of a temporary entity is forbidden
Histograms may be requested for global variables, system attributes, and attributes of
permanent entities.

1105 Improper word boundary for a variable of mode double
Certain systems — the Gould and IBM mainframes among them — require that all
doubleprecision floating point numbers be aligned on a double-word boundary. This requires
that unsubscripted double permanent attributes be assigned to odd-numbered in array
numbers, and that double temporary attributes be assigned to odd in word numbers.
Other systems — such as the VAX — do not require such assignments, but are compatible
with them.

1106 Multiple else statements not allowed on a if
The language allows only one else statement. Other diagnostic messages may indicate
the prior if statement was not processed.

1107 Then if statement after else - obscure structure

 83

SIMSCRIPT II.5 User’s Guide

The then if construction is not permitted on a structured if. Correct by explicitly using
else and always statements as appropriate instead of using then if.

1108 Else statement after then if - obscure structure
See message 1107.

1109 A statement above this point is unreachable
An unlabeled statement or group of statements follows a return or an unconditional
transfer. This may be due to a missing label, else, or case statement.

1110 Process not declared - routine assumed
The process routine has not been declared in the PREAMBLE.

1111 This statement may appear only in a process

1115 Illegal implied conversion between text and other modes
Use ttoa.f or atot.f or access conversion routines by write and read using the
buffer.

1116 Improper argument mode for intrinsic function
An argument of mode text was expected and not found, or a text argument was given
where a numeric argument was expected.

1119 Packed variable cannot be passed in this context
Array rows of variables that are bit packed, or packed (n/m), cannot be passed as arguments
to NONSIMSCRIPT routines. Individual elements or arrays packed (*/m) are valid
arguments.

1120 Improper first argument to left substr.f
The first argument to substr.f must be an unmonitored text variable.

1121 Attempt to equivalence text variable
Text variables cannot be equivalenced with other variables.

1124 Conflicting parameters in open or close
The open or close statement was used improperly.

1126 open does not specify either input or output
Either input or output (or both) must be specified as an open statement option.

1127 text function illegal in store statement
The store statement should generally not be used with text data. In this instance, its use
would result in permanent loss of a block of memory.

1128 double variable overlap caused by equivalencing
A double variable occupies two successive array number locations. The second of these
should not be assigned to any other use.

1129 always is preferred usage in this context

 84

Compiler Warning and Error Messages

The else (otherwise) statement should be changed to an always.

1130 Number of labels exceeds allowed maximum
Implementation constraints impose a limit on the allowed number of statement labels. The
routine should be subdivided into two or more routines.

1131 Subprogram variable used out of context
A subprogram variable may not be used within a computation.

1132 Implicit conversion of subprogram variable
Only subprogram variables or subprogram literal values may be assigned to a variable
declared as mode subprogram.

1133 Dimensioning of attributes not permitted
Attributes of temporary and permanent entities are implicitly 1-dimensional, subscripted by
an entity pointer value. The explicit dimensioning of these may cause ambiguity. A
dimension of 1 is substituted.

1134 Illegal use of store with quantities of differing mode
This usage of store may have undesirable side effects and is no longer permitted.

1135 Use of store with text quantities may have undesired effect
The use of the store statement between text quantities is allowed, but strongly
discouraged, because it disables the automatic actions that assure the integrity of text
values.

1136 Variable is undefined or not fully defined
This message appears when the background mode has been explicitly set to undefined
using a normally statement.

1137 Parameter in open statement not supported
Differences in operating systems do not allow complete compatibility between
SIMSCRIPT II.5 implementations of the open statement. Unsupported parameters are
ignored.

1138 Release routine statement no longer supported
The statement is ignored.

1139 Reset references variable not accumulated or tallyed
Totals do not exist for a variable which has not been the object of an accumulate or
tally statement.

1140 Reset uses qualifier not declared as such
Only a qualifier defined for an accumulated or tallyed statistic may be specified in a
reset statement.

1141 This statement not supported or no longer required

 85

SIMSCRIPT II.5 User’s Guide

1142 Local variable used only once
The indicated local variable appears only once in the routine. This could be due to a
typographical error.

1143 Local variable never modified
The indicated local variable has not been modified by the routine. This means that its value is
always zero (or "", if a text variable). This could be due to a typographical error.

1144 Bad Block structure - overlapping do and if
The statement violates SIMSCRIPT II.5's structured programming nesting rules, by
overlapping one of the following three control structures:

• do ... loop
• if ... else ... endif
• select ... case ... default ... endselect

For example, if the statement in error is a loop statement, then an if block was not
terminated by an endif, or a select was not terminated by an endselect. The error will
also be seen when one block overlaps a portion of another block, as in if ... do ...
else ... loop ... endif.

1145 Variable or function name required
A non-numeric quantity — such as a set — cannot be the object of a read, print, or
list statement. A statement such as list attributes of each entity in set
may have been intended.

1146 Assignment between incompatible data types
Check the modes on both sides of the equal sign in an assignment (let) statement.

1147 Implicit conversion of pointer variable
The indicated variable must be either mode pointer or mode integer.

1148 Name of a resource required
The request and relinquish statements apply to resources only.

1150 Multiple MAIN routines encountered
Only one MAIN routine may be included in any compilation.

1151 case control outside select...endselect
A case or default statement can be used only between a corresponding select ...
endselect pair.

1152 Mode of case term does not match select
The mode of the term is incompatible with the mode of the select expression. Some
mode conversion is performed. A real expression may include integer terms, and both
text and alpha expressions require string literal case terms. If necessary, assign the
expression to a variable of the appropriate mode.

