

Copyright 1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division

3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK

Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume
the responsibility for any consequences resulting from the use thereof. The information contained herein is
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS |, SIMGRAPHICS Il and SIMSCRIPT IL.5 are registered trademarks of CACI Products Company.

Windows is a registered trademark of Microsoft Corporation.

Table of Contents

[(=Y = Lo < TP a
Formal Syntax Employed In This Publication ..., c
A, DESCRIPTION OF SYNTAX 1iituutttuiituiettetteetntetsettntetaeettnetsaetteraneestae ettt c
B. PRIMITIVES AND METAVARIABLES REFERRED TO IN SYNTAX .uivuiiiieiiniieieiieeeteereeesnesaneesneenns d
S0 N o 10 0 11 (A V2T d
B.2 MELAVAIADIES ... e e
PART | GENERAL REFERENCE ... 1
N 1= o [T = I R L) (<1 (=] [T 3
IO A A =TT =S 3
1.1.1 FUNCHON ATIHDULES ...ttt e e e e e e e e e e et e e e st s aseaanseeeen 3
O 00 NS Y N ST 3
1.2.1 NUMETIC CONSIANTS ..oieieiiiiie ittt e e e e e e e e e e e e e e et s s et e e eaba e sesansseees 3
1.2.2 Subprogram LItEralSccocieiiiiiiii i e 4
R T =) A I (=T = N 4
O A [o] o= B 1 (T -SRI 4
1.3 ARITHMETIC EXPRESSIONS ..uuiituiittiiiuiiitieettietteeetttsteestesatesstessesstsesesteessesstareseretsersnasrns 5
1.3.1 ArthmMEtiC OPEIALOISeiiiiiiieiiiiiiee ettt eb e e e 5
1.3.2 Hierarchy of OPerationsccccooiiiiiiiiiii e e e e e e 5
R T F= 1 (=] 011 (ST 6
1.3.4 Mixed MOde EXPreSSIONScccoeeiiiieiiie e a e a e e e e aaaaaas 6
1.4 LOGICAL EXPRESSIONS ..uuiiiuiituiittitetieiti ettt et eettssstaestesatas st esaesatseaestresaesstreteestsersnaerns 7
1.4.1 Property COMPATISONSoccueiieiiitiiieeaiitiee e e ettt e e et e e e e st e e e s abb e e s sbeeaeeeenees 10
1.4.2 Arithmetic Relational OPeratorsoociiiiiiiiiieiiiiie e 10
1.4.3 Compound Relational EXPreSSIiONScovvviiiiiiieieieiiiiiisiisns e seneaeeeeaaaaaaees 11
1.4.4 Mixed Mode COMPATSONScccceeeiieeiee e e e e e e aaaaaeas 11
1.4.5 ISTRUE and IS FALSE PHIaSESoiiuuiiiiiiiieie ettt 11
1.4.6 AND and OR LOQiCal OPEratOrScc.ueeeiiriieeiiiiiiieiiiiieeeeeeessessseienreeeeeeeeesaannns 11

1.5 LABELS 12
1.5.1 SUubSCHPLEA LADEISuviiiiiiiieee et e e e e 12
IO S 1Y, 0] 5 =X 13
TR N =) A 1 (o To [TR 13
1.6.2 AIPNA MOEooeeeiiiiiei et 14
1.6.3 MiXed NUMEIIC IMOUESoiveeiiitee ettt e e e e e e st eeret e e eeanaaes 14
1.6.4 FUNCHONS fOr CONVEISION ..cvuuniitiieieee et e et e et st e et s e e e st seeetseeeaanees 15
A 1N =5 TP 16
IS TS 27 1 = ST 17
IS I 7Y =37 =T 0 N 32
1.9.1 DUMMY VariabIeSuuuiiiiii i 32
1.9.2 GlODAI VAIIADIESccveiieee ettt e e e e e e e e 32
1.9.3 LOCAI VATIADBIESoeveiiie ettt e et e e e e s e e et e e raaa e 32
1.9.4 MOoNitored VariabIESiieeiiie et e e e e e e e e e e 33
1.9.5 Subprogram Variables ... e 34

SIMSCRIPT I1.5 Reference Handbook

PART Il. LANGUAGE REFERENCE ... e 35
2. Language REfErENCEoouuiiiiiiiiiie e 37
2.1 ACCUMULATE/TALLY STATEMENT uuuiiiiiittiieeeeeieetiieeesseastiseesssssstinseeesssstsnneesssesranns 37
0 T A 1S3 (0 =0 U EPRPR 42

2.1.2 DUMMY VAADIES ... a e 42

2.2 ACTIVATE (PROCESS) STATEMENT ..iiitiitiuttutteeeeetaaasaesaatnntsseeeeaaaaaasaasaansssseeeaaaaaasesaaansnns 43
2.2.1 CALLED PRIGSE ...coeeeieieeeee et e e e e e e 44

2.2.2 GIVEN PRIASE ... e e e e e e e 44

R T N I o 1 = LY 44

A |\ = o = 1Y T 45

2.2.5 NOW PRIASE ..ottt e e et e e s e e e e e s e 45

R R A B 1 B IS N 1 =11 =1 TN 46
2.3.1 Complex Subscripted Variables.............uueiiiiiiiiiiiee e 46

2.3.2 Subscripts Containing FUNCHONSuuiiiiiiiiiiiiiiee e a7

2.3.3 EITON IMESSAGES ... e ettt ettt ettt ettt bt a bbb bbb e e e e e e e e e 47

Y o I = O N I =Y = TN 48
2.5 ALSO PHRASE .uuiiitiiiiii ittt ettt e e e et et e e e e e e e e e e e et e e e raaaaaes 48
2.6 ALWWAY'S STATEMENT ittiituiiittit ittt ee ittt ee et e ta et e st ast s et es i teeaa st esnesetasranassterensasneees 48
2.7 BEFORE/AFTER STATEMENT ..ciiiituttiiiieiiietieeeeeeteesteseeesseaataseeessssaaanseessssabaseesesssrannees 49
2.8 BEGIN HEADING STATEMENT ...cctuuiitti ettt eeeetteeetaeesetseeeetaeesesaneessaneeresaeeerrneesernaeerernns 51
2.8.1 System Variables. ... 51

2.9 BEGIN REPORT STATEMENT tutttiiit ittt et ettt et s st s s e e st s st e et s s st s st s s baseraessraaes 53
2.9.1 ON A NEW PAGE PRIASE c..uuiiiieeeee ettt 53

2.9.2 PRINTING PRIASE .euuiiiiiiiiiee ettt e e s e e e r e 54

2.9.3 PER PAGE PRIASE ... it 54

2.9.4 System Variables. ... 54

2.10 BREAK ... TIES STATEMENT ..iitttiiiitieiettneeeeet e et eesetiaeeeeta e sesan s eatn e seateeeraneesetnaeerernens 55
2.10.1 THEN BY PRIASES ... oottt e e s e 56
2.10.2 Order of Executing Events at the Same Simulated Timecccccvvvveeeeeennn. 56

N R O AN I I - =Y 1= N TN 57
2.11.1 ArgumMENTt MOOES ...eeiiiiieiiiiiie ettt e ettt e e e e e e e e e b eeeeeaeaaeaaaanns 57
2.11.2 Argument DEfINItIONSooiiiiiiiiiie et a e 58

N A ©F N N [O = IS .y 1 =1 1= 59
A B B OF N U] s N 1 =LY 1= TN 59
N A O I 1] iy 7 1 =1 Y1 = TN 60
2.15 COMPUTE STATEMENT «iituiiittit ittt ee ittt ee e et e et e s e st s st e st essa s et sesnessbsranesbareraassrnees 61
N I O = = N I Ry 1 =1 1= 63
2.17 CREATE EACH STATEMENT ..uuiiittt ittt eeetteeeeeeeesaeesetaaeesetaeesesaneessta e eeateerraneesernaeererens 65
S T O A O I sy 7y 1 =1 V1= 66
2.19 DEFINE ... ROUTINE STATEMENT .. ittt ettt ee s e tee e s e et e s s s st s sa s s e eeaeasbaaes 67
2.19.1 GIVEN and YIELDING PRIASESccovvuiiiiiiiiiiiitie et 68

2.20 DEFINE ... SET STATEMENTcttiiiiiiiiiii it 69
2.20.1 FIFO SIS .oniiiiieeeeee ettt ettt e e e e e e 70
2.20.2 LIFO SO e e 71
2.20.3 RANKEA SEBES ..oeiiiiiiiiiee ittt e e e s e e e e e e e s e s aae e e et e e raaaaaes 71

2.21

2.22
2.23
2.24

2.25
2.26
2.27

2.28
2.29
2.30
231
2.32

2.33
2.34

2.35
2.36
2.37
2.38

Contents

2.20.4 WITHOUT ... ATTRIBUTES PhraSecoiiiiiiiiiie et 71
2.20.5 WITHOUT ... ROUTINES PRIASEcooevueeiiieeiieeeee ettt 72
DEFINE ... TO MEAN STATEMENT .euuiitttieeiiiee e ee e e e e e st ee s s e e st e s saaeeeatnseesanaesaen 73
2.21.1 Purposes of DEFINE ... TO MEAN ... 74
DEFINE ... (GLOBAL) VARIABLE STATEMENT .eetttitetetiiitittteieeeaaaaaesaaanessbeeeeaaaeesasaannnees 75
DEFINE ... (LOCAL) VARIABLE STATEMENT ..eitiitiiiiaaiiaiaiietieeeeaaae e e e e aaitnsbeeeeeeaaaaeeeaannns 76
DEFINE ... VARIABLE STATEMENT ittt ettt ee st st e et e s st e sa e st s eaasssnssaeaanaas 77
2.24.1 NORMALLY and DEFINE ... VARIABLE Statementscccceeeeeeviviieeeeeeeeen. 78
2.24.2 Global VariabIEso i 78
A S I A\ 11 1 o101 (=T 79
o R o Tor= I £= T T= 1 o] [T 79
A T Y -\ V£ PP 79
2.24.6 Arguments, Recursive Variables, and Saved Variablescocccvvvvveenn. 79
2.24.7 Subprogram Variables ... 79
2.24.8 DUmmy Variables ... 80
2.24.9 MONIOred VariablESo oo e e aas 80
DESTROY STATEMENT uuituiiitiittieti et ettt st e et e sat et s et ettt s st et etaneest e st eettessrassanaeens 81
DESTROY EACH STATEMENT «.ittttittiiit ittt e et et e st et e e st s st es s esaa e san st eeanesanseaerenss 83
DO ... LOOP CONSTRUCT .ttttittiittiettieiteetts st e et ettt s st e saase st s st s s s tan ettt s st s eanesarseaerenes 84
2.27.1 Nested DO ... LOOP CONSIIUCES........cociiiiiiieiiiiciiie e 85
[ST IS N 1 =Y =1 R 87
EIND STATEMENT .eetttiiittie ettt ee et e e e et e et eeeet e e s e eeeaaa e eeesaa e saanseestaseesannesssnnsesransessnneeses 88
ENTER WITH STATEMENT ettt s e e s e et s st e et s s s et ssb e e st e s sbseansaanans 89
L] R YN Y N =LY 1= TN 90
[N ISR 7 1 = 1= TN 91
2.32. 1 ATQUIMENES oottt e e e e e e e e e e e e e e e e e aeeaaeeeeeaeenes 92
2.32.2 SAVING PRIASE ..ottt e et e e e e e e e e eaaees 92
2.32.3 Logical Expression for EVENt ROULINESccooiiiiiiiiiiiiiiiiie e 92
EVENT NOTICES STATEMENT ituiituiiitiiitttiiiieite it et e stnsesansstessaestanesantsstaeesnessnaessaerens 93
AV o A AN N =LY 1= T 95
2.34.1 GENEIAI RUIES ..ooveiiieeeeeee e e e e e e e e e ea e 97
2.34.2 CompPoUNd ENLEIES ...oceeiiiiiiiiieeee ettt e e e e e 97
2.34.3 EVENTINOUICES ...ceveiiiiiee ettt e e e e e e e et e e s e et e e e st e e saaneeeeen 97
2.34.4 PrOCESS NOTICESccieeiii ittt et e e et e e et e e e et e e s e et e e e st e e saaneeseen 98
A7 S o [11 VZ= 1= o1 1o Vo R 98
2.34.6 COMMON AIIDULES .ooieeri e e e e e e e e e e e e eaees 98
A 7 = Tor {1 o PSSP 98
2.34.8 FUNCHON AHTDULES ..ot e e e e e aan 99
2.34.9 DUMMY ALHDULES ... 100
2.34.10 Sets Named in EVERY Stat€mMeNntscoiiiiuiiiiiiiee et 100
EXCEPT WHEN PHRASE ..ottt ettt et e e et e e e e e e e e e e e e e e e s e e ns 100
EXTERNAL EVENTS/PROCESSES STATEMENT ..vuutiiieiieeiteeeeeee et e e e e e st eeeaseenaanns 101
EXTERNAL ... UNITS STATEMENT .uiiitiiiiiiieitieiie et e tte ettt e eaesea s st e sesstasesnessnerans 105
Lt L S 7 =Y =V N 106
2.38.1 FIRST, LAST, BEFORE, and AFTER Phrasescccoeeeeieiiiiiiieeieeeeeieee . 106
2.38.2 ArithmetiC EXPrESSIONScoiiiiiiiiiiiiiieie ittt e e e e 107

SIMSCRIPT I1.5 Reference Handbook

2.39

2.40

241

2.42

2.43

2.44

2.45
2.46

2.47
2.48
2.49
2.50
251
2.52
2.53

2.54

2.55
2.56
2.57
2.58
2.59
2.60

2.61
2.62
2.63
2.64

L T IS 7y 1 =1 V1= N 108
2.39.1 AREINALIVE FOIMS ..o e e e e e ee s 109
2.39.2 [IF FOUND and IF NONE PRIASEScccuviiiiiiiiiiie e 109
FOR EACH (CLASS) PHRASE ...eiiiiiiiiiiiiii ittt ettt et e e e e e e e s aasbeneseeaaeaaaaeaeanne 110
2.40.1 Nested FOR EACH (Class) Phrasescccociiiiiiiiiiiiiieeeeee e 111
2.40.2 WITH, UNLESS, WHILE, and UNTIL PRrasescccovveeeiieiieiiiiee e, 111
FOR ... OF (SET) PHRASE ..utttttiiiiiieeeeiiiiiiittiteeteesesaesssssaststesssesaeaessssssssssssssssrsaseseesnannes 112
2.41.1 Nested FOR ... OF (Set) PhraSescccccccieiiiiiiiiiiiiiieieee et nee e e e 113
2.41.2 WITH, UNLESS, WHILE, and UNTIL PRrasesccccovvveeiieiiiiiiiee e, 113
2.41.3 Mechanism of FOR ... OF (S€L)ccccuuiiiiiiiee et ee e aee e e e e e 113
FOR ... TO (INDEX) PHRASE ...uttiiiiiiieiiiiiiiiiiteeieseeeaessssistntesaeeeaeaeesssssssssnssanensaaesaesnsnnes 114
2.42.1 Nested FOR ... TO (iNndeX) PRrasescccoouiiiiiiiiiiiiiieeieae e 116
2.42.2 WITH, UNLESS, WHILE, and UNTIL PRrasesccccvveeeiieiieiiiiee e, 116
(C1O I O Iy - 1= V1= L T 117
2.43.1 SUubsCripted LAbEISoeeiiiiieiiiiiiiiieiec et 117
P N 1 4 (0 | GO0 [0 [1 4 o 118
GO TO ... PER STATEMENT ..ttt e e e e e e e e e e e e et e e st e e st eeeaaneees 119
Y T = 4 (o] g O 0] 4 o [1101 [T 120
L S 7 1 =1 V1= 121
IF ... ELSE ... ALWAYS CONSTRUCT tutittiittiiitiiiieittieiteseinerstesstsesanesatesaessnessaesineees 122
2.46.1 Nested IF ... ELSE ... ALWAYS CONSIIUCEScuvuiiiiiiieiieeeeeeeeeveee e ee e 124
INTERRUPT STATEMENT L.ittiitiitiiiteei et ee e ete e s set e saae s st e saaesstseanssstsrasstreraasstanes 126
LYy 1= Y1 =1 N 127
LAST COLUMN STATEMENT ..itttutiituteeetieeeeteeeesassessaeessaessssneseraeeeatsesensssneesernnns 128
Iy Yy 7y 1 =1 V1= 129
I IS N I =Y = T 130
[RSN ISR N =2V 1 =1 1 T 131
LIST ATTRIBUTES STATEMENT .ouiituiiitiiiiiiiee ettt eet et e et e st s e e s st es st e s ea st sesaneeanseres 132
2.53.1 FUNCHON AHIDULIES . .ceeeieece et eeaaaaas 132
LIST ATTRIBUTES OF EACH STATEMENT ..vvuiiiiitieiiiieeeeteeeeeieeeeaneesetaeeeeaneeeesneeeens 133
2.54.1 Output for LIST ATTRIBUTES OF EACH Statementccccccoevvvvvvevinnnnnn. 134
2.54.2 FUNCHON ALHDULEScciveeiiei e e e e e 134
OO =Sy 1N =11 =1 SR 134
N LA ISR 7 1 = 1= TN 135
Y (@Y Sy 7 1 =11V 1 =1 R 136
T ISR 7 =YV 137
NORMALLY STATEMENT ittutiettnieietieeetieeeeteeeestaesasassera e estneseseeestteeessesaaererns 138
NORMALLY AND DEFINE ... VARIABLE STATEMENTS ..uiivtiiiiiiiiicieieeeee e 138
B2 10 I A 1Y [Yo [139
2.60.2 Saved and Recursive Variablesccveviiiiiiiiiiii e, 139
2.60.3 DIMENSIONANLY ..ot e e e e e e e 139
O ATV A - 1 = 1 =1 140
(@1 od =\ IS 7N 1 =1 1= N 141
ROUTINE ORIGIN.R et e et e b e e et e e e e aaeeen 141
OTHERWISE STATEMENT L1itttiittiitiiit et et eest s st et eses e st st e et s saaeesaera et rsraesaerens 142

2.65
2.66

2.67
2.68

2.69
2.70

271
2.72

2.73
2.74

2.75

2.76
2.77
2.78
2.79
2.80

281
2.82
2.83

Contents

PERFORM STATEMENT ittuieittieieteeeetiaeeestses st eestaaeestaeessanassstasessanesssnaeesraaeersnnees 142
PERMANENT ENTITIES STATEMENT «.otiittuieiieeiietee e e e e eeeeet e s e e e s eeaete s e s s s sesaanseeaessnnnans 143
2.66.1 INCLUDE PRIASEooiiieiieee ettt e e e e e s 143
PREAMBLE STATEMENT .otutiitiitiiittieit e eets et e et ettt e st e saa e s st s sbes st e et s ettt eanasetneranessaerens 144
[N ISR 7N =1V =1 145
2.68.1 FOIMAL LINES ...iiiiiiiieiee e e e e e e e e et e e e et e e s bt e e st e e eaaaas 146
2.68.2 DOUBLE KEYWOITceeviiiiiiiiieiiiiiisiesiiiieeeeseiteee e e sieeae e s snneaeeeessnsaeeeesnnnnneeens 147
AL GTS T B o o] 1= TS (o] =PRI 149
2.68.4 GROUP PRIASE ..ouuiiiiiieieee ettt e e e e e e e e e s 149
2.68.5 SUPPRESSING PRIASE ...coociieeiiiieieeieee et e 150
PRIORITY STATEMENT .uttittieetttt e ettt eeetee e et e eseaaneesaaaeesta e eeaaes st esata e eesansesasaereranns 152
PROCESS STATEMENT .tittiieitit ettt et e e et e e e s e e etaeee et e s eaanaes st eesaansesssneestaaaesernes 153
2.70. 1 ANQUIMENTS oottt e e e e e e e e e e e e e e e e e aeaeeeaeaeeees 154
2.70.2 Logical Expression for Process ROULINESccoccvviiiiiieeeeeeiieiciiiiieeeeeeaennn 154
PRO CESSES STATEMENT .ottt ittt et ee ettt et e e et e s e e s s et e e s e e st s st e s s st e sanessneres 155
... RANDOM ... VARIABLE STATEMENT ..uuittiiit ittt et e et e s e e e s e st e ean e e aneeeas 156
2.72.1 FUunction RANDOMLE ..o e e e 157
2.72.2 Mode and Stream NUMDBEIS.......couuiiiieeee e 157
2.72.3 Using Random Variables ... 157
2.72.4 Reading Values and Probabilitiescccccceeeeiiiiiiiiiieee e, 157
REACTIVATE STATEMENT oiitiittiitteit ettt e et ettt e st e s e e st s sb e e st e st e et e st sstaeranessaerens 158
READ (FORMATTED) STATEMENT ..ettttittttitituutteteeetaaaaeasaaantesteeeeaeaaeaaaaaansssnseeeaeaaeasaeannn 159
N S N w0 41 4T\ G I) £ 160
2.74.2 SKIippiNg t0 NeXt CArdccoiiiiiiiiiiiiiiiiiieiiee e e e e e 160
2.74.3 INPUL BUFFEE oottt e e e e e 164
2.74.4 AS BINARY PRIASE ...coovviiiiiiieeee et e 164
2.74.5 AS DOUBLE BINARY PRIASEuuiiiiiiiiiei ettt 164
2.74.6 USING PRIASE ..ovveiiiiiieieee et e e e e e e 165
S A B (=Y =10 11 (=] (T 165
2.74.8 Controlled STAtEMENTScoiieiiieie et e e et e e e e 165
2.74.9 ENA-OF-FIlE ..o e 165
READ (FREE-FORM) STATEMENT ..eetttittatiiituittiteeetaaaaeasaaantssieeeeaaaeeaaaaaannssnseeeaeaaeasaeannn 167
A R B T | = = =Yo7 o) o [168
2.75.2 ARRAY S oo e 169
2.75.3 USING PRIASE ... e s 169
2.75.4 Controlled READ (Free-Form) Statementscccccveeiieiiieeenniniiiiiieeeeeeennn 169
2.75.5 System Variables............uuiiiiiiii e 169
RECORD STATEMENT etuittiitiitttett et ettt eetesst s st e saa s st e staeasa e taeetnestasstaersnassaerens 170
REGARDLESS STATEMENT .etuiittiittiiit ettt e et ettt esa et e s st ssbesssssa s st ts s sstnesanessnerens 170
L I AN Y - =11V 1 =1 T 171
RELINQUISH STATEMENT otuuuiiiiitiitiiis e e et e ie s s e e e eetie s e e e eeeaataseeeeseassteaeessessanaseeessnsnnes 172
REMOVE ST ATEMENT ettt itt ettt e ettt e et e e et e e e e et e e et e e eeaa e e saa s eaba e eeaan e eaanneeeranns 173
2.80.1 LOQICAlI EXPrESSIONSuteeiiiiiiiaeaiiaiiiitiiee it e e e e e e e e ettt e e e e e e e e e e neseesaeeaaaaaee s 174
[o AN S N =3 1= T 174
REQUEST STATEMENT ittttttuteettettutaeesstestiteeseesssasaaesesssnaeaaesasstnnaeesesmnnneereen 175
RESCHEDULE STATEMENT ettt ettt s e e s e et s e et e s s s et e s s s st e ranessaenes 176

SIMSCRIPT I1.5 Reference Handbook

Vi

2.84

2.85
2.86

2.87
2.88
2.89
2.90
291
2.92

2.93

2.94
2.95
2.96
2.97
2.98
2.99
2.100

2.101

2.102
2.103
2.104
2.105
2.106

RESERVE STATEMENT ..iiiiiiiiiie e ettt e e e e e e e e e e e s e e e e ee s e e e e e e aaa e s e e e seatan e eeeesenranns 177
2.84.1 DIMENSIONANLY ...cocieiiiiiiiiiee e e e e s e e e e e e e s e e e e e e e e e aanes 178
2.84.2 AS PRIASE .ooutiiitiiii ettt e 178
2.84.3 BY F PRIASE vttt 178
2.84.4 Pointers and Array STTUCTUMES.......ccuuuuiiiieieiee e e e e e e e 178
2.84.5 FUNCHON iMoo e e e 180
2.84.6 Multiple RESERVE StatementsScocoiiiiiiiiiiiiiiiiieeieee e e 180
RE S E T STATEMENT ..ttt eiitee ettt e et e et e et e e e et e e et e e e st eeesan e s aaaesetanaeestnsaesnnneeesans 181
RESOURCES STATEMENT .euiiiiiiiii et et e et e e te e et e e eaa e e e st e e eat e e eenan e eraaeeeranns 182
2.86.1 RESOUICE CIASSEScoeeetiiieeeieeeee ettt et e e e 183
2.86.2 RESOUICE UNILS ..uuviiiiiiiieiiiiiiiee e n e e e e e e e ae e 183
RESTORE STATEMENT ..ttt iiiiee et e et ee et e e e ea e e e et e e e et e e eeaa e s st e eeata e eeranseesanaeeernnns 183
RESUME STATEMENT .uutiiitiie it ee et e et ee et e e ettt e e eata e e et e e eeta e s st eeata e eesaneesanaeeeranns 184
RESUME SUBSTITUTION STATEMENT iovuuiieiiiiiiiiieieeeeetinieeeeesesinnseeeeessnnnnneeesssssnnnnns 185
RETURN STATEMENT ..iiiiiiiitiiieee ittt s e e e e et e e e e e e aeseeeees s s e s e eeassaaseeesestataeeeeesenrnnns 186
REWIND STATEMENT ..uuiiiitiiitiii e e ettt e e e e et e e e s e st aaseeeeaetaaseseeeaasaaseeesestanaaaeessessenns 187
ROUTINE STATEMENT .ottiiitiie it e et e et ee e et e e e ea e e eate e e et e e eeta e s st e eata e eesansesranaeeeranns 188
2.92.1 Routines Named TO and FORoovviiiiiiiiiiiiiiiciiie et eeeeees 189
2.92.2 GIVEN PHIASE ..uuuiiii i a e e 189
2.92.3 YIELDING PRIASEoiiiieiiiiieeeee e a e 189
2.92.4 Argument DefiNItIONSooiiiiiiiiiii e e 189
2.92.5 ArgumMENt MOOESuiiiiieiiiiiee ettt e e e e e e e e e e ee e e eaaaeeeeaan 190
SCHEDULE (EVENT) STATEMENT ..tttttataeetiiiiutttttttetaaaeaasaaansssseeeseeaaaaessaasnnsssseseeaaaaaaaanns 191
2.93.1 CALLED PRIASE ..uiiiiiiiiiiiiie et 192
2.93.2 GIVEN PRIASE ..vuuuiiiiiiiieie oot n e e e e e e e e e 193
2.93.3 AT PRIASE ..ottt e 193
2.93.4 IN PRIASE .uuiiiiiieee ettt e 194
2.93.5 NOW PRIASE...uuuccei it e e e e a e e e e e e 194
SELECT CASE STATEMENT ituuiiiiiiiei it ee e e et e e e e e ettt e e e e e e et e e e et eeesaeeaetaeaesanaaes 195
SKIP ST ATEMENT L1ttt e et e e e e e e e e e et e e e et e e e et e e s e e e st e e e st essnnneeerannns 196
START NEW STATEMENT .euiitiiiieiiie et eieee ettt e e et e e e e e e e e e e et e e e et e e s taeaeaanaaes 198
START SIMULATION STATEMENT ..iiittiittieeeeeititieeeeseeintiaeeeesessnnsaseeessstnaseesssssnnaeaeaes 199
S IO TS 17N 1 = Y 1= N 200
Y IO TR S 7N 1 = 1= N PP 201

SUBSTITUTE STATEMENT ..utiitteeeit et e et e et e e e ete e e et e eeeta e e ssaeeestaesestneesnnneeerans 202
2.100.1 Purposes Of SUBSTITUTEoocciiiiiirieie et ee e e e e e inreane e e e e e e 203
2.100.2 RUIES ..ottt et ettt ettt ettt ettt e e aaaaaaans 203

SUBTRACT STATEMENT tttuutiieiiiititieeeeeeetiiaieesesssttnieseessasaaaeeesesssnaasaessertnneeeessenrmnn 204
2.101.1 Complex Subscripted Variables. ... 204
2.101.2 Subscripts Containing FUNCLONScoiiiiiiiiiiiiiiiiiiiiee e 205
b 0 R T =t (o] g 1Y [T SY T 1 205

SUPPRESS SUBSTITUTION STATEMENT ..eivvviuittiietiriiiitiiiiieeseieseeeeeessssesessesesseeeenes 206

SUSPEND STATEMENT ...ttt et e e et e et e e et e e et eeeeaa e e eaaeeestaesestneesnnneesans 207

SYSTEM STATEMENT ...eitititeeete ittt e e e e et seeeeeeat s e s e e ssaaaseeeeesasaaaaseeesestanaaeeaesesranns 208

B B R S 7y = Y = N R 208

TEMPORARY ENTITIES STATEMENT ..ttuuiiiieiiiiii e eeeeitir e eeeeeesaee s e e s eeetanaeeeeeeennna s 209

Contents

2.107 THE SYSTEM STATEMENT ...ittuiiiii et eete e et s e eeae e e st e e seaas e s e e e sataeeesan e sraneeeranns 210
0 0 R = - Vo o PR 211
2.107.2 FUNCHON ATHDULESccevvi e r e 212
2.107.3 DUMMY Variablescccuiiiiiiieiiii e 212

2.108 [THEN] IF STATEMENT ...uuuutiitiiiieeeeeesseesttnieereeeseesesssnssssseeseeeaeeesssanansssnssnseresaeessannnnes 213

2.109 TRACE STATEMENT «itttuttittteeet e ettt e st esetaeeeeta e esaa e eataeeeat e esaerateeesrn e erraerernnns 214
2.2109.1 USING PRIASE ..o et e e e e e e e e s 214
20 0L B @ 1 10T | PR 214

2010 UNLESS PHRASE ...t ee ettt e et e e e e e et e e e e e e e s e e e e e e e e e e s e en it aas 216

2001 UNTIL PHRASE ottt ittt e e e e ettt e e e e e e e ettt e e e e e e e aa b e e e e e e st e e e s e e saaaanns 217

b2 N U o O] N RS 7N = Y] = 218

2 5 T U S S 7y 1 =1 Y= 219

2.114 WAIT/WORK STATEMENT ..utiiiittteeieeeeetiateeseeesesbasseeessssstaaneesssesstasessessnaesessssstansens 220

2.0115 WHEN PHRASE . .ce ittt et et e et e st s e s e e ranearaaas 220

2016 WHILE PHRASE ..ot et e e e e e e e et e e e e e e e s e e e e e s e e e s e enaaaas 221

2. 007 WITH PHRASE oottt ittt e et e et e e et e et s et e e e s et s ran s sa e et raanes 222

2.118 WORK ST ATEMENT .. iitttiitte et e et e e e st e e e et e e et e e e et e e eeaa e s eaan s sataeeesrn e esranseeranss 223

2.119 WRITE STATEMENT ..itttttitt ettt e ettt e e e e e et e e eaaa e eeaa e e eata e eeaaa s ssansseta e eessnesrrnnseeranss 223
2.119.1 AS BINARY PRIASE ...coeeiiiiieeeee ettt e e e 231
2.119.2 AS DOUBLE BINARY PRIASEccoeiiiiiie et 231
2.119.3 USING PRIASE .euuiiiiiiiiiee ettt e e e e et e e e s e e 232
2.119.4 Controlled WRITE Stat€mMENLSccovviveiiiiiiieeee e 232

[0 L= T 233

Vii

SIMSCRIPT I1.5 Reference Handbook

viii

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

List of Figures

Heading Section Within a Report SECHONcoovvviiiiiiiiiiiiiiieein e,
Nested do ... loop Constructs and do ... loop Constructs Using

AISO FOr PRIASES ..t ene s
For ... to (index) Phrase EXECULIONcoeeiiiiiiiiiiiiieee et
Structured if ... else ... always CONSEIUC ...oveeviiviecieccce e,
Structured if ... else ... always Construct with

Unconditional TranSTercooceeeiieee e e e
Then if STAtBMENTSc.oiieiiieeece ettt e e e e ens
MOV SEAIEMENTS. ...eeteieitietie et rtee ettt sttt rb e sttt e ettt e eaeeesbe e nbeenteeseeas
Sample Row and Column REPELItIoNcoouiiiiiiiiiiiieeiiiee e
Sample One- and TWo-DImensional ArTaysS ...
SamPpPle EVENE NOLICESo eaeeeeaaaaaes

SIMSCRIPT I1.5 Reference Handbook

Preface

SIMSCRIPT 1.5 is a powerful, free-form, English-like, general-purpose simulation pro-
gramming language. It supports the application of software engineering principles, such as
structured programming and modularity, which impart orderliness and manageability to
simulation models.

SIMSCRIPT II.5 is a fully documented language:

* SIMSCRIPT 1.5 Programming Languagkistrates usage of the language con-
structs without interactive graphics.

* Building Simulation Models with SIMSCRIPT lissoriented toward real applica-
tions of model building, and features the case study approach used successfully in
the short course given regularly by CACI Products Company.

* SIMGRAPHICS Il User’'s Manual for SIMSCRIPT IdBscribes graphical editor
and language statements and data structures for creating interactive graphical mod-
els with SIMSCRIPT I1.5. These texts are available through CACI.

This handbook is intended for use by experienced SIMSCRIPT users who have specific
guestions about syntax or usage of individual non-graphical statements. The alphabetic or-
ganization by keyword supports this usage. For more general questions of modeling or
strategy, the reader is referred to the other books mentioned above.

Free Trial Offer

SIMSCRIPT I.5 is available on a free trial basis. We provide everything needed for a com-
plete evaluation on your computéerhere is no risk to you

Training Courses

Training courses in SIMSCRIPT 1.5 are scheduled on a recurring basis in the following
locations:

La Jolla, California
Washington, D.C.
London, United Kingdom

On-site instruction is available. Contact CACI for details.

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
(619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 +44 (0) 1276.671.671

Fax: +44 (0) 0276.670.677

SIMSCRIPT I1.5 Reference Handbook

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:
CACI Products Company CACI Products Division
3333 N. Torrey Pines Court Coliseum Business Centre
La Jolla, CA 92037 Riverside Way
(619) 824.5200 Camberley
Fax: (619) 457.1184 Surrey

GU15 3YL UK

+44 (0) 1276.671.671
Fax: +44 (0) 0276.670.677

Formal Syntax Employed In This
Publication

A. Description of Syntax

This publication employs a formal notation for describing the syntax of SIMSCRIPT 1.5
statements. Where necessary, the notation is supplemented by comments that describe syn-
onyms for keywords, semantic constraints, and other considerations for the programmer.
View the comments as an integral part of the syntax wherever they are included.

The following conventions are used in the formal notation:

1. All of the following characters are to be used exactly as shown, except where ap-
pearing as a superscript (see 4, below):

General Term Characters

Uppercase letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digits 0123456789

Punctuation "t

Special characters (O)+-*1$:<>=

Blanks, one or more
wherever indicated

2. All of the following characters are used by the notation to refer to primitives and
metavariables (defined in paragraph B below), except where appearing as a super-
script (see 4 below):

General Term Characters
Lowercase italics abcdefghijklmnopgrstuvwxyz

3. When a list of words or expressions appear in brackets, i.e., [], a omaydee
made from the options indicated. When a list of words or expressions appears in
braces, i.e., { }, a choicewustbe made from the options indicated.

4. Superscripted text immediately following a right-hand bracket or brace denotes op-
tional repetition of the material, or choice of material, enclosed in that set of brack-
ets or braces. When the material to be repeated consists of a single keyword,
primitive or metavariable, the superscripted text immediately follows. The super-
scripted text itself denotes the connective that must appear between repetitions of
the material, as follows:

c A comma, the word AND, or a comma followed by the word AND.
c then Any of the above, followed by the word THEN.
by The word BY.

SIMSCRIPT I1.5 Reference Handbook

Tand T[] Fither of the twn wards AND and OR- the chnice depends
E H on the logic that the programmer wishes to express.
or

or The word OR. A comma can be used instead of OR.

i No connective; simply repeat the material.

B. Primitives and Metavariables Referred to in Syntax

B.1 Primitives

integer

name

A sequence of digits delimited by blanks, special characters,
or the end of a record; a numeral denoting a whole number.

A sequence of letters, digits, and periods containing at least
one letter, delimited by blanks, special characters, or the end
of a record. In some cases, a programmer can use any name
not already defined in the preamble. Most of the time, how-
ever, a name refers to one of the following:
attribute (sometimes further specified):
entity attribut« (sometimes further specified):
permanent entity attribute
unsubscripted system attribute
entity (sometimes further specified):
permanent entity
temporary entity
event
label
process
resource
routine
set
variable (sometimes further specified):
array
global variable (sometimes further specified):
unsubscripted global variable
local variable
pointer variable
text variable

Formal Syntax

statement A series of words (g.v.) that can be generated by the formal
syntax notation employed Part Il of this publication for
any of the entries referred to as "statements". In this regard,
a statement can only be defined by its inclusion in a list of
allowable SIMSCRIPT 1.5 statements.

string Any sequence of characters, delimited by the end of a record.

word Any single character, or a sequence of two or more charac-
ters not containing a special character, delimited by blanks
(unless the word is a single special character) or the end of a
record.

B.2 Metavariables

Metavariables are best defined by the portions of this publication that list and/or describe
them.

C A comma, the worand, or a comma followed by the word
and.
for phrase A string defined by the syntax for any of the following:
for ... each (clasy)
for ... to (inde») phrase
for ... of (se) phrase
logical expression Any of the entries described in table 1. Also read the para-
graph entitlecLogical Expressior in Part | of this publica-
tion.
guantity A value (g.v.) which is of integer or real mode.
relational operator Any of the entries describedtable .
selection phrase A string defined by the syntax for either of the following:

unless phrase

with phrase
set attribute Any of the letters defined itable 1.
set routine Any of the mnemonic abbreviations definectable 1%
stat kywd Any of the statistical keywords describectables ‘and13.

termination phrase A string defined by the syntax for either of the following:

until phrase

while phrase

SIMSCRIPT I1.5 Reference Handbook

unconditional transfer A string defined by the syntax for the following:

cycle statement

goto statement

go to ... per statement

jump statement

leave Statement

return Sstatement

stop Sstatement

value A constant, a variable, or any expression that evaluates to an
integer, a real number, or a text string.

PART I
GENERAL REFERENCE

SIMSCRIPT I1.5 Reference Handbook

1. General Reference

1.1 Attributes

Each entity in a SIMSCRIPT I1.5 simulation is composed of a collection of memory cells
calledattributes The values define characteristics of the entity. All entities of the same
entity class have the same set of attributes, but the values of these attributes differ and are
set by the program. Attributes can have real or integer values (as declavedatty

or define ... variable statements). Each attribute of each entity must have a
different name, unless two or more attributes are placed in the same relative location in two
or more entities ("common attributes™). An attribute is similar to a global variable in that

it pertains to the global environment and is initialized to zero. However, attribute values
can be packed, while values of global variables cannot. Entity classes and their associated
attributes are declared avery statements, and system attributes are declargd in

system statements.

1.1.1 Function Attributes

A function attribute is one whose value is computed by a function routine. Consequently,
a routine must be written with the same name as the attribute and with as many arguments
as the attribute has subscripts; that is, no arguments for an unsubscripted system attribute,
one argument for a temporary or permanent entity, two arguments for a two-dimensional
system attribute, and so on. Because function attributes designate routines, no storage in
entity records is allocated for the values. Function attributes can be used, for example, to
perform complex calculations and to monitor and print.

1.2 Constants

1.2.1 Numeric Constants

A constant is a quantity that remains unchanged during program execution, and refers to a
literal value. Integer and real (decimal) numbers, signed or unsigned, are permitted. When
equivalent representations of a number exist, they all have the same value; for example,
+7.5, 7.5, and 07.5000 all represent the same number. Some integer constants are:

1576 -53 +2000
and sample real numbers are:
0.25 -0.0756 +2.68 351.9 9.

Note: 9. is a real value. Constants in scientific notation (e.g., 1.56E04) are not allowed
in programs, although input data may be read in this form.

SIMSCRIPT I1.5 Reference Handbook

1.2.2 Subprogram Literals

A subprogram literal is formed by enclosing the name of a subprogram (subroutine or right-
hand function) in single apostrophe characters. This represents the address of that routine,
which can then be stored in a subprogram variable for later indirect call. Examples are:

'cos.f' '‘process’

1.2.3 Text Literals

A literal text constant is represented by a string of characters enclosed within two quotation
(") marks; a quotation mark within a literal is represented by two successive quotation
marks. The length of a text literal is limited only to the length of the input line. Because

text literals are compiled directly into programs, they cannot be altered. Examples of liter-
als are:

"word"

"a very long text literal string"
"Say ""hi""

"0123456789"

The null string is a string of length zero that contains no characters. It is represented by two
guotation marks ().

A text literal is stored as a pointer to an area of memory where one or more computer words
contain the represented characters.

1.2.4 Alpha Literals

A literal alpha constant is similar to a text constant, except that a smaller number of char-
acters may be represented. On mostimplementations, alpha constants represent only a sin-
gle character. The SIMSCRIPT II.5 compiler distinguishes between text and alpha
constants by context. A character literal is an alpha constant if it is assigned to a variable
of mode ALPHA, as follows:

define ALPHA as an alpha variable
define STRING as a 1-dim alpha array

let ALPHA = "k"

let STRING(L) = "™
let STRING(2) = "x"
let STRING(3) = "

For those implementations limited to one character per alpha constant, alpha values are
stored right-justified within a computer word, padded on the left with zeros. Otherwise,
alpha values are stored left-justified, padded on the right with blanks.

Arithmetic Expressions

1.3 Arithmetic Expressions

An arithmetic expression is written as a string of variables, constants, functions, arithmetic
operators, and parentheses. The simplest expression consists of a single constant or vari-
able, and simple expressions can be combined with arithmetic operators to form compound
expressions. Terms can be enclosed within parentheses to indicate a desired order of eval-
uation. Unless otherwise stated, an expression can include any of the following:

» System- and programmer-defined constants

e System variables

e Subscripted and unsubscripted local variables

» Subscripted and unsubscripted global variables

» Attributes and function attributes

» System- and programmer-defined function references
e Subprogram variables

e Subscripted and unsubscripted monitored variables.

1.3.1 Arithmetic Operators

All arithmetic operators must be expressed explicitly (e.g., no implied multiplication), and

no two operators can appear consecutively. Because the exponentiation operator is treated
as a single unit, blanks cannot appear between the two asterisks. The arithmetic operators
are:

+ Addition - Subtraction
* Multiplication / Division

*x Exponentiation

1.3.2 Hierarchy of Operations

When computing the value of a complex expression, the following hierarchy specifies the
order in which the different operations are performed relative to each other:

** Exponentiation
*and / Multiplication and division
+and - Addition and subtraction

Expressions are generally evaluated from left to right. However, operands may or may not
be accessed in this order, depending on the implementation. As each expression is evalu-
ated, exponentiation is performed before multiplication and division, which are performed
before addition and subtraction. For example, the formula:

ax2+bx+c

can be expressed as:

SIMSCRIPT I1.5 Reference Handbook

a*x¥*2+b *x+c
SIMSCRIPT I1.5 computes the value of this expression by:

Squaring.

Multiplying x? by a.

Multiplying x by b.

Adding the two products together.
5. Addingc to the result.

PwnN P

Step 3 may be done before step 1 or before step 2 by some language implementations.

1.3.3 Parentheses

The standard hierarchy of operations may be altered by enclosing terms within parentheses.
SIMSCRIPT II.5 performs all operations within parentheses before completing the remain-
ing evaluation. For example, the system computes the value of the expk/(m + n)

by:

1. Addingnr andn.
2. Dividingk by this sum.

When pairs of parentheses are embedded within other pairs, terms within the innermost pair
are evaluated first. For example, SIMSCRIPT 1.5 computes the value of the expression
(((a + b)*25.3)-c**2)/d by:

1. Addinga andb.

Multiplying this sum b25.3 .

Squarin.

Subtracting the squarec from the product in step 2.
Dividing the difference bd.

a s wn

SIMSCRIPT II.5 processes parenthesized expressions from left to right and removes all pa-
rentheses before computing a final value. In removing parentheses, the system may obtain
values of subscripted variables from storage and place these values in temporary variables,
or it may save only the subscript. Compound expressions containing parentheses are sim-
plified. Whenever an expression enclosed within parentheses contains more than one term,
the hierarchy of operations determines the order of evaluation. Subscripted variables and
functions with argument lists are evaluated as if they were parenthesized expressions.

1.3.4 Mixed Mode Expressions

The result of evaluating simple arithmetic expressions involving both integer and real vari-
ables is as follows.

Logical Expressions

if: then:

a b a+b a-b a*b a/b a**b
integer integer integer integer integer real real
integer real real real real real real
real integer real real real real real
real real real real real real real

Compound expressions are evaluated as a sequence of simple expressions that follow the
above rules. For examplea, b, c, x , andy are all integer, a*b/(x*y) is real, but
a*(x+y*(b+c)) is integer.

Constants in simple expressions will be converted to the appropriate mode by the compiler
to avoid run-time conversion.

1.4 Logical Expressions

Logical expressions are requirecif ... else ... always constructs and iwith

unless, while anduntil phrases.Table ! lists the available logical expressions. A
simple logical expression is formed by joining two arithmetic expressions with a relational
operator. Relational operators are listedable Z. A logical expression is true if the
relationship expressed is true. It is false if the relationship is not true. During program
execution, current values of variables in the arithmetic expressions determine whether a
logical expression is true or false. A logical expression can optionally include this vord

for clarity (e.g.x is equal to y). Simple logical expressions can be combined with
relational operators, or with ttand andor logical operators, to form compound logical
expressions. Some examples follow:

x=0
True if the value of variablx is zero.

X+ (@a*2) + (b**2)>a*b
True if the value of expressix + (a**2) + (b**2) is greater than the valuea*b
x(1D)**2 / y(1)**2) LS (max + factor)

True if the value of expressix(1)**2 / y(1)**2 is less than the value of

max + factor
X <=SAMPLE <=y =LIMIT

True if all conditions are truSAMPLL is greater than or equalx; SAMPLLI s less than
or equal tcy; andy equal LIMIT .

NO.RUNWAYS(AIRPORT) is>=5

SIMSCRIPT I1.5 Reference Handbook

True if the value of attributdO.RUNWAY & greater than or equal 50 the wordiS is op-
tional.

CHARACTER equals (ALPHABET(I)) is false

True if the value of variableHARACTERI0es not equal thé" value of arra\ALPHABET
mode is alpha and card is not new
True if both logical expressionsiode is alpha andcard is not new , are true.

(FARE(PATRON) Is LOW is true) or DESTINATION(PATRON)= "sfo" is
false

True if either, or both, logical expressions are true: value of attrHARE s less than the
value oflow and/or the value dDESTINATION does not equal the alphanumeric literal
sfo . Logical expressions can be optionally enclosed in parentheses.

this FLIGHT is not in some WAITING.LINE

True if the entity whose index is the value &LIGHT is not in a set of the class
WAITING.LINE.

Table 1. Logical Expressions

Logical Expressions

Any of the following logical expressions can be followed by the wis true
expressions can also be joinedand andor , and enclosed in parentheses, to express the logic de
Relational operators (referred to in the first example) are listed in table 2.

value [is] relational _

U positive
] Onegative
0 zero

value [is] [not

Uinteger
Ointeger
E alpha

mode [is] [not]

data [is] [not] ended
card [is] [not] new

page [is] [not] first

the SE1is [not] empty
this

ENTITY is [not] in

the
this

event
process

is [not]

o
o

g
g
d
g
d

operator value

I o

OOoOoOd

a
an
th e

some

SET

Eendogenou S

exogenou s

interna
externa

o o

oris false . Logical

sired.

SIMSCRIPT I1.5 Reference Handbook

Table 2: Relational Operators

Mathematical Symbol Permitted Forms

eq
equals
equal to

<>
ne
not equal to

< <
It
Is
less than

> >
gt
ar
greater than

IN

< =

le
no greater than
not greater than

\Y)

> =

ge
no less than
not less than

1.4.1 Property Comparisons

Some logical expressionss employ nonarithmetic comparisons to test for a particular prop-
erty. For example, an arithmetic expression can be compared with thepositive
negative , orzero . Similarly, a set can kempty ornot-empty . Inthese cases, a true

or false condition will exist.

1.4.2 Arithmetic Relational Conditions

Table 2 lists the mathematical symbol for each relational operator and the corresponding
forms permitted in SIMSCRIPT II.5. Unless the special characters are used, each relational
operator must be separated from the arithmetic expressions on either side by parentheses,
or by at least one blank column.

10

Logical Expressions

1.4.3 Compound Relational Expressions

Simple relational comparisons may be cascaded to indicate that multiple comparisons are
to take place. Consider the expression:

a=b>c andgr=d=c
For this expression to be true, it must be the case that:

a=b andb>c andg/r=d andd =c

1.4.4 Mixed Mode Comparisons

If the modes of the arithmetic constituents of a logical expression differ, all integer expres-
sions are converted to real before evaluating the logical expression as true or false.

1.45 IS TRUE and IS FALSE Phrases

A logical expression can be followed optionally byistnue orisfalse phrase. The

istrue phrase is used for clarity, but @rfalse phrase negates the logical expression

and is used to maintain a desired program logic. Whéntare oris false phrase
appears in a compound logical expression, the phrase always applies to the logical expres-
sion immediately preceding it. If this logical expression is compound, it must be enclosed
within parentheses, or the phrase will apply only to the immediately adjacent expression.

1.4.6 AND and OR Logical Operators

Simple logical expressions can also be combined with the logical operadoasdor to
form compound logical expressions, following the rules:

1. If two logical expressions are combined withaad logical operator, both logical
expressions must be true for the compound logical expression to be true.

2. If two logical expressions are combined withoanlogical operator, the com-
pound logical expression is true if either, or both, logical expressions are true.

When more than two simple logical expressions appear in an unparenthesized compound
logical expression, the logical operasnd is evaluated first. Proceeding from left to right,
successive logical expressions are used as operands operators, and these evaluated
expressions are then operandsrobperators. Parentheses can be used, however, to indi-
cate a specific order of evaluation. For example:

a=borc<dande>f

is logically equivalent to:
a=bor(c<dande>f)

but could be changed with parentheses to:

(a=borc<d)ande>f

11

SIMSCRIPT I1.5 Reference Handbook

1.5 Labels

A statement label identifies a transfer point fgoto statement. Labels are always local.
Because a label always refers to a statement in the routine containing that label, the same
label can appear in different routines. In addition, different labels can identify the same
statement; they are then calequivalen labels. Of course, transfers cannot be made be-
tween routines by means ogo to statement.

A label can be any combination of letters, digits, and periods enclosed in apostrophes.
Some sample labels are:

‘writeoutputcard' 'region.2’
'write.output.card' ‘transfer’
'999' ‘error.13'

‘...error'

1.5.1 Subscripted Labels

A label can be subscripted by placing a single positive integer in parentheses immediately
after the label name. Subscripted labels permit labels to be added or deleted without mod-
ifying thego to statements that transfer control to them. They are convenient, for exam-
ple, in programs containirgoto statements that direct control to segments in a frequently
modified program. When the system executgo to statement having a subscripted la-

bel, control is transferred to the statement preceded by the same label and subscript equal
to the integer value of the expression.

Subscripts need not start with the number 1, and subscripted labels need not be in consec-
utive order in a program. Some examples of subscripted labels are:

‘place(3)' 'input.card(32)' 'x(1)'

12

Modes

1.6 Modes

A variable can havinteger, real, alpha , or text mode. On some
implementations, double-precision and single-precision floating point modes are
recognized adouble andreal modes, respectively.

Aninteger variable represents a whole number or an entity pointreal (ordouble)

variable represents a number that may have fractional veAlpha andtext variables
represent character strings. The system assumes that the mode of a vareal 2 is
(double on some implementations) unless otherwise specifinormally or define

... variable statements. Subscripted variables can have any mode, but all elements of
an array have the same mode. System attributes, and permanent and temporary entities, can
also have any mode. Except for set pointers, which are automatically defined as integer,
the mode of all attributes is declared by the programmer. The use of a variable should
conform with its declared mode. Table 3 describes data conversion as performed
automatically by SIMSCRIPT I1.5 when reading input data.

1.6.1 Text Mode

The value of a text variable is a variable-length character string, that is, a sequence of al-
phanumeric characters. An alphanumeric character can be a letter, a digit, or any of the spe-
cial characters for the particular implementation of SIMSCRIPT I1.5. A text variable may
contain from 0 to 32,000 characters. The way in which the characters are represented varies
among the implementations.

Individual characters of a text string may be accessed by usisubstr.f system func-

tion, which creates (or puts) a substring from (into) the text string. During input, output,
and substring manipulation, if the source and destination strings are of different lengths the
source field is left-justified, with excess characters truncated from the right, and blanks sub-
stituted for missing characters.

Text mode variables may not be mixed with other modes in expressilet statements,
except when using a mode conversion function.

Examples of possible values of text variables are:
X
0123456789

Dr. Mary P. Smith
ixg$2,347.02

13

SIMSCRIPT I1.5 Reference Handbook

Table 3. Input Data Conversions

Data Variable Defined SIMSCRIPT I1.5 Action:

Entered As:
Integer Integer Value stored in variable as integer.
Integer Real Value converted to real and stored in variable.
Integer Alpha Value stored as fixed-length string.
Integer Text Value stored as variable-length string.
Real Integer Program terminates with error condition.
Real Real Value stored in variable as real.
Real Alpha Value stored as fixed-length string.
Real Text Value stored as variable-length string.
Character |Integer Program terminates with error condition.
Character |Real Program terminates with error condition.
Character |Alpha Value stored as fixed-length string.
Character | Text Value stored as variable-length string.
Note: Character data are acceptable as both alpha and text variable data.

1.6.2 Alpha Mode

Alpha variables represent fixed-length character strings, with the length constant for a giv-
en implementation (typically from 1 to 10 characters). Strings that are too long to be rep-
resented by an alpha variable are truncated on the right. Possible values for alpha variables
are similar to those for text variables, except for the fixed-length restriction.

Alpha variables are treated as integer, except for input and output and conversion to or from
text values.

1.6.3 Mixed Numeric Modes

SIMSCRIPT I1.5 permits mixed numeric mode. That is, integer and real variables may be
combined in the same statement. The result of evaluating arithmetic expressions involving
mixed numeric modes was described above Mixed Mode Expressiol). Briefly, the

system evaluates compound expressions as a series of simple expressions. Thus, if a com-
pound expression having all integer variables contains only additions, subtractions, and
multiplications, the expression will yield an integer value; and if a compound expression
having all integer variables contains division or exponentiation, the expression will yield a
real value. The library function can divide two integers and yield a truncated integer value.

Integer-to-real conversion converts the integer number to a real number with the same val-
ue (e.g.-36 become«-36.0 , and75 becomes75.0). The system rounds real values to

14

Modes

integers by adding 0.5 to the value, depending on whether the value is positive or negative,
and truncating the result. Thus, if a real valua.is0 , the rounded integer value would
be-2.

In let, add , andsubtract statements, when the mode of the expression differs from
that of the variable, SIMSCRIPT II.5 converts the expression as above to the mode of the
variable before changing the value of the variable. When arithmetic expressions in a logi-
cal expression yield different modes, the integer expressions are converted to real before
the system determines whether the logical expression is true or false.

1.6.4 Functions for Conversion

SIMSCRIPT I1.5 provides seven library functions for data conversion:

1. Atot.f converts an alpha value to a text string.

2. Intf converts a real expression to a rounded integer.

3. ltoa.f converts the firsh digits of an integer expression to an alpha value, where
n is the implementation-specific limit on the number of characters per alpha vari-
able.

4. Itot.f converts an integer expression to a text value.

5. Real.f converts an integer expression to a real value.

6. Trunc.f converts a real expression to a truncated integer.

7. Ttoa.f converts the firsh characters of a text string to an alpha value, whése

the implementation-specific limit on the number of characters per alpha variable.

15

SIMSCRIPT I1.5 Reference Handbook

1.7 Names

Attributes, variables, and routines must be named, as must entity classes, event classes, and
set classes. A name can be any combination of letters, digits, and periods that contains at
least one letter or two or more nonterminal periods. SIMSCRIPT I1.5 disregards all periods
written at the end of names and numbers. Names can have terminal periods, but the system
deletes them during compilation. Thus, the naflight... andflight.. become

flight ~ when a program is compiled. Some sample names are:

33A33 table

region.l ...89
first.class.seats consumed.fuel
X stockholder

16

System

1.8 System

The tables that follow describe the automatically-generated attributes, routines, and vari-
ables, along with system constants, library functions, and system routines and variables.
These system names cannot be used as programmer-defined names because they have pre-
defined meanings. In forming system names, the following conventions are used:

a. Automatically-generated attributes, routines, and variables (listed in table 4) either
begin with a letter followed by a period, or end with a period followed by the letter
A.

Constants (table 5) end with a period followed by the c.ter
Functions (table 6) end with a period followed by the I f .er

Routines (table 7) end with a period followed by the I r .er

® 2 o o

Variables (table 8) end with a period followed by the | v.er

17

SIMSCRIPT I1.5 Reference Handbook

Table 4. Automatically Generated Attributes, Routines, and

attributes.

Variables
Generated for | Generated Name Definition
Elements
Accumulated andRoutine R.variable A left-hand monitoring routine that
tallied variables accumulates or tallies data.
Entities Variables entity Global variable having the entity
class name.
N.entity Number of entities of the class (pr-
manent entities only).

Routines C.entity To reserve storage for permanert
entities (i.e. to create them).

D.entity Called when destroying a tempo
rary entity to check for set membgr-
ship error.

L.entity Called to list the values of entity at-
tributes.

Event notices |Variables event Global variable having the event
notice name.

l.event Global variable holding the sub-
script for this event class in the
event set.

Routine C.event File events, whose priorities are (le-
clared ir break ... ties state-
ments, in the proper event set.

D.event Called when destroying event ng-
tice to check for set membershipfer-
ror.

L.event Called to list values of event noti¢e

18

System

Table 4. Automatically Generated Attributes, Routines, and
Variables (Continued)

bet

et.

N0-
er-

A4
1

e

Generated for Generated Name Definition
Elements
Event notice Attributes time.a Time event is to occur.
records eunit.a Equals 0 for an endogenous eve
equals input unit numbe# Q) for
an exogenous event.
p.ev.s Pointer to predecessor event in t
event set.
S.ev.s Pointer to successor event in the
event set.
m.ev.s Setto 1 if the event is in the set;
to 0 if the event is not in the set.
Processes Routines C.process File processes, whose priorities gre
declared irbreak ... ties
statements, in the proper event g
D.process Called when destroying process
tice to check for set membership
ror.
Process notices |Attributes time.a Next scheduled entry time for prg
cess.
p.ev.s Pointer to predecessor process i
event set.
S.ev.s Pointer to successor process in
event set.
m.ev.s Set to <> 0 if the process is in th
set; set to O if the process is not
the set.
sta.a State of process:
3: interrupted
2: suspended
1. active
0: passive
ipc.a The value of.process for this
process class.
f.rs.s Set of resources owned.
1

9

SIMSCRIPT I1.5 Reference Handbook

Table 4. Automatically Generated Attributes, Routines, and
Variables (Continued)

Generated for | Generated Name Definition
Elements
Random variable| Attributes of |prob.a Probability values.
random.e ivalue.a Sample value containing an integer
value.
rvalue.a Sample value containing a real vial-
ue.
S.variable Pointer to successor.
Resources Sets Q.resource Set of processes using this resot]rce.
X.resource Set of processes using this resource.
Attributes U.resource Capacity in resource units.
Sets Attributes of |F.set Pointer to first entity in set.
owner entities
L.set Pointer to last entity in set.
N.set Number of entities currently in sqt.
Attributes of |P.set Pointer to predecessor entity in get.
member enti-
ties
S.set Pointer to successor entity in set
M.set Equals < > 0 if the entity is in the|
set; equals 0 if the entity is not in the
set.
Routines T.set Files entity first or ranked highestjn
set.
U.set Files entity last in set.
V.set Files entity before specified entity
in set.
W.set Files entity after specified entity in
set.
X.set Removes first entity from set.
Y.set Removes last entity from set.
Z.set Removes specific entity from sef]

20

System

Table 5. System Constants

Constant Mode Description
exp.c Real e; 2.718281828
inf.c Integer Largest integer value that can be stored.
pi.c Real TG 3.14159265
radian.c Real 57.29577 degrees/radian (57.29577 = §0
rinf.c Real Largest real value that can be stored.

Note: In table 6 below, the abbreviatica®, g

, andt refer to alpha expressions, point-

er variables, quantities (numeric expressions), and text expressions, respectively.

Table 6. System Functions

Function Arguments | Function Description
Mnemonic Mode
abs.f q Mode ofq Returns the absolute value of the
expression.
and.f d:1.9 2 Integer Returns the logical product of
andg,. (g1, 9 » = integers)
arccos.f q Real Computes the arc cosine of argal
expression; -kq<1
arcsin.f q Real Computes the arc sine of a regl
expression; -kq<1
arctan.f q:,,.9 5 Real Computes the arc tangentgf
d4:d,0 5 # (0.0)
atot.f a Text Converts an alpha expression|to

a text value.

21

SIMSCRIPT I1.5 Reference Handbook

Table 6. System Functions (Continued)

Function Arguments | Function Description
Mnemonic Mode
beta.f d:,d 5.0 3 |Real Returns a random sample fronmy a

beta distribution:

q, = power ofx, real;
q,>0

aq, = power of (1x), real,

q,>0

a5 = random number stream, in-
teger

binomial.f d.,9 5,9 3 |Integer Returns a random sample fronmy a
binomial distribution:

a, = number of trials, integer
q, = probability of success, rgal

a5 = random number stream, in-
teger

concat.f tt, Text Concatenates two text values|to
produce a text value containing
the characters of each.

cos.f q Real Computes the cosine of a rea
expression given in radians.

date.f d:,d 5.9 5 |Integer Converts a calendar date to cy-
mulative simulation time:

q, = month, integer
q, = day, integer

a5 = year, integer

day.f q Integer Converts simulation time to th
day portiong = cumulative sim
ulation time, real.

D

dim.f p Integer Returns the number of elemerts
pointed to by the pointer variabje
p, in the dimension of the array

p.

22

System

Table 6. System Functions (Continued)

Function Mnemonic

Arguments

Function
Mode

Description

div.f

4.9 »

Integer

Returns the truncated value o
ai/q 2:
q, = dividend, integer
a, = divisor, integer;
q, #0

efield.f

None

Integer

Returns the ending column of
the next data field to be read by
statement.

erlang.f

41,9 2,9 3

Real

Returns a sample value from
Erlang distribution:

q, = mean, real

d, =k ,integer

5 = random number stream,
teger

an

n_

exp.f

Real

Computeexp.c to theq" pow-
er; q must be real.

exponential.f

q]_!q 2

Real

Returns a random sample frq
an exponential distribution:

q , =mean, real
d, = random number stream,
integer

fixed.f

tq

Text

Returns a copy daf which is ei

ther space-padded or truncated

so that its length ig.
t = text
g = integer

frac.f

Real

Returns the fractional portion
a real expression.

23

SIMSCRIPT I1.5 Reference Handbook

Table 6. System Functions (Continued)

Function
Mnemonic

Arguments

Function
Mode

Description

gamma.f

4,9 2,94 3

Real

Returns a random sample fror
gamma distribution:

q, = mean, real

a, =k, real

5 = random number stream,
teger

n_

hour.f q

Integer

Converts event time to the ho
portion;q = cumulative event
time, real.

int.f q

Integer

Returns the rounded integer p
tion of a real expression.

Or-

istep.f p, g

Integer

Returns a random sample fronmp a

look-up table without interpold
tion.

p = variable that points to
look-up table

g = random number stream [n-

teger interpolation

itoa.f q

Alpha

Converts an integer expressign

to an alpha value, left-adjuste
in a blank field.

S

itot.f q

Text

Converts an integer expressign

to a text value.

length.f t

Text

Returns the length of a text vg
able in characters.

=
1

log.e.f q

Real

Computes the natural logarith
of a real expression;

q>0

m

log.normal.f

4,9 2,9 3

Real

Returns a random sample fronp a

log-normal distribution:
q, = mean, real

q, = standard deviation, real

a5 = random number strean
integer

24

System

Table 6. System Functions (Continued)

-

=

Function Arguments | Function Description
Mnemonic Mode
log.10.f q Real Computes log, of a real expreg
sion;q > 0.
lower.f t Text Converts letters in a text string|to
lower case.
match.f t,t 5.q Integer Returns the location of a text
substring within a text string, ¢
0 if not found.
t , = source, text
t, = pattern to be matched
text
g = number of characters o
source to be skipped, integsg
max.f d.,d o, Real,ifanyy; |Returns the value of largest
O« I real; if not,
integer
min.f a9 o Real, if any |Returns the value of smallest
g g real; if
not, integer
minute.f q Integer Converts event time to the
minute portiong = cumulative
event time, real.
mod.f 4,9 5 Real if either|Computes a remainder as:
gi real; if not, dy - trunc.f(q a0) *
integer Ay 5 %0
month.f q Integer Converts simulation time to
month portiong = cumulative
simulation time, real.
nday.f q Integer Converts event time to the dpy

—

portion; q = cumulative ever
time, real.

25

SIMSCRIPT I1.5 Reference Handbook

Table 6. System Functions (Continued)

Function
Mnemonic

Arguments

Function
Mode

Description

normal.f

4,9 2,9 3

Real

Returns a random sample frorh a
normal distribution:

q, = mean, real

d, = standard deviation, reaj
Returns a random sample
a3 = random number stream,

integer

out.f q

Alpha

Sets or returns the alpha valug of
the gth character in the current
output bufferg must yield an in
teger valueg = 0; both right-
and left-hand function.

or.f d:1,9 »

Integer

Returns the logical sum qf
andqy.

poissson.f 41,9 5

Integer

Returns a random sample fronp a
Poisson distribution:

q, =mean, real
q, = random number stream,
integer

randi.f

4,9 2,4 3

Integer

Returns a random sample ui-
formly distributed between|a
range of values:

d, = beginning value, intege

=

d , = ending, value, integer
q 5 = random number strear,
integer

random.f q

Real

Returns a pseudorandom nunj-
ber between zero and one;

g = random number stream,
integer.

real.f q

Real

Converts an integer expressign
to a real value.

26

System

Table 6. System Functions (Continued)

Function
Mnemonic

Arguments

Function
Mode

Description

repeat.f

tq

Text

Returns aext value which is
the concatenation gfcopies ot .

t =text
g = non-negative integer

sfield.f

None

Integer

Returns the starting column of
the next data field to be read by
read (Free-Form) statement.

shl.f

di1, 9 2

Integer

Returns the value of;cshifted
left g, bit positions.

shr.f

di1, 9 2

Integer

Returns the value of;cshifted
right o, bit positions.

sign.f

Integer

Indicates the sign of a real ex-
pression:

lifg>0

Oifg=0

-lifg<0

sin.f

Real

Computes the sine of a real {
pression given in radians.

PX-

sgrt.f

Real

Computes the square root of a

real expression; a real expr
sion;q =0

2 S-

substr.f

tt ot g

Text

Sets or returns a substring
text value; both left- and rig
hand function; in the left-han
usaget ; must be an unmor

tored variable:
t , = string, text
t , = position, integer
t 5 = length, integer

a
t-
d

tan.f

Real

Computes the tangent of a r
expression given in radians.

bal

27

SIMSCRIPT I1.5 Reference Handbook

Table 6. System Functions (Continued)

Function
Mnemonic

Arguments

Function
Mode

Description

triang.f

ql’ q21 q31
da

Double

Returns a random sample fror
triangular distribution.

g4 = minimum, double
g, = mean, double
g3 = maximum, double

g4 = random number strea
integer

hn,

trim.f

t, Qg

Text

Returns a copy of which hag
leading and/or trailing blanks 1
moved. Ifg < 0, leading blank
are removed. If > O, trailing
blanks are removed. To remd
both leading and trailing blank
useqg= 0.

t =text

g =integer

ve
S,

trunc.f

Integer

Returns the truncated inted
value of a real expression.

er

ttoa.f

Alpha

Converts first characters of te
expression to alpha, subject

the limit of the implementation|

xt
to

uniform.f

4,9 2,4 3

Real

Returns a uniformly distributg
random sample between a ra
of values:

d, = beginning value, real
d, = ending value, real

05 = random number
stream, integer.

d
hge

upper.f

Text

Converts letters in a text string
upper case.

weekday.f

Integer

Converts event time to the weg

day portion;
g = cumulative event time, re

28

System

Table 6. System Functions (Continued)

weibull.f d:,9 2,0 5 |Real Returns a sample value fron
Weibull distribution:
q, = shape parameter, real
d, = scale parameter, real
a3 = random number stream,
integer.
xor.f d1, 9 2 Integer Returns the logical difference pf
g4 andgs.
year.f q Integer Converts simulation time to the
year portion:
g = cumulative simulation
time, real.
Table 7. System Routines
Routine Arguments Description
date.r Date Returns the current date and time as text:
Time Date:mm/dd/yyyy
mm= month
dd = day
yyyy =year
Time: hh:mm:ss
hh = hour
mnE= minute
ss = second
exit.r q Terminates program execution passing the|exit
status to the command level.
q =integer
origin.r m,d,y Establishes an origin time when the calendar|for-
mat is used:
m= month, integer
d = day, integer
y = year, integer
snap.r None User-supplied routine called by SIMSCRIPT [1.5
when an execution error is detected.