 86

Compiler Warning and Error Messages

1153 case term duplicates previous term(s)
This term is unreachable because it is completely blocked by corresponding terms in an
earlier case statement. This message will not be given for select expressions with a
mode of real, double, or text.

1154 Statement not allowed after default
The case or default statement is not valid within a select block after the use of the
default statement.

1155 No case statements appear within select
Each select ... endselect block must include at least one case statement.

1156 Select case without matching endselect
Each select case block must be terminated by a matching endselect statement.

1158 Symbol redefinition
A local define to mean is redefining a global define to mean, without an intervening
suppress substitution. This may have unexpected consequences. For example, if the
PREAMBLE contains the statement define .NUMBER to mean 10, and a routine contains
the statement define .NUMBER to mean 20, the compiler will first substitute 10 for
.NUMBER in the routine, making the statement read define 10 to mean 20, and will
then substitute 10 for 20 throughout the remainder of the routine.

1161 Changing PROCESS pointer may affect implicit subscripting
Changing the pointer to a PROCESS within its PROCESS routine will prevent the routine
from later accessing the attributes of the current process. Such attributes are often referenced
through implied subscripts. This warning may be the result of an activate,
create or remove statement intended to point to a different process notice. Use a
different pointer name to avoid this problem.

1162 Storage may not be deallocated on destroy of a process
When a PROCESS terminates normally, SIMSCRIPT II.5 automatically performs some
memory management functions. By explicitly destroying the PROCESS pointer, these
functions are disabled. In general, if a PROCESS may be terminated prematurely, the
PROCESS itself should check for the conditions requiring termination, rather than having
the PROCESS pointer destroyed by a separate routine.

1163 Context requires the name of a HISTOGRAM
A statement of the form accumulate HISTOGRAM.NAME (LO to HI by INCREMENT)
as the histogram of VARIABLE.NAME must appear in the PREAMBLE. Also see
message1104.

1164 Name of routine is not a monitored variable
SIMSCRIPT II.5 monitors global variables by defining routines with the same name. In
this case, you have provided a routine with the same name as a global variable, but the
variable is not being monitored. Rename the variable or the routine.

1165 Statement out of place
A PREAMBLE type statement appeared in a routine, or vice versa. The unrecognized word

 87

SIMSCRIPT II.5 User’s Guide

is ignored and the error scan resumes with the next statement keyword in the input stream.

1166 Invalid literal value
The value of the literal provided is too large to hold in a variable location.

1167 Returned Function mode undefined
The mode of the value returned by a function must be declared in the PREAMBLE (define
FN as a FN.MODE function). If the mode is not explicitly included in the define
statement, the background (i.e., normally mode is...) mode currently in effect is
assumed.

1168 Function should return a value

1169 Statement incomplete

1170 Pointers can test for equality only

1171 Used as imlicit subscript
SIMSCRIPT II.5 is free format and allows for usage of implicit subscripts. This increases
the expressive power of the language but sometimes is error prone. You can suppress implicit
subscripts by using the SIMSCRIPT II.5 language statement:

suppress implicit subscripts

The compiler will generate warning message 1171 whenever it detects implicit subscripts
usage. The scope of the suppress statement is global if used in a PREAMBLE or local if
used in a routine. Usage of implicit subscripts can be resumed by the statement:
resume implicit subscripts Any number of suppress/resume statements are
allowed in a routine.

1172 Subscript should be pointer mode

 88

Appendix B Runtime Error Messages

B.1 Runtime Error Messages

When a runtime error is detected, a runtime error message is written to standard error. The
text of each message appears below:

2001 zero raised to a negative power

2003 negative number raised to a real power

2004 invalid I/O unit
The unit number is less than 1 or greater than 99.

2005 negative expression in SKIP INPUT statement

2006 attempt to file an entity in a set it is already in
The M.set attribute of an entity being FILEd in a set is not equal to zero.

2007 attempt to file before or after an entity that is not in the set
The M.set attribute of the entity in the before or after phrase is equal to zero.

2009 attempt to remove from an empty set
The F.set attribute is equal to zero when a remove operation is attempted.

2010 attempt to remove an entity that is not in a set
The M.set attribute is equal to zero when a remove specific operation is attempted.

2011 invalid random number stream
The absolute value of the stream number is less than 1 or greater than the number of random
number streams (normally 10).

2013 attempt to schedule an event/process already scheduled
The m.ev.s attribute of the event/process is not equal to zero when a schedule operation
is attempted.

2014 attempt to cancel an event/process not scheduled
The m.ev.s attribute of the event/process is equal to zero when a cancel operation is
attempted.

2016 no memory space available
The program is attempting to dynamically allocate more memory than the operating system
will allow.

2017 negative argument in itoa.f

SIMSCRIPT II.5 User’s Guide

2018 argument > 9 in itoa.f

2019 attempt to use a write-only I/O unit for input
An I/O unit opened for output only appears in a use for input statement.

2020 attempt to use a read-only I/O unit for output
An I/O unit opened for input only appears in a use for output statement.

2021 attempt to use a unit for input that is in the output state
An I/O unit last used for output appears in a use for input statement without an
intervening rewind.

2022 attempt to use a unit for output that is in the input state
An I/O unit last used for input appears in a use for output statement without an
intervening rewind.

2023 unable to open existing file
See the UNIX error message on the line following this message for more information.