29

SIMSCRIPT I1.5 Reference Handbook

Table 8. System Variables

Variable Description Default
Value
batchtrace.v Variable that controls what happens when a run-time [0
ocCcCurs:
0 SimDebug is invoked to allow interactive debugg
1 SimDebug is not invoked. SIMSCRIPT shows
run-time error in a message box and then write
traceback (including global variables) to the
simerr.trc in the current directory.
2 SimDebug is not invoked and SIMSCRIPT does
write a traceback.
between.v Subprogram variable called before each event is exeq0
buffer.v The length of the internal buffer. 132
eof.v End-of-file code; zero denotes that an end-of-file mg
is an error;l indicates return control witkof.v set to2
when end-of-file is encountered; one for each inpufu
event.v Code representing the event class to occur next. 0
events.v The number of event classes. 0
ev.s Event set; dimension is containeceients.v 0
fev.s Array containing the first-in-set pointers for the event|0
ev.s (note thah.ev.s is not defined).
heading.v A subprogram variable tested by the system for each|0
page.
hours.v Number of hours per simulated day. 24
line.v Number of the current output lihe 0
lines.v Number of lines per page 35
mark.v Termination character required on external event reg*
and on the input for random variables.
minutes.v Number of minutes per simulated hour. 60
page.v Number of the current paye
pagecol.v If 0, column number in which the wopage and the vall0
ue ofpage.v are to be printed on the output listing.

30

Table 8. System Variables (Continued)

Variable Description Default
Value

parm.v Contains command line arguments passed to the prd
when it was invoked.

process.v If not zero, a pointer to the process notice of the curr{O
executing process.

rcolumn.v Pointer to the last column read in the input bdffer |0

ropenerr.v Indicates error occured on the current input unit. 0

read.v Number of the current input urit. 0

record.v The number of records read from the current input un 0
written on the current output unit; one for each input
output unit.

rreclen.v Contains the length of the input record (number of chi0
ters) of the current input unit.

rrecord.v The number of records read from the current input uj0

seed.v Array containing initial random numbets. 0

time.v Current simulated time. 0

wcolumn.v The number of records written to the current output U2

wopenerr.v Indicates an error occured on the current output unit{0

wrecord.v The number of records written in the current ouj0
buffer.

write.v Number of the current output uhit 0

Notes: 1.Default differs for the various implementations of SIMSCRIPT I1.5.

2. Some implementations seblumn.v

unit is first used.

3. A separate value is maintained for each unit. Only the currently used value
is accessible to the program.

to-1 before the corresponding input

31

SIMSCRIPT I1.5 Reference Handbook

1.9 Variables

A variable is a name representing a memory location whose value can change during the
execution of a program. At the start of program execution, the values of all variables are
automatically initialized to zero, except for text variables, which are initialized to the null
string. The SIMSCRIPT I1.5 system includes dummy, global, local, monitored and subpro-
gram variables, each of which is described below:

1.9.1 Dummy Variables

Dummy variables, which can appear in conjunction veithumulate andtally
statements, are artificial variables or attributes, in that their values are not accessible to the
program. If a program does not require that the values of tallied or accumulated variables
be accessibleaccumulate andtally computations can be performed on them without
having their values stored. In programs with many statistical variables, a significant
amount of storage can be saved by using dummy variables. Dummy attributes are declared
in every or the system statements, while dummy global variables are declared in
define ... variable statements.

1.9.2 Global Variables

A global variable, which must be declared idefine ... variable statement in the
preamble, has a common meaning throughout a program. Whenever the name of a global
variable appears in a statement, the system references the same storage location regardless
of the routine in which the variable appears. Names of global variables can be temporarily
defined as local in subroutines by using their namesfine ... variable statements

within the respective routines.

Side Effects Unwanted side effects can occur when global variables are used in routines
that interact with other routines. For example, there may be unexpected consequences
when using functions in expressionsan ... to (index) phrases that are evaluated
before each iteration, and in complex logical expressions where all sub-expressions are not
always evaluated. These side effects can frequently be eliminated by using local rather than
global variables.

1.9.3 Local Variables

A local variable applies only to the routine in which the variable appears. Consequently,

the same name can be used for local variables in different routines, with the name referring
to a different value in each routine. A local variable occupies storage only during the time

between entry and return from the routine in which the variable appears. A local variable

occupies storage for the duration of the run.

SIMSCRIPT I1.5 assumes that variables not defined in the preamble are local variables.
Normally statements in routines can specify general characteristics of local variables, and
define ... variable statements can declare any exceptions. Neither statement is

32

required in a routine if local variables are to have the characteristics of tnormally
statement in the preamble.

The system automatically assigns storage locations to unsubscripted (non-text) local vari-
ables and initializes them to zero when a routine is called. The storage is returned to the
system when control returns to the calling program.

Text variables require two storage areas. One, in a fixed location, is a pointer to the dy-
namic storage area that contains the actual characters represented. When a routine is called,
unsubscripted text variables are automatically initialized to the null string. When control
returns to the calling routine, the dynamic storage area associated with any unsubscripted
text variable is released.

SIMSCRIPT 1.5 does not automatically assign storage to subscripted local variables ex-
cept for the base pointer. Arrays must appeireserve statements before they can be
used, and when an array is reserved, the elements are automatically initialized to zero. The
storage associated with an array should be released before control is returned to the calling
program.

A subscripted local variable that is not defined define ... variable statement

within a routine has the dimensionality implied by its first use. For example, the statement
let x(i) = O declares thex is a one-dimensional array, regardless of background di-
mensionality. Of course, when the program is executreserve statement incorporat-

ing the appropriate dimensionality must be processed before accessing an element of the
array.

1.9.4 Monitored Variables

A monitored variable is a subscripted or unsubscripted variable, or an attribute whose val-

ues are checked or used by a monitoring routine. A monitored variable, therefore, has a
storage location and a routine associated with it, both of which have the same name. When-
ever the value of a monitored variable is accessed, the corresponding routine is automati-
cally executed. A monitored variable must be declareddefine ... variable

statement as being monitored on the left, on the right, or on both the left and the right. The

wordsleft andright refer to the left and right side of an equal signlet statement.

Tally andaccumulate statements automatically use the monitoring feature.

Monitoring Routines. If a variable is monitored on the right, a right-hand monitoring rou-
tine must be written and, if monitored on the left, a left-hand routine must be provided.
Normally, the task of a right-hand routine is to return a value to the calling program. In
monitoring operations, ienter with statement is used in a left-hand routine to transmit

a value to the left-hand routine. Also pertaining to monitoring routines move state-

ment, one form of which is used in a right-hand routine and another in a left-hand routine.
Depending on the form used, move statement transfers the value of a monitored vari-
able to a named variable in order to use that variable in computations, or it assigns a value
to the monitored variable. A monitoring routine cannot be called wcall statement.

It is executed only when the statement containing the monitored variable is executed.

33

SIMSCRIPT I1.5 Reference Handbook

Subscripted Monitored Variables. Because a monitored variable represents both a stor-
age location and a routine, a name sucscan(i,j) is both a subscripted variable and a call

on a routine with argumeri ancj. All data references arescan(i,j) as if it were a typical
subscripted variable. The monitoring routine must have as many arguments as there are
subscripts. During execution, arguments are automatically converted to integer (like a sub-
scripted variable), but transmitted to the monitoring routine (like a routine).

1.9.5 Subprogram Variables

A subprogram variable has the address of a routine as its value and enables that routine to
be called indirectly. The statement:

let SUBR ='sqrt.f'

whereSUBF is a subprogram variable, stores the address of the library fusqrt.f in

the variableSUBF. The subprogram variable can subsequently be us¢call statement.
Subprogram variables can be global or local, saved or recursive, and subscripted or
unsubscripted. They are initialized to zero when a program begins execution or when
routines containing them (as recursive variables) are called. During compilation, the
number for a routine called with a subprogram variable is not compared with the
declaration in thdefine ... routine statement.

Subprogram Arrays. Subprogram arrays can be defined, and routine names can be stored
in the elements, but they cannot be used to call routines. The programmer must distinguish
between the direct and indirect use of a subprogram arrx is defined as a subprogram
array in edefine ... variable statement, the statemaeleasex releases the stor-

age allocated to arrex, but the statemeix(2) releases the routine whose name is stored

in x(2) . Thus, when reference is made to all elements of a subprogram array, the sub-
program array itself is the object of a statement. When a particular element of a subprogram
array appears, it is an indirect reference to a routine.

Calling Functions. Subprogram variables can call functions as follows.

The subprogram variable must be declareddefine ... variable statement. The
mode of the variable is either explicitly defined or declared by the current background
mode. All functions called with the subprogram variable must be of the mode declared for
that variable.

An indirect function call is indicated by placing a dollar si$) before the subprogram
variable. For example,a has been declared as a subprogram varietx=a assigns
the name of a routine to varia x, butlet x =%$a computes a value by executing the
function whose name is storeda and stores the computed valu x.n

When arguments follow a subprogram variable, the arguments apply to the function called
indirectly, not to the subprogram variable itself.

34

PART II.
LANGUAGE REFERENCE

35

SIMSCRIPT I1.5 Reference Handbook

36

ACCUMULATE/TALLY Statement

2. Language Reference

2.1 ACCUMULATE/TALLY Statement

Theaccumulate/tally statement computes statistical quantities and prepares histo-
grams for time-dependent variables. It specifies automatic data collection and analysis.

Caccumulate OO (as [the E[name] stat kywd] O Oe
E tally Egﬁame E(quant/ty 0 quantity by quantity) as the [name] histogram E E

of [wnsubscripted global variable
Centity attribute]
Cunsubscripted system attribute

Oood

Keyword Synonym
as =
EXAMPLES:

accumulate AVG.STAT as the mean of STATUS

STATUSbecomes a left-hand monitored global variable. Each time its value changes,

the monitoring routine comput&IATUS * (time.v - A.1) and stores it iA.3 .
AVG.STAT is a function that returngA.3 + STATUS * (time.v - A.1)) /
(time.v - A.2) at any time during the simulatiomA.1, A.2, andA.3 are

generated system attributes representingfie beginning of the observation period),
T, (the time of the last change in the variable), gnd* t;, (whereX is a sample value
of STATUS, respectively.

accumulate NUM.CARSsthenumand MAX.CARSas the max of NO.PARKEDCARS

AssumingNO.PARKED.CARSSs an attribute of an entity, it becomes a left-hand moni-
tored attribute NUM.CARSaNdMAX.CARSbecome attributes of the entity class(es) as-
sociated withNO.PARKED.CARS The monitoring routine will incrememMUM.CARS
each time the value 6fO.PARKED.CARShanges. It also keeps track of the maximum
value ofNO.PARKED.CARSIn MAX.CARS(no other attributes are generated). Of
course, the number of samples and maximum@PARKED.CARSs kept for each
particular entity created in the class(es) for wiN€hPARKED.CARSS an attribute.

accumulate TOTAL.MAX as the max , MAX.CARS as the weekly max, and
CAR.GRAPH (1000 to 10000 by 50) as the histogram of NO.PARKED.CARS

AssumingNO.PARKED.CARSs an attribute of the permanent entity CRISPORT, both
TOTAL.MAXandMAX.CARSare attributes used to keep track of the maximum value of
no.parked.cars for each entity created. By appropriate usesdt (for example,

37

SIMSCRIPT I1.5 Reference Handbook

foreach AIRPORT, reset weekly totals of NO.PARKED.CARS(AIRPORT))

in an event that occurs each time a week of simulated time has eMAX.CAR¢ at

any time will hold the maximum value NO.PARKED.CAR: for that week, while the
TOTAL.MAX attribute will hold the overall maximum for each entity. An array named
CAR.GRAPIis reserved when ttAIRPORT entities are created to hold histogram values.
It will be two-dimensional, the first dimension beN.AIRPORT and the second (10000-
1000) /50 + 1 =181. Eachtime the valuNO.PARKED.CAR: changes, the monitoring
routine adds thamount of tim (time.v - T L) that this attribute has held this value

to the running sum in the appropriate element of the histogram array. For example, if

the value 0NO.PARKED.CARS(2) has been 2010 for three houtime.v - T L

3,time.v in hours) and then changes to 2032, three will be added at the time to the
value of CAR.GRAPI(2,21) by the left-hand monitoring routine.

tally AVERAGE.LIST as the mean of LIST

Assuming thaLIST is a one-dimensional array, the system generates a left-hand mon-
itoring routine nameLIST , with the subscript as an argument. This routine is called
whenever a value is assignecLIST . The function counts the number of tinLIST

changes value and accumulates sum and number. The system also generates global ar-
raysA.1 andA.2, each having as many element<LIST , in which to keep the sum

and number for each elemeniLIST in order to compute the means. The system also
generates a function namAVERAGE.LIST that computes a mean frcA.1 andA.2

whenever the function is referenced in the program.

tally NUM.POP as the num and MAX.POF as the max of POPULATION

Assuming thaPOPULATIOL! is an attribute of permanent entity clCITY, the system
generates a left-hand monitoring routine nalPOPULATIO! with the index number

of the entity as an argument. This routine useNUM.POI attribute of the entitCITY

to tally the number of changesPOPULATIO! for each entity MAX.POF is an attribute

which contains the maximum population assigned to each city as computed in the mon-
itoring routine.

tally VAR.POP as the weekly variance, TOTAL.VAR as the cumulative
variance and GRAPH(0 TO 1000 BY 100) as the histogram of POPULATION

38

Assuming thaPOPULATIOL! is an attribute of permanent entity clCITY, the system
generates a left-hand monitoring routine nalPOPULATIO! with the index number
of the entity as an argument. The system also generates attA.1, A.2,A.3,

A4, A5, andA.6, each havinN.CITY elements, to accumulate the number, sum,
and sum of squares for each entity for bothweekly andcumulative variances.
The system also generates function variances nVAR.POF anc TOTAL.VAR which
compute the variance whenever the function is referelVAR.POF uses attributes
A.l, A2, andA.3, while TOTAL.VAR uses attributeA.4, A5, andA.6. The
system also defines a two-dimensional array ni ‘GRAPI to hold histogram values
for a range of values fro0 t0 1000, in intervals 0100, indicating the number of times

ACCUMULATE/TALLY Statement

sample values fall within each interval. The array will be reserved wheCITY2
entities are created and will be dimensioN.CITY by (1000-0) / 100 + 1

Theaccumulate statement specifies data collection variables, routines to compute statis-
tical quantities, and arrays to collect histograms for time-dependent variables in a global
environment. The statistical keywords used to specify the desired statistics appear in table
9. SIMSCRIPT IL.5 permitaccumulate statements for each preamble-defined global
variable or attribute, (called ttaccumulated variab in this description). Whenever the

value of the accumulated variable changes, computations are made to compile the statistics
required in theaccumulate statement(s). These computations include time, i.e., the col-
lected observations are weighted by the length of time they have retained their values. The
results are used in time-series analyses.

Theaccumulate statement can appear only in the preamble. Because the principal results
from simulation models are statistical measurements, this statement relieves the program-
mer of the necessity of writing the required routinTally andaccumulate statements
cannot be declared for the same variable.

For eactaccumulate statement, the system generates attributes and routines. A left-
hand routine that accumulates data is always generated for each accumulated variable. This
monitoring routine has the same name as the accumulated variable. Generated global vari-
ables and attributes are nanA.1, A.2,...,AN, and the number of other routines and
attributes generated depends on the statistics requested (see table 10). Counters are as-
signed as follows:

If the accumulated variable is a global variable, system attribute, or attribute of a per-
manent entity, the system automatically reserves as many variables for statistical
counters as there are elements of the accumulated variable. For example, a global vari-
able will only require single counters, while a permanent entity will use arrays of
counters.

If the accumulated variable is an attribute of a temporary entity, each entry record is as-
signed statistical accumulation attributes.

39

SIMSCRIPT I1.5 Reference Handbook

Table 9. Statistical Keywords for Accumulate/Tally Statement

Statistic Accumulate Tally Computation
Computation
NUMBER N = The number of N = The number of samples
changes in X X
SUM Y Xtime.v -T))) > X
MEAN Sum Sum
(time.v - Tp) N
SUM.OF.SQUARES s (Xtimev -T))) 5 X2

MEAN.SQUARE

Sum.of.squares

Sum.of.squares

(timev - Tp) N
VARIANCE Mean.square - MeZn |Mean.square - Meén
STD.DEV JVARIANCE JVARIANCE
MAXIMUM M = Maximum (X) for all X| M = Maximum (X) for all X
MINIMUM m = Minimum (X) for all X {m = Minimum (X) for all X
Notes
time.v = current simulated time.

T = simulated time at which variable was set to its current value.

T,= simulated time of last reset for this variable.

X = sample value of variable before change occurs.

40

ACCUMULATE/TALLY Statement

Table 10. Attributes & Functions for Accumulate/Tally Statement

Statistical Keyword System Action

NUMBER The named data collection variable is an attribute of the observed
variable.

SUM? A function having the same name as the named data colledtion
variable is generated. An attribute with an arbitrary name ig also
generated.

MEAN A function having the same name as the named data colleqdtion
variable is generated. SUMattribute is generated whether or pot
requested.

SUM. OF SQUARES | A function having the same name as the named data colleqtion
variable is generated. An attribute with an arbitrary name ig also
generated.

MEAN.SQUARE A function having the same name as the named data colleqdtion
variable is generated. A38Qattribute is generated whether fe-
guested or not.

VARIANCE A function having the same name as the named data collegdtion
variable is generated5SQ andSUMattributes are generated
whether requested or not.

STD.DEV} A function having the same name as the named data collegtion
variable is generatedsSQandSUM attributes are generated
whether requested or not.

MAXIMUM The named data collection variable is an attribute of the observed
variable. ANUM attribute is generated whether requested off not.

MIMIMUM The named data collection variable is an attribute of the observed
variable. ANUM attribute is generated whether requested of not.

Notes:
1. Foraccumulate statements, attributes are generated foarfd T,. These values are not direqt

available to the user, as they are arbitrarily named,&ig.andA.2 .
2. Fortally statements, the attribute has the same name as the named data collection vafiable and
no function is generated.

y

A programmer-defined qualifying name may optionally be supplied to specify different
types of a particular statistic. These qualifiers allow some statistics to be reset while others
are not. Using a qualifier is a handy way to keep both periodic and cumulative statistics on
a variable or attribute. Seeset statement.

41

SIMSCRIPT I1.5 Reference Handbook

2.1.1 Histograms

Theaccumulate statement is used to collect data on the total time a variable has held a
value within a particular range during the simulation. Histograms can be requested for glo-
bal variables, system attributes, and attributes of permanent entities, but they cannot be re-
guested for attributes of temporary entities. The system automatically generates a
histogram array of one more dimension than that of the accumulated variable.

When requesting histograms, the phrase:
(quantity, to quantity, by quantity)

defines a range of values fraquantity s to quantity e which is divided into intervals
of quantity 3 units. SIMSCRIPT I1.5 reserves the histogram array Wwittantity 5"
quantity l)/quantity 5t 1 elements for each element of the accumulated variable.

Each time the value of the accumulated variable changes, the length of time the variable
retained the value is added to the pertinent element of the histogram array. If a value is less
thanquantity it the time for that value is added to the first element. If a value is greater

than or equal tquantity » it is added to the last element.

Qualifiers can be used with histograms to identify particular arrays for selecitte, as
with other accumulated statistics.

2.1.2 Dummy Variables

A dummy variable is a preamble-defined variable or attribute whose value is not accessible
to the program. If a program does not require that the value of the tallied variable be
accessibleaccumulate computations can be performed on the variable without having its
value stored. Onlywmber, maximum , andminimum statistics can be collected on
dummy variables in aaccumulate statement. Dummy attributes are declareslary

or the system statements, while dummy global variables are declarésfiime ...

variable statements.

42

ACTIVATE (process) Statement

2.2 ACTIVATE (process) Statement

Theactivate statement activates the future occurrence of a process by filing a process
notice in the relevant process set.

r] r
activate 1 a Morocess 1] [called pointer variable Taiven valuecr]
Cthe [above] [(Levent 0 [(valuec) 0
rat quantit M
Fnovx? d r
r , rdavisl nn
Cin quantity Chour][s] oo
0 Cminute[s] 00
Keywords Synonyms
activate reactivate
a an (For a new process)
the [above] this (For an existing process)
given giving
now next
in after
day[s] unit[s]
EXAMPLES:

activate a CUSTOMER now

Creates a process notice of the class customer and schedules its entry as soon as control

is returned to the timing routine. A pointer to this process notice is placed in the
variable CUSTOMER

reactivate this SHIP in UNLOADING.TIME(SHIP) hours

The procesSHIP is to be entered wh time.v has been updatedtime.a (SHIP) ,

which isUNLOADING.TIME(SHIP)/ hours.v units of simulated time beyond the
time.v atreactivation. The process notice already exists, and a pointer to it is located
in variableSHIP. Thereactivate statement keyword is used by the modeller to doc-
ument the fact that the process notice already exists.

43

SIMSCRIPT I1.5 Reference Handbook

activate a STORM giving LOCATION and DURATION in 2 days

Creates a process notice of the cISTORI which has two user-defined attributes
whose values are to be set to the valueLOCATION andDURATIO!. The process is
scheduled to begin whtime.v has been updatedtime.a (STORM), which is two
days beyond tl time.v at activation.

activate a CAR called NEXT.CAR in 5 minutes

Creates a process notice of the cICAF, but puts the pointer to it in the variable
NEXT.CAF rather than irCAF. The process is scheduled to begin wtime.v has
been updated time.a (NEXT.CAR), which is 5 minutes beyond ttime.v at ac-
tivation.

Theactivate statement schedules the future occurrence of a process and is analogous to
the use of thischedule statement with events. This statement assigns values to process
notice attributes and files the notice in the even ev.s . It can appear in any routine,

but not in the preamble.

2.2.1 CALLED Phrase

If the the keyword signifies that the process notice already exists, SIMSCRIPT I1.5 uses
the variable name in tlcalled phrase to locate that process notice. lithe keyword
is not used, the variable is assigned a pointer to the process notice created.

2.2.2 GIVEN Phrase

A given phrase assigns values to attributes of the process notice, which causes them to be
passed as arguments to the process routineactivate statement assigns values of ex-
pressions to successive attributes of the process notice, starting with the first programmer-
defined attribute declared in tlevery statement. (Use in word phrases to arrange
physical storage of attribute values does not influence the order of selection of process ar-
guments.) If there are fewer expressions than attributes, SIMSCRIPT I1.5 assigns zeros to
the remaining attributes. The keywcgiven can be omitted if expressions are enclosed

in parentheses.

2.2.3 AT Phrase

Theat phrase, which denotes when in the future the named process is to occur, sets at-
tribute time.a to the value of an expression. The expression must yield a real value.
time.a is used to file this process notice in the event set in chronological order (the event
setis ranked on Ictime.a).

The value otime.a is used to updaitime.v , the current simulation time, whenever a
process notice or an event notice is selected from the event set by setting it to the value of
of the first process or event in the event set. The systeitime.v to zero at the start of

44

ACTIVATE (process) Statement

simulation and increastime.v as the simulation progresses. An absolute time must al-
ways be specified in iat phrase.

2.2.4 IN Phrase

Anin phrase specifies the relative time at which a process is to occur. This phrase enables
the programmer to schedule a procetime.v plus a designated number of days, hours,

or minutes. (The keywoiunits can be used in placedays .) The units oftime.a are

days if thedays, hours , or minutes keywords are used in this phrase.hours or

minutes is specified, SIMSCRIPT II.5 automatically converts the hours or minutes to days
using the system variablhours.v andminutes.v . The system initializehours.v to

24 ancminutes.v to 60, but the programmer can modify these valuetime.v runs in

units other than days, tlunits keyword should be used in in phrase.

2.2.5 NOW Phrase

A process scheduled withnow phrase occurs as soon as the current process or event
returns control to the timing routine. Such a process will occur before any processes or
events having the same event time, scheduled previoushat orin phrases. When
activate statements includnow phrases for two or more processes, the processes are
ranked according to ttpriority statement if they are of different classes, according to
thebreak ... ties statement if that statement appears for the process class, or first-in,
first-out if abreak ... ties statement has not been included for the process class.

45

SIMSCRIPT I1.5 Reference Handbook

2.3 ADD Statement

Theadd statement adds the value of an arithmetic expression to the value of a variable,
and the sum becomes the new value of the variable.

add quantity to variable

EXAMPLES:

add 1to X

Adds 1 to the value of variabX:

add A* X**2 + B* X + Cto Y "quadratic formula

AddsAX2 + BX + C TO the value of variablY. Commentary text follows the two
apostrophe characters.

add BAGGAGE.WEIGHT(FLIGHT) to TOTAL.WEIGHT(FLIGHT)

Adds the value of attribuBAGGAGE.WEIGF to the value oTOTAL.WEIGH1 for the
entity whose identification number is in the variable.

Theadd statement adds the value of an expression to the value of a variatadd state-
ment can appear in any routine, but not in the preamble. If the expression and the variable

differ in mode, SIMSCRIPT I1.5 converts the expression to the mode of the variable before
assigning the sum to the variable (seelet statement for conversion rules).

2.3.1 Complex Subscripted Variables
Before compilation, thadd statement is translated to:
let variable = variable + quantity

If the variable has complex subscript references, it is more efficient to compute the sub-
scripts separately than to have the compiler compute them twice. For example:

add 1 to x(y*(ab-2),diff**n)
translates to:
let x(y*(ab-2),diff**n) = x(y*(ab-2),diff**n) + 1

which causes the subscriy*(ab-2) anddiff**n to be evaluated twice. To conserve
storage space and computer time, add statement could be written as:

leti=y*(ab-2)

46

ADD Statement

let j = diff**n
add 1 to x(i,j)

2.3.2 Subscripts Containing Functions
If the subscript of the variable is a function, or contains a function, unexpected results can
occur when the function has side effects. For example, note what happens because of the
following calls to the random number generator.

add 1 to TABLE(uniform.f(a,b,1))
translates to:

let TABLE(uniform.f(a,b,1)) = TABLE(uniform.f(a,b,1)) + 1
before compilation. This statement causes two random numbers to be generated, and pos-
sibly two different elements (TABLE to be accessed. The programmer may have pre-

ferred:

let | = uniform.f(a,b,1)
add 1 to TABLE(i)

2.3.3 Error Messages

An add statement having complex subscripted variables or function references can cause
duplicate error messages to be produced because of intermediate translations.

47

SIMSCRIPT I1.5 Reference Handbook

2.4 AFTER Statement

Seebefore/after statement.

2.5 ALSO Phrase

Seedo ... loop constructfor each (class) phras, for ... of
. 1o (index) phras,, untii phras,, orwhile phras:.:

2.6 ALWAYS Statement

Setif ... else ... always

48

construct

(se) phras, for

BEFORE/AFTER Statement

2.7 BEFORE/AFTER Statement

Thebefore/after statement is a debugging statement that can appear only in the pream-
ble. It can trace six types of SIMSCRIPT I1.5 statements.

Mafter creatina ¢ [a] [temporary entity rr]
Mbefore destroying n Cevent nn
M - 0 0 an
MTbefore r rfilina c c [in] set 1, call routine
MTafter n rremoving n n n
M 0 0 _ r]
Mbefore r rschedulina ¢ Tc [a] Torocess n
Mafter N rcanceling n n Cevent n n
[T 0 a o o 0 0

Keywords Synonyms
a an
the
any
scheduling activating
causing
canceling interrupting
call perform
now
EXAMPLES:

before destroying a FLIGHT, call PLANE.CHECK

Calls subroutincPLANE.CHECI each time thdestroy statement is executed for an
entity of the entity clasFLIGHT. The identification number of the entity is auto-
matically passed as an argument to the subroutine.

before filing and removing from RESERVATIONS,call CHECK.RESERVATIONS

Calls subroutincCHECK.RESERVATION each time thfile andremove statements
are executed for the set ckRESERVATION. The identification number of the entity
being filed or removed automatically becomes an argument of the subroutine.

after scheduling a TAKEOFF, call TEST

Calls subroutinTEST each time thischedule statement is executed for an event of
the clas TAKEOFI The identification number of the event being scheduled and the
time of occurrence automatically become arguments of the subroutineoutine
statement could appearroutine TEST given NUMBER and TIME.

49

SIMSCRIPT I1.5 Reference Handbook

The purpose of thbefore/after statement is to monitor t create, destroy,

file, remove, schedule, activate , andcancel statements. The named
subroutine is called whenever one of these statements is execulbefore/after

statement is included in the preamble for the specified entity class, set class, and event
class. SIMSCRIPT II.5 permits obefore/after statement for each temporary entity

class, set class, and event class. To usbefore/after statement, write a routine with

the name that appears in the statement and the number of arguments automatically passed
for the statement being monitored. Although call phrase does not show the
arguments, throutine statement must have the correct number of arguments. Using the
arguments, the routine can trace entity identifications, subscripts, or event times.

Table 11 lists the arguments automatically given to the named subroutine. All arguments
are integer except the event time, which is real.

Table 11. Arguments Automatically Given to the Subroutine

Statement Form Arguments
creating an entity Identification number of the entitBefore cannot be usgd
with this form.
destroying an entity Identification number of the entitAfter cannot be usqd
with this form.
filing in a set Identification number or index of the entity to be filed and
the set subscripts. file ... before andfile ...

after statements, the identification of the second entity is
not passed as an argument.

removing from a set Identification number or index of the entity to be remqgved
and the set subscripts, if any. The entity identification for
theremove first andlast statements is passed as z¢ro.

scheduling an event Identification number of the event or process notice and the
time the event is to occur.

canceling an event Identification number of the event or process notice.

50

BEGIN HEADING Statement

2.8 BEGIN HEADING Statement

Thebegin heading statement marks the beginning of a heading section within a report
section.

begin heading

Only one form of this statement exists.

The begin heading statement can appear only within a report section. A heading sec-
tion is used, for example, to print titles, column headings, and computational results when-
ever a page ejects. As shown in figure 1, a heading section startsheigfindeading

statement and ends with amd statement. SIMSCRIPT II.5 executes the program segment
included between these two statements the first time the program segment is encountered
and whenever a page is ejected by an output statement within the report section. The output
statement, such aspaint statement, must appear after the heading section, but within
the enclosing report section.bAgin heading statement cannot appear in the preamble.

Within a heading section, the logical expressions:

page is first

page is not first

can be used in daf... else ... always construct to select statements to be exe-
cuted for the first page of output but not for succeeding pages, or vice versa.

Pages are ejected whenever the current line climmt/() exceeds the maximum number
of lines to be printed per pagaés.v).

2.8.1 System Variables

See table 12 for a list of global variables frequently used in heading and report sections.

51

SIMSCRIPT I1.5 Reference Handbook

begin report

begin heading

Program segment executed the first
time encountered and whenever a
page is ejected

end " heading section
fori=1to 60, print ...

Page ejects here; heading program
segment executed

end " report section

Figure 1. Heading Section Within a Report Section

Table 12. Line and Page System Variables

Name

Value

Description

line.v

Current line number

Refers to the current output device; automatic

Iy

set to 1 when the device is first used and automati-
cally incremented by 1 whenever a line is printg¢d.

The maximum value dine.v islines.v . Rese

to 1 on page ejection. Separate value maintained for

each output device.

lines.v

Maximum lines per
page

Automatically set to 55 when a program begin:l ex-

ecution, but can be modified within the progra
Separate value maintained for each output dev

ce.

page.v

Current page numb

Refers to the current output device. Can be reg
within the program. Numbering then continues
guentially, beginning with the new value. Sepa
value maintained for each output device.

et
Se-
ate

pagecol.v

Report column num
ber

A single integer variable used to number the pri
pages. lpagecol.v #0 ,PAGExxx (wherexxx

= value olpage.v) is printed at the top of each ng
page. The worPAGE begins in the column denotg
by the value opagecol.v

ted

W
bd

heading.v

Name of a routine

A single subprogram variable tested by the sys
for each new page. heading.v #0 , the systen
executes the routine whose name is stored in
heading.v

fem

52

BEGIN REPORT Statement

2.9 BEGIN REPORT Statement

Thebegin report statement marks the beginning of a report section with optional new
page and column repetition features.

begin report [on a new page] [printing for phrase, in groups of integer value
[per page]

EXAMPLES:

begin report

Marks the beginning of a report section.

begin report on a new page

Marks the beginning of a report section and indicates that a page should be ejected, if
necessary.

begin report on a new page printing for J =1 to 20 in groups of 8
per page

Marks the beginning of a report section using column repetition. Groups of eight values
of index variablel are to be used bym@int statement as eight-column indices for
each execution of the report section. Report begins a new page, and each group of col-
umn indices applies to a new page.

Thebegin report statement, which marks the beginning of a report section, can include

a phrase that begins each report on a new page, as well as two phrases used in conjunction
with aprint statement for column repetition. As shown in figure 1 above, a report section
begins with aegin report statement and ends with amd statement. Within a report
sectionprint statements can specify the content and format of the report, and a heading
section (denoted byk®egin heading statement) can include titles and column headings

to be printed on each page of the report. Hédun report statement cannot appear in

the preamble.

2.9.1 ON A NEW PAGE Phrase

Each report can start on a new page by including the optional pinraseew page

This phrase ejects a page on the output device unless the current page is blank.
SIMSCRIPT I1.5 determines whether or not the current page contains information by
testing the system variablése.v (current line number) angdcolumn.v (column
number of the current output pointdije.v = 1 andwcolumn.v =0 , if the current

page is blank.

53

SIMSCRIPT I1.5 Reference Handbook

2.9.2 PRINTING Phrase

Theprinting phrase in begin report statement is used with tlin groups of

phrase in grint statement for column repetition. Together, these phrases can print re-
ports with more columns of data than can be fitted across a single page. After printing, in-
dividual pages produced by tprint statement can be placed side-by-side to obtain a
wide page. For example, the statement:

begin report printing for j = 1 to 20 in groups of 8 per page

used with the pertinelprint statement will print 20 columns of data, with eight columns

on each page. Values generated by the index vaj in thisfor ... to (index)

phrase are considered to be column indices. That is, each value of the index variable corre-
sponds to a column in a printed report. This statement causes the report section to be exe-
cuted three times: firstwij=1, ..., 8 ; second wittj=9, ..., 16 ; and third
withj=17, 18,19, 20 . The column indices are used by the report section in groups.
Theprint statement uses one group at a time. As shown in the begin report

statement, the number of column indices generated need not be an even multiple of the
group size. If the controllinfor phrase produces no values (for example, none have been
selected by with phrase), the entire report section is not executed.

2.9.3 PER PAGE Phrase

Theper page phrase denotes that each group of column indices applies to a new page. If
this phrase is omitted, printing continues on the current page until that page is completed.

2.9.4 System Variables

Table 1! lists global variables frequently used in heading and report sections.

54

BREAK ... TIES Statement

2.10 BREAK ... TIES Statement

Thebreak ... ties statement establishes the priority order within a process or event
class in case processes or events have the same event time.

break Cevent r ties rby rhiah 11 attribute rg THEN
[process r r low r
O O O O
Keyword Synonym
by on
EXAMPLES:

break SEAT.RESERVE ties by high PRIVILEGE.CODE

When two or more event notices of event cSEAT.RESERVI have the same event
time, priority is given to the event having the highest vallPRIVILEGE.CODE.

break SEAT.RESERVE ties
by high PRIVILEGE.CODE, then
by high FARE, then
by low CLUB.NUMBER

When two or more event notices of event cSEAT.RESERVI have the same event
time, priority is given to the event having the highest vallPRIVILEGE.CODE; but

if several event notices have identical event times, and identical highest values of
PRIVILEGE.CODE, priority is given to the event having the highest valuFARE. If
several event notices have identical event times, identical highest values of
PRIVILEGE.CODE, and identical highest valuesFARE, priority is given to the event
having the lowest value CLUB.NUMBE R

The break ... ties statement establishes priorities within an internal event class.
When two or more event notices of the same class have the same event tbreak 1e

... ties statement declares that the event having the highest (lowest) value of the named
attribute should occur first. Only internally-generated event notices have ranking
attributes, while externally-generated events compete with them on a first-come, first-

served basis. Attributes named in break ... ties statement must be defined in
every statements. SIMSCRIPT 1.5 permits cbreak ... ties statement for each
internal event class. Tlbreak ... ties statement can appear only in the preamble.

Seepriority statement for resolving ties among events of different classes.

55

SIMSCRIPT I1.5 Reference Handbook

2.10.1 THEN BY Phrases

Then by phrases can include additional attributes whose values determine priorities when
ties also exist in values of the first attribute named in the statement. For example, naming
the first attribute declares that when ties occur in event times, the ties should be broken by
giving priority to the event having the highest (lowest) value of the named attribute. If there
are ties in event times and ties in values of the first attribute, the ties are broken according
to values of the second attribute named. Any numbthen by phrases can be included

to break successive ties that can exist.

2.10.2 Order of Executing Events at the Same Simulated Time

If several events have been scheduled at the same simulated time, the events are executed
in an order corresponding to (1) ipriority statement if they are of different classes, (2)
thebreak ... ties statement if it has been included, or (3) a first-in, first-out basis if a
break ... ties statement has not been included for the event class.

56

CALL Statement

2.11 CALL Statement

Thecall statement calls a subroutine and can include input and output argument lists.

call routine raiven valuec I [yielding variable °]
[(value ¢) 0
Keywords Synonyms
call perform
now
given giving
the
this
EXAMPLES:
call PROCESS

Calls the routine namePROCES.S

call PRINT.MESSAGE(NUMBER)

Calls the routine namePRINT.MESSAGL. The variabltNUMBE, enclosed in parenthe-
ses, is an input argument.

callPRINT.MESSAGE givenMSG.NO(l),4*NO.WORDSyieldingERROR.FLAG

Calls the routine namePRINT.MESSAGE. The variableMSG.NO(I) and4 *
NO.WORD¢Sare input arguments, aERROR.FLACis an output argument.

Thecall statement calls a subroutine named routine statement. Thcall state-

ment can include input arguments, output arguments, or both. An input argument is an ex-
pression whose value will be transmitted to the corresponding local variable within the
routine. An output argument, however, must be a variable, either subscripted or unsub-
scripted. Thecall statement can appear in any routine, but not in the preamble.

The same variable name can appear as both an input and an output argument. When this is
done, the value of the input argument is transmitted to the corresponding local variable
within the called routine, the computation is performed, and a new value is assigned to the
output argument before control is returned to the calling routine.

2.11.1 Argument Modes

Disagreements in mode between argumencall statements and corresponding argu-
ments inroutine statements can be difficult to discover because the effects are subtle.
For example, an integer number used as a real argument (assumed to be floating point with

57

SIMSCRIPT I1.5 Reference Handbook

an exponent) can effectively be zero. One must be particularly careful to pass constants in
the mode expected by the routine.

2.11.2 Argument Definitions

A define ... routine statement in the preamble can specify the number of arguments
for a subroutine. If the number of arguments incall anddefine ... routine
statements disagree, SIMSCRIPT II.5 takes the following corrective action:

1. Disregards additional input and output arguments call ~ statement.
2. Considers omitted input arguments to be zero.

3. Reserves locations for missing output arguments so they can receive output values
(although these will be inaccessible to the calling program).

4. Emits a warning message.

If the define ... routine statement contains only given arguments, the called routine
is assumed to yield no values. If define ... routine statement contains only yield-
ing arguments, the called routine is assumed to have no given values.

58

CANCEL Statement

2.12 CANCEL Statement

The cancel statement removes a scheduled event notice from the event set.

r r
cancel [the [above] revent 1 [called pointer variable]
[process 0
Keywords Synonym
the [above] this

EXAMPLES:

cancel TAKEOFF

Cancels an event notice for the event cTAKEOFI. The identification number of the
event notice cancelled is that assigned to the global variable TAKEOFI:

cancel this DELAY called FIXED

Cancels an event notice for the event cDELAY. The identification number of the
event notice is that assigned to the variable n. FIXED.

Thecancel statement removes an event notice from the event set. This statement per-
forms the opposite task of tschedule statement, which schedules an event by filing the
event notice in the event set. The cancelled event notice is not automatically destroyed, but
can be destroyed withdestroy statement. If an event notice that has not been scheduled

is cancelled, SIMSCRIPT I1.5 terminates the program with an error messagcancel
statement is used only for simulation and cannot appear in the preamble.

When thecall ed phrase is omitted, SIMSCRIPT II.5 cancels the event notice pointed to
by the global variable having the same name as the event class.call ed phrase is
included, however, the named variable is assumed to contain the identification number of
an event notice of the same class.

2.13 CAUSE Statement

Se¢schedule statement.

59

SIMSCRIPT I1.5 Reference Handbook

2.14 CLOSE Statement

Theclose statement closesUNIT previously opened with eopen statement. The file
is closed and internal buffers are flushed to the disk.

close [unit] UNIT

EXAMPLE

close unit .FEX.UNIT

60

COMPUTE Statement

2.15 COMPUTE Statement

Thecompute statement calculates requested statistics for an expression and assigns each
statistical value to a named variable. This statement must be controlled by a logical control
phrase. It computes the indicated statistics of the expression aloop statement if the

control is over o ... loop construct.

compute {name as the stat kywa }* of variable

Keyword Synonym
as =
EXAMPLES:

for | = 1 to 10, compute TOTAL = SUM of X(I)
Adds the values in arreX and stores the sum in varialTOTAL.

forJ=1to N, do
COMPUTE VR = variance, SD as STD.DEV

loop

Computes the variance, standard deviation, and number of values in the one-dimension-
al array LIST, and stores these statistics in varialVk, SC, andNC, respectively.

for each FLIGHT of DEPARTURES, with DEPARTURE.TIME Is 1200,
compute FMAX as maximum, FMIN as minimum, IMAX as
max(FLIGHT), IMIN as min(FLIGHT) of NO.PASSENGERS(FLIGHT)

Selects, from the set namDEPARTURE, entities with values cDEPARTURE.TIME
that are less than 1200, and stores the maximum vaNO.PASSENGEF in FMAJ,
the minimum value cNO.PASSENGEEF in FMIN, the value ¢ FLIGHT for the entity
having the maximum value IMAX, and the value (FLIGHT for the entity having the
minimum value irIMIN .

Thecompute statement calculates requested statistics (described in table 13) on an expres-
sion or from values stored in arrays. This statement must be controlled by at lefor one
each (class), for ... of (set), or for ... to (index) phrase, or auntil

or while termination phrase, any of which can have appended phrases. Termination and
selection phrases can terminate the iteration or can select specific values, according to log-
ical expressions in the phrases. ‘compute statement can appear in any routine, but it
cannot be included in the preamble.

When acompute statement is included with other statements do ... loop con-
struct, SIMSCRIPT II.5 computes the requested statistics when tlloop statementis
encountered. Any variables included in compute statement are set to statistical values

61

SIMSCRIPT I1.5 Reference Handbook

after the iterations. The statistics are undefined, however, if control transfers owdo)f the

... loop

construct.

Table 13. Statistical Keywords for Compute Statement

Statistical Keyword

Synonym

Computation

Definition

NUMBER

NUM

Number of values select
ed.

D
(9]

SUM > expression Sum of the selected valu
of the expression.
MEAN AVG AVERAGE |SUM/NUMBER Sum of the selected valu

of the expression divide(
by the number of values
selected.

ES

U
1

U
1

d.

174
1

SUM.OF.SQUARES [SSQ > expressiod Sum of the squares of s
lected values of the ex-
pression.

MEAN.SQUARE MSQ SUM.OF.SQUARES/ |Sum of the squares of s

NUMBER lected values of the ex-
pression divided by the
number of values selecte

VARIANCE VAR MEAN.SQUARE -

(MEAN)?
STD.DEV STD SQRT.F Square root of the vari-
(VARIANCE) ance.

MAXIMUM MAX Maximum value of the s¢
lected values of the ex-
pression.

MIMIMUM MIN Minimum value of the se
lected values of the ex-
pression.

MAXIMUM MAX(index) Value of the index vari-

(index) able that produced the
maximum value.

MINIMUM MIN(index) Value of the index vari-

(index) able that produced the

minimum value.

62

CREATE Statement

2.16 CREATE Statement

Thecreate statement allocates a block of storage for one instance of the attributes and set
pointers of the specified temporary entity class (or event or process notice), and assigns (to
the named variable) a pointer to that block.

(temporary entity O

create [a] rvoe%etss E[Ca”ed pointer variable]
Keyword Synonyms
a an
the
this
EXAMPLES:

create FLIGHT

Allocates storage for an entity of the temporary entity ¢tagSHT. The pointer to this
block is assigned to the global variable nameisHT. All attributes of thiSFLIGHT
entity are set to zero.

create a FLIGHT called JET(I)

Allocates storage for an entity of the temporary entity ¢tagSHT. The pointer to this
block is thel th value of array)ET. All attributes ofJET(I) are set to zero.

create a STOCK.CERTIFICATE called STOCK

Allocates storage for an entity of the temporary entity cBAS8CK.CERTIFICATE.
The pointer to this block is assigned to the variable nagimexCK and attribute values
are set to zero.

create TAKEOFF

Allocates storage for an event notice of the event dlakEOFFE The pointer to this
block is assigned to the global variable name”EOFF and each word in the block is
set to zero.

SIMSCRIPT I1.5 allocates storage for each temporary entity as it is created during program
execution. Thereate statement locates a contiguous block of storage words for use as
a temporary entity, or for an event notice, and provides a pointer to these words. This point-
er, also called thentity identification numbers assigned to a variable. The value of each
attribute of this new entity is set to zero by setting each storage word to zero. A temporary
entity may have more attributes than the number of computer storage words used if attribute
packing or equivalencing is performed.

63

SIMSCRIPT I1.5 Reference Handbook

When thecalled phrase is omitted, the entity identification is assigned to the global vari-
able having the same name as the entity class. called phrase is included, however,
the entity identification will be assigned to the variable named in the phrase.

A word block allocated by create statement can be returned to the system with a
destroy statement. See tlUser's Manue for the specific storage allocation algorithm.
Thecreate statement can appear in any routine, but it cannot be included in the preambile.

64

CREATE EACH Statement

2.17 CREATE EACH Statement

Thecreate each statement allocates arrays for the attributes of the permanent entity or
resource classes named in the statement.

create each Pljnermanent entity H [(integer value)] HC
[Lresource a a
Keyword Synonyms
each a
a every
all
EXAMPLES:

create each AIRPORT

Allocates arrays for the attributes of the permanent entity AIRPOR1. Each array
will have N.AIRPORT elements.

create every CITY, AIRPORT and RUNWAY

Allocates arrays for the attributes of the permanent entity clCITY, AIRPORT,
andRUNWA, with dimensionN.CITY , N.AIRPORT, andN.RUNWA, respectively.

create every AIRLINE(5) and STOCKHOLDER(4)

Allocates arrays for the attributes of the permanent entity cléAIRLINE and
STOCKHOLDE. EachAIRLINE array will have 5 elements and eeSTOCKHOLDER
array will have 4 element N.AIRLINE is setto 5 anN.STOCKHOLDE is set to 4.

Attributes of permanent entities are stored in arrays. Resources are a special case of perma-
nent entities. Thcreateeach statement allocates storage for the attributes of permanent
entities. During program execution, the arrays are reserved together, and the attribute val-
ues stored in the arrays are set to zero. Arrays for several entity classes can be created by
including several names in this statement. create each statement can appear in any
routine, but not in the preambile.

Thecreate each statement must be used before any attributes of a permanent entity or
resourc are referenced, either explicitly or implicitly. For resourcecreateeach statement must
be used and tlU.resource attribute set to a nonzero value before any resource units may be requested.

If the value @ N. entity (number of entities in the entity or resource class) has not been spec-
ified previously, an arithmetic expression can be included icreate each statement

to specify attribute arrays. The value of this expression automatically becomes the value
of N. entity. EitherN. entity must be nonzero or the arithmetic expression must be included
when thecreate each statement is executed.

Storage space for entity or resource attributes can be returned to the systedestroy
each statement.

65

SIMSCRIPT I1.5 Reference Handbook

2.18 CYCLE Statement

Thecycle statement within do... loop construct of code causes control to pass back
to the loop's controlling statements.

M r
] cycle n
[hext 0

This statement consists of exactly one word.

The cycle statement is used withirdo ... loop construct of code to cause premature
ending of one iteration of the loop. Control is passed back into the contifor or
until logic, to select the next index value or to end the loop. In ecycle functions

as if control had been transferred to loop statement, except that no programmer-
defined label is needed.

The statemenicycle andleave clarify programs by eliminating labels, and provide the
concept of local labels to SIMSCRIPT I1.5. These features are especially useful when cou-
pled with thesubstitute statement features of SIMSCRIPT II.5.

66

DEFINE ... ROUTINE Statement

2.19 DEFINE ... ROUTINE Statement

Thedefine ... routine statement declares characteristics of subroutines and func-
tions.
finteaer]
.] real 1]
define routine®as [a] Tdouble [[fortran]routine [s]
ralpha r
[text O

[given integer [argument [S]]] [[,] yielding integer [argument [S]]]

Keywords Synonyms

a an

routine[s] function(s]

given giving

with

argument[s] value[s]

fortran

nonsimscript non-simscript
EXAMPLES:

define DEPOT.SOURCING as a routine

DefinesDEPOT.SOURCIN'as a subroutine. No checking will be performed because
argument numbers are omitted.

define QUOTA and SALES as routines with 3 values

DefinesQUOT. andSALEES as subroutines, each having three input values and no output
values.

define ANSWER as an alpha function
DefinesANSWE as a function whose value will be alphanumeric.

define PRINT.MESSAGE as a routine given 2 arguments yielding 1

DefinesPRINT.MESSAGI as a subroutine having two input arguments and one output
argument.

define square.fn as a double function given 1
define low_level_call3 as a nonsimscript integer function given 4

define speed as fortran routine given 3

67

SIMSCRIPT I1.5 Reference Handbook

Notes:

1. When you specify “fortran” routine, parameters are passed in “call by reference”
mode as required by FORTRAN compilers.

2. When you specify “nonsimscript” routine, parameters are passed “by value” as re-
quired by C-compilers.

3. For more details about interfacing with non-simscript and FORTRAN routines, re-
fer to theSIMSCRIPT I11.5 User’'s Manu for your platform.

The define ... routine statement is used to declare subroutines and functions. It
appears only in the preamble. Each funcmus be declared to distinguish it from a vari-

able in a subroutine. Subroutines need not be declared. This statement can declare the
mode (for functions only), whether the subroutine or function is releasable, and the correct
number of input and output arguments for subroutines. More than one function or subrou-
tine can be declared in a sindefine ... routine statement, but a function or sub-
routine name can appear only once define ... routine statement. If a function

is defined as alphanumeric, the value returned by the function is considered to be a charac-
ter string, not a numerical value.

A combination onormally anddefine ... routine statements can appear in the pre-
amble. Normally statements could specify the predominant characteristicdefine

.. routine statements could declare any exceptions, as well as declaring additional
characteristics.

2.19.1 GIVEN and YIELDING Phrases

The correct number of arguments for a subroutine can be specifiec define ...

routine statement by includingiven andyielding phrases. Subsequently, if the
pertinenicall androutine statements have a varying number of arguments, SIMSCRIPT
[1.5 applies the following corrective action:

1. Disregards additional input and output argumenicall androutine state-
ments.

2. Considers omitted input arguments to be zero.

3. Reserves locations for missing output arguments so they can receive values (but
these values are inaccessible to the calling routine).

4. Emits a warning message.

If the define ... routine statement contains only given arguments, the called routine

is assumed to yield no values. If define ... routine statement contains only yield-

ing arguments, the called routine is assumed to have no given value. If no argument num-
bers are specified, no checking is performed, and variable-length calling sequences can be
used.

68

DEFINE ... SET Statement

2.20 DEFINE ... SET Statement

The define ... set statement names one or more sets and defines ranking, owner and
member attributes, generated routines, and optional deletion of owner and member at-
tributes and processing routines.

_ rfifo T r 1 rhioh 0 M, then
define setcas [a] [ifo [set [s] FDranked Eby llow [attribute S

Ooad

[without set attribute © attribute [s]] [[,] without set routine € routine [S]]

Keyword Synonym
a an
EXAMPLES:

define PORTFOLIO and RESERVATIONS as sets

DefinesPORTFOLIC andRESERVATION as generalized sets having all the generated
set attributes and routines.

define WAITING.LINE as a fifo set
DefinesWAITING.LINE as &fifo set having all generated set attributes and routines.

define REGULATIONS as a set ranked by low NUMBER

DefinesREGULATION: as a set ranked by low values (ascending order) of attribute
NUMBER

define ARRIVALS as a set ranked by low ARRIVAL.TIME, then by high
NO.PASSENGERS without | and p attributes

DefinesARRIVALS as a set ranked by low values (ascending order) of attribute
ARRIVAL.TIME , and resolves ties ARRIVAL.TIME values by high values (descending
order) ofNO.PASSENGEF. AttributesL. ARRIVALS andP. ARRIVALS are not gen-
erated.

define AIRLINES as a set ranked by low NAME without | and p
attributes, without fl, fb, fa, and r routines

DefinesAIRLINES as a set ranked by low values (ascending order) of attNAMI.:
Set attributeL. AIRLINES andP. AIRLINES and set routinefl, fb, fa, rf, rl ,
andrs are not generated.

The define ... set statement, which can appear only in the preamble, describes set
characteristics, including set discipline, owner and member attributes (see table 14), and
generated set handling routines (see table 15). Two or more sets having the same charac-

69

SIMSCRIPT I1.5 Reference Handbook

teristics can be defined in the same statement. Sets can be defifo orlifo , or can

be ranked by high or low values of member attributes. When the set discipline is omitted,
SIMSCRIPT II.5 assigns a generalized set whose organization will be determined by the
programmer. , define ... set statement must follow (not necessarily immediately)
theevery statement that declares the owner and member entities of the set.

2.20.1 FIFO Sets

In afifo set, entities are filed on a first-in, first-out basis. Each entity is placed last in the
set as itis filed, and entities are removed from the top in the order in which they were filed.
A fifo set requires onlF.set, L.set , andS.set attributes. It generates seven rou-
tines:ff, fl, fb, fa, rf, rl ,anc rs .

Table 14. Automatically Generated Set Attributes

Letter Attribute Definition Attributes of
Name
F F.set Pointer to first entity in set. |Owner entities
L L.set Pointer to last entity in set. |Owner entities
N N.set Number of member entities |Owner entities
currently in the set.
P.set Pointer to predecessor in set| Member entities
S S.set Pointer to successor in set. |Member entities
M M.set Membership attribute that is |Member entities

<>0 if an entity is in the set an
0 if the entity is not in the set

70

DEFINE ... SET Statement

Table 15. Automatically Generated Set Routines

Mnemonic Required | Routine Name Purpose
Set Attributes
FF F S T.set Files entity first or ranked
FL FL S U.set Files entity last
FB F PS V.set Files entity before specified ent
ty.

FA F S W.set Files entity after specified entity.
F Generates no file routines.
RF F S X.set Remove first entity.
RL FLPS Y.set Remove last entity.
RS R PS Z.set Remove specified entity.
R Generates no file routines.

2.20.2 LIFO Sets

In alifo

set, entities are filed in, and removed from, sets on a last-in, first-out basis. Each

entity is placed first in the set as it is filed, and entities are removed from the top in the re-

verse order in which they were filed. lifo
tributes. It generates seven routingsF, FL, FB, FA, RF, RL

2.20.3 Ranked Sets

set requires onl¥.set

, andRS

andS.set

at-

Ranking is specified by naming the attribute whose values are to control the order of enti-
ties in the set. Ranking can be cascaded by including any required nuntizer lof

phrases. Ahenby phrase specifies how ties are to be resolved when two or more values
are identical for a ranking attribute.. before

2.20.4 WITHOUT ... ATTRIBUTES Phrase

andfile ... after
not be used with a ranked set. Ranked sets generate four rotftirfes:

statements can-
,andrs .

Owns andbelongs phrases in aavery statement automatically provide attributes for the
phrase can be used to
delete any unnecessary set attributes. Each specified letter deletes the automatically-gen-
erated attribute formed by prefixing that letter and period to the set name. Any or all owner
and member attributes can be deleted, but deleting all attributes destroys the concept of a
set. See table 16 for attributes required for various set operations.

owner and member entities, but thighout ... attributes

71

SIMSCRIPT I1.5 Reference Handbook

2.20.5 WITHOUT ... ROUTINES Phrase

Naming a set in aevery statement with aowns phrase automatically provides the seven

set routines, but theithout ... routines phrase can be included in tifefine ...

set statement to delete any unnecessary set routines. Any set routine can be deleted to
conserve storage. If the lettér®r R are specified, all file routines or all remove routines

are deleted, respectively.

Table 16. Required Set Attributes and Routines

Set Attributes Required Routines Required
Statement
f 11l | p|s | m|n|ff |fl |fb|fa | |1l |rs
fle inaranked set X X | X X
file first X X X
file last X | X X X
file before X X | X X
file after X X X
remove first X X X
remove last X | X | x| X X
remove specific X X | X X
is empty X
isin set X
Automatic checking X
foreach vin set X X
foreachvin setin X | X
reverse
for each v from w X
in set
for each v from w X
in setin rev.
foreachvafterw X
in set
foreachvafterw X
in setin rev.

72

DEFINE ... TO MEAN Statement

2.21 DEFINE ... TO MEAN Statement

Thedefine ... to mean statement allows the programmer to substitute any word for
any string in subsequent statements. During compilation, all subsequent occurrences of the
word are replaced by the string.

define WORD to mean STRING
EXAMPLES:

define X to mean MATRIX
Substitutes the string ATRIX for the variablex.

define Ytomean A* X**2+B*X +C
Substitutes the expression* X**2 + B* X + C for the variabler.

define SUBSECTION to mean ROUTINE
Substitutes the SIMSCRIPT 11.5 keywoRDUTINE for the wordSUBSECTION

define FORMAT.LISTtomean 14,315
Substitutes the format lisg, 315 for the wordFORMAT.LIST.

Thedefine ... to mean statement substitutes a string of words for the indicated word

in all subsequent statements, until superseded. The word can be a single letter, a name, a
number, a special character, or an alphanumeric literal, and the string to be substituted for
the word can be any string of characters such as a single character, a name, one or more
SIMSCRIPT II.5 statements, an expression, a format string for an input/output statement,
or an argument list.

SIMSCRIPT II.5 considers the string to be all the remaining characters of the card on which
thedefine ... to mean statement appears. During compilation, whenever the com-
piler detects the specified word, it substitutes the string and compiles the statement with the
substitution. Substitution takes place only when the word for which substitutions are to be
made appears as a complete token, but not when it appears as part of another word. Sub-
stitutions can appear in strings for otlefine ... to mean or substitute State-

ments, thus allowing several levels of substitution.

Thedefine ... to mean statement can appear in the preamble or in a routine. When
this statement appears in the preamble, the substitution affects the entire program. In a
routine, the substitution is local and is effective only for that routine until superseded. A
suppress substitution statement can override the effect deéine ... to mean

statement, while sesume substitution statement can reinstate the effect.

73

SIMSCRIPT I1.5 Reference Handbook

2.21.1 Purposes of DEFINE ... TO MEAN

The define ... to mean statement can be emplo for any of the following purpees:

1. To change a word in a routine to the same word used in other routines in a large pro-
gram.

2. To change statement keywords to another vocabulary.

3. To define a macro instruction, meaning a compound instruction generated from a
single keyword.

4. To define format strings in order to call them by name. This can minimize the num-

ber of characters that must be written when several statements have identical format
lists.

5. To define names as synonyms, substitute one variable name for another, or replace
a name with complete statements.

Redefining statement keywords must be handled very carefully to avoid substituting a new
string for an optional keyword, or for any other characters that might cause incorrect com-
pilation because the statement syntax was not followed. For example, preceding the state-
men every MAN can own some DOGS with the stateme define CAN to mean

BOTTLE results in a syntax error when attempting to compile with the substitievery
MAN BOTTLE own some DOGS.

74

DEFINE ... (Global) VARIABLE Statement

2.22 DEFINE ... (Global) VARIABLE Statement

Thedefine ... (Global) variable statement defines the properties of global vari-
ables.
linteoer r]
e lreal r _ lsubprogram r
define global variable” as [a] rdouble I |[integer-dim] rdummy N
raloha N [stream [integer] O
text r
[signed integer 0
Mvariable[s] r] fmonitored on the Neft Ic Tthe] right 1
Farray[s r r IJ r r
K yls] o g gt [e [the Jleft]
Keywords Synonyms
a an
dim dimensional
For further information, see tldefine ... variable statemer.t

75

SIMSCRIPT I1.5 Reference Handbook

2.23 DEFINE ... (Local) VARIABLE Statement

TBIF define ... (Local) variable statement defines the properties of local vari-
ables.
M rintener]
) e rn Trreal n . _
define localvariable’as [a] 1 Tdouble [[integer-dim] lvariablels] N
N Traloha N array[s] 0
0 [text 0
r rerg 1]
subprogram rsaved. 7 1 Mvariablelsl r]
Isubprog) (recursive O 0 Oarray[s] 0
r
0
For further information, see tldefine ... variable statement.

76

DEFINE ... VARIABLE Statement

2.24 DEFINE ... VARIABLE Statement

The define ... variable statement defines characteristics of global and local vari-
ables, of attributes, and of arrays.

Tinteaer]
i real M) fdummy]
define variable as [a] rdouble [[integer-dim] Tsubprogram N
falpha M [stream [integer | O

Mext r]

[signed integer a
rsaved 1 Tvariablelsl rrmonitored on the feft TIclthe Triaht 110
recursive 0 Earray[s] SS Erlght [c [the]left] SS

Keywords Synonyms

a an

dim dimensional
EXAMPLES:

define NUMBER as a variable
DefinesNUMBE as a variable having the mode, type, and dimensionality of the current
background conditions.

define ORIGIN, DESTINATION, and MOVE as alpha variables
DefinesORIGIN, DESTINATION, andMOV! as variables having alphanumeric values,
type, and dimensionality as specified by background conditions.

define BOX as an integer, 3-dimensional array

Defines BO> as a three-dimensional array whose elements have integer values.

define a, b, and ¢ as real, recursive variables

Definesa, b, andc as variables whose values are real and recursive.

define LOCATIONS and ADDRESSES as 1-dimensional, saved, subprogram
arrays

DefinesLOCATIONS andADDRESSE as one-dimensional arrays containing sub-
program variables, whose values (addresses of routines) are saved from one subroutine
call to another.

77

SIMSCRIPT I1.5 Reference Handbook

define NAME as dummy variable

Defines NAMI as a dummy variable, which has a name but no storage location.

define DATA and RESULT as integer, 2-dimensional arrays monitored
on the left and right

DefinesDAT/ anc RESULT as two-dimensional arrays monitored on the left and the
right; elements of the arrays have integer values.

The define ... variable statement defines the mode of one or more variables,
declares whether variables are saved or recursive, subprogram or dummy, and specifies the
dimensionality of arrays. A given variable has several characteristics, and several variables
can be named in a single statement. This statement can be used to define characteristics of
global and local variables, and of attributes and arrays that differ from characteristics
declared imormally statements. Each variable, attribute, or array can appear in only one
define ... variable statement. Thdefine ... variable statement may appear

in the preamble and in routines, depending on whether the variable to be defined is global
or local.

2.24.1 NORMALLY and DEFINE ... VARIABLE Statements

A combination oinormally anddefine ... variable statements can appear in the
preamble and in routines. In the preamnormally statements usually declare the most
prevalent characteristics of the global environment, calledbackground conditior,s
while define ... variable statements declare any exceptions and additions. Charac-
teristics that have been defined 1define ... variable statement override those
declared in precedinnormally statements, while the background conditions implicitly
fill in unspecified characteristics for each variable.

Characteristics defined in the lenormally statement in the preamble apply to all rou-
tines, unless supersedednormally statements within the routines. In a subroutine or
function,normally anddefine ... variable statements define the local environ-
ment, with definitions applying only to that routine. These statements can appear anywhere
within the routine, but their relative order is important.

2.24.2 Global Variables

A global variable, which has a common meaning throughout a program, references the
same storage location whenever the variable is used. Each global variable must be included

in adefine ... variable statement in the preamble to inform the compiler that it is a
global variable. If its characteristics are declared in a precnormally statement, the
define ... variable statement need not repeat the characteristics. The type specifi-

cation is meaningless for global variables, as they are always saved.

78

DEFINE ... VARIABLE Statement

2.24.3 Attributes

In the preamble, define ... variable statement is used to define characteristics of
attributes that differ from those declared in the effenormally statement. /define

... variable statement must folloevery andthe system statements whenever the
define ... variable statement includes attributes named in either statement. See the
... random ... variable statement for defining random variable attributes.

2.24.4 Local Variables

Local variables, whose characteristics differ from those of the current local environment or
that have the same names as global variables, must be inclidefine ... variable

statements in their respective routines. Variables not appearindefine ...

variable statement are automatically defined by the compiler as local variables having
the current background characteristics. Local variables can be defined as saved or
recursive.

2.24.5 Arrays

The dimensionality of an array must be specified in the preamble with enormally

or ¢ define ... variable statement. Any dimensionality declared inormally
statement can be superseded by a subsequent declaratidefine ... variable

statement, but the dimensionality is permanent after appearin(efine ...

variable statement. If an array is an argument, the dimensionality must appear in a
define ... variable statement in the subroutine to which the array is an argument.

Arrays can be declared as saved or recursive. This means that the array base pointer word
is either saved, or set to zero each time the routine is called.

2.24.6 Arguments, Recursive Variables, and Saved Variables

Three types of local variables are provided: arguments, recursive variables, and saved vari-
ables. Any local variable can be declared as either saved or recursive. Arguments, howev-
er, are always stored as recursive variables. They are automatically defined to be recursive
when named in routine statement, no matter what is said about thendefine ...

variable statement. It is always best to define other argument characteristics explicitly
to avoid later confusion.

The first time a routine is called, all saved and recursive local variables are set to zero.

Thereafter, a recursive local variable has an initial value of zero each time the routine in

which it appears is called, but a saved local variable retains the value stored when the rou-
tine was last executed.

2.24.7 Subprogram Variables

A subprogram variable is defined as a variable having the address of a subroutine, or of a
function, as its value, enabling the routine to be called indirectly. A subprogram variable

79

SIMSCRIPT I1.5 Reference Handbook

can be used as an argumenlet statements, in logical expressions, etc., to stand for the
specific piece of computation defined by the routine that is the value of this variable.

2.24.8 Dummy Variables

Global variables and attributes can be defined as dummy variables, which have names but
no storage locations. These variables are usaccumulate andtally statements to
compute statistics on variables and attributes that otherwise are not used in a program.
Dummy global variables must also be defineddefine ... variable statement, and
dummy attributes must also be declare every orthe system statements.

2.24.9 Monitored Variables

A monitored variable is a variable whose values are monitored (checked or used) by a sub-
routine. Each time a monitored variable is accessed, its associated subroutine is executed.
Therefore, a monitored variable has both a value and a subroutine associated with it, each
with the same name. In fact, because variables can be monitored on the right, on the left,
or on both the right and left, both a left- and right-hand subroutine with the same name as
the monitored variable might be associated with it. The wleft ancright refer to

the occurrence of the variable to the left or right of an equal sigllet statement. A

define ... variable statement can declare a variable, an array, or an attribute as a
monitored variable. Thenter statement allows the value assigned to a left-monitored
variable to be used within the monitoring routine. move statement gives access to the
value of a right-monitored variable or assigns a value to a left-monitored variable.