2024 unable to create new file
See the UNIX error message on the line following this message for more information.

2025 subscript out-of-range
An array subscript is less than 1 or greater than the number of array elements.

2027 range error on computed go to
The index value used in a computed go to statement is less than 1 or greater than the
number of labels.

2028 formatted read goes beyond the end of input record
An attempt is made to read characters beyond the record size specified for the unit.

2030 formatted write goes beyond the end of output record
An attempt is made to write characters beyond the record size specified for the unit.

2032 negative field width in input format

2036 negative field width in output format

2040 mixed binary and character I/O
An I/O operation allowed only on an ASCII file is attempted on a binary file, or vice versa.

2041 invalid character while reading 'C' format
A character is read which is not one of the following: blank, 0-9, A-F, or a-f.

2044 output format field width greater than record size

 90

Runtime Error Messages

2048 input format field width greater than record size

2051 zero entity pointer
The pointer used to identify a temporary entity is equal to zero.

2052 reference to destroyed entity
This error can be caused by keeping copies of an entity pointer in several variables,
destroying one copy, and referencing attributes of another copy. This error is detected by the
runtime checking option. If the option (-C) is omitted, a “bus error” may occur instead, or
bad values may enter a computation, causing a delayed failure. This is actually a special case
of error “2053: invalid entity pointer.” It is not always possible to detect a destroyed entity,
since the memory may have been reused since it was destroyed. If this is the case, you will
get error 2053 instead.

2053 invalid entity pointer
The pointer used to identify a temporary entity does not contain the address of a temporary
entity.

2054 wrong temporary entity class
The pointer used to identify a temporary entity contains the address of a temporary entity
which belongs to an entity class different from the one that was expected.

2058 reference to unreserved array
The pointer used to identify an array is equal to zero.

2060 zero or negative subscript specification in reserve statement
The number of array elements specified in a reserve statement is less than 1.

2061 dim.f for array is > 65535
The number of array elements specified in a reserve statement is greater than 65535.

2062 attempt to create invalid entity class
The entity class is not recognized when attempting to create an entity, which is usually
caused by failing to link the compiler-generated routine setup.r.

2066 invalid array pointer
The pointer used to identify an array does not contain the address of an array.

2067 reference to a released array.
This error also appears for references to attributes of a permanent entity that has been
destroyed. The error is detected by the runtime checking option. The comments that apply to
destroyed entities apply here as well.

2068 end of file encountered during read operation while eof.v=0

2069 fatal I/O error during read
See the UNIX error message on the line following this message for more information.

 91

SIMSCRIPT II.5 User’s Guide

2070 fatal I/O error during write
See the UNIX error message on the line following this message for more information.

2071 record length exceeds specified recordsize
A record is read from the current input unit, which is longer than the record size specified
for the unit.

2072 'B' format input column is not within record
The column number is less than 1 or greater than the record size specified for the unit.

2076 'B' format output column is not within record
See error 2072.

2077 incomplete record on a fixed format file
The last record read from a binary file is shorter than the record size specified for the unit.

2084 invalid character in 'I' format during input
A character is read which is not one of the following: blank, +, -, or 0-9.

2088 integer number too large for input
A value is read which falls outside the range of integer values: -2147483648 to
+2147483647.

2093 attempt to create text string > 32,000 characters

2094 attempt to erase non-text entity
A value which is not text is encountered in a situation where a text value is required.

2095 position zero or negative in substr.f

2096 length negative in substr.f

2097 offset negative in match.f

2101 transfer to missing case in select
In a select statement, the expression is not equal to any of the values specified in any of
the case statements and no default statement has been specified.

2103 wild transfer in subprogram variable CALL
The value of the subprogram variable is not equal to the address of a routine.

2104 wild transfer in subscripted go to statement
An attempt is made to go to an undefined subscripted label.

2106 attempt to suspend when no process is active
A wait, work, suspend, request or relinquish statement is executed by a
routine which is neither a process nor a routine called from a process.

 92

Runtime Error Messages

2107 attempt to relinquish more resources than requested
An attempt is made to relinquish units of a resource that were not previously obtained by
a request.

2112 parameter 2 negative in 'D' or 'E' format
A negative number of decimal places is specified.

2116 parameter 2 > parameter 1 in 'D' or 'E' output format
The number of decimal places exceeds the total width of the field.

2122 parameter 2 > parameter 1 in 'D' or 'E' input format
See error 2116.

2124 real number too large for input
A value is read which falls outside the range of double values.

2128 invalid character in 'D' or 'E' format during input
A character is read which is not one of the following: blank, period, +, -, E, e, or 0-9.

2130 negative argument to skip fields — cannot skip backwards

2132 mean in exponential.f call ≤ 0

2133 mean in erlang.f call ≤ 0

2134 number of stages in erlang.f call ≤ 0

2135 mean in log.normal.f call ≤ 0

2136 standard deviation in log.normal.f call ≤ 0

2137 standard deviation in normal.f call ≤ 0

2138 mean in poisson.f call ≤ 0

2139 second parameter less than first in randi.f call

2140 second parameter less than first in uniform.f call

2141 number of trials in binomial.f call ≤ 0

2142 probability in binomial.f call ≤ 0

2143 shape parameter <= 0 in weibull.f call

2144 scale parameter ≤ 0 in weibull.f call

 93

SIMSCRIPT II.5 User’s Guide

2145 mean in gamma.f ≤ 0

2146 shape parameter in gamma.f ≤ 0

2147 first parameter in beta.f call ≤ 0

2148 second parameter in beta.f call ≤ 0

2152 value of log.e.f or log.10.f argument ≤ 0

2153 absolute value of arcsin.f or arccos.f argument > 1

2154 values of arctan.f arguments = (0,0)

2155 value of sqrt.f argument < 0

2159 negative time expression in call of nday.f

2160 negative time expression in call of weekday.f

2161 negative time expression in call of hour.f

2162 negative time expression in call of minute.f

2169 (minimum ≤ mean ≤ maximum) is false in triang.f

2171 attempt to open a unit already open

2173 invalid recordsize in open statement
The record size is less than 1 or greater than 65534.

2176 attempt to close a file already closed
An attempt is made to close or rewind a unit that is not open.

2177 attempt to close a standard SIMSCRIPT unit
An attempt is made to close or rewind unit 5, 6 or 98.

2178 unable to close file
See the UNIX error message on the line following this message for more information.

2185 unable to record memory

2186 unable to restore memory

2188 unable to reopen or reposition a file during restore memory

2193 system service error
For VMS systems only - unexpected error condition from VMS received by SIMSCRIPT

 94

Runtime Error Messages

library procedure.

2213 Origin.r must be called before calendar functions

2217 negative argument to out.f
An attempt is made to reference a column position less than 1.

2218 argument to out.f exceeds buffer length
An attempt is made to reference a column position greater than the record size specified for
the unit.

2220 simulation time decrease attempted
The value of time.v has decreased since the last event occurred.

2221 no event/process to match name in external event data
The external event data contains the name of an external event/process, which has not been
defined in the preamble.

2222 invalid external event name

2224 error in use of calendar time format

2225 attempt to destroy an entity owning a non-empty set
An F.set attribute of the entity is not equal to zero when a destroy operation is
attempted.

2226 attempt to destroy an entity that is in a set
An M.set attribute of the entity is not equal to zero when a destroy operation is
attempted.

2227 attempt to use a random variable that has not been read

2228 Alpha probability encountered in random variable data

2229 probability not between 0.0 and 1.0 in random variable data

2230 end of file while reading value field in random variable data

2231 Alpha value encountered in random variable data

2232 Real value where integer expected in random variable data

2233 first cumulative probability not zero in data for random linear variable

2234 cumulative probability values not in increasing order

2235 individual probability values not allowed for random linear variables

2236 sum of probability values more than 1 plus rounding margin

 95

SIMSCRIPT II.5 User’s Guide

2237 Jump to missing Here statement
See compilation warning.

2238 Time.v decreased since last reset

2239 month origin error
A month is specified which is less than 1 or greater than 12.

2240 day origin error
A day of the month is specified which is less than 1 or greater than the number of days in the
month.

2241 invalid event/process class
An event/process class is specified which is less than 1 or greater than the number of event/
process classes.

2300 graphics system error
See the error message on the line preceding this message for more information.

2301 value of vxform.v is invalid
The number of the current viewing transformation is less than 1 or greater than 15 when an
attempt is made to define a window or viewport.

2302 invalid viewport dimensions
An attempt is made to define a viewport having dimensions, which do not satisfy the
following requirement:

0 ≤ xlo ≤ xhi ≤ 32767 and 0 ≤ ylo < yhi ≤ 32767

2303 invalid window dimensions
An attempt is made to define a window having dimensions, which do not satisfy the
following requirement:

xlo ≠ xhi and ylo ≠ yhi

2304 attempt to delete the open segment

2305 segment already open
An attempt is made to open a segment when there already is an open segment.

2306 segment already closed
An attempt is made to close a segment when there is no open segment.

2307 segment does not exist

2308 invalid segment priority
The segment priority is less than zero or greater than 255.

 96

Runtime Error Messages

2309 invalid POINTS argument
The points array is unreserved or does not contain enough points.

2310 form/graph/icon not found

 97

SIMSCRIPT II.5 User’s Guide

 98

Appendix C Standard SIMSCRIPT II.5 Names

C.1 Functions and Routines

Function abs.f (arg)

Arguments:

arg An integer or double value

Description: Returns the absolute value of arg.

Mode: The mode of arg.

Function and.f (arg1, arg2)

Arguments:

arg1 An integer value.
arg2 An integer value.

Description: Returns the logical product of arg1 and arg2.

Mode: Integer

Function arccos.f (arg)

Arguments:

arg A double value between -1 and +1.

Description: Returns the arc cosine of arg.

Mode: Double

Function arcsin.f (arg)

Arguments:

arg A double value between -1 and +1.

Description: Returns the arc sine of arg.

Mode: Double

Function arctan.f (arg1, arg2)

Arguments:

arg1 A double value
arg2 A double value

Description: Returns the arc tangent of arg1/arg2.

SIMSCRIPT II.5 User’s Guide

Mode: Double

Function atot.f (arg)

Arguments:

arg An alpha value.

Description: Returns a text value of length 1 containing arg.

Mode: Text

Function beta.f (k1, k2, stream)

Arguments:

k1 A double value greater than zero specifying the power of X.
k2 A double value greater than zero specifying the power of (1-X).
stream An integer value specifying the random number stream.

Description: Returns a random sample from a beta distribution.

Mode: Double

Function binomial.f (n, p, stream)

Arguments:

n An integer value specifying the number of trials.
P A double value specifying the probability of success.
stream An integer value specifying the random number stream.

Description: Returns a random sample from a binomial distribution.