Note that monitored variables behave more like variables than routines. For example, one
can nevecall a monitored variable directly. When a monitored variable is used, its sub-
scripts are automatically converted to integer (like a subscripted variable), but also passed
as arguments to the monitoring routine.

80

DESTROY Statement

2.25 DESTROY Statement

Thedestroy statement returns a block of storage serving as a temporary entity, process,
or an event notice to available system storage. It releases the block of storage for the spec-
ified entity pointer variable.

[temporary entity r
destroy [a] [process M[called pointer value]
Cevent a
Keyword Synonyms
a an
the
this

EXAMPLES:

destroy FLIGHT

Returns a block of storage for an entity of the temporary entity FLIGHT. The
pointer to this block is assigned to the global variable neéFLIGHT.

destroy the FLIGHT called JET(I)

Returns a block of storage for an entity of the temporary entity FLIGHT. The
pointer to this block is thi " value of the array nam JET.

destroy the STOCK.CERTIFICATE called STOCK

Returns a block of storage for an entity of the temporary entity class
STOCK.CERTIFICATE. The pointer to this block is assigned to the variable named
STOCK

destroy TAKEOFF

Returns a block of storage for an event notice of the eveniTAKEOFI. The pointer
to this block is assigned to the global variable naTAKEOFI:

Thedestroy statement returns a block of storage, which was createcreate state-

ment, to available storage. Iftcalled phrase is omitted, SIMSCRIPT II.5 uses the glo-

bal variable having the same name as the entity class to locate the block to be returned. If
thecalled phrase is included, however, SIMSCRIPT II.5 uses the variable named in the
called phrase to locate the block. In either case, the appropriate variable must contain a
pointer to (the address of) the storage block to be returned.

81

SIMSCRIPT I1.5 Reference Handbook

When an entity is destroyed, that piece of storage is made available for create
statements (and, in some implementatireserve statements as well). References to

that entity are invalid after it is destroyed because the storage may have then been allocated
to represent a new entity. Depending on the implementation, attribute values may or may
not be set to zero on destroying an entity. (Attributes will, of course, be set to zero when
this storage block is usedcreate an entity.)

An entity that is still in a set cannot be destroyed. Any attempt to do so will result in a fatal
error. Thedestroy statement can appear in any routine, but it cannot be included in the
preamble.

82

DESTROY EACH Statement

2.26 DESTROY EACH Statement

Thedestroy each statement deallocates arrays for the attributes of the permanent entity
or resource classes named in the statement.

::permanent entity

destroy each
[resource

I P |

Keyword Synonyms
each every

all

EXAMPLE:

destroy each AIRPORT

Releases all arrays associated with the permanent AIRPORT.

The destroy each statement returns storage allocated for a permanent entity or a
resource. When the entity or resource is destroyed, the storage associated with each array
forming the entity is made available for lacreate each orreserve statements (and,

in some implementationcreate statements as well). Released storage includes the
SIMSCRIPT-defined attributes involved in set operationsaccumulate andtally

operations. References to attributes of any entities or resources in that class are invalid and,
on some implementations, will be detected as such.

An entity that is still in a set cannot be destroyed. This will be detected as an error. The
destroy each statement can appear in any routine, but it cannot be included in the
preamble.

83

SIMSCRIPT I1.5 Reference Handbook

2.27 DO ... LOOP Construct

Thedo...loop construct designates the beginning of a program segment to be executed
repeatedly.

do statement 'loop

Keyword Synonym
this the following
EXAMPLES:

forl =1to 10, do
Executes controlled statements with values of index varl ranging from 1 to 10;
that is, the program segment is executed 10 times.

for1 =110 10, forJ=1to N, do this

Executes controlled statements with values of index varl ranging from 1 to 10,
andJ ranging from 1 tN. That s, the inner loop is executed n times for each execution
of the outer loop.

until X**2 - Y**2 is negative, do ' 'calculations

Executes controlled statements ux{-Y ° yields a negative valueNegative is a
keyword available for use in logical expressions. Commentary text follows the two
apostrophe characters.

for each CITY, with POPULATION(CITY) greater than 500000, do
Executes controlled statements for each entity of entity CITY if the value of at-
tribute POPULATIO! exceeds 500,000.

for each AIRPORT, for each FLIGHT of ARRIVALS, do the following
Executes controlled statements for each entity of entity :FLIGHT filed in the set
namecARRIVALS at each airport.

A program segment to be executed repeatedly must begin do statement and end with

a loop statement, ando ... loop constructs must be preceded by at leas for
each (Class), for ... of (Se), orfor ... to (Index) phrase, or by while or
until termination phrase. Normallydo...loop construct is executed over the entire

range of controllinfor phrases, becaufor phrases control a program segment exactly
as they control a single statement. Any combinaticfor phrases anselection and
termination phrases can precede tdo ... loop construct, with the program
segment being executed once for each iteration of contrfor phrases. Ttdo ...

loop construct can appear in any routine, but it cannot be included in the preamble.

84

DO ... LOOP Construct

2.27.1 Nested DO ... LOOP Constructs

A do...loop construct can be nested within otdo ... loop constructs for control
over subscripted variables having two or more subscripts. Subscript indexing occurs within
the limits of the do statement anloop statement. Whedo ... loop constructs ter-

minate at the same place, for phrases can be preceded by the key also in order
to eliminate redundarloop statements. In this event, SIMSCRIPT II.5 matchesdoie
statement that follows ttalsofor ~ phrase with thloop statement of thdo ... loop
construct of the precedirfor phrase. In figure 2, nestdo ... loop constructs are
illustrated on the left, and the same loops are shown also for ~ phrases on the right.

85

SIMSCRIPT I1.5 Reference Handbook

for ... for ce
do — do
for
for
—do —do
for ... also for
——do - do
for ... also for
do ~ do
— loop L loop
—» loop e 2 loop
L loop
> loop
Figure 2. Nested do...loop Constructsand do...loop Constructs

Using also for Phrases

86

ELSE Statement

2.28 ELSE Statement

Seeif ... else ... always construct.

87

SIMSCRIPT I1.5 Reference Handbook

2.29 END Statement
Theend statement designates the physical end of the program preamble, of each event, pro-
cess, function, and program routine, and of each report and heading section.

end

Only one form of this statement exists. It consists of exactly one word.

An end statement must be placed at the physical end of each SIMSCRIPT I1.5 program el-
ement to ensure correct compilation. Each of the following must hi end statement
to mark the physical end of the programming modules:

Preamble Report section
Main routine Heading section
Subroutine External event routine

Function routine Internal event routine

Process routine

88

ENTER WITH Statement

2.30 ENTER WITH Statement

Theenter with statement is used to transfer a right-hand expression to a local variable
within a left-hand function.

enter with variable
EXAMPLES:

enter with NUMBER

Specifies that the value received by a left-hand routine is stored in the YNUMBE R

enter with LIST(I)

Specifies that a value received by a left-hand routine is to be storedi " element
in the one-dimensional array nanLIST .

A value can be passed to a left-hand function by writing the function on the left side of the
equal sign in det statement, using it asyielding argument, using it inread state-

ment, and so on. Tlenterwith statement, which must be the first executable statement

in every left-hand function, specifies that the value computed "on the right" is to be as-
signed to the named variable. The variable can be local or global, subscripted or unsub-
scripted, or an attribute (for use within the left-hand routine). The mode of the expression
assigned to the function must agree with the mode defined for the function in the preamble.
After transferring the value with enterwith ~ statement, a left-hand function is like any
other routine. For example, computations or other processing can be performed using the
variable. In order to store a value in a variable monitored on the move from state-

ment is used in the left-hand routine.

89

SIMSCRIPT II.5 Reference Handbook

2.31 ERASE Statement

Theerase statement is used to release storage designated for text variables.
erase text variable

EXAMPLES:

erase AUTHOR

Releases the storage previously designated for the text veAUTHO, and assigns a
null value to the variable.

erase NAME, STREET.ADDRESS and CITY.ADDRESS

Releases the storage previously designated for the text variNAMI,
STREET.ADDRES, andCITY.ADDRESS, and assigns null values to all three variables.

Text variables may be erased by usingerase statement. The statement has the same
effect as assigning a null value to the variable. Thus, the first example above is equivalent
to:

let AUTHOR =""

Note: The name of the text variable itself is still recognized by SIMSCRIPT I1.5. The
erase statement merely erases the stored value.

90

EVENT Statement

2.32 EVENT Statement

Theevent statement names an event routine for an internal event, an external event, or
both.

event [to] event raiven . value ¢ I [saving the event notice]
[(value) O

Keywords Synonyms

event upon

to for

given giving
the
this

EXAMPLES:

event MANAGEMENT.REPORT

DeclaresMANAGEMENT.REPO as an event routine, and destroys the event notice be-
fore entering the event routine.

event TAKEOFF given FLIGHT.NO, DESTINATION, NO.PASSENGERS

DeclaresTAKEOFI as an event routine havilFLIGHT.NO, DESTINATION , and
NO.PASSENGEF as arguments; destroys the event notice.

upon TAKEOFF(FLIGHT.NO, DESTINATION, NO.PASSENGERS) saving the
event notice

DeclaresTAKEOFI as an event routine havilFLIGHT.NO, DESTINATION , and
NO.PASSENGEF as arguments. Saves the event notice.

An event routine, which is declared withevent statement, is similar to a subroutine al-
though an event routine does not return output values. It cannot yield values because an
event routine is called by the timing routine, and consequently cannot return to another rou-
tine. Each event class must have an event routine. When an event is generated (by execut-
ing aschedule statement or by an external event card), the timing routine is informed by
the event notice when the event is to occur in the futureschedule statement includes

the simulated time for internal events, and external event data cards specify the time for ex-
ternal events. Events take place instantaneously and do not consume simulated time. The
event statement cannot appear in the prearable.

91

SIMSCRIPT I1.5 Reference Handbook

2.32.1 Arguments

An internal event is triggered by an event notice, as a resuschedule statement. Be-

sides the five special attributes that all event notices have, an event notice transmits values
of any additional attributes from tlschedule statement to arguments of the event rou-

tine. (Additional attributes must be definei every statements.) An event routine that
simulates only external events cannot have arguments, but a routine used for both internal
and external events can have arguments. The arguments of the event routine are local to
the routine. If their specifications differ from the Inormally specifications in the pre-

amble, they must be defined in the event routine.

2.32.2 SAVING Phrase

Event notices can be reused. An event notice is automatically destroyed just before an
event routine is executed unlessaving the event notice phrase is included in this
statement. The pointer to the event notice will no longer be valid withoisaving

phrase.

2.32.3 Logical Expression for Event Routines

SIMSCRIPT I1.5 provides a logical expression to determine, within an event, whether that
event was generated internally or externally. The logical expression is of the form:

. "endoaenous
eventis [not] Tlexogenous
Finternal
Cexternal

P o |

and yields a true or false value. This logical expression, which tests the event notice, can
be included in aiif ... else ... always construct to make decisions regarding
events.

92

EVENT NOTICES Statement

2.33 EVENT NOTICES Statement

An event notices statement declares that the followevery statements define event
notices for internal events.

event notices [include event]
Keywords Synonyms
event notices events
include are
EXAMPLES:

event notices

Indicates that event notice declarations follow. The declarations will be made with
every statements, and will name user-defined attributes. They denote ownership of,
and membership in, sets.

event notices include ARRIVAL and WEEKLY.REPORT

IdentifiesARRIVAL andWEEKLY.REPOF as event notices requiring only the system-
defined attributes for event notice¢ :Every statements may follow this form of the
event notices statement.

An event notice is a temporary entity that has five special attributeevent notices

statement, which declares that the followevery statements define event notices, must

be included in the preamble for internal events. Because SIMSCRIPT II.5 automatically
places the special attributes in the event notice record, the programmer must not declare
these attributes. One cannot place other attributes in the words of an event notice which
contain the special attributes. An event notice may consist of only the special attributes, in
which case the event notice triggers the event, but does not transmit values to arguments in
the event routine. The attributes of an event notice record are described in table 17.

Event notices are created and destroyed like temporary entities.

An event notice carries information about an internal event. When an event is generated,
the event notice transmits this information about the event to the timing routine, and (even-
tually) from the timing routine to the event routine when the event occurs.

93

SIMSCRIPT I1.5 Reference Handbook

Table 17. Event Notice Attributes

Attribute Description
time.a Simulated time at which the event is to occur.
eunit.a Code to indicate whether internal or external. Number of input unitl con-
taining event information for external events; zero for internal events.
p.ev.s Pointer to predecessorev.s *.
S.ev.s Pointer to successor ev.s *.
m.ev.s Membership attribute that is <>0 if the event notice iev.s *, and O if

the event is not iev.s *.

Note: *ev.s refers to the event set. That is, the set used by the timing routine o keep
track of scheduled events.

Event notices are used to schedule events for occurrence at some time in the simulated
future. Many events of the same event class can be scheduled at the same simulated time.
A break ... ties statement declares priorities among events of the same event class,
while apriority statement declares priorities among different classes of events. If no
priority statement is present, priority is given according to the order in which the event
notices have been defined ininclude phrase or in subsequeevery statements.

In addition to the five special attributes, event notices can have attributes that are either var-
iables or functions. Event notices can own and belong toEvery statements are used
to declare the attributes and sets.

Event notices with additional attributes must be declareevery statements. Event
notices with no additional attributes can be named irinclude phrase of thevent

notices statement, and the first five words of the event notice record will be used for the
five special attributes.

94

EVERY Statement

2.34 EVERY Statement

Theevery statement declares entity, attribute, and set structure for temporary and perma-
nent entities, resources, and event and process notices. It also specifies optional attribute
packing, equivalences, word assignments, and functions.

0 o o _ ffunction , o @
. O has 0O aUattribute [(packing code] Ln Carray Ointeger U0 0O
Centity O O o o , .0 fword ¢ Og ¢
every [kevent e 0 O attribute [(packing code)]} O O
Bbrocess g o g
g O O
Lresource 0 0O c O
0 downs O d d O
O Obelongs to 0 Da set [0
g O d d (] a
d t
d a
Keywords Synonyms
has have
can have
may have
a an
the
some
owns own
can own
may own
belongs to belong to

can belong to
may belong to
EXAMPLES:

every CITY has a NAME, an AREA, and a POPULATION

Declares that entities of the permanent entity cfa$¥ have attributes namedAME
AREA andPOPULATION

95

SIMSCRIPT I1.5 Reference Handbook

every PATRON has a NAME, a DESTINATION, and a FARE, and belongs to
some RESERVATIONS

Declares that entities of the temporary entity cPATROI have attributes named
NAME, DESTINATION, and FARE. The entities are members of the set class
RESERVATION.

every TAKEOFF has a FLIGHT.NO, a DESTINATION, and SOME
(NO.PASSENGERS, NUMBER.OF.PASSENGERS)

Declares that event notices of the cITAKEOFI have attributes nam¢FLIGHT.NO,
DESTINATION, andNO.PASSENGEF. NUMBER.OF.PASSENGEI is a synonym for
NO.PASSENGEFR.S

every AIRPORT has a NO.OF.RUNWAYS(*/4) and owns some JET.RUNWAYS,
some ARRIVALS, some DEPARTURES, and some TERMINALS

Declares that entities of the permanent entity (AIRPOR1 have an attribute named
NO.OF.RUNWAY whose values are to be intrapacked in an array, with four consecutive
values per word. The entities own sets of the set c JET.RUNWAYS, ARRIVALS,
DEPARTURE, ant TERMINALS.

every STOCKHOLDER has a NAME, a FINANCIAL function, owns a
PORTFOLIO, hasthe F.PORTFOLIOinarray 1, the L.LPORTFOLIO inarray
2, and the N.PORTFOLIO in array 3

Declares that entities of the permanent entity (STOCKHOLDE ‘have an attribute
namecNAMI and a function attribute namFINANCIAL . The entities own sets of the
set classPORTFOLIC, and have attributes (set pointelF.PORTFOLIO,
L.PORTFOLIO, andN.PORTFOLIC that are to be assigned to arrays 1, 2, and 3,
respectively.

every FLIGHT has some (FIRST.CLASS.SEATS(L/2), TOURIST.SEATS(2/2))
in word 1, and the (NO.PASSENGERS(1-10), NO.IN.CREW(11-16), and
SEATING.CAPACITY(2/2)) in word 2

Declares that entities of the temporary entity cFLIGHT have five attributes. Values
of attributeFIRST.CLASS.SEATS are to be stored in the first half of word 1, and values
of TOURIST.SEATS in the second half of word 1. ValuesNO.PASSENGEF are to

be stored in bits 1-10 of word 2, valuesNO.IN.CREW in bits 11-16 of word 2, and
values o SEATING.CAPACITY in the second half of word 2.

Theevery statement, which declares entities, attributes, and sets, is used for permanent
and temporary entities, resources, and for event and process nEvery statements

name an entity class, or event or process notice class, and define attributes of the entity, sets
owned by the entities, and sets of which the entities are members. When compiled, this
statement establishes set pointers and set attributes for owner entities that allow set
memberships to be constructed. Variations of this statement declare attribute
equivalencing and packing factors, array and word assignments, and function and dummy

96

EVERY Statement

attributes. In the preamt temporary entities, permanent entities ,
resources, process notices , andevent notices statements must be followed by
their respective groups every statements.

In the statement format, the name of an entity class is followed by attribute phrases, set-
owner phrases, and set-member phrases. The phrases can be in any desired order, and more
than one of each phrase type can be included in a single statement. Keywords specify the
phrase typehas denotes an attribute phracowns denotes a set-owner phrase, and
belongsto denotes a set-member phrase. In an attribute phrase, packing factors can be
included to declare the word portions, or specific bits, to be occupied by values of an
attribute. In addition, attributes of permanent entities and resources can be assigned to
specific arrays, and attributes of temporary entities can be assigned to specific words.
Explicit array and word assignments generate more efficient code than implicit
assignments generate.

2.34.1 General Rules

1. The name of an entity, resource, or process class, or of an event notice, can appear
in more than onevery statement.

2. Two entities cannot have an attribute with the same name placed in different words
within the entity records, because attribute names specify relative locations in entity
records.

3. The current background mode and dimensionality characteristics are assigned to the
declared attributes (but may be overridden by a subsecdefine ...
variable statement). Automatically-defined set attributes are of integer mode.

4. Attributes are consecutive words or arrays in entity records in the order in which
they are defined unless other specifications appear ievery statement. For
those implementations requiring hardware alignment of double precision floating
point numbers, a used word must be left to properly aldouble variable.

2.34.2 Compound Entities

Compound entities are entities that jointly have attributes and own sets. They can consist
of permanent entities, temporary entities, or a combination of permanent and temporary en-
tities, but the attributes of compound entities that consist only of temporary entities, or com-
bined permanent and temporary entities, must be functions. every statement,
compound entities are specified by naming two or more entity classes, followed by their
joint attributes and sets.

2.34.3 Event Notices

An event notice, which is generated for an event, is a temporary entity that has five special
attributes. Event notices are declared wheevent notices statement precedes the
pertinentevery statements in the preamble. The compiler automatically places the sys-
tem-defined attributes in the first words of each event notice. The number of words re-

97

SIMSCRIPT I1.5 Reference Handbook

quired varies with the implementation. No other attributes can be placed in words used by
the system-defined attributes. The general ruleevery statements also apply to event
notices.

2.34.4 Process Notices

A process notice, which is generated for a process, is a temporary entity that has nine spe-
cial attributes. Process notices are declared wtprocesses statement precedes the
pertinentevery statements in the preamble. The compiler automatically places the sys-
tem-defined attributes in the first words of each process notice, with the number of words
required varying with the implementation. No other attributes can be placed in words used
by the system-defined attributes. The general ruleevery statements also apply to pro-

cess notices.

2.34.5 Equivalencing

Data values for the same entity can be given different attribute names by placing the names
in parentheses, separated by commas, in an attributes phrase. These names are then said to
be equivalent.

Equivalent attributes are assigned to the same computer word. Any attribute can be equiv-
alent, except text attributes, which can only be equivalenced to other text attributes.

2.34.6 Common Attributes

Common attributes are attributes that are common to (have the same name in) more than
one entity class. Rules applying to common attributes are:

1. Values of common attributes must have the same relative locations in all entity
records.

2. Common attributes must have the same packing factors and word assignments.

3. Common attributemust specify the wa in a temporary entity record in which a
value is to be stored.

2.34.7 Packing

Packing is defined as storing two or more values in a single word. Values can be packed
into fractions of a word (e.g., a byte), or into specific bits, or several values of one attribute
can be packed into a single word. Inevery statement, packing is specified by append-

ing a packing factor, enclosed in parentheses, to an attribute name.

Field packing designates which fraction of a word — typically a half, quarter, or sixth —
is to be occupied by values of the named attribute. For example, the packing factor (I/2)
specifies the first half of a word, and (4/4) specifies the fourth quarter of a word.

A bit-packing factor designates bits to be occupied by values. For example, a bit packing
factor of (7-10) specifies that values of an attribute are to occupy bits 7 through 10 of a

98

EVERY Statement

word. Bits are numbered sequentially from the left (most significant) to the right (least sig-
nificant) starting with 1.

A factor is denoted by*/integer). The asterisk indicates intrapacking, and integer is
the number of values to be packed per word. For example, the intrapacking n*/2)on (
packs two consecutive values per word.

The following rules apply to packing:

1. Packing is specified by appending a packing factor, enclosed in parentheses, to an
attribute name.

2. If values of more than one attribute are to occupy the same word, the attribute names
must be enclosed in parentheses and separated by commas. For eFIRST | (
(1/2), SECON (4/4)) . Alternatively, they may be assigned the same word
number.

3. More than one group of attributes to be packed can be specified in aevery 3
statement.

4. Attributes of permanent and temporary entities can be packed, but global variables
cannot (see rule 8).

5. Integer and alpha values can be packed. Text and real values cannot be packed. Set
pointers may or may not be packed, depending on the implementation.

6. All integer and alpha attributes can have field and bit packing.

7. Overlapping the packing specification is allowed. However, this usage is discour-
aged. Programs containing overlapped attributes might not be transferrable be-
tween different computer types.

8. Only attributes of permanent entities can specify intrapacking.

If two attributes placed in the same word have the same packing factors, their names
are synonyms.

10.Packing does not apply to function attributes or dummy variables.

11.The default for packed integers is unsigned. Signed integers can be specified in a
define ... variable statement.

2.34.8 Function Attributes

A function attribute is an attribute whose value is computed by a function routine. Conse-
guently, a routine must be written having the same name as the attribute. Because function
attributes designate routines, no storage in entity records is allocated for the values.

99

SIMSCRIPT I1.5 Reference Handbook

2.34.9 Dummy Attributes

A dummy attribute, which does not have a storage location, must be decladefine
statement. This declaration permits the dummy attribute to be L accumulate/
tally statements without having its value stored.

2.34.10 Sets Named in EVERY Statements

The following rules and characteristics apply to sets namevery statements:

1. Owner entities have attributF. se andL. se (pointers to the first and last mem-
bers of the set, respectively), as welN. set (whose value is the number of mem-
ber entities currently in the set).

2. Member entities have attributP. se anc S. se (pointers to predecessor and suc-
cessor members of the set, respectively), and a membership attribute M.seed
(which is non-zero if the entity is in the set and O if the entity is not in the set).

3. Set pointers have integer values.

4. When entities belong to common sets, the set pointers must be assigned to the same
words or arrays.

5. Set members are ranked as first-in, first-out when they are placed in a set, which
gives priority to the first entity placed in the set. This may be overridden by a sub-
sequer define ... set statement.

2.35 EXCEPT WHEN Phrase

Se¢ unless phras.

100

EXTERNAL EVENTS/PROCESSES Statement

2.36 EXTERNAL EVENTS/PROCESSES Statement

Theexternal events statement declares events that can be generated externally. The
external processes statement declares processes that can be generated externally.
] . B}
external Fevent[s 1are event c r
Cprocess[es] are process a
Keywords Synonyms
external exogenous
are is
EXAMPLES:

external event is MANAGEMENT.REPORT
DeclaresMANAGEMENT.REPO as an external event.

external events are SNOW and MANAGEMENT.REPORT
DeclaresSNO\ andMANAGEMENT.REPO as external events.

external process is STORM
DeclaresSTORI as an externally-triggered process.

Theexternal events statement, which can appear only in the preamble, declares events
that can be generated external to the simulation model. Events can be generated externally,
internally, or both. External events must be declared external events statement,

while anevent notices statement is required for internal events. SIMSCRIPT I1.5
permits oneexternal events statement for each event class.

If an event is declared as external, and is not declared as an event notice, the system will
use an event notice having only the five special attributes. However, if an event is external,
and is also declared as an event notice, the event can be triggered both internally and exter-
nally and the event notice can have more than the five special attributes. The event notice
will have the same name as the declared event, and is prepared each time an external event
record containing the event name is read from the external event input unit. (External event
input units must be declared in texternal ... units statement.)

An external event record, which generates an external event or process, contains the name
of an event (process) class, the time the event (process) is to occur, and the mandatory
mark.v character. It may also optionally contain data to be read by the event (process) rou-
tine. The system reads these records as free-format data from the external unit input devic-
es. They must be in chronological order. Table 18 describes the possible time formats for
external event records. Examples follow:

101

SIMSCRIPT I1.5 Reference Handbook

END.SIMULATION 12.35 *
Generates an external event of the cEND.SIMULATION to occur at day 12.35 of the
simulation.

WEATHER 1 13 45 SLEET 0.1 *

Generates an external event of the cWEATHE to occur on the second day of simu-
lation at 1:45 p.m.SLEET and the number 0.1 are data to be read by the event routine
namecwWEATHER

MANAGEMENT.REPORT 2/17/91 9 30 WEEK 25.0 89.6 *

Generates an external event of the cMANAGEMENT.REPO to occur on February
17, 1991 at 9:30 a.mWEEI, 25.0 and 89.6 are data to be read by the event routine
namecMANAGEMENT.REPORT

102

EXTERNAL EVENTS/PROCESSES Statement

Table 18. Time Formats for External Event Cards

Format Definition

Decimal time units Day of the simulation at which the event is to occur; mustfbe a
real number.

Examples: 0.0; 12.35; 18.0

Day hour minute |Three integers, separated by blanks, that specify the day| hour
of the day, and minute of the hour when the event is to ogcur.

All three numbers must appear. Hours are numbered from 0 to
24, minutes from 0 to 60.

Examples: 0 0 O indicates the start of simulation. 1 13 45 rep-
resents the second day at 1:45 p.m.

Calendar time Date on which the event is to occur, denoted as a calendgr day,
and the hour and minute of the hour as integers. Years gfter
1999 and before 1900 must be completely expressed.

Example: 2/17/91 9 30 represents February 17, 1991 at 9:30
a.m.

SIMSCRIPT 1.5 reads each card as it is required, interprets the contents, and creates an
event or process notice of the named class. It stores the time of occurrence in attribute
time.a of the event (process) notice, and the number of the external leunit.a

Then it files the notice in the event set corresponding to the event class. external

... units statement for action in case of multiple external units.

When an external event (process) becomes the current event (process), SIMSCRIPT 1.5
stores the number of the unit containing the event data in the system wead.v and
transfers control to the event or process routine, as appropriate. In the event (process) rou-
tine, eitheread (Free-form) orread ((Formatted) statements can read the optional
data. Rcolumn.v (current input pointer) is positioned to read the first column after the
time. After executing the external event or process, the next event (process) data are read
from theread.v unit. SIMSCRIPT II.5 skips any unread data included before the
mark.v character. Reading in the next external event card sets up the event or process no-
tice, as above, and control is then passed to the event and process selection mechanism.

If the events or processes of the named class are generated only externally, an event notice
contains only five system-defined attributes, and a process notice contains only nine such
attributes. However, if the events or processes can also be generated internally, the event
(process) notice may have additional attributes. In the event set, the event (process) notice
for an external event (process) is merged with notices for internally generated events (pro-
cesses) of the same class.

Theexternal processes statement declares processes that can be generated external
to the simulation model. Processes can be generated externally, internally, or both.
External processes must be declared ' 1external processes statement, while a

103

SIMSCRIPT I1.5 Reference Handbook

processes statement is required for internal processes. SIMSCRIPT 1.5 permits one
external processes statement for each process class.

If a process is declared as external, and is not declared usprgdbsses statement, the

system will use a process notice having only the nine system-defined attributes. However,

if a process is external and is also declared iptbeesses statement, the process can

be triggered both internally and externally and the process notice can have more than the
nine system-defined attributes. The process notice will have the same name as the declared
processes, and is prepared each time an external process data card containing the process
name is read from an external unit.

Theexternal processes statement can appear only in the preamble.

104

EXTERNAL ... UNITS Statement

2.37 EXTERNAL ... UNITS Statement

Theexternal ... units statement names input units from which external event and
process data are to be read.

external Cavent T unit[s] are integer value ©
H)rocess r
0
Keywords Synonyms
external exogenous
are is
EXAMPLES:

external event unit is 1

Namesl as the unit from which external event and process data are to be read.

external process units are 7 and EX.UNIT

Names7 andEX.UNIT as the units from which external event and process data are to
be read.

Theexternal ... units statement declares units from which external event or process
data are to be read. Integer constants or unsubscripted variables can name devices, but vari-
ables must be initialized to valid device numbers before the start of simulation. If this state-
ment is omitted, SIMSCRIPT 11.5 assumes that external event and process data are on the
standard input unit. When using several input devices, the standard input unit must be in-
cluded if that unit is a source of external events or processes.

Data for events and processes may be interspersed on the same external unit. All data ap-
pearing on the unit must be arranged in order of increasing valtime.a

At the start of simulation, the first external event or process record is read from each
external input unit. The system creates event or process notices, sttime.a and

eunit.a information, and files all the notices in the event set before selecting the first
event or process to be executed. Subsequent external event (process) records are read from
whatever external unit is required.

Theexternal ... units statements can appear only in the preamble.

105

SIMSCRIPT I1.5 Reference Handbook

2.38 FILE Statement

Thefile statement files a permanent or a temporary entity in the named set, which can be

a fifo, lifo , ranked set, or a generalized set whose organization is determined by the
programmer.
) first .
file [the] pointer variable Mast r1in [the] set
M Tbefore [pointer variable]
M Tafter r
oo 0
Keyword Synonym
the this
EXAMPLES:

file FLIGHT in WAITING.LINE

Files the entity, whose identification is the value of global variFLIGHT, in the set
namecWAITING.LINE (owned by the system), according to the discipline declared in
adefine ... set statement (or onfifo basis if no discipline is declared).

file this PATRON first in RESERVATIONS
Files the entity, whose identification is the value of varilPATRO|, first in the set
namecRESERVATION owned by the system.

file the STOCK.CERTIFICATE after UNITED in the PORTFOLIO(CLIENT)

Files the entity, whose identification is the value of variSTOCK.CERTIFICATE, af-
ter the entity whose identification is the value of varieUNITED in the set named
PORTFOLIC owned by the entitCLIENT.

When a program begins execution, all sets are emptyfile statement is used to alter
set pointers to file an entity in the named set during execution. Entities filed in sets can be

either permanent or temporary. When filing in sets declarfifo, lifo , or ranked in
a define ... set statement, the declared set discipline is the default ifirst,
last, before , andafter phrases are omitted from file statement. Typically,

these phrases are used only for generalized sets organized according to a discipline deter-
mined by the programmer. Tfile statement can appear in any routine, but it cannot be
included in the preamble.

2.38.1 FIRST, LAST, BEFORE, and AFTER Phrases

Whenfile ... first is specified, the entity is filed at the beginning of the sefile
... last is specified, however, the entity is filed at the end of the Before and

106

FILE Statement

after phrases file an entity before or after an entity already in the set. Either of these
phrases require the identification of the entity to be filed, as well as the identification of the
entity before which or after which that entity is to be filed.

2.38.2 Arithmetic Expressions

An arithmetic expression in this statement must evaluate to an entity identification number.
This is either the address of a temporary entity record from acreate statement, or

an integer index denoting one of N. entity (number of entities in an entity class) per-
manent entities.

Note that an entity identification number can itself be held in an attribute that is referenced
by another identification number. Entities can be nested to any level, but a nested expres-
sion must evaluate to an entity identification number.

107

SIMSCRIPT I1.5 Reference Handbook

2.39 FIND Statement

Thefind statement searches for the first value, in a group of values, that satisfies condi-
tions in designated logical expressions. This statement must be controllfor phrase

with a selection phrase, but cannot be witt do ... loop construct. The optionif

found orifnone phrase directs control after the control phrase has been completed, de-
pending on the outcome of find search.

4

r r r r
find Tthe first case c] B,] [then] if T[found] [.]
[{variable = [the] [first] value} O Cnone o

Oad

EXAMPLES:

for | = 1 to 10, with X(I) <5, find the first case

Searches for the first value that is less than 5 in the one-dimensioneX. Vari-
ablel will have the index of the first such value.

for I back from N to 1, with SALES(]) Is QUOTA, find LAST.VALUE =
first 1, if found, go to REVIEW

Starting at the end of the one-dimensional ¢ SALES, searches for the first value that is
less than the value »QUOT.. The index variable value is assignecLAST.VALUE.
Control transfers tREVIEW if any such value is found. Otherwise, the statement following
a subseque else statement is executed.

for each CITY, when POPULATION(CITY) gr 500000, find LARGE = CITY

Searches entities of permanent entity cCITY for the first entity having a value of
POPULATIO! greater than 500,000, and assigns the index variable value to variable
LARGE.

foreachSTOCKHOLDER, foreachSTOCK.CERTIFICATEIinPORTFOLIO,when
CORPORATION(STOCK.CERTIFICATE) = "TWA", find HOLDER = STOCKHOLDER
and NUMBER = STOCK.CERTIFICATE

Searches each set nar PORTFOLIC, owned by permanent entities of entity class
STOCKHOLDE, for the first entity whose value CORPORATIC is the alphanumeric
literal TW+ The value of index variabSTOCKHOLDE is assigned to variabHOLDEIR
and the value of entity identification varialSTOCK.CERTIFICATE is assigned to
variableNUMBE R

A find statement must always be controlled by at leasforeach (clasy) , for ...

of (set),or for...to(index) phrase that has an appended phrase, sucwith a
phrase. Tt for phrase must not contro do ... loop construct, however. This
statement searches for the first value that satisfies conditions specified in any appended

108

FIND Statement

phrases and sets a variable equal to an expressiorfind statement cannot appear in
the preamble, but can be included in any routine.