Mode: Integer

Function concat.f (arg1, arg2, ...)

Arguments:

arg1,
arg2, ...Two or more text values.

Description: Returns the concatenation of arg1, arg2, ...
Mode: Text
Function cos.f (arg)

Arguments:

arg A double value specifying an angle in radians.

Description: Returns the cosine of arg.

Mode: Double

Function date.f (month, day, year)

 100

Standard SIMSCRIPT II.5 Names

Arguments:

month An integer value specifying the month.
day An integer value specifying the day within the month.
year An integer value specifying the year.

Description: Returns the cumulative simulation time for the given calendar date based on
values given to origin.r.

Mode: Integer

Routine date.r yielding date, time
Arguments:

date A text value containing the current date in the form MM/DD/YYYY.
time A text value containing the current time in the form HH:MM:SS.

Description: Returns the current date and time.

Function day.f (time)

Arguments:

time A double value specifying a cumulative simulation time.
Description: Returns the day portion corresponding to the simulation time based on values

given to origin.r.

Mode: Integer

Function descr.f (string)
Arguments:

string A text value, text variable or expression.

Description: Indicates an argument to a NONSIMSCRIPT routine is passed by descriptor.
Used for VMS, ignored by UNIX systems.

Mode: n.a.

Function dim.f (array(*))
Arguments:

array(*) An array pointer.

Description: Returns the number of elements in the array.

Mode: Integer

Function div.f (arg1, arg2)

Arguments:

arg1 An integer value.
arg2 An integer value not equal to zero.

 101

SIMSCRIPT II.5 User’s Guide

Description: Returns the truncated value of arg1/arg2.

Mode: Integer

Function efield.f

Arguments: None

Description: Returns the ending column of the next data field to be read by a free-form

read statement. Returns zero if there are no more data fields.

Mode: Integer

Function erlang.f (mu, k, stream)

Arguments:

mu A double value greater than zero specifying the mean.
k An integer value greater than zero specifying the number of stages.
stream An integer value specifying the random number stream.

Description: Returns a random sample from an Erlang distribution.

Mode: Double

Routine exit.r (status)

Arguments:

status An integer value specifying an exit status.

Description: Terminates program execution passing the exit status to the command level.

Function exp.f (arg)

Arguments:

arg A double value.

Description: Returns “e to the arg”.

Mode: Double

Function exponential.f (mu, stream)

Arguments:

mu A double value greater than zero specifying the mean.
stream An integer value specifying the random number stream.

Description: Returns a random sample from an exponential distribution.

Mode: Double

 102

Standard SIMSCRIPT II.5 Names

Function fixed.f (txt, len)

Arguments:

txt A text value.
len A non-negative integer value.

Description: Returns a copy of txt, which is either space-padded or truncated so that its
length is len.

Mode: Text

Function frac.f (arg)

Arguments:

arg A double value.

Description: Returns the fractional part of arg.

Mode: Double

Function gamma.f (mu, k, stream)

Arguments:

mu A double value greater than zero specifying the mean.
k A double value greater than zero specifying the shape.
stream An integer value specifying the random number stream.

Description: Returns a random sample from a gamma distribution.

Mode: Double

Function hour.f (time)

Arguments:

time A double value specifying a cumulative event time.

Description: Returns the hour portion corresponding to the event time.

Mode: Integer

Function int.f (arg)

Arguments:

arg A double value.

Description: Returns arg rounded to the nearest integer.

Mode: Integer

Function itoa.f (arg)

 103

SIMSCRIPT II.5 User’s Guide

Arguments:
arg An integer value in the range 0 to 9.

Description: Returns an alpha value containing the ASCII representation of the given
digit.

Mode: alpha

Function itot.f (arg)

Arguments:

arg An integer value.

Description: Returns a text value containing the ASCII representation of the given
value.

Mode: Text

Function length.f (arg)

Arguments:

arg A text value.

Description: Returns the number of characters in arg.

Mode: Integer

Function log.e.f (arg)

Arguments:

arg A double value greater than zero.

Description: Returns the natural logarithm of arg.

Mode: Double

Function log.normal.f (mu, sigma, stream)

Arguments:

mu A double value greater than zero specifying the mean.
sigma A double value greater than zero specifying the standard deviation.
stream An integer value specifying the random number stream.

Description: Returns a random sample from a log normal distribution.

Mode: Double

Function log.10.f (arg)

Arguments:

arg A double value greater than zero.

 104

Standard SIMSCRIPT II.5 Names

Description: Returns the base 10 logarithm of arg.

Mode: Double

Function lower.f (arg)

Arguments:

arg A text value.

Description: Returns a copy of arg with each upper-case character converted to
lowercase.

Mode: Text

Function match.f (string, pattern, offset)

Arguments:

string A text value.
pattern A text value.
offset A non-negative integer value.

Description: Returns the position within string of the first occurrence of pattern, or
zero if there is no such occurrence. The search begins after skipping the first
offset characters of string.

Mode: Integer

Function max.f (arg1, arg2, ...)

Arguments:

arg1,
arg2, ...Any combination of two or more integer or double values.

Description: Returns the maximum of arg1, arg2,

Mode: Integer if each of the arguments is integer. Otherwise, double.

Function min.f (arg1, arg2, ...)

Arguments:

arg1,
arg2, ...Any combination of two or more integer or double values.

Description: Returns the minimum of arg1, arg2,

Mode: Integer if each of the arguments is integer. Otherwise, double.

Function minute.f (time)

Arguments:

time A double value specifying a cumulative event time.

 105

SIMSCRIPT II.5 User’s Guide

Description: Returns the minute portion corresponding to the event time.

Mode: Integer

Function mod.f (arg1, arg2)

Arguments:

arg1 An integer or double value.
arg2 An integer or double value not equal to zero.

Description: Returns a remainder computed as:

 arg1 - (trunc.f(arg1/arg2) * arg2)
Mode: Integer if both arguments are integer. Otherwise, double.

Function month.f (time)

Arguments:

time A double value specifying a cumulative simulation time.

Description: Returns the month portion corresponding to the simulation time based on

values given to origin.r.

Mode: Integer

Function nday.f (time)

Arguments:

time A double value specifying a cumulative event time.

Description: Returns the day portion corresponding to the event time.

Mode: Integer

Function normal.f (mu, sigma, stream)

Arguments:

mu A double value specifying the mean.
sigma A double value greater than zero specifying the standard deviation.
stream An integer value specifying the random number stream.

Description: Returns a random sample from a normal distribution.

Mode: Double

Function or.f (arg1, arg2)

Arguments:

arg1 An integer value.
arg2 An integer value.

 106

Standard SIMSCRIPT II.5 Names

Description: Returns the logical sum of arg1 and arg2.

Mode: Integer

Routine origin.r (month, day, year)

Arguments:

month An integer value specifying the month.
day An integer value specifying the day within the month.
year An integer value specifying the year.

Description: Defines the calendar date of the start of simulation.

Right function out.f (column)

Arguments:

column An integer value specifying a column position.

Description: Returns the character in the specified column of the current record of the

current output unit.

Mode: Alpha

Left function out.f (column)

Arguments:

column An integer value specifying a column position.

Enter with: An alpha value.
Description: Stores the assigned character in the specified column of the current record

of the current output unit.

Function poisson.f (mu, stream)

Arguments:
 mu A double value greater than zero specifying the mean.
 stream An integer value specifying the random number stream.

Description: Returns a random sample from a Poisson distribution.

Mode: Integer

Function randi.f (low, high, stream)

Arguments:

low An integer value specifying the beginning value.
high An integer value specifying the ending value.
stream An integer value specifying the random number stream.

Description: Returns a random sample uniformly distributed between low and high

 107

SIMSCRIPT II.5 User’s Guide

inclusive.
Mode: Integer

Function random.f (stream)

Arguments:

stream An integer value specifying the random number stream.

Description: Returns a pseudo-random number between 0 and 1.

Mode: Double

Function real.f (arg)

Arguments:
 arg An integer value.

Description: Returns arg as a double value.

Mode: Double

Function ref.f (any)

Arguments:

Description: Indicates an argument to a NONSIMSCRIPT routine is passed by reference.

Mode: n.a

Function repeat.f (txt, count)

Arguments:
 txt A text value.
 count A non-negative integer value.

Description: Returns a text value which is the concatenation of count copies of txt.

Mode: Text

Function sfield.f

Arguments: None

Description: Returns the starting column of the next data field to be read by a free-form

read statement. Returns zero if there are no more data fields.

Mode: Integer

Function shl.f (arg1, arg2)

 108

Standard SIMSCRIPT II.5 Names

Arguments:
arg1 An integer value.
arg2 An integer value.

Description: Returns the value of arg1 shifted left arg2 bit positions.

Mode: Integer

Function shr.f (arg1, arg2)
Arguments:
arg1 An integer value.
arg2 An integer value.

Description: Returns the value of arg1 shifted right arg2 bit positions.

Mode: Integer

Function sign.f (arg)

Arguments:
 arg A double value.

Description: Returns +1 if arg is positive, -1 if arg is negative, and 0 if arg is zero.

Mode: Integer

Function sin.f (arg)

Arguments:
 arg A double value specifying an angle in radians.

Description: Returns the sine of arg.

Mode: Double

Routine sleep.r (time)

Arguments:

time A double value specifying time in seconds.

Description: Suspends execution of your program for a specified time period. Implemented

on VMS platforms only.
Routine snap.r

Arguments: None

Description: User-supplied snapshot routine that is called when a runtime error is detected.

 109

SIMSCRIPT II.5 User’s Guide

Function sqrt.f (arg)

Arguments:
 arg A non-negative double value.

Description: Returns the square root of arg.

Mode: Double

Right function substr.f (txt, pos, len)

Arguments:

txt A text value.
pos An integer value greater than zero.
len A non-negative integer value.

Description: Returns the substring of txt of length len starting at position pos.

Mode: Text

Left function substr.f (txt, pos, len)

Arguments:

txt A text value.
pos An integer value greater than zero.
LEN A non-negative integer value.

Enter with: A text value.

Description: Replaces the substring of txt of length len starting at position pos with
the assigned text value.

Routine system.r (command, status)

Arguments:

command A text value specifying command string.
status An integer value specifying VMS return status.

Description: Implemented on VMS platforms only. Executes VMS DCL command.

Function tan.f (arg)

Arguments:
arg A double value specifying an angle in radians.

Description: Returns the tangent of arg.

 110

Standard SIMSCRIPT II.5 Names

Mode: Double

Function triang.f (min, mu, max, stream)

Arguments:

min A double value specifying the minimum.
mu A double value specifying the mean.
max A double value specifying the maximum.
stream An integer value specifying the random number stream.

Description: Returns a random sample from a triangular distribution.