Thefor phrase steps the index variable (specified irfor phrase) through the group of
values, and searches for the first value that satisfies the criteria. When the criteria are sat-
isfied, generation of index values terminates and the expression is computed, based on the
selected index assigned to the named variable. If more thefor phrase is specified,
thefind statement usually includes more than one variable and arithmetic expression as
shown in the fourth example above.

2.39.1 Alternative Forms

The alternativefind the first case , can be used when no expression is to be
computed. This form bypasses generationlet statement that assigns the value of the
"found expression” to the specified variable. The other alterndind variable =
expressiol, evaluates the arithmetic expression and assigns that value to the variable in the
find statement. This evaluation occurs when the first value is found for which the logical
expression is true.

Note: If you select a variable nam :FIRST, the optional wor(FIRST must also be
specified in order to compile correctly.

2.39.2 IF FOUND and IF NONE Phrases

A find statement can include eitherif found or anif none phrase that yields a
true or false condition. All rules fif statements (e.g., the useelse andalways) ap-
ply to these statements.

109

SIMSCRIPT I1.5 Reference Handbook

2.40 FOR EACH (class) Phrase

Theforeach (class) phrase causes a program segment to be executed for each entity of
a permanent entity class.

for each roermanententity 1 [called pointer variable] [,]
resource

Oo4

Keyword Synonyms
each every

all

EXAMPLES:

for each AIRPORT

Executes controlled statements for each entity of entity AIRPOR1. Global variable
AIRPOR1 is automatically set to the entity indices.

for every AIRPORT called STRIP

Executes controlled statements for each entity AIRPORT. VariableSTRIP is auto-
matically set to the entity indices.

for each CITY, for every AIRPORT called JET, with NO.RUNWAYS(JET)
> =5, while COUNTRY(CITY) equals "US"

Executes controlled statements for each entity of entity CITY, and for each entity

of classAIRPORT if the value of attributtNO.RUNWAY is greater than 5. Variables
CITY andJET are automatically set to the respective entity indices. The controlled
statements are executed as long as the value of atiCOUNTR is the alpha-numeric
literal US.

The for each (clas9) phrase steps through all entities of a permanent entity class,
enabling controlled statements to be executed for each entity of that class. Permanent
entities, which have their attributes stored as arrays, are indexed sequentially from 1
throughN. entity , and the short form of t foreach (clas?) phrase is equivalent to:

for ENTITY =1to N. ENTITY

When this short form is used, the sequential index values are assigned to the global variable
having the same name as the entity class. Icalled phrase is included, however, the

110

FOR EACH (class) Phrase

index values will be assigned to the variable named in the phrase, &for each
(clas?) phrase is then equivalent to:

for variable =1 to N. entity

Theforeach (clas?) phrase can appear in any routine, but it cannot be included in the
preamble.

2.40.1 Nested FOR EACH (class) Phrases

Foreach (clas9 phrases can be nested within otforeach (clasy) , for ... of

(se), andfor ... to (index) phrases. When tvfor each (clas$) phrases are
nested, for example, the fi for phrase controls the outer loop, and the secor |
phrase controls the inner loop. When computing values of index variables, the inner index
variable is stepped through its entire range of values for each value of the outer index vari-
able. The controlled statements are executed each time.

2.40.2 WITH, UNLESS, WHILE, and UNTIL Phrases

With, unless, while , anc until phrases can be appended to a sifor each
(clasy) phrase, as well as to nesfor phrases. When phrases follfor phrases, each
unless andwith applies to thdor phrase immediately preceding it, but ewhile
anduntil phrase applies to all precedfor phrases. SIMSCRIPT II.5 permits any com-
bination of phrases to be appended, and allows more than one of each phrase type.

111

SIMSCRIPT I1.5 Reference Handbook

2.41 FOR ... OF (set) Phrase

Thefor ... of (set) phrase enables a program segment to be executed for all entities
stored in the named set.

I n n
foreach entity pointer r1rfrom 1 entity pointer [of sei[in reverse order 11]
OCafter O O
Keywords Synonyms
each every
all

To begin processing with the
entity identified by the expression:

from --

To begin processing with the
entity that follows the identified entity:

after --

EXAMPLES:

for each FLIGHT of DEPARTURES

Executes controlled statements for each entity in the set IDEPARTURE. FLIGHT
will contain the entity identification number for each iteration.

for each RUNWAY after 6 of JET.RUNWAYS

Executes controlled statements for each entity filed in the set rJET.RUNWAY ;3
starting with the permanent entity after the entity whose index is 6. The variable
RUNWAY contains the indices of the entities in the set.

for each AIRPORT, for each FLIGHT of DEPARTURES in reverse order,
unless DESTINATION(FLIGHT) equals "ASIA"

Executes controlled statements for each entity ciFLIGHT filed in the set named
DEPARTURE at each airport. Set members are processed in reverse order, and no
statements are executed if the value of attriDESTINATION of aFLIGHT isASIA.

All the members of a set can be processed with statements controllefor ... of

(se) phrase. Set members can be temporary entities, permanent entities, or both. This
phrase selects set members from first to last (i.e., in order of their ranking) and assigns the
entity identification numbers as values of the named variable. A set can also be stepped
through backward by including the optional phrinreverse order . Ifthe setis emp-

112

FOR ... OF (set) Phrase

ty, the system bypasses the program segment controlledfor ... of se) phrase.
This phrase can appear in any routine, but it cannot be included in the preamble.

The for ... of (se) phrase can specify that set members be processed starting from,
or after, a particular entity. In either case, the entity identification must be included in the
phrase, and the system terminates the program with an error message if the identified mem-
ber is not in the set.

2.41.1 Nested FOR ... OF (set) Phrases

For ... of (se) phrases can be nested within o for each (clas), for ...

of (se), andfor ... to (index) phrases. When twfor ... of (se) phrases

are nested, for example, the fifor phrase controls the outer loop, and the sedor 1
phrase controls the inner loop. When computing values of index variables, the inner index
variable is stepped through its entire range of values for each value of the outer index vari-
able. The controlled statements are executed each time.

2.41.2 WITH, UNLESS, WHILE, and UNTIL Phrases

With, unless, while , anduntil phrases can be appended to a s for ... of

(set) phrase, as well as to nesfor phrases. When phrases follfor phraseseach
unless andwith applies to thdéor phrase immediately preceding it, but ewhile
anduntil applies to all precedii for phrases. SIMSCRIPT Il.5 permits any combina-
tion of phrases to be appended, and allows more than one of each phrase type.

2.41.3 Mechanism of FOR ... OF (set)

Thefor ... of (se) phrase works as follows:

let variable=f. set

go to test
'again’
let variable=v
'test !
if variable = C, go out
else

let v= S.set(variable)
Controlled statement
go to again

‘out’

F. se will be subscripted for a subscripted set. A group of controlled statements must be
enclosed within do ... loop construct. The value of the variable is retained when con-
trol transfers out of the loop.

113

SIMSCRIPT I1.5 Reference Handbook

2.42 FOR ... TO (index) Phrase

Thefor ... to (index) phrase, which is a loop control statement, increments the value
of a variable for each execution of a program segment.

= I
for variable Eback from Equantity to quantity [by quantity] [,]
EXAMPLES:
forl =1to 10

Steps index variabll through 1, 2, ..., 10, using increments of 1.

for | back from 10 to O by 2

Steps index variak | through 10, 8, ..., 0, using decrements of 2.

forN=-0.5t00.7 by 0.1
Steps index variabIN through -0.5, -0.4, ..., 0.0, 0.1, ..., 0.7, using increments of 0.1.

forROW=1toNO.FLIGHTS.FLOWN, for COLUMN =1to NO.DAYS.IN.PERIOD

Steps index variablRO\ through 1, 2, ...NO.FLIGHTS.FLOWN, and index variable
COLUM through 1, 2, ..NO.DAYS.IN.PERIOD for each value cRO\.’

forJ=Ato B by 2 *DELTA, forK=XtoY by EPSILON/3

Steps index variabl through the values (A ta B, using increments @ * DELTA
and steps index variakK through the values X to Y, using increments (EPSILON/
3, for each value (J.

Thefor ... to (index) phrase controls the number of times a single statement, or a
program segment, is to be executed. It provides an index operation by incrementing the
value of a variable for each execution of the controlled statenrQuantity; andquantity,

define the range of values assumed by the index variable,quantity; defines the incre-
ment. Thefor ... to (index) phrase is diagrammed in figure 3.

To control a program segment (group of statements), the segment is enclodo ... 1
loop construct. This phrase can appear in any routine, but it cannot be included in the pre-
amble.

The following rules and characteristics apply tc for ... to (index) phrase:

114

FOR ... TO (index) Phrase

Forward Stepping:

let variable = quantity
goto TEST
'‘AGAIN'
let variable = variable + quantity 4
‘TEST'
if variable > quantity ,, gotoOUT
else
controlled statement
go to AGAIN
'ouT'

Backward Stepping:

let variable = quantity
goto TEST
'AGAIN'
let variable = variable - quantity 4
'TEST'
if variable < quantity ,,gotoOUT
else
controlled statement
go to AGAIN
'ouT
Figure 3. For...to (index) Phrase Execution

Mode conversions are automatically performed if all quantities do not have the
same mode.

If any quantity is real, all computations required to compute values of the index
variable will be real.

Quantity , andquantity 5 are computed each time the loop is repeated.

. The index variablequantity ,, andquantity 5 can be recomputed within a loop.

Recomputing values can affect the subsequent index variable values, and can affect
computations performed by the program.

. A controlled statement is not executed if its terminating condition is satisfied ini-
tially. For example, the statemédori=1ton does not execute the controlled
segment in equals zero.

115

SIMSCRIPT I1.5 Reference Handbook

6. Allrules that apply to the incremental option pertain t« back from option, the
only difference being the direction in which the index variable changes value.

7. Program control can transfer in and out of loops as long as each transfer recognizes
the organization of thfor ... to (index) phrase. The value of the index vari-
able is retained when control transfers out of the loop goto statement or
when the loop is exhausted.

2.42.1 Nested FOR ... TO (index) Phrases

Any number cffor ... to (index) phrases can be nested for arrays of more than one
dimension. Whefor ... to (index) phrases are nested, the ffor phrase controls

the outer loop, and the seccfor phrase controls the inner loop. When computing values

of I ancJ, for example, the inner statement is stepped through its entire range of values
for each value of the outer index variable. The controlled statements are executed each
time. Index variables of outer statements can appear in any expression of the inner state-
ments because their values are defined within these statements.

2.42.2 WITH, UNLESS, WHILE, and UNTIL Phrases

With, unless, while , anc until phrases can be appended to a sifor ... to

(index) phrase, as well as to nes foreach (clasy), for ... of (se), and for

.. to (index) phrases. When phrases foll ifor phrases, eacunless andwith
applies to thfor phrase immediately preceding it, but € while anduntil applies to

all precedin_for phrases. SIMSCRIPT II.5 permits any combination of phrases to be
appended, and allows more than one of each phrase type.

116

GO TO Statement

2.43 GO TO Statement

Thegoto statement transfers program control to the statement having the specified label.
go [to] label [(integer valu)]

Note: label[(value) may be enclosed within apostrophes.

EXAMPLES:

go START

Directs program control to the statement preceded by theSTAR.

go to 'FINISH'

Directs program control to the statement preceded by theFINISH . Apostrophe
characters are optional.

go to 'POINT(INDEX+BASE-1)'

Directs program control to the statement preceded by thePOINT, subscripted by
the value ¢ (INDEX+BASE-1) . Apostrophe characters are optional.

Thego to statement directs program control to the statement preceded by the specified
label. This statement can appear in any routine, but it cannot be included in the preamble.
Two distinct labels, which are considered to be equivalent, can identify the same statement.
Equivalent labels are useful for program segments that have not yet been written, or when
segments can be included or omitted without destroying the logic.

2.43.1 Subscripted Labels

Labels can be subscripted. A subscript must be an expression, enclosed in parentheses, that
evaluates to an integer value. The complete subscripted label can be optionally enclosed in
single apostrophe characters. When the system execgo to statement having a sub-
scripted label, control is transferred to the statement preceded by the same label and sub-
script equal to the integer value of the expression. Subscripts need not start with the
number 1 and need not be in consecutive order within a program.

Subscripted labels are useful when transferring control to various segments in a frequently
modified program because they permit labels to be added or deleted without altegoig the

to statements. It is often more economical to use subscripted lalgo to statements
(rather tha call statements) to produce the effect of a subroutine without the expense of
recursion.

117

SIMSCRIPT I1.5 Reference Handbook

2.43.2 Error Conditions

An error condition will occur if the value of the expression is not within the range 1 to the
number of labels, or if a label is undefined. System action on this condition is undefined.
An implementation may or may not print an error message, terminate, or continue incor-
rectly at some unknown point.

118

GO TO ... PER Statement

244 GO TO ... PER Statement

Thego to ... per statement transfers control to a labeled statement or one of several
labeled statements in a list according to the integer value of the transfer expression.

go [to] LABEL®® per QUANTITY

Note: LABEL may be enclosed in apostrophes.

Keyword Synonym
or , (comma)
EXAMPLES:
go X, Y per A

Directs program control to either latX or labe Y, depending on whether the value of
A islor?2.

go to 'ONE' or 'TWO' or 'THREE' per M * N + COUNT /N

Directs program control to labeONE, TW(, or THREE, depending on whethM * N
+ COUNT /N vyields a value of 1, 2, or 3. Single apostrophe characters enclosing the
label names are optional.

go to ADD, SUBTRACT, MULTIPLY or DIVIDE per OPERATOR.CODE

Directs program control to labeADL, SUBTRAC, MULTIPLY, orDIVIDE , depend-
ing on whetheOPERATOR.COLis 1, 2, 3, or 4.

Thego to ... per statement transfers program control to the first label, to the second

label, or to then™ label according to the value of the expression. That is, program control
transfers to the statement preceded by the first label if the expression yields a value of 1, to
the statement preceded by the second label if the expression yields a value of 2, and to the

statement preceded by tn label if the expression yields a valuen. SIMSCRIPT II.5
rounds a real value.

Two or more distinct labels, which are considered to be equivalent, can identify the same
statement. Equivalent labels are useful for program segments that have not yet been writ-
ten, or when segments can be included or omitted without destroying the logic. Converse-
ly, the same label can appear several timesgo to ... per statement. Thgo to

..per statement may appear in any routine, but not in the preamble.

119

SIMSCRIPT I1.5 Reference Handbook

2.44.1 Error Conditions

An error condition will occur if the value of the expression is not within the range 1 to the
number of labels, or if a label is undefined. System action on this condition is undefined.
An implementation may or may not print an error message, terminate, or continue incor-
rectly at some unknown point.

120

HERE Statement

2.45 HERE Statement

The here statement acts as a label for negump statements.
here

Only one form of this statement exists. It consists of exactly one word.

Thehere statement provides a "proximate label" for precejump ahead statements
and for followingjump back statements in the same routine. Sevjump statements
may refer to the sanhere statement, and seve here statements may appear in a single
routine.

Thehere statement can appear in any routine, but not in the preamble.

121

SIMSCRIPT I1.5 Reference Handbook

2.46 IF ... ELSE ... ALWAYS Construct

Theif ... else ... always construct determines whether a specified logical expres-
sion is true or false. If the condition is true, execution continues with the succeeding state-
ment until the correspondi else statement. If the condition is false, execution transfers

to statements following the correspondelse statement.

[then if logical expression [,] [statement] Melse [statementTl always ; r]
Cunconditional transfer else [statement | S
Keywords Synonyms
else otherwise
always regardless
endif
EXAMPLES:
if X=0.0

Executes succeeding statements when the value of veX equals 0 (logical expres-
sion is true). Executes the program that follelse when the expression is false.

if b**2 > 4*a*c
Executes the succeeding statements vb**2 > 4ac . Executes the program seg-
ment that followselse when the logical expression is false.

if mode is alpha and card is not new

Executes the succeeding statements when both logical expr mode is alpha
andcard is not new are true. Executes the program segment that folelse
when either logical expression is false.

if NAME(DOG) eq "FIDO"
add 1 to FIDO.COUNT

always

If attribute NAMI of entity DOC contains the text litere* FIDO", the value of variable
FIDO.COUNT is increased by one. Regardless, the program segment that follows
always is executed.

122

IF ... ELSE ... ALWAYS Construct

ifX=0
for each TEMP in S
with TYPE (TEMP) =1
find the first case

then if found
letY =1

always

WhenX equals 0, this statement causes thS to be searched for a member wTYPE
=1 . If such a member exisy is set equal to 1.

The structure if ... else ... always construct is used to program decisions that
transfer control according to the truth value (true or false) of logical expressionif The
phrase is immediately followed by a group of statements to be executed if the logical ex-
pression is true. It may also be followed byelse statement and an alternative group of
statements to be executed if the logical expression is false (see figure 4). This construct can
appear in any routine, but not in the preamble.

if logical_expression
statement

else
statement

always
False—» else

Logical Expression

True

First Group of Second Group of
Statements Statements

A 4

\e

always

Figure 4. Structured if ... else ... always Construct

123

SIMSCRIPT I1.5 Reference Handbook

Strict adherence to structured programming would require that the first group of statements
not end with an unconditional transfer (e.gyp#o, return , Orstop statement). When

no unconditional transfer exists, always statement must follow the second group of
statements (see figure 4). If the first group of statements ends with an unconditional trans-
fer, no correspondinglways statement is allowed. In such a casé&se should be re-
placed byotherwise (see figure 5).

if logical_expression
statement
unconditional_transfer
else

Logical Expression True—>» Group of Statements

False

A 4

Unconditional Transfer

Figure 5. Structured Iif ... else ... always Construct with
Unconditional Transfer

If there is no alternative group of statements to be executed when the logical expression is
false, theelse statement can be omitted. (In such a case, some programmers replace
always with regardless , but this is not recommended.)

2.46.1 Nested IF ... ELSE ... ALWAYS Constructs

If ... else ... always constructs can be nested by inserting oitherelse
... always constructs. Arlways statement is required feachif ... else ...
always construct. Frequently, whé.. else ... always constructs are nested,

the optional keywordthen can precedéf and redundardlways statements can be
eliminated. However, thiaen if applies only to nested logical tests in which the false
condition is the same for each test. When they if has a false condition, control
transfers to thalways statement corresponding to the previdus. else ...

always construct. Figure 6 illustrates the logic thien if ... else ... always

constructs.

124

IF ... ELSE ... ALWAYS Construct

Statements [«—True False————p
Statements [«—True False————p|
Statements «—True False—————»|
Y

> always

v
Continue
Figure 6. Thenif Statements

A useful alternative to nestéfd.. else ... always constructs is the use of the

to statement with subscripted labels. While "pure" structured programming would en-
force the rule of single-entry/single-exit, this alternative (described goder) may be

less confusing in some cases.

125

SIMSCRIPT I1.5 Reference Handbook

2.47 INTERRUPT Statement

Theinterrupt ~ statement takes a process in the active state and places it in the interrupted
state.

interrupt [the [above 11 process [called pointer variable]
Keyword Synonym
the [above] this
EXAMPLES:

interrupt the GENERATOR

Interrupts aGENERATOHhat is in the pending list as a result okait statement. The
amount of time remaining until t@ENERATOR/ould have been resumed is captured
and recorded as a process attriimbe.a . If the GENERATO#R later resumed, this
value is used to determine the new waiting period.

interrupt SHIP called OTHER.SHIP

Interrupts theSHIP that has been identified by a pointer variabli€HER.SHIP, by a
previous assignmer@THER.SHIPis in the pending list as a result aferk statement,
and the amount of time remaining u@irHER.SHIP would have been resumed is cap-
tured and recorded as a process attritinte.a . If OTHER.SHIP is later resumed,
this value is used to determine the new period of work.

Any process in the active state (i.e., iwvark statement) may be interrupted by any other
process, event, or routine. The amount of time remaining to be worked is placed in the
time.a attribute. If the process is resumed, it works the remaining time before executing
subsequent statements.

Theinterrupt statement can appear in any routine, but not in the preamble.

126

JUMP Statement
2.48 JUMP Statement
Thejump statement provides a label-free transfer of control.

jump fahead 11
rback r
0 0

EXAMPLES:

jump ahead
Causes execution to proceed with the there statement in the program.

jump back
Causes execution control to pass to the nearest préhere statement in the program.

The jump statement can appear in any routine, but not in the preambile.

127

SIMSCRIPT I1.5 Reference Handbook

2.49 LAST COLUMN Statement

Thelast column statement designates the last card column used for statements. Char-
acters beyond that column will be disregarded by the SIMSCRIPT I1.5 compiler.

last column is integer
Keyword Synonym
is =
EXAMPLES:

last column is 72

Designates that column 72 is the last card column containing statements.

last column = 60 "PREAMBLE STATEMENT

Designates that column 60 is the last card column containing statements. Commentary
text follows the two apostrophe characters.

Thelast column statement specifies that program statements do not extend beyond the
designated card column. This feature enables programmers to identify cards or to number
them sequentially using the right-hand columns. SIMSCRIPT II.5 disregards characters in
succeeding card columns during the compilation process, but prints them on the listing. If
this statement is omitted, the compiler assumes that all 80 card columns are used for state-
ments.

This statement can appear anywhere in a preamble, but it cannot be included in a routine.
Whenever idastcolumn statement appears in the preamble, the number of card columns
pertaining to program statements can change. Thelast column statement, howev-

er, applies to all routines that follow the statement.

128

LEAVE Statement

2.50 LEAVE Statement

Theleave statement causes exit from withiido ... loop construct of code.
leave

Only one form of this statement exists. It consists of exactly one word.

Theleave statement is used withindo ... loop construct to cause premature exit
from the loop. Execution ofleave statement causes control to pass to the statement fol-
lowing the nexloop or repeat statement in the program. Controlling index variables
in thefor phrases driving the loop are left unchanged.

The statemenicycle andleave clarify programs by eliminating labels, and provide the
concept of local labels to the system. These features are especially useful when coupled
with thesubstitute statement features of SIMSCRIPT II.5.

129

SIMSCRIPT I1.5 Reference Handbook

2.51 LET Statement
Thelet statement assigns the value of an expression to a variable. If the variable is of in-
teger mode and the expression is real, the result is rounded before storing.

let variable = variable

EXAMPLES:

let X=X+1

Sets variablX equal tcX + 1 .

let X1 = (-B + sqrt.f(B**2 - 4 * A* C)) / (2 * A)

Sets variabliX1 equal to the positive root of a quadratic equation.

let CAPACITY(FLIGHT) = FIRST.CLASS.SEATS(FLIGHT) +
TOURIST.SEATS(FLIGHT) + ECONOMY.SEATS(FLIGHT)

Sets attribut CAPACITY equal to the sum of the valuesFIRST.CLASS.SEATS,
TOURIST.SEATS, andECONOMY.SEA], for entity clasFLIGHT.

Thelet statement evaluates the expression specified to the right of the equal sign, per-
forms any required computations, and assigns the computed results to the variable named
to the left of the equal sign. In this statement, the equal sign is an assignment operator spec-
ifying the replacement of the current value with a new valt let statement can appear

in any routine, but it cannot be included in the preamble.

If the expression and the variable differ in mode, SIMSCRIPT II.5 converts the expression
to the mode of the variable before setting the variable equal to the value of the expression.
Conversion from integer to real is accomplished simply by taking the whole number integer
value and converting it to a real number of the same value. Real-to-integer conversion in-
volves rounding the value of the expression (by adding -0.5 if it is negative or +0.5 if pos-
itive, and truncating) to a whole number before storing the value in the variable.

130

LIST Statement

2.52 LIST Statement

Thelist statement labels and displays, in a standard format, values of expressions and el-
ements of one- and two-dimensional arrays.

list variable lusing tape [integer value r]

O Cunit O O
EXAMPLES:
list NUMBER

Displays the value of variabNUMBE R

listA,B,C,B*C/LENGTH
Displays values of variabl A, B, andC, and of the expressi®B * C / LENGTH

list COLUMN, VERTICAL, and TABLE
Displays elements of the one-dimensional arCOLUM andVERTICAL, and of the
two-dimensional arraTABLE.

list GRAPH, PI.C * R**2, RADII

Displays elements of the two-dimensional array naGRAPI, the value of expression
PL.C *R**2 | and elements of the one-dimensional aRADII . PI.C is a system
constant whose value

Thelist statement can appear in any routine, but not in the preamble. The exact format
of the output is implementation-dependent.

131

SIMSCRIPT I1.5 Reference Handbook

2.53 LIST ATTRIBUTES Statement

The list attributes statement displays attribute values for one entity of a permanent
or temporary entity class.

list attributes of entity [called pointer variable]

n [tape [

rusing [unit [l integer value U

0 0 0 0
EXAMPLES:

list attributes of FLIGHT

Displays values of all attributes for an entity of the entity IFLIGHT. The entity
identification is contained in the global variable narFLIGHT.

list attributes of CITY called NEW.YORK

Displays values of all attributes for an entity of the entity (CITY. The entity index
is contained in the variable namNEW.YOR

Thelist attributes statement, which displays attribute values for one entity of the
designated entity class, can be used for both permanent and temporary entities. This state-
ment displays data in a standard system format rather than in a programmer-defined format.
Thelist attributes statement is convenient for debugging purposes and whenever
tailored reports are not required. Some attributes, the set pointers and random variables,
are not printed by thlist attributes statement. HoweveN. set (number in set)
andM.set (set membership) attributes are printed. list attributes statement can

appear in any routine, but it cannot be part of the preamble.

When thecalled phrase is omitted, SIMSCRIPT I1.5 uses the global variable having the
same name as the entity class to locate the specific entity whose values are to be listed. If
thecalled phrase is included, however, the value of the expression is used to locate the
entity.

2.53.1 Function Attributes

When using thiist attributes statement, input/output operations (such as changing
output device numbers) should not be performed in attribute functions invoked by this
statement. Note also that function attributes invoked witllist attributes state-

ment can affect control of the listing loop, causing incorrect printing.

132

LIST ATTRIBUTES OF EACH Statement

2.54 LIST ATTRIBUTES OF EACH Statement

Thelist attributes of each statement displays attribute values for all entities in a
permanent entity class, or displays values for all permanent or temporary entities filed in a
named set.

M]
list attributes of each entity M Tfrom [entity pointer 1 in [the] set
1 Tafter M
o 0O O O
[in reverse order] ['selection phrase re
Ltermination phrase 0
Keywords Synonyms

To begin processing with the
entity identified by the expression:

from —

To begin processing with the
entity that follows the
identified entity:

after --
in of
at
on
the this
EXAMPLES:

list attributes of each CITY

Displays attribute values for all entities of the entity cCITY.

list attributes of each PATRON in RESERVATIONS(FLIGHT)
Displays attribute values for all entities of the entity cPATROIfiled in the set named
RESERVATIONS. FLIGHT is the identification number of the set owner.

list attributes of each FLIGHT in DEPARTURES(AIRPORT)n reverse order

Displays attribute values for all entities of the entity cFLIGHT filed in the set named
DEPARTURE. AIRPORI is the identification number of the set owner. Values are
displayed beginning with the last entity.

133

SIMSCRIPT I1.5 Reference Handbook

list attributes of each STOCK.CERTIFICATE from DELTA in
PORTFOLIO(STOCKHOLDER), until CORPORATION(STOCK.CERTIFICATE)
equals "TWA"

Displays attribute values for entities of the entity ¢ STOCK.CERTIFICATE filed in

the set namePORTFOLIC. STOCKHOLDE is the set owner. Values are displayed
beginning with the entity whose identification number is assigned to the ViDELTA,
and entities are processed until attritCORPORATIC contains the alphanumeric literal
TWih

Thelist attributes of each statement can display attribute values for all entities in

a permanent entity class, or it can display attribute values for permanent or temporary en-
tities filed in a set. This statement displays values in a standard system format rather than
in a programmer-defined format (as iprint statement). Thlist attributes of

each statementis convenient for debugging purposes and whenever tailored reports are not
required. The attributes used for set pointers and random variables are not printed by the
list attributes of each statement. HoweveN. set (number in set) anM. set

(set membership) attributes are printed. list attributes of each statement can
appear in any routine, but it cannot be part of the preamble.

2.54.1 Output for LIST ATTRIBUTES OF EACH Statement

The listattributes of each statement prints attribute values in an implementation-
defined format. Columns are printed across a page, with the attribute name above its col-
umn of values. A specific number of positions are allotted for each column, and as many
columns as possible are printed across the page. Columns are continued on a succeeding
page if the entity contains more attributes than can be printed across the page. Because a
single heading is printed, the labeled output is meaningful only for sets with one entity class
filed in them.

2.54.2 Function Attributes

When using thlist attributes of each statement, input/output operations (such as
changing output device numbers) should not be performed in attribute functions invoked
by this statement. Note also that function attributes invoked willist attributes

of each statement can affect control of the listing loop.

2.55 LOOP Statement

Seedo ... loop construc.t

134

MAIN Statement

2.56 MAIN Statement

The main statement signals the beginning of the main routine in a program.
main

Only one form of this statement exists. It consists of exactly one word.

The main statement, which is optional, informs the SIMSCRIPT II.5 compiler that suc-
ceeding cards contain statements of the main routine. Program execution begins with the
first executable statement that follomain . If themain statement is omitted, the compiler
assumes that any unlabeled routine is the main routine. In order to distinguish clearly the
main routine from subroutines, it is recommended that the main routine be preceded by a
main statement. A program can have only main statement.

135

SIMSCRIPT I1.5 Reference Handbook

2.57 MOVE Statement

The move statement is used within monitoring routines either to access or to set the value
of the monitored variable.

move rfrom] variable
rto I]
O O
EXAMPLES:

move from NUMBER

Assigns the value of variabNUMBE to the monitored variable.

move to NUMBER

Assigns the value of the monitored variable to var NUMBER

move to LIST(I) " SET LIST TO MONITORED VARIABLE

Assigns the value of the monitored variable tol ! element of the one-dimensional
arrayLIST . Commentary text follows the two apostrophe characters.

Themove statement is used in monitoring routines either to access or to set the value of the
monitored variable. Thmove from form of the statement is used in left-hand monitoring
routines to assign the value of an expression to the monitored variable, wimove to

form is used in right-hand monitoring routines to assign the value of the monitored variable
to a variable within the routine. Figure 7 illustrates both forms omove statement.
Monitored variables must be declarecdefine ... variable statements in the pre-
amble.

Typically, a value is transmitted to the left-hand monitoring routine benter with

statement, computation or other processing is performed, and a value must be assigned to
the monitored variable by ttmove from form of the statement. Ttlmove to form ob-

tains the value of the monitored variable and makes it accessible to the right-hand monitor-
ing routine. In effect, this statement can convert a conventional right-hand routine into a
right-hand monitoring routine. After assigning the value of the monitored variable to the
named variable, the named variable can be used in the right-hand monitoring routine like
any other variable. A value is transmitted from a right-hand monitoring routine to the mon-
itored variable with ireturn statement.

136

left routine x
enter with number

move from number
return
end

location “x”

Legend:

NEXT Statement

right routine x
move to number

return with number
end

1 In a right-hand monitoring routine, the value of the monitored variable is brought

from memory with imove to statement.

2 The possibly-modified value produced by the right-hand routine is returned to the
point of reference using ttreturn with

statement.

3 A left-hand monitoring routine obtains its left-function value vi enter with

statement.

4 The value of a monitored variable is placed in memory usinmove from state-

men.

Figure 7. MOVI Statements

2.58 NEXT Statement

Seecycle statemer.t

137

SIMSCRIPT I1.5 Reference Handbook

2.59 NORMALLY Statement

Thenormally statement declares general characteristics for values of variables, attributes,
and functions, as well as defining the dimensionality of a.rays

r Finteger r v
r real r r
]) Cdouble]]
r’mode is ralpha r r]
] Mext] M
r rundefined r r

normally [|]] O O]
r] r
rtype Is l'saved r r
I l'recursive I I
o O O r
Cdim is integer O

Keyword Synonym

is =

dim dimension

EXAMPLES:

normally mode is integer

Declares that generally values of variables, attributes, and functions have integer mode.

normally, mode = integer, dimension = 1

Declares that generally values of variables, attributes, and functions have integer mode
and that variables are one-dimensional arrays.

normally, dim is 2, mode is real and type is recursive

Declares that generally variables are two-dimensional arrays, values of variables, at-
tributes, and functions are real, and local variables are recursive.

The normally statement declares general characteristics for values of variables, func-
tions, attributes, and arrays. It declares whether the mode is usually integer, real, double,
alpha, or text, specifies whether local variables are saved or recursive, and defines the num-
ber of dimensions for arrays. These characteristics remain effective until superseded by
subsequernormally statements or overridden define ... variable statements.
Phrases of thnormally statement can appear in any desired order, or each declaration
can be a separate statement.

2.59.1 NORMALLY and DEFINE ... VARIABLE Statements

Bothnormally anddefine ... variable statements can appear in the preamble to
declare characteristics of the global environment, and in routines to declare characteristics

138

NORMALLY and DEFINE ... VARIABLE Statements

of local environments. In the preamknormally statements can make general "back-
ground" declarations, whildefine ... variable statements can declare any excep-
tions and additions. Characteristics declarec idefine ... variable statement
override those appearingnormally ~ statements. Characteristics of variables that are not
defined indefine ... variable statements are assumed to be the background charac-
teristics as specified by t normally ~ statements (or by default).

The lasinormally statement in the preamble applies to all routines, unless superseded by
declarations within the routines themselves. In a subroutine or funnormally and

define ... variable statements define the local environment, with definitions apply-
ing only to that routine. These statements can appear anywhere within a routine, but their
relative order is important.

2.59.2 Mode

A phrase in th normally statement can declare the mode — integer, real, alpha, or text
— for variables; the default is real. Alpha and text variables are treated as character strings,
not as numerical quantities. Variables having any mode can be multidimensional, and local
variables can be either saved or recursive. If the programmer declares the default mode as
undefined , the compiler will generate a warning message for all uses of variable names
that have not been explicitly defined. This is the recommended mode.

2.59.3 Saved and Recursive Variables

The terms "saved" and "recursive" apply only to local variables and arrays (arguments are
automatically stored as recursive variables). Global variables are always saved. All local
variables are zero the first time a routine is called. Thereafter, a recursive local variable has
an initial value of zero each time the routine in which it appears is called, but a saved local
variable retains the value stored when the routine was last executnormally

statement in the preamble can declare whether local variables and arrays are generally
saved or recursive, buinormally statement in a routine is effective only for the routine

in which thenormally ~ statement appears. Itype phrase is notincluded irnormally

statement, local variables and arrays are recursive by default.

2.59.4 Dimensionality

The dimensionality of arrays must be specified in the preamble or in routines with either a

phrase of th normally statement or define ... variable statement. When de-
clared in edefine ... variable statement, the dimensionality of arrays is permanent
and cannot be superseded by onormally ordefine ... variable statements. If

the dimensionality does not appear inormally statement, variables are zero-dimen-
sional.

Note: Variables whose dimensions do not appe define ... variable statements
take on the current background dimensionality. Thus:

normally dim = 2

139

SIMSCRIPT I1.5 Reference Handbook

define X as a real, saved variable

definesX as a two-dimensional, real, saved array.

2.60 NOW Statement

Seecall statemer.t

140

OPEN Statement

2.61 OPEN Statement

The open statememt opens a file for input or output and assigns it to a specified unit.

open [unit] unit for Finput [[options]
Moutput
O

When the option “noerror” is given, an error (such as a non-existing file) does not result in
a SIMSCRIPT IL.5 runtime error, but in setting the system varropenerr.v to a value
other than 0. This value can then be checked. Usclose statement to close a unit.

Note: On PC WindowsNT and Windows 95 platforunit s can be assigned to files also
by means of thunits.cfg file which must be in the current directory.

EXAMPLE

function FILE.EXISTS.F(FNAME)
define FNAME as text variable
define SAVEDREAD.V as integer variable

“ -- remember old READ.V since it gets changed by USE
SAVEDREAD.V = READ.V
open unit .FEX.UNIT for input, name = FNAME, noerror
use .FEX.UNIT for input
if ROPENERR.V <> 0
close .FEX.UNIT
READ.V = SAVEDREAD.V
return .FALSE
else
close .FEX.UNIT
READ.V = SAVEDREAD.V
return . TRUE
endif
end

2.62 Routine ORIGIN.R

When the calendar format is used, an origin must be provided with which the calendar time
can be compared. This must occur beforestart simulation statement is executed.

The calendar date of the state of simulation is set by calling the system origin.r

as follows:

call origin.r(month, day, year)

Integer values must be used for month, day, and year.

Because time is stored as a real value in the system vaTime.v and in attribute
time.a of event notices, conversions must be made between the calendar time specifica-
tions and the computer representation values. When converting values, the system assumes

141

SIMSCRIPT I1.5 Reference Handbook

that Monday is the origin day, and that simulation starts at the beginning of that day (0000
hours). Time.v is set to zero at the start of simulation. The functions listed in table 19
convert the expressions representing the year, month, and day into cumulative simulation

times, and vice versa. Routiorigin.r

Table 19. Time Conversion Functions

must be executed before the functions are used.

Name Arguments Value of the Function

date.f Three expressions yielding integer \ Current simulation day; an inte-
ues that are the month, day, and ye|ger
Example: date.f (6,30,91)

month.f Expression yielding a real value that{ Current month, 1-12; an inteder
the cumulative simulation time.
Example: month.f (539.5)

day.f Expression yielding a real value that Day of current month, 1-31; @an
the cumulative simulation time. integer
Example: day.f (539.5)

year.f Expression yielding a real value that Current year; an integer
the cumulative simulation time.
Example: year.f (539.5)

2.63 OTHERWISE Statement

Seeif ... else ... always construc.t

2.64 PERFORM Statement

Seecall statemer.t

142

PERMANENT ENTITIES Statement

2.65 PERMANENT ENTITIES Statement

The permanent entities statement indicates that permanent entities are declared in
theevery statements that follow.

permanent entities [include entity °]
Keyword Synonym
include are
EXAMPLES:

permanent entities

Indicates that permanent entities are declared iavéry statements that follow.

permanent entities include COUNTRY " country has no attributes

Indicates that permanent entities are declared iavidrg statements that follow, and
thatCOUNTRYs an entity class having no attributes. Commentary text follows the two
apostrophe characters.

Thepermanent entities statement, which can appear only in the preamble, indicates
that permanent entities are declared inebmy statements that immediately follow. A
preamble can have sevepalmanent entities statements, each of which must be fol-
lowed by its respective group efery, define ... variable , anddefine ...

set statements. Theeate each statement creates a group of permanent entities, and
the attributes of the entities are stored as arrays. Storage for the arrays is allocated by a
create each statement.

2.65.1 INCLUDE Phrase

Thepermanent entities statement has an optioniatlude phrase, which can name

one or more permanent entity classes that do not have attributes. (Entity classes that do
have attributes must be nameceirery statements.) For each entity class named in the
include phrase, SIMSCRIPT I1.5 automatically defines a global variable having the same
name as the entity class, and another global varidbdatity (the number of entities in the

entity class). For example, the statement:

permanent entities include COUNTRY and GOVERNMENT

causes the global variabl&SOUNTRYand N.COUNTRYand GOVERNMENand
N.government to be defined. These global variables permit statements such as:

for every COUNTRY
for every GOVERNMENT

to be used to step through a sequence of valuesifrtunN. Create each statements
cannot be used to set the values!afntity for these entities.

143

SIMSCRIPT I1.5 Reference Handbook

2.66 PREAMBLE Statement

Thepreamble statement marks the beginning of a program preamble.

preamble

EXAMPLES:

preamble
Marks the beginning of the program preamble.

The preamble statement must be the first statement of a program preamble. All state-
ments in a program preamble are nonexecutable, and provide the compiler with definitions
regarding entities, attributes, and sets, events and routines, background mode, type and di-
mensionality, and global variables and arrays. The preamble can be omitted, in which case
the SIMSCRIPT II.5 default conditions are used. In this case, there are no user-defined glo-
bal variables, and a preamble is implied (consisting of the system-defined functions and
variables).

When a preamble is compiled, tables are constructed that define the variables and struc-
tures. These tables are used to compile all routines. The preamble also generates routines
that support the entity, attribute, set, and event declarations.

Changes to statements in the preamble require that an entire program be recompiled.

144

PRINT Statement

2.67 PRINT Statement

Theprint statement, which displays messages, titles, and computational results, must be
immediately followed by one or more format lines containing text or format specifications,
or both.

print integefdouble] line [s] [with Tvariable e s
N fagroup of integervalue ~ fields n i
0 0 0o o
[suppressing from column integer] thus
Keyword Synonyms
thus like this
as follows
EXAMPLES:

print 1 line thus
Weekly Flight Report

Prints one line containing the teweekly Flight Report , with blank columns on
either side.

print 3 lines as follows
Weekly Flight Report

Airline Flight Date Passengers

Prints three lines, the first containing the heacweekly Flight Report , With
blank columns on either side, the second containing a blank format line, and the third
containing the headings referringAirline , Flight , Date, andPassengers .

print 1 line with MONTH, DAY, YEAR thus

*k%k k% 19**

Prints one line containing the values of varialMONT, DAY, anc YEAF. The digits
19 in the format line are text.

print 3 lines with FARE, DISTANCE, and DISTANCE/HOURS as follows
FARE |S $rxxx **
DISTANCE [S *****
AVERAGE IS ** MILES PER HOUR

Prints three lines. The first contains the FARE IS and &$, followed by the decimal
value of variableFARE. The second contains the tDISTANCE IS , followed by the
integer value oDISTANCE. The third contains the teAVERAGE IS, followed by the
integer value of the quotie DISTANCE/HOUR, followed in turn by the texMILES
PER HOUR

145

SIMSCRIPT I1.5 Reference Handbook

print 1 double line like this

Prints one line of dashes. The keywdouble indicates that twice as many format
lines follow, as is designated by the line count.

for each CITY, print 1 line with NAME, POPULATION and AREA thus

kkkkkkhkkkkkk khkkkk khkkkkk *

Prints, for each entity of the claCITY, one line containing values of attribuNAMI,
POPULATION andAREL The number of lines printed equals the number of entities of
the clas«CITY.

for1=1t0 60, print 1 line with I, and a group of X(1,J) fields,
TOTAL(I) suppressing from column 47 as follows

*k kk% *k*k *kk *k*k *kk *k*k *k* *k*k I****

column 47

Assuming theprint statement is preceded bbegin report statement that spec-
ifies groups of 8 , prints 60 lines with nine columns per page (values of index vari-
ablel and eight values X(1,J)) ; prints values ol according to the first format
field, and values oX(1,J) in the eight succeeding fields. When all column indices
have been used, prints the valueTOTAL(l) according to the last format field.

Theprint statement displays titles, column headings, and computational results in a pro-
grammer-defined format. This statement can perform both as a means of displaying mes-
sages and as a complex report layout statement. It is possible to specify the format of
printed results, to control the printing of headings and titles, and to arrange "wide" reports
on standard-width paper. Egprint statement must be followed by one or more format
lines indicating the text and format specifications for printing values of expressions.
group andsuppressing phrases, which can be optionally included in this statement, are
used only in report sections that have column repetiiPrint statements generally ap-

pear in heading and report sections, and are often controlifor each (clasy) , for

... of (se), andfor...to(index) phrases, aswell: untii orwhile phrases.

Values of specific attributes can be displayed byrint statement. Naming an attribute

in this statement causes retrieval and display of a single value, just as a subscripted variable
or function reference doe®Print output starts at the currewcolumn.v pointer loca-

tion. After output, the system skips to the next output line and positions the pointer at the
beginning (setwcolumn.v=0).

2.67.1 Format Lines

One or more format lines must follow tprint statement. A format line can have a max-

imum of 80 columns of text and format specifications for arithmetic expressions whose val-
ues are to be printed. The number of columns from column 1 to the last nonblank column
determines the length of a format line. See table 20 for format specifications, rules that ap-

146

PRINT Statement

ply to the different specifications, and conventions used by SIMSCRIPT IL.5 in displaying
values.

The following general rules apply to format lines:

1. Aprint statement can appear on a card with prior statements, but each format line
must be on a separate card.

2. A blank column in a format line will appear as a blank space on the printout.

3. Blank lines can be inserted between lines of output with a blank format line or with
theskip statement.

4. SIMSCRIPT IL.5 prints text exactly as it appears, and any character except an aster-
isk (*) or a parallel (]) can be included as text.

5. When values are to be printed contiguously, a parallel must terminate a format on
the left, or two contiguous formats will merge into a single format. The parallel
character always acts as the first asterisk of a new format. For example, two con-
tiguous, five-character integer fields can be indicated as *****|**** and four con-
tiguous one-digit fields can be indicated as ||||.

2.67.2 DOUBLE Keyword

If more than 80 columns must be printed on a line, the keydouble can be included

in theprint statement. This keyword indicates that twice as many format lines (than are
specified by the line count) follow. When idouble keyword appears, SIMSCRIPT II.5
reads the format lines in pairs and interprets each pair as one format line of 160 columns.
Assuming that printer paper having 132 columns is used, the first format line would contain
text and format specifications for 80 columns, and the second format line would contain
text and format specifications for the next 52 columns.

147

SIMSCRIPT I1.5 Reference Handbook

Table 20. PRINT STATEMENT FORMAT SPECIFICATIONS

nts as
Cutive

N inte-
Xpres-

Value and Rules and Conventions
Examples
Integer 1. Prints an integer value.
* 2. Treats the rightmost character as the low-order position and pr
many digits to the left of the * as possible up to the next conse
* or text character.
o 3. Only the rightmost * need appear in a format line.
4. Prints in scientific notation if insufficient space was allocated.
*kkkk
5. If an expression does not yield integer values, prints a rounde
ger by adding 0.5 (depending on the sign) to the value of the e
sion and truncating the result.
Decimal 1. Prints a decimal value.

*%k *

*k kkk

2. Treats the integer portion according to the rules for integer values.

3. Rounds the decimal portion to the number of asterisks that apj
the right of the decimal point. An expression is rounded in t

decimal place by adding 0.5 (1) and truncating at the" decima
place.

4. Prints trailing zeros.

pear to
en

Rounded deci
mal

**
*kk

*

Prints a rounded integer.

Fraction
.*
.**

*kk*k

Prints a fraction between 0 and 1.

148

PRINT Statement

Table 20. PRINT STATEMENT FORMAT SPECIFICATIONS (Continued)

Value Rules and Conventions
and
Examples
Scientific 1. A minimum of eight consecutive periods must appear in a format
line.

2. Prints a number of the general form:

XXX XXXE™

3. The value of the printed expression is

Xxx.xxx(10%)

4. 0< |decimal number| <10
Alphanumeric| 1. Prints alphanumeric characters.
* 2. Each character must be indicated by * or |.
* 3. Only the leftmost positions are used if more characters are repfesent-
. ed than are stored in an alphanumeric word.
Text 1. Prints alphanumeric characters of a text variable or literal.
ko 2. Each character must be indicated by * or |.
Frk 3. Ifthe text string contains fewer characters than are representegl, only
. the leftmost positions are used. If the text string contains morg char-

acters than are represented, only its leftmost characters are used.

2.67.3 Expressions

When values of arithmetic expressions are to be printed, the expressions must be listed in
aprint statement, and format specifications that correspond to expression values must ap-
pear in format lines. Note that integer values can be printed with decimal format and real
values can be printed in integer format.

During execution, SIMSCRIPT I1.5 evaluates the expressions and then prints the values ac-
cording to the specifications in left to right order. That is, the system prints the value of the
first expression according to the first format specification in the format line, prints the value
of the second expression according to the second format specification, and so on.

2.67.4 GROUP Phrase

Thea group of ... fields phrase is used only for column repetition within a report
section. Column repetition is defined as repeating a group of format fields for each group
of values of an index variable. Groups of values of the index variable are generated by a
precedinghegin report statement that containgednting phrase. One group of index

149

SIMSCRIPT I1.5 Reference Handbook

variable values is used by thent statement at one time in order to print one group of
data (see figure 8). When column repetition is used, each column of grouped data is con-
sidered to have a column index that is one value of the index variableprirtirey

phrase in @egin report statement must specify the number of column indices to be
used in a group. This number is the number of columns of grouped data to appear across a

page.

In the format line, a format field must appear for each value in a group. All format fields
in a group need not be identical. For example, * and ** are permitted, but all values must
have the same mode (e.g., ** and *.* are not permitted). Report columns can also contain
data that are not part of a group, such as the value of the index variable that controls lines.

2.67.5 SUPPRESSING Phrase

The suppressing phrase enables the program to suppress specific values until all
grouped data have been printed. This phrase specifies that all format specifications, begin-
ning with the format in the designated column, are to be disregarded until all column indi-
ces have been used. Values are then printed using the formats that start in the designated
column.

150

PRINT Statement

PAGE 1 PAGE 3 PAGE 5
1 XXX XXX ... XXX 1 XXX XXX ... XXX I XXX XXX XXX XXX XXXX
2 XXX XXX ... XXX 2 XXX XXX ... XXX 2 XXX XXX XXX XXX XXXX
45 XXX XXX ... XXX 45 XXX XXX ... XXX A5 XXX XXX XXX XXX XXXX
PAGE 2 PAGE 4 PAGE 6
46 XXX XXX ... XXX 1 XXX XXX ... XXX 46 XXX XXX XXX XXX XXXX
47 XXX XXX ... XXX 2 XXX XXX ... XXX 47 XXX XXX XXX XXX XXXX
B0 XXX XXX ... XXX B0 XXX XXX ... XXX B0 XXX XXX XXX XXXIXXXX
Column 47 |
let page.v =0 let pagecol.v = 44

begin report on a new page printing for j = 1 to 20 in groups of

8 per page.

fori= 11060, print 1 line with i, and a group of x(i,j) fields,

total (i) suppressing from coulmn 47 as follows:

k% kkk kkk kkk kkk kkk kkk kkk kkk khkkk

I — Column 47

Figure 8. Sample Row and Column Repetition

151

SIMSCRIPT I1.5 Reference Handbook

2.68 PRIORITY Statement

The priority statement assigns priorities to different classes of processes or events.

priority order is Cevent [Of
Bbrocess d
0
EXAMPLES:
priority order is WEATHER andMANAGEMENT.REPORT

If two or more events of different classes are scheduled for the same time, events of the
classWEATHERuvill be executed first.

priority order is DELAY, LANDING, TAKEOFF, SEAT.RESERVE and
END.SIMULATION

If two or more events of different classes are scheduled for the same time, priorities are
assigned to event classes in the following or@&tLAY, LANDING TAKEOFRE
SEAT.RESERVE andEND.SIMULATION.

The priority statement assigns priorities to classes of processes or events. This
statement resolves conflicts that can exist when two or more events of different event
classes are scheduled for the same simulated time. Both external and internal processes and
events can be named in the samierity statement. Priorities cannot be assigned to
external event (process) units, however. pfierity statement lists event names, it must

follow all event notices, external events , and external event unit
statements in the preamble. If it lists process names, it must follopvoalss ,
external processes , and external event notices statements.

If a priority statement is included, events (processes) of the first-named class have the
highest priority, events of the second-named class have the second highest priority, and so
on. Subsequently, when event notices have identical simulated occurrence times,
SIMSCRIPT 1.5 selects events for execution in the order of their priorities.

When thepriority statement is omitted, priorities are assigned by default in the order in
which events and processes are declared in the preamble,ewsmtgnotices ,
processes , andevery statements. If some event classes are namedoairity

statements and others are not, the named classes automatically have higher priorities than
the omitted ones. The omitted event classes are ranked among themselves in the order of
their appearance.

When several events or processes are scheduled to occur at the same simulated time, the
events are selected to be executed according toithiey statement (or default order-

ing) if they are of different classes, according to theak ties statement (if any) for

events in the same event class, and first-in, first-out otherwise.

152

PROCESS Statement

2.69 PROCESS Statement

Theprocess statement names a process routine for a process. The process must be de-
clared in the preamble.

process [to] process E&x‘i/\éig C)va/ue ¢ S
Keywords Synonyms
to for
given giving
the
this
EXAMPLES:

process TAKEOFF
DeclaresTAKEOFI as a process routine, and destroys the process notice before entering
the process routine.

process SERVICE.CUSTOMER given DEPARTMENT and CUSTOMER.TYPE

DeclaresSERVICE.CUSTOME as a process routine haviDEPARTMEN and
CUSTOMER.TYF as arguments. Destroys the process notice.

A process routine, which is declared byprocess statement, is similar to an event rou-
tine, in that it can only be called by the timing routine. Eprocess class must have a
process routine.

Processes are generated byactivate process statement, which specifies the simulated
time at which the process is to begin. Control remains within the process routine until one
of the following occurs:

1. Areturn statement is encountered.
2. A work orwait statementis executed.
3. Arequest statement refers to an unavailable resource.

Because a process routine may relinquish control before completion, the process routine
should be considered re-entrant. That is, the values of saved or global variables may
change upon execution owork, wait Oorrequest statement.

Theprocess statement can only appear at the beginning of a process routine.

153

SIMSCRIPT I1.5 Reference Handbook

2.69.1 Arguments

A process is triggered by a process notice as the resullactivate process statement.
In addition to the five special attributes an event notice has, every process notice has four
attributes that are specific to processes.

Process notices also transmit the value ofgiven arguments from thactivate state-

ment to the process routine. Each such argument must be declared as an attribute of the
process using trevery statement. The arguments of a process routine are local to the rou-
tine and distinct for multiple entries of a process routine.

2.69.2 Logical Expression for Process Routines

SIMSCRIPT II.5 provides a logical expression to determine, within a process, whether that
process was generated internally or externally. The logical expression is of the form:

Cendogenous
. l'exogenous
process is [not] Finternal
Cexternal

P o

and yields a true or false value. This logical expression, which tests the process notice, can
be included in aiif ... else ... always construct to make decisions regarding
processes.

154

PROCESSES Statement

2.70 PROCESSES Statement

Theprocesses statement declares that the followievery statements define process
notices.

processes [include process ‘]

Keyword Synonym
include are
EXAMPLES:
processes

Denotes that process declarations follow. The declarations will be mart every
statements, and will name user-defined attributes.

process include TAKEOFF and LANDING

Identifies TAKEOFI andLANDING as processes requiring only the system-defined at-
tributes for processestvery statements may follow this form of tlprocesses
statement.

Theprocesses statement can appear only in the preamble.

Process notices are created and destroyed like temporary entities, and carry information
about a process. When a process is generated, the process notice transmits this information
to the timing routine, and then to the process routine when the process begins.

Process notices are used to schedule processes to occur at some time in the simulated future.
Many processes of the same process class can be scheduled at the same simulated time. A
break ties statement declares priorities among processes of the same process class,
while apriority statement declares priorities among different classes of processes. If no
priority statement is present, priority is given according to the order in which the pro-
cess notices have been defined ininclude phrase or in subsequeevery statements.

In addition to the nine system-defined attributes, process notices can have attributes that are
either variables or functions. Process notices can own and belong tEvery state-
ments are used to declare the attributes and sets.

Process notices with additional attributes must be declalevery statements. Process
notices with no additional attributes can be named ininclude phrase of the
processes Statement. This phrase notifies the system that the following names are names
of processes and that standard process notices will be used for them.

155

SIMSCRIPT I1.5 Reference Handbook

2.71 ... RANDOM ... VARIABLE Statement

The ... random ... variable statement declares a random variable.
lthe system lhas a atributerandom [step Mvariable [in Tword [integer 1]
fevery entty r flinear 1] r farray 11l r
0 0 0 0 0 0 0 0
Keyword Synonym
has have
can have
may have
a an
the
some
EXAMPLES:

the system has a SAMPLE random step variable

Declares that the system attribSAMPLI is a random step variable.

every AIRPORT has a TRAFFIC random linear variable

Declares that every entity of the clcAIRPORT has an attribute nam¢TRAFFIC,
which is a random linear variable.

The... random ... variable statement declares a random variable. Random vari-
ables are table look-up variables, each of which has a list of possible values and associated
probabilities. The system selects a sample value by generating a random number (using the
functionrandom.f), matching the random number with the possible probabilities, and se-
lecting the corresponding sample value from the look-up table. Sampling takes place by
drawing successive pseudo-random numbers from random number stream 1, unless another
stream number is requested.

For a random step variable, the system samples from the table values, which can have either
integer or real values, in a step-like manner. For a random linear variable, which can have
only real values, the system performs sampling by employing linear interpolation between
the sample values. The mode of the values can be implied through the background mode
at the time the.. random ... variable statement is encountered, or the mode can

be defined in a subsequ define ... variable statement. However, linear values

may only be real.

156

... RANDOM ... VARIABLE Statement

2.71.1 Function RANDOM.F

Functionrandom.f generates a stream of pseudo-random numbers between 0 and 1. The
algorithm used in this function depends on the implementation. The generated numbers are
statistically independent of one another. All SIMSCRIPT II.5 programs are initialized with

10 random number streams, and the starting numbers for these streams are contained in the
system arraseed.v . As pseudo-random numbers are generated, new values are assigned
to seed.v so that it contains the current number as an integer.

Random.f can be viewed in two ways — as generating uniformly distributed pseudo-ran-
dom numbers between 0 and 1, or as generating probabilities.

2.71.2 Mode and Stream Numbers

Either of the following forms of thdefine ... variable statement is used to declare
the mode of a random variable and to designate a stream number.

define variable as [a] [real] [, stream integer] variable
define variable as [an] [integer] [, stream integer] variable

where O< integer < 10.

2.71.3 Using Random Variables

Sampling is always automatic. That is, a random variable is similar to a right-hand function.
Whenever a random variable appears, a routine that performs sampling is executed.
SIMSCRIPT I1.5 generates these routines using random number stream 1 unless otherwise
specified. If the programmer requires another type of sampling other than step or linear, he
must omit the wordstep orlinear from the... random ... variable statement

and provide his own sampling function. Random variables can be read and sampled only.
Assignments cannot be made to them (i.e., they cannot appear to the left of equal signs or
asyielding arguments).

2.71.4 Reading Values and Probabilities

Special storage assignments are made for sample values and probabilities. These sample
values and probabilities can be read only read (Free-form) statement and not by the

read (Formatted) statement. Only one random variable can appear inread state-

ment. When a random variable appearsread (Free-form) statement, the system:

1. Reads pairs of values untimark.v character (default) appears.

2. Assumes that the first value of each pair is a probability and that the second is a sam-
ple value.

3. Creates an entity record for each pair of values. Each entity record has three at-
tribute words: the probability, the sample value, and a successor.

4. Maintains the entities in a set-like list.

157

SIMSCRIPT I1.5 Reference Handbook

5. Ensures that the pointer to the random list occupies the storage declared for the ran-
dom variable or attribute.

Probabilities read by the system can be cumulative or individual. If the probabilities are
cumulative, the last probability must be 1.0; and if the probabilities are individual, they
must sum to 1.0. All probabilities are stored cumulatively, but if individual probability val-
ues are read, SIMSCRIPT I1.5 accumulates the values. Thus, if the last probability = 1, the
probabilities are assumed to be cumulative, and if the last probability = 1, the probabilities
are summed so that they are stored cumulatively. The last probability is set to 1. Probabil-
ity values less than O or greater than 1 terminate the program with an error message.

2.72 REACTIVATE Statement

Seeactivate statemer.t

158

READ (Formatted) Statement

2.73 READ (Formatted) Statement

Theread (Formatted) statement reads formatted or binary data.

read variable® as M(integen)] FORMAT] Tusing Mthe buffer rr
[double] binary rnr] ltape Il rri
O oo O Cunit Uinteger value 00

Note: Double is optional on implementations where full precision requires more than one
computer word.

EXAMPLES:

read A, X,andYasl3,214

Beginning with the column that follows the input pointer, reads a three-character inte-
ger value and assigns that valu¢A, then reads two successive integer values of four
characters each, and assigns the valux andy.

read X, Y, Z and A(1), A(2), A(3),as 3d(8,2) and 3a 4

Beginning with the column that follows the input pointer, reads three successive deci-
mal values of eight characters each, and assigns the vaX, Y, andz; then reads

three successive alphanumeric values of four characters each, and assigns the values to
the first three elements of arrAy

read DISTANCE and QUANTITY as B 1, E(10,2), /, E(10,2)

After positioning the input pointer at column 1 of the current record, reads a value in
scientific notation from columns 1 to 10 and assigns that vaDISTANCE; then skips

to the next record and reads a value from columns 1 to 10 and assigns that value to
QUANTITY.

start new card
for1=1to N, read X(i), Y(1) as (4) | 5, D(7,2)

Beginning with column 1 of a new record, reads four pairs of data (one integer and one
decimal value) from each record uIN pairs of values have been read. Assigns the in-
teger values to elements of ariX and the decimal values to elements of aY.ay

read A(1), B(2), and X(1), X(2), X(3) as B 5, 1 10, S 3, D(7,2),/,
B 25 316

Beginning in column 5 of the current record, reads an integer value from columns 5 to
14 and assigns that value to the first element of iA; then skips three columns, reads

a decimal value from columns 18 to 24, and assigns that value to the second element of
arrayB; then skips to the next record, and beginning in column 25 reads three integer
values of six characters each, and assigns the values to the first three elements of array
X.

159

SIMSCRIPT I1.5 Reference Handbook

forl=1to N, for J=1to N, read MATRIX(I,J) as binary using
the buffer

Reads the two-dimensional ar MATRIX in binary form from the internal buffer.

read WEATHER.TYPE and VISIBILITY as B 35, A 4, D(7,3)

Beginning in column 35 of the current record, reads an alphanumeric value from col-
umns 35 to 38 and assigns that valuWEATHER.TYP; then reads a decimal value
from columns 39 to 45 and assigns the vallVISIBILITY

Theread (Formatted) statement reads data from cards according to a format list and as-
signs these data to variables named in the statement. Formats in a format list must corre-
spond in order to the desired values punched on data cards. Each format includes a
descriptor, which is a code defining the type of data (e.g., integer, decimal) to be read from
the cards. There are eight descriptors: five are data descriptors that apply to numeric and
alphanumeric values, and three are control descriptors used for spacing and for skipping
columns and records. In addition to reading formatted data, this statement can also read
binary data. Either formatted or binary data can be read from any input device, or data can
be read from an internal file.

2.73.1 Format Lists

During execution of read (Formatted) statement, the format list is scanned from left to
right, and individual formats are used to read values from data cards. The values, in turn,
are assigned to variables. The data descriptors apply to integer, decimal, scientific notation,
alphanumeric, and computer representation values, while the control descriptors designate
beginning data columns and columns and records to be skipped. Descriptors are further de-
fined in table 21. Values being read must agree in mode with their descriptors, except for
integer and alphanumeric modes, which can be interchanged. When interchanged, the
mode implied by the descriptor governs.

2.73.2 Skipping to Next Card

A read (Formatted) statement does not necessarily start at the beginning of a new data
card (record), because records are changed under programmer control and not automatical-
ly after each statement. Consequently, data can be split between cards or read from non-
contiguous parts of the same card. This statement processes a continuous string of
characters and skips to a new data only when directed.

When starting a new input record, the valuerecord.v is incremented by one. Thus, it
keeps track of the number of records read in so far.

160

READ (Formatted) Statement

Table 21. Descriptors for READ (Formatted) Statements

[. INTEGER

Format Rules
niw . Parameten must be an integer, bw can be an exprgs-
where: sion.

n is the optional numbdq
of consecutive fields

i is the descriptor
w is the field width

. At least one blank must appear betwn andi and be}

. The system treats leading, embedded, and trailing

tweeni andw.

blanks as zeros.

. If the value to be read exceeds the capacity of one Word,

only the right-most digits are used.

. If the value is less than one word, the digits are right-ad-

justed with leading zeros.

. Only digits (and an optional sign character) can be psed

in | data fields.

D: DECIMAL
Format Rules
n d(a,b) . Parameten must be an integer, ba andb can be ex-
where: pressions.

n is the optional num-
ber of consecutive
fields.

d is the descriptor

a isthe total field width
including the sign,
integer digits, deci-
mal point, and frac-
tional digits

b is the number of fra
tional digits

2. At least one blank must appear betwn andd.
3. A decimal point is optional in the input data field.

. If the decimal point is omitted, a decimal point is in

plied before the first digit of thb field.

. When a decimal point is included, it overrides the Ipca-

tion implied byb.

. Very large and small decimal numbers can be inpyt in

scientific notation.

161

SIMSCRIPT I1.5 Reference Handbook

Table 21. Descriptors for READ (Formatted) Statements (Continued)

E: SCIENTIFIC NOTATION

Format

Rules

n e(a,b)

where:

n is the optional num-
ber of consecutive
fields

is the descriptor

a isthe total field width
including the sign,
integer digits, the le
tere, and sign of thq
exponent

is the number of fra
tional digits

Parameten must be an integer, batandb can be ex-
pressions.

At least one blank must appear betweeamde.

Data read by the format must have the general form:

XXX XXXEeXX
Thee format is similar to thd format, but the format
must have an appended scale factor.

The scale factor on the input can exclude either the
e or the sign of the exponent, but not both.

A: ALPHANUMERIC

Format

Rules

naw
where:

is the optional num-
ber of consecutive
fields

is the descriptor

n

. Parameten must be an integer, bwtcan be an exprg

. Characters are left-adjusted in a word with trailing

sion.

. At least one blank must appear betwe@mda and be}

tweena andw.

blanks.

=)

etter

S-

c Iis the descriptor

e isthe number of chd
acters in the interna
representation of th

computer

digits; on the Honeywell 600/6000, the format 2 C

reads two fields of five octal digits each.

is the field width 4. If more characters are specified than can be stored, the
wis the Tield widt leftmost characters are stored and the remaining charac-
ters are excluded.
C: COMPUTER REPRESENTATION
Format Rules
nce 1. Parameten must be an integer, betcan be an expr¢gs-
where: sion.
n is the optional num-{ 2. Atleast one blank must appear betwe@mdc and bef
ber of consecutive tweenc ande.
fields 3. Thec descriptor is computer-dependent; for example,
on the IBM 360, the format C 4 reads four hexidecipmnal

162

READ (Formatted) Statement

Table 21. Descriptors for READ (Formatted) Statements (Continued)

B: BEGINNING COLUMN

Format

Rules

b n

where:
b is the descriptor

n is the column numb

. Parameten can be an expression.
2. At least one blank must appear betwieemdn.

. Parameten specifies the column in which the first ch

acter of an input value is located, and the system
tions the current input pointer to that column.

list.

S: SKIP COLUMN

Format Rules
s n . Parameten can be an expression.
where: . At least one blank must appear betweamdn.

s Is the descriptor

n is the number of col
umns to skip

. Parameten specifies the number of columns to be

. The system disregards data punched in skipped c¢

skipped before reading the next field on the card.

umns.

[SKIP TO NEW RECORD

ar-
posi-

. B descriptors need not be in ascending order in a format

nit.

Format Rules
/ Each slash skips to a new record on the current input U
T: text
Format Rules
ntw 1. Parameten must be an integer, buwtcan be an expre
sion.
where:

n is the optional nun
ber of consecutiv
fields

t is the descriptor
w is the field width

3. The length of the text variable is set equal to the fig

2. Atleast one blank must appear betweand:t and bef

tweent andw.

S-

(o]

width, and all the characters in the field are stored i the

text variable.

163

SIMSCRIPT I1.5 Reference Handbook

Table 21. Descriptors for READ (Formatted) Statements (Continued)

1

Format Rules
nt* 1. Parameten must be an integer.
where: 2. At least one blank must appear betweamdt and be}
' _ tweent and*. * may optionally be enclosed in pa-
n isthe optional rentheses.
number of conse) _]
utive fields 3. The next nonblank input character is treated as a delim-
' . iter character; the input is scanned for the next occur-
t* s the descriptor rence of that character, and all characters betweer] the
two delimiters are stored in the text variable.
4. The length of the string is set to the number of characters
between the delimiters. The field may span multiplg in-
put records.

2.73.3 Input Buffer

A buffer whose length is one record is provided for each input unit. This buffer contains
the data fields. The current input pointer, which is the system vareablenn.v , points

to the last column read in the current input buffer. For each new recatgnn.v is

zero. (Some implementations initialim®lumn.v to -1 before the input unit is read for

the first time.) As input is processed, the pointer moves along the buffer according to the
format list. For each value readplumn.v is positioned to the last column read. The
value ofrcolumn.v can be advanced by the Beginning Column (B), Skip Column (S), and
Skip to New Record (/) descriptors and by $et new statement. Note that the B
format can move the column pointer backward, allowing values to be read more than once.
The B, S, and / descriptors can be combined with other formats, or they can appear alone
in aread (Formatted) statement.

2.73.4 AS BINARY Phrase

Theas binary phrase reads binary information. The binary data can be read from the
current input unit, or asing phrase can be appended tordw statement to designate
another input unit. Binary and formatted data cannot be read together from the same unit.