Mode: Double

Function trim.f (txt, flag)

Arguments:

txt A text value.
flag An integer value.

Description: Returns a copy of txt which has leading and/or trailing blanks removed. If

flag ≤ 0, leading blanks are removed; if flag ≥ 0, trailing blanks are
removed.

Mode: Text

Function trunc.f (arg)

Arguments:
arg A double value.

Description: Returns the truncated value of arg.

Mode: Integer

Function ttoa.f (arg)

Arguments:

arg A text value.

Description: Returns the first character of arg.

Mode: Alpha

Function uniform.f (low, high, stream)

Arguments:

 111

SIMSCRIPT II.5 User’s Guide

low A double value specifying the beginning value.
high A double value specifying the ending value.
stream An integer value specifying the random number stream.

Description: Returns a random sample uniformly-distributed between low and high.

Mode: Double

Function upper.f (arg)

Arguments:

arg A text value.

Description: Returns a copy of arg with each lower-case character converted to

uppercase.

Mode: Text

Function val.f (any)

Arguments:

Description: Indicates an argument to a FORTRAN routine is passed by value.

Mode: n.a.

Function weekday.f (time)

Arguments:

time A double value specifying a cumulative event time.

Description: Returns the weekday portion corresponding to the event time.

Mode: Integer

Function weibull.f (shape, scale, stream)

Arguments:

shape A double value greater than zero specifying the shape.
scale A double value greater than zero specifying the scale .
stream An integer value specifying the random number stream.

Description: Returns a random sample from a Weibull distribution.

Mode: Double

Function xor.f (arg1, arg2)

 112

Standard SIMSCRIPT II.5 Names

Arguments:
arg1 An integer value.
arg2 An integer value.

Description: Returns the logical difference of arg1 and arg2.

Mode: Integer

Function year.f (time)

Arguments:
 time A double value specifying a cumulative simulation time.

Description: Returns the year portion corresponding to the simulation time based on values
given to origin.r.

Mode: Integer

 113

SIMSCRIPT II.5 User’s Guide

C.2 Global Variables

between.v

Description: If non-zero, specifies a routine which is called before each event or process is

executed. The default is zero.

Mode: subprogram

buffer.v

Description: Specifies the length of the buffer. The default is 132.

Mode: Integer

dir.name.v

Description: Contains the directory the program was run from.

Mode: Text

eof.v

Description: For the current input unit, specifies, the action to take when end-of-file is

encountered. If eof.v = 0 (the default), the program is aborted with a
runtime error. If eof.v = 1, the program is not aborted and eof.v is set to
2.

Mode: Integer

event.v

Description: Contains the event/process class of the event or process to occur next.

Mode: Integer

events.v

Description: Contains the number of event/process classes.

Mode: Integer

f.ev.s(i)

Description: Contains the first-in-set pointer of the event set, ev.s, for event/process

class “i”.

Mode: Pointer

heading.v

 114

Standard SIMSCRIPT II.5 Names

Description: If non-zero, specifies for the current output unit a page-heading routine

which is called for each new page. The default is zero.

Mode: Subprogram

hours.v

Description: Specifies the number of hours per simulated day. The default is 24.0.

Mode: Double

l.ev.s(i)

Description: Contains the last-in-set pointer of the event set, ev.s, for event/process

class “i”.

Mode: Pointer

line.v

Description: Contains, for the current output unit, the line number of the current line

within the current page.

Mode: Integer

lines.v

Description: Specifies whether pagination is enabled for the current output unit. If

lines.v=0 (the default), pagination is disabled. If lines.v>0, pagination
is enabled and lines.v specifies the number of lines per page.

Mode: Integer

mark.v

Description: Specifies the termination character for external event data and random

variable data. The default is “*”.

Mode: Alpha

minutes.v

Description: Specifies the number of minutes per simulated hour. The default is 60.0.

Mode: Double
n.ev.s(i)

Description: Contains the number of events or processes of event/process class “i” in the

event set, ev.s.

 115

SIMSCRIPT II.5 User’s Guide

Mode : Integer

page.v

Description: For the current output unit, contains the page number of the current page.

Mode: Integer

pagecol.v

Description: Specifies for the current output unit whether a line containing the page

number should be written automatically as the first line of each page. If
pagecol.v > 0, this feature is enabled and pagecol.v specifies the
starting column of the phrase, “PAGE nnnn”. If pagecol.v = 0 (the
default), this feature is disabled.

Mode: Integer

parm.v(i)

Description: Contains the “i”th command-line parameter.

Mode: Text

process.v

Description: If non-zero, contains a pointer to the process notice of the currently-executing

process. If zero, no process is executing.

Mode: Pointer

prog.name.v

Description: Contains program name. Any directory information is removed.

Mode: Text

prompt.v

Description: The string of characters to be output when reading an input from terminal.

Default is “”.

Mode: Text

rcolumn.v

Description: For the current input unit, contains the column number of the last character

read from the current record, or zero if no character has been read from the
current record.

Mode: Integer

 116

Standard SIMSCRIPT II.5 Names

read.v

Description: Contains the unit number of the current input unit.

Mode: Integer

record.v(i)

Description: Contains the number of records read from or written to unit number “i”.

Mode: Integer

ropenerr.v

Description: If non-zero indicates that an error occurred opening the current input unit.

Mode: Integer

rreclen.v

Description: For the current input unit, contains the length of the current record.

Mode: Integer

rrecord.v

Description: Contains the number of records read from the current input unit.

Mode: Integer

seed.v(i)

Description: Contains the seed value used to generate a random number from stream “i”.

Mode: Integer

time.v

Description: Contains the current simulated time.

Mode: Double

wcolumn.v

Description: For the current output unit, contains the column number of the last character

written to the current record, or zero if no character has been written to the
current record.

Mode: Integer

wopenerr.v

 117

SIMSCRIPT II.5 User’s Guide

Description: If non-zero indicates that an error occurred opening the current output unit.

Mode: Integer

wrecord.v

Description: Contains the number of records written to the current output unit.

Mode: Integer

write.v

Description: Contains the unit number of the current output unit.

Mode: Integer

C.3 Attributes

The following attributes are automatically declared for an event or process notice:

eunit.a

Description: Contains zero for an endogenous event. Contains the unit number for an

exogenous event.

Mode: Integer
m.ev.s

Description: Contains 1 if the notice is in the event set, ev.s. Contains 0 if it is not in

the event set.

Mode: Integer

p.ev.s

Description: Contains a pointer to the event set predecessor.

Mode: Pointer

s.ev.s

Description: Contains a pointer to the event set successor.

Mode: Pointer

time.a

Description: Contains the simulated time at which the event or process is to occur, or for

an interrupted process, the amount of time left to work or wait.

 118

Standard SIMSCRIPT II.5 Names

Mode: Double

The following attributes are automatically declared for a process notice only:

f.rs.s

Description: Contains the first-in-set pointer for the set of resources owned by the process.

Mode: Pointer

ipc.a

Description: Contains the process class corresponding to “I.process”.

Mode: Integer

rsa.a

Description: Contains a pointer to the recursive storage save area for a suspended process.

Mode: Pointer

sta.a

Description: Contains the state of the process - 0 if passive (waiting), 1 if active

(working), 2 if suspended, or 3 if interrupted.

Mode: Integer

C.4 Constants

exp.c

Description: The value of “e”, 2.718281828459045.

Mode: Double

inf.c

Description: The largest representable integer value.

Mode: Integer

pi.c

Description: The value of pi, 3.141592653589793.

Mode: Double

radian.c

 119

SIMSCRIPT II.5 User’s Guide

Description: The number of degrees per radian, 57.29577951308232.

Mode: Double

rinf.c

Description: The largest representable real value.

Mode: Double

 120

Appendix D ASCII Character Set

0 NULL 32 Space 64 @ 96 `
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ' 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 ú
29 GS 61 = 93] 125 }
30 RS 62 > 94 ^ 126 ~
31 US 63 ? 95 _ 127 DEL

SIMSCRIPT II.5 User’s Guide

 124

	PREFACE
	Introduction
	Developing Simulation Models with Simstudio
	Simstudio Overview
	Creating a New Project
	Adding Source code to a Project
	Creating a New File with the Text Editor
	Adding a Directory or a File Using Project Window
	Adding Multiple Directories and Files
	Adding Graphical Elements to a Project

	Opening an Existing Project
	Building a Project
	Building a Project for Debugging
	Building a Project for Release
	Compiler Listings

	Executing a Model
	Passing Command-Line Arguments
	1.6.2 Running the Executable with the Symbolic Debugger

	Closing the Project
	Setting Simstudio Preferences
	On-line Help
	Advanced Compiler/Link Options

	Developing Simulation Models Using Command-Line Interface
	Preparing Source Files
	Compiling
	Recompiling
	Linking
	Executing
	Profiling
	Makefiles
	Compilation Sequence
	Make Description File Format
	Transformation Rules
	Special Notes
	Sample Makefile

	Obtaining Online Help
	Example Program
	3.1 Input and Output
	3.2 Modes and Packing Codes
	3.2.1 Alignment of Values
	3.3.1 Calling C Routines
	3.3.2 Calling FORTRAN Routines

	4.1 Compiling for Debug and Invoking SimDebug
	4.1.1 Compiling for Debug
	4.1.2 Invoking SimDebug

	4.2 A Quick Tour of SimDebug
	4.2.1 Tour 1: Showing the Stack and Variables
	4.2.2 Tour 2: Breakpoints and Single Stepping
	4.2.3 Tour 3: Pointer Handling: Entity / Set Display

	4.4 Advanced Topics
	4.4.1 Batchtrace.v
	4.4.2 Signal Handling / External Events
	4.4.3 Reserved Names
	4.4.4 Displaying Arrays
	4.4.5 Permanent Entities and System Owned Variables/Sets
	4.4.6 Conditional Breakpoints
	4.4.7 Continuous Variables
	4.4.8 Unsupported SIMSCRIPT Features

	Appendix ACompiler Warning and Error Messages
	Appendix BRuntime Error Messages
	B.1 Runtime Error Messages

	Appendix CStandard SIMSCRIPT II.5 Names
	C.1 Functions and Routines
	C.2 Global Variables
	C.3 Attributes
	C.4 Constants

	Appendix DASCII Character Set
	Sec 2.pdf
	Developing Simulation Models Using Command-Line Interface
	Preparing Source Files
	Compiling
	Recompiling
	Linking
	Executing
	Profiling
	Makefiles
	Compilation Sequence
	Make Description File Format
	Transformation Rules
	Special Notes
	Sample Makefile

	Obtaining Online Help
	Example Program

	Sec 3.pdf
	3.1 Input and Output
	3.2 Modes and Packing Codes
	3.2.1 Alignment of Values
	3.3.1 Calling C Routines
	3.3.2 Calling FORTRAN Routines