For integer, real, or alpha values, tekad asbinary statement inputs a single computer
word of information. For text values, it inputs an integer computer word with the length of
the string, followed by successive words of the string until all the characters have been in-
put.

2.73.5 AS DOUBLE BINARY Phrase

On those implementations for which the maximum floating-point precision is more than
one computer word, thead as double binary statement enters two computer words

164

READ (Formatted) Statement

for a floating-point (real) number. Thead as double binary statement should only
be used for values produced using thete as double binary statement.

2.73.6 USING Phrase

A using phrase can locally override the current input unit declareduse astatement.

This phrase designates a device as the current input unit for the durationreddhe
(Formatted) statement execution. After execution of this statement, SIMSCRIPT II.5
automatically reassigns the previous unit as the current input unit. Data can be read from
an internal file by including the keywordse buffer in a using phrase, or from an

input unit by specifying the device number of that unit.

2.73.7 The Buffer

A special area of memory can be made available as an internal buffer not connected to any
external device foread statements. Its length is the valueboffer.v (default 132).

Space is allocated (the amount depending on the value) when theiférst using

the buffer, read ... using the buffer , Or use the buffer statement is
executed. Itisinitialized to all blanks. This internal buffer is generally used for data editing
employing the formatting capabilities cdad andwrite statements. All data ithe

buffer must have been put there Wyite statementsThe buffer is reinitialized to

blanks each time its usage changes from input to output.

2.73.8 Controlled Statements

Aread (Formatted) statement cannot read an entire array by listing only the array name,
but a controlledead (Formatted) statement that includes a repetition factor can read array
elements conveniently (see the fourth example above). A repetition factor, consisting of an
expression enclosed in parentheses, must precede a format list that is to be repeated for each
card. When a repetition factor is used,rdwl (Formatted) statement must be controlled

by afor ... statement, and the input must start with a new cardtaft new state-

ment, for example, can position the input pointer to a new card.)

With this form of theead (Formatted) statement, the system automatically skips to a new
card after reading the specified number of fields from an individual card. This statement
can terminate with the input pointer positioned in the middle of a record.

2.73.9 End-of-File

An end-of-file can be encountered wheread (Formatted) statement is executed. The
value of the global variabkeof.v determines the action taken by the system when an end-
of-file is detected. This variable is automatically defined for each input unit and initialized
to zero when a program begins execution. Variable can retain a zero value or can

be set equal to 1. Subsequently, when an end-of-file marker is encountered, SIMSCRIPT
II.5 interprets the values ebf.v as follows:

165

SIMSCRIPT I1.5 Reference Handbook

Value of eof.v Interpretation
0 Consider an end-of-file marker to be an error.
1 Assign zeros to variables named in the statel set eof.vto 2 ,

and returns control to the statement that followsread
(Formatted) statement.

2 An end-of-file has been read; continue éeof.v =1

By testingeof.v immediately after read (Formatted) statement, the programmer can de-
termine whether the statement read actual values or encountered an end-of-file.

166

READ (Free-Form) Statement

2.74 READ (Free-Form) Statement

Theread (Free-form) statement reads unformatted values and assigns them to the named
variables.

. o . (the buffer O o
read variable using O [Mape [nteger value 00
0 0O unit 0o o

EXAMPLES:

read A, B, and C

Assuming thaf, B, andC are variables, reads three values and assigns thenBi@ndC.

read CODE, A, B, X(2), Y(4), Z(2,4)

Assuming thaCODE A, andB are variables, tha¢ andY are one-dimensional arrays,
and thatz is a two-dimensional array, reads six values and assigns teaD® A,
andB and to the subscripted variabkg), Y(4), AND Z(2,4)

read A, LIST(3), COLUMN, MATRIX, X, LIST(x)

Assuming thaf andX are variables, and thaiST , COLUMNandMATRIXare arrays,
reads and assigns a valueafgeads and assigns a value to the third elemdrsof,
reads and assigns as many values as there are elem@s.iiMNreads and assigns
as many values as there are elementdAmRIX, reads and assigns a valuexiand
reads and assigns a value to the elemeniSaf whose index is the value &f

for | = 1 to 3, read X(i) and Y(i)

Assuming thaX andY are one-dimensional arrays, reads six values and assigns them
toX(1), Y1), X2), VY(2), X@®3),AND Y(3) .

read NUMBER, DATUM for J =1 to 3, read X(J) read Y

Assuming thaNUMBERINADATUMare variables and thatandY are one-dimensional

arrays reserved as 3 and 4 elements, respectively, reads nine values and assigns them to
NUMBER DATUM X(1), X(2), X@), Y1), Y(@), Y@ ,andY(4) . Three

read statements are shown here, one of which is controlledfby.ato (index)
statement.

read TABLE using the buffer

Assuming thatTABLEIs a two-dimensional array reserved as 3 by 3, reads nine values
from the internal buffer and assigns them row by row as followlsABLE1,1),
TABLE1,2), TABLE(1,3), TABLE?2,1), TABLE(2,2), TABLE(2,3),
TABLE3,1), TABLEK3,2), AND TABLKS3,3)

167

SIMSCRIPT I1.5 Reference Handbook

for each CITY, read NAME(CITY), AREA(CITY), and POPULATION(CITY)

Assuming thaCITY is a permanent entity class, reads attribute values for all entities
and assigns them to the attribute arrays neNAMI, ARE/, andPOPULATION

Theread (Free-form) statement reads integer, decimal, and alphanumeric values from an
input unit and assigns the values to variables named in the statement. During execution,
this statement reads as many values from a data card as there are variables — unsubscripted
variables, elements of arrays, and attributes — specified or implied in the statement. Com-
binations of variables, individual elements of arrays, and entire arrays can be read by a sin-
gle statement. The free-form data cards can be read from a device other than the current
input unit, or data can be read from an internal bufferead (Free-form) statement can

be controlled by for each (clasy), for ... of (se), or for ... to (index)

phrase, and can appear with do ... loop construct. Implied subscripts cannot be

used to read attributes of permanent entities because an attribute name in this statement
causes the entire attribute array to be read.read (Free-form) statement may appear

in any routine, but not in the preamble.

2.74.1 Data Records

When preparing data records (in an input file), values can occupy any columns, but the per-
missible magnitude of numbers may vary with each SIMSCRIPT II.5 implementation. Nu-
merical values can be written in either integer or decimal format. For example, the numbers
3, 3.0, and 3.0000 are equivalent. Numbers can also be expressed in scientific notation as
long as there are no embedded blanks. E forma underread (Formatted) statement.]

It is an error to try to read real values into integer variables.

Successivread (Free-form) statements do not necessarily — but could — read new data
records, because input data are treated as a continuous stream of values.

The following rules apply to the preparation of data records:
Values need not occupy specific columns.
Values must be separated from each other by at least one blank column.

A value cannot be split between records.

0D

Blank characters cannot be read as values of alphanumeric variables because a
blank character terminates a field. SIMSCRIPT I1.5 reads alphanumeric values by
beginning with the first nonblank character and ending with the first blank, or after
reading as many characters as the variable can contain.

5. An integer or decimal value to the right of a full word of alphanumeric characters
need not be separated from the alphanumeric characters by a blank character, al-
though a blank is permissible.

168

READ (Free-Form) Statement

2.74.2 ARRAYS

Theread (Free-form) statement can read entire arrays or individual elements. Entire ar-
rays are read by listing only the array name. For example, the stairead column

reads all elements of the aricolumn and assigns the values in ascending subscript order.

A multidimensional array is read row by row. That is, SIMSCRIPT II.5 assigns values to
successive elements whose subscripts change in ascending order, with the last subscript po-
sition varying most rapidly.

Individual elements can be read by listing the array name followed by a subscript enclosed
in parentheses. A variable list can include elements whose subscripts are expressions, such
asTABLE(N*M+2/J) or TABLE(l) , if variables in the expressions have assigned values.
Variables are processed from left to right, and values are assigned if they appear before be-
ing used as subscripts. For example:

read N, M, TABLE(N), TABLE(LIST(N) + M)

uses the values N andw as subscripts after they are read.

2.74.3 USING Phrase

A using phrase can locally override the current input unit. This phrase designates a de-
vice as the current input unit for the duration ofread (Free-form) statement execution.

After execution of this statement, SIMSCRIPT 1.5 automatically reassigns the previous
unit as the current input unit. Data can be read from an internal file by including the key-
wordsthe buffer inausing phrase, or from an input unit by specifying the device num-
ber of that unit.

2.74.4 Controlled READ (Free-Form) Statements

FOR phrases can contread (Free-form) statements. For example, one may wish to read
individual elements of arrays. for phrase controls the entiread (Free-form) state-

ment, not just the indices of variables appearing in the statement. Therefore, each variable
in a controller read (Free-form) statement must contain the index variable as a subscript,

or successive values will be assigned to unsubscripted variables while the index variable
iterates over its range of values. This could cause values to be assigned incorrectly to the
unsubscripted variables.

2.74.5 System Variables

SIMSCRIPT I1.5 provides five system variables that enable the programmer to test charac-
teristics of input data before the data are read. When a system variable is used in a state-
ment, the system automatically determines the characteristics based on the status of the
current input data, and the programmer can then use the value in any desired manner. The
system variables, as well as definitions and examples, are shown in table 22.

169

SIMSCRIPT I1.5 Reference Handbook

Table 22. System Variables to Test Characteristics of Input Data

Name Value? Description Example

sfield.f 0 Starting column o if sfield.f equals 40, go
the next data field |to...

efield.f 0 Ending column of |let N=efield.f-sfield.f+1
the next data field

mode alpha Mode of the next |if mode is integer, go to...
data field:
integer, real or
alpha

card new First data field on |if card is new, go to ...
card indicator:
card is new or
card is not new

data ended No data items in dat]if data is ended, stop

deck indicator:

data is ended or
datais not end-
ed

1 When there are no data (e.g., all data have been read and look-ahead is not pd

system variables have the listed values.

2.75 RECORD Statement

Not available for all implementations. SUser's Manue for your computer type.

2.76 REGARDLESS Statement

Seeif ... else ... always

170

construc.

ssible),

RELEASE Statement

2.77 RELEASE Statement

Therelease statement releases storage previously reserved for arrays and for attributes
of permanent entities.

O
release Carray . .
Cpermanent entity attribute

[

EXAMPLES:

release COLUMN(*)
Returns storage occupied by the array nag@eduMNo system storage.

release CODES and A(*)

Returns storage occupied by a two-dimensional array nad@oES and the one-di-
mensional array namey to system storage. Note that when releasing an entire array,
the star notation for the pointer variable is optional.

release STOCKHOLDER, and MATRIX(2,*)

Assuming thaBTOCKHOLDER an attribute of a permanent entity class, returns storage
occupied by th6é TOCKHOLDERttribute array and by row 2 of the two-dimensional ar-
ray namedMATRIXto system storage.

Therelease statement returns storage (occupied by arrays, parts of arrays, and attributes
of permanent entities) to system storage. Names of pointer variables and attributes of per-
manent entities can be listed in this statement, and a single statement can include several
names of the different types. A variable named in this statement must be a pointer to an
array, or some portion of an array (e.g., a row of a ragged table). Once storage for an array
has been released, that array is undefined until reserved again. The pointer variable is set
to zero. Arrays can be reserved and released continually throughout program execution in
order to conserve storage by reusing it.

Therelease statement can appear in any routine, but it cannot be included in the pream-
ble. Permanent entities can be deleted by releasing their attributes, but all attributes of a
permanent entity should be released at the same time.

Local arrays are not automatically released whestuan statement is executed in rou-

tines in which the arrays appear.refease statement should therefore be executed be-

fore returning to the calling program unless the array has been declared as saved. In this

way fresh recursive arrays will be reserved each time the routine is executed while the same

saved arrays will be used each time. If the programmer neglects to release a recursive array,
that storage becomes inaccessible because the pointer to it is zeroed out on the next entry
to the routine.

171

SIMSCRIPT I1.5 Reference Handbook

2.78 RELINQUISH Statement
Therelinquish statement makes the specified number of units of the resource available
for automatic reallocation of resource units.

relinquish integer value [unit [s] of] resource [(integer value)]

EXAMPLES:

relinquish 1 WORKER(2)
Relinquishes one unit of the resource narWwORKE, of the second type (where
N.WORKE 2).

relinquish 2 MACHINE(JOB.TYPE)

Relinquishes two units of the resource naIMACHINL, of the typeJOB.TYPE, whose
value has either been assigned, or defineddefine ... to mean statement.

relinquish 3 units of MATERIAL

Relinquishes three units of the resource naMATERIAL, of which only one type exists.

A process that has previously requested some units of a resource may relinquish some or
all of them, using threlinquish statement. The number of units of the resource being
relinquished is added to the total quantity available.

If any processes are enqueued awaiting the resource, they are scanned from the front of the
gueue. Each is reactivated, with a corresponding reduction in the quantity of available units
of resource, until one is found whose request cannot be satisfied. The scan is then termi-
nated.

The process relinquishing the resource continues execution at the statement immediately
following the relinquish statemer.

The relinquish statement can appear only in process routines.

172

REMOVE Statement

2.79 REMOVE Statement

Theremove statement removes an entity from the named set.

Mthel first M
remove MMthel last [pointer variable from [the] set
Cthe [above] 0

Keywords Synonym
the [above] this
EXAMPLES:

remove first PATRON from RESERVATIONS(FLIGHT)

Removes the first entity from a set of the cRESERVATION and assigns the entity
identification to variablePATROI. The set owner is an entity whose identification is
contained in thiFLIGHT variable.

remove the STOCK.CERTIFICATE from the PORTFOLIO

Removes the entity whose identification number is the valSTOCK.CERTIFICATE
from the sePORTFOLIC. The set owner ithe system

remove the above FLIGHT from this WAITING.LINE(RUNWAY)

Removes the entity whose identification is the value of varFLIGHT from a set of
the clas WAITING.LINE . The set owner is an entity of the cIRUNWA.Y

Theremove statement, which removes an entity from the designated set, can remove the
first entity, the last entity, or a specific entity. If this statement specifies removal of the first
entity, the system removes the entity pointed to by attriF. se (first in set) of the set
owner. After removing the first entity, the system stores the pointer to that entity in the
named variable and places the second entity first in the set. The attribute values of the first
entity (e.g. S. se, theP. se and pointers) remain the same, except for the membership at-
tribute, V. se, which is set to zero. Conversely, if the statement specifies removal of the
last entity, the system removes the entity pointed to by attrL. se (last in set) of the

set owner. An alternative form of tremove statement removes a specific entity by using

the designated arithmetic expression, which must evaluate to the identification of the entity
to be removed. The successor and predecessor entities havP andS attributes
changed to reflect the removal. ~ fremove statement can appear in any routine, but it
cannot be included in the preamble.

The program terminates if the value of the designated arithmetic expression is not the iden-
tification of an entity currently in the set (denoted by a <>V. se) or if the named set is
empty.

173

SIMSCRIPT I1.5 Reference Handbook

2.79.1 Logical Expressions
The membership attribuiv. se provides both error checking and decisions regarding set
membership. The logical expressions:
entityisin set
entity is not in set
can be used iif ... else ... always constructs to determine if a specific entity is
filed in the set. In these logical expressions, the set name cannot be subscripted because

.se denotes class, not specific owner, membership. An entity cannot belong to more than
one set of a given class (e.g., the same kind of set owned by different entities) at one time.

The first pointer of each set is used to determine whether or not a specific set has members.
The logical expressions:

se is empty

se'is not empty

can be used for these decisions.

2.80 REPEAT Statement

Sec¢do ... loop construc.

174

REQUEST Statement

2.81 REQUEST Statement

Therequest statement is used by processes to request a specific number of resource units.
If not available, the requesting process is enqueL priority order and suspended
awaiting availability of the resource.

request integer value [unit [s] of] resource [(integer value)] [[] with priority
integer value]

EXAMPLES:

request 1 WORKER(2) with priority 2

Requests one unit of the resource naWORKE, of the second type (wheN.WORKER
2), and assigns a priority.

request 2 MACHINE(JOB.TYPE)

Requests two units of the resource na MACHINI, of the typeJOB.TYPE, whose val-
ue has either been assigned or defined define ... to mean statement. The
priority is treated as zero.

request 3 units of MATERIAL with priority 5

Requests three units of the resource ni MATERIAL, of which only one type exists,
and assigns a priority.

A process requests a quantity of any given resource urequest statement. If the re-
guested quantity of the resource is available, it is given to the process, and the process con-
tinues execution at the statement following request statement. If the requested
guantity is not available, the process is put in a passive state, and a special temporary entity
(qc.e) is created and filed in the set of resources associated with this prproces), as

well as X. resource orQ.resource (depending on whether or not the request has been
satisfied).

As the resource name is, in fact, a permanent entity name, it should be subscripted. Ifitis
not, the variable of the same name is used as an implicit subscript. This variable is initial-
ized to 1 at resource creation, but care should be taken if it is subsequently altered. Note
that some implementations use an implicit subscript value of 1. It is recommended that ex-
plicit subscripting be used in all cases.

An optionalwith priority expression may be added to request statement. The
gueue is ranked on high priority. If the phrase is not present, the priority is treated as zero.

The request statement can appear only in process routines.

175

SIMSCRIPT I1.5 Reference Handbook

2.82 RESCHEDULE Statement

Seeschedule statemer.t

176

RESERVE Statement

2.83 RESERVE Statement

The reserve statement allocates blocks of storage of the specified size to the variable. If
by* is specified, only pointer space (for multidimensional arrays) is allocated. Otherwise,
the data storage is also allocated.

reserve {variable ° as quantity°' [by *} °
Note: A real quantity will be rounded to integer.
EXAMPLES:

reserve column as 10

Allocates storage for a base pointer and ten data elements to the arraycolamed

reserve codes(*,*) as 4 by 5
Allocates storage for base and row pointers and 20 data elements to the array named
codes . Note that the optional (*,*) notation is used to emphasize the dimensionality
of the pointer variable.

reserve X, Y,and Z as 6 by 10
Allocates storage for base and row pointers and 60 data elements to each of the arrays
namedX, Y, andz.

reserve A(*) as N, MATRIX(*,*) as N by 2*N, and B(*) as S*T/2

Allocates storage for a base pointer adhta elements to the array namedor base
and row pointers, and\2 data elements to the array nanATRIX and for a base
pointer andST/2 data elements to the array nanded

reserve VALUES(*,*) as 7 by *

Allocates storage for seven row pointers to the base pMAtaIES*,*).

reserve DATA(L1,*) as 10

Allocates storage for ten data elements to the row poiDterA1,*).

reserve A(*) as 4, MATRIX(J,*) as N+5
Allocates storage for a base pointer and four data elements to the arrayAamned
for N+5 data elements to the row point@ATRIX J,*)

Thereserve statement, which allocates storage to data elements and to pointer variables,
can be used to reserve complete or partial arrays. A typical vector or rectangular array can
be reserved simply by naming the array and describing the dimensions; pointers required

177

SIMSCRIPT I1.5 Reference Handbook

for the data @ments need not be considefed complete arrays. When tlreserve

statement is executed, the system allocates storage for arrays, sets the value at the base and
other pointers, and initializes the elements of each array to zero. A subscripted variable
must be reserved before it can be used in any statement. The base pointer must be zero for
reserve to allocate new storage to the array. reserve statement is an executable
statement that can appear in any routine, but not in the preamble.

2.83.1 Dimensionality

The dimensionality of each array can be denoted by asterisks in subscript positions. These
asterisks can be omitted, however, and SIMSCRIPT II.5 will automatically supply
asterisks, causing the dimensionality to agree with specifications in enormally or

define ... variable statement. If the dimensionality has not been previously
declared, the system uses the number of expressions as the dimensionality.

2.83.2 AS Phrase

Theas phrase mustinclude one or more arithmetic expressions, each of which denotes an
array dimension. An arithmetic expression can include other subscripted variables if the
variables have been previously defined. When an expression yields a real value, that value
is rounded to an integer before being used as a dimension. An expression cannot yield a
zero or a negative value, as either will cause the program to terminate with an error mes-
sage.

2.83.3 BY * Phrase

A by * phrase is used when allocating storage for pointers. In this event, the pointer
variable (array name) must have at least one asterisk in a subscript position. When the
reserve statement includes by * phrase, the asterisk indicates that pointers are being
reserved and that subsequreserve statements will allocate data elements to the
pointers. Only onby * phrase is permitted to indicate that pointers are being allocated,
and this phrase must appear after expressions that define dimensions of preceding subscript
positions. If thi reserve statement does not contaitby * phrase, SIMSCRIPT 1.5
reserves a data array that is pointed to by the named pointer variable.

2.83.4 Pointers and Array Structures

Figure 9 illustrates sample one- and two-dimensional arrays that include the required point-
ers. As shown, each array has as many computer words as there are data elements in the
array, together with the number of words required for pointers. Data element blocks are
stored contiguously in memory. Pointers and data elements are related as follows:

1. For a one-dimensional array, the base pointer points to a vector of data elements (a
vector is a one-dimensional array).

2. For a two-dimensional array, the base pointer points to a vector of row pointers,
each of which points to a vector of data elements.

178

RESERVE Statement

3. For a three-dimensional array, the base pointer points to a vector of row pointers,
each of which points to a vector of column pointers, and each column pointer points
to a vector of data elements.

4. For higher dimensional arrays, similar relationships exist.

An array can be reserved in a piecewise fashion by allocating storage to individual pointers.
This is done by reserving a vector of pointers, and then, for each pointer in the vector, re-
serving a new vector of pointers, and so on. This can be carried on for as many dimensions
as are desired. When the desired "depth" is reached for a given pointer, a vector of data can
be reserved instead of a vector of more pointers. Note that in this scheme, each pointer
points to a "sub-array". By reserving arrays in this manner, the programmer can construct
ragged tables, manipulate matrices, and create special data structures. Because pointers are
storage addresses, they always have integer values.

RESERVE COLUMN AS 10

Elements Elements
COLUMN (1) CODES (1,1)
COLUMN (2) CODES (1,2)
Base Pointer COLUMN (3) CODES (1,3)
COLUMN (*) COLUMN (4) CODES (1,4)
COLUMN (5) CODES (1,5)
COLUMN (6) CODES (2,1)
COLUMN (7) CODES (2,2)
COLUMN (8) CODES (2,3)
COLUMN (9) CODES (2,4)
COLUMN (10) CODES (2,5)
CODES (3,1)
RESERVE CODES (*,*) AS4 BY 5 CODES (3,2)
CODES (3,3)
Row Pointers CODES (3/4)
Base Pointer CODES (1,%) CODES (3,5)
| CODES (*,*) / CODES (2,%) CODES (4,1)
CODES (3,%) CODES (4,2)
CODES (4,%) CODES (4,3)
CODES (4,4)
CODES (4,5)

Figure 9. Sample One- and Two-Dimensional Arrays

179

SIMSCRIPT I1.5 Reference Handbook

2.83.5 Function dim.f

Associated with each data or pointer vector is a number indicating the length of that vector.
Thedim.f function accesses this number. This function requires a pointer variable as an
argument and returns the length of the vector pointeditof eliminates the need to save

the values of dynamically-computed array sizes in some other variables.

2.83.6 Multiple RESERVE Statements

If a reserve statement is executed more than once, SIMSCRIPT II.5 disregards all but
the first execution. A nonzero base pointer shows that an array has been reserved. An array
reserved by &eserve statement can be returned to storage witllemse statement,

and the array (after execution of teiease statement) is undefined until reserved again.
Arrays can be reserved and released continually throughout program execution.

180

RESET Statement

2.84 RESET Statement

Thereset statement initializes counters usetaccumulate/tally statements.
reset [the] [name |° total[s] of variable ©
EXAMPLES:

reset totals of LIST

Initializes all counters required accumulate or tally variableLIST .

reset weekly totals of POPULATION(CITY)

Initializes theweekly counters required for attribuPOPULATIO! of entities of the
classCITY.

reset weekly and monthly totals of N.QUEUE and POPULATION(CITY)

Initializes theweekly andmonthly counters required for attributN.QUEUE and
POPULATION

Thereset statement initializes counters that are associated with variables named in the
statement and that are requirectally =~ andaccumulate statements. Eadally and
accumulate variable has a routine that initializes counters used in calculating statistical
guantities. Some of these counters are not zero initially. The initializing routines are
namecR. name, wherename is the variable or attribute being tallied or accumulated.

Qualifying words in &eset statement enable reports to be prepared on both a cumulative
and periodic basis at the same time. The appearance of one or more quali reset a
statement specifies that only the indicated counters, definecaccumulate or tally

statement for a particular statistic, are to be reset. Any number of qualifiers can be request-
ed. If areset statement does not include qualifiers, all counters associated with the
named variables are initialized.

Thereset statement can appear in any routine, but not in the preambile.

181

SIMSCRIPT I1.5 Reference Handbook

2.85 RESOURCES Statement

The resources statement is a preamble statement marking the start of resource entity
declarations.

resources [include resource ‘]

Keyword Synonym
include are
EXAMPLES:
resources

Denotes that resource declarations follow. The declarations will be madevery
statements, and will name user-defined attributes.

resources include TELLER and AUTOMATED.TELLER.MACHINE

IdentifiesSTELLER andAUTOMATED.TELLER.MACHIN as resources requiring only the
system-defined attributes for resourcEvery statements may follow this form of the
resources Statement.

Theresources statement indicates that resource classes are declevery statements

that immediately follow, or in thinclude phrase of thresources statement. If a re-

source class has attributes in addition to the system-defined attributes, those attributes must
be declared in aevery statement. Automatically-generated resource attributes appear in
table 23.

Table 23. Automatically Generated Resource Attributes

Attribute Significance Attribute of
N. resource Number of resources in class. System
U. resource Number of resource units per resource. Resource
Q.resource Set of processes waiting for a resource Resource
N.Q. resource Number of processes waiting for a resource. |Resource
X. resource Set of processes currently using a resource. |Resource
N.X. resource Number of processes currently using a resourc{ Resource

182

RESTORE Statement

2.85.1 Resource Classes

A resource class is similar to a permanent entity class: The preamble declares a group of
similar entities, while an individual entity is referred to by an integral subscript in the range
1 toN. entity.

In therequest or relinquish statement, individual resources are referred to by sub-
scripts of the resource class. For example:

request LOTSIZE units of CANNER(7)
relinquish 1 PROCESSOR(CPU.NO)

As with permanent entities, attributes of resources are specified by subscripting the at-
tribute name with the resource number.

The create each statement is used to create the resources in a resource class, which
should be done before any resources are requested or any resource attributes are referenced.
The number of resources must be specified either inréage each statement or by
assigning a value to the system attribiuiteesource

2.85.2 Resource Units

Resource units are a measure of the total capacity of a resource or some fraction thereof.
Each resource in a resource class has an integral capacity of resource units. The maximum
available resource units for a resource is the subscripted attdilnaésource

In some cases (e.g. bank tellers), the number of resource units may be unity. In others (e.g.
a machine capacity), the number of resource units may differ among resources in a resource
class.

Each resource of a resource class should be assigned an integral value of the number of re-
source units available by changing theesourceattribute. The following examples illus-
trate howuU. resourceis assigned a value for each resource in a resource class.

for each MACHINE, let U.MACHINE = CAPACITY
read U.PRINTER "reads for | =1 to N.PRINTER

The value ol. resourceis initially zero.

2.86 RESTORE Statement

Not available for all implementations. Sdser's Manuafor your computer type.

183

SIMSCRIPT I1.5 Reference Handbook

2.87 RESUME Statement

Theresume statement is used to restore a previously-interrupted process to the pending
list with the remaining "time-to-go" taken fratime.a (proces) .

resume [the [above]] process [called pointer variable]
Keywords Synonym
the [above] this
EXAMPLES:

resume the GENERATOR

Resumes GENERATC that had previously been interrupted and removed from the
pending list. Th GENERATC is placed back in the pending list to resume its waiting
period.

resume SHIP called OTHER.SHIP

Resumes thSHIP with the pointer variablOTHER.SHIP that had previously been in-
terrupted and removed from the pending OTHER.SHIP is placed back in the pend-
ing list to resume its period of work.

A previously-interrupted process may be returned to the active state, that is, replaced in the
event set, by resume statement. The statement may be issued by any other routine nam-
ing the interrupted process (including another process routine).

Thetime.a attribute at the time of resumption is used to schedule the end of the (active)
or (passive) state. Itis incremented by the cutime.a before being used as a ranking
attribute for filing in the event set (or any other set).

Theresume statement can appear in any routine, but not in the preambile.

184

RESUME SUBSTITUTION Statement

2.88 RESUME SUBSTITUTION Statement

Theresume substitution statement reinstates the substitutions previously nullified by
asuppress substitution statement.

resume substitution

Only one form of this statement exists.

Substitutions declared tdefine ... to mean andsubstitute statements, which

were subsequently nullified bysuppress substitution statement, are reinstated

with aresume substitution statement. This statement should appear on a card by it-
self because substitutions are nullified for a complete card before the contents are interpret-
ed. If other statements appear on the same carresume substitution statement,
substitutions will not be resumed for these statements befcresume substitution

statement is recognized. 1 resume substitution statement can appear in the pre-
amble or in any routine.

185

SIMSCRIPT I1.5 Reference Handbook

2.89 RETURN Statement

Thereturn statement returns program control to the calling program from a subroutine or
from a function routine, and returns to the timing routine from an event routine.

return f'with quantity]
[(quantity) 0
EXAMPLES:
return

Returns control to the calling program if return statement appears in a subroutine,
or to the timing routine if threturn ~ statement appears in an event routine.

return(sqgrt.f(X)) " 'sqgrt.fis a library function

Returns control to the calling program from a function routine with the square root of
X. Commentary text follows the two apostrophe characters.

return with NUMBER

Returns control to the calling program from a function routine with the value of variable
NUMBE R

A return statement must appear in each subroutine, function routine, and event routine,
in order to return control to the calling program or to the timing routine. An event routine
always returns to the timing routine, which is the central routine in a simulation model. A
routine can have more than creturn statement to indicate different exits, and each exit
can return a different value.

Subroutines and event routines use only the keyreturn , but a function routine re-
quires either of the following forms:

return (quantity)
return with quantity

In functions, the value of the quantity is computed before the function returns to the calling
program, and the quantity must be in the mode declaredefine ... routine state-
ment.

A routine can be both a subroutine and a function if that routine includes both types of
return statements. In such a case, when control returns 'return statement to the
calling program, the values assignecyielding arguments are used by the calling
program. When the routine returns fronreturn with statement, a single value is
returned to the calling program.

186

REWIND Statement

2.90 REWIND Statement

Therewind statement rewinds an input/output device.

rewind tape T integer value
funit
EXAMPLES:
rewind 5

Rewinds the unit identified by the numis.r

rewind unit MESSAGES

Rewinds the unit whose number is the value of variMESSAGES

Therewind statement "rewinds" the input/output device whose identification is the value
of an expression. That is, this statement positions a file on a device to its starting point (first
record). Rewind can be used to rewind tapes, disks, and drums. After a unit is rewound,
that unit must appear ir use statement or in thusing phrase of #ead (Free-form),

read (Formatted), or write statement before reading or writing can occur. If the
designated unit is the current input unit wherewind statement is executed, SIMSCRIPT

[1.5 makes the card reader the input unit. If the designated unit is the current output unit,
SIMSCRIPT II.5 changes the output unit to the printer. Of course, the card reader and the
printer cannot be rewound. Trewind statement can appear in any routine, but it cannot
be included in the preamble.

187

SIMSCRIPT I1.5 Reference Handbook

2.91 ROUTINE Statement

Theroutine statement marks the beginning of a subroutine or of a function routine. The
prefixleft orright is used for declaring monitoring routines. A routine used as a func-
tion has onlygiven arguments.

Elr?g];th . FDroutine [to] routine E?\Z/%r; C)va/ue ¢ FD[yieIding variable |
Keywords Synonyms
routine function
subroutine
to for
given giving
the
this
EXAMPLES:

routine SOURCING
NamesSOURCIN(as a routine having no arguments.

left routine RESULT
NamesRESUL as a left-hand routine having no arguments.

routine FINANCIAL(SHARES, PRICE)

NamesFINANCIAL as a routine having variablSHARE: andPRICE as input argu-
ments.

routine to PRINT.MESSAGE given MESSAGE and LENGTH yielding FLAG

NamesPRINT.MESSAGt as a routine having variabIMESSAG andLENGT! as input
arguments anFLAC as an output argument.

Theroutine statement, which must be the first statement of each subroutine and function
routine, is used for both left-hand and right-hand routines. routine statement names

a subroutine, that name must appearcall statement in order to execute the subroutine.
Subroutines can have both input and output arguments. Arguments are automatically de-
fined as local recursive variables. They need not be decladefine ... routine

statements in the preamble.

188

ROUTINE Statement

If theroutine statement names a right-hand function, that function is called by specifying
its name, followed by any arithmetic expression enclosed in parentheses. Subsequently,
when the function routine is called, values of expressions in the argument list are trans-
ferred to local variables in the routine, and the function returns a single value. A function
mus be declared in define ... routine statement in the preambile.

If the routine statement names a left-hand function, it is also called by specifying its
name and a list of argument expressions. This will appear, howeverleft of an equal
signinelet statement, asyielding argument to another routine or iread statement.
Instead of returning a value to the calling routine wiwith statement, a left-hand func-

tion receives a value from the calling routine vieenter with statement. From there,

a left routine can perform computations like any other program. Left routines are always
used in the function sense rather than as subroutines to be called. All ft mus be
declared in the preamble irdefine ... routine statement.

2.91.1 Routines Named TO and FOR

If a subroutine or function is named eitlTC or FOF, the routine name and the optional
wordsto andfor must be used in a prescribed manner in order to compile correctly. Only
the following forms will be compiled:

routine to TO routine for TO
routine to FOR routine for FOR

The practice of naming a routiTC or FOF should be avoided.

2.91.2 GIVEN Phrase

Thegiven phrase can be used for either a subroutine or a function. For both types of rou-
tines, arguments in the phrase must be unsubscripted local variables. These will receive
values from the calling routine.

2.91.3 YIELDING Phrase

Avyielding phrase can be appended toroutine statement for subroutines. It is not
used for functions (although sreturn statement for routines used both as subroutines
and functions). Arguments included iryielding phrase must be unsubscripted local
variables. These will transmit values from the called routine to the calling routine.

2.91.4 Argument Definitions

A define ... routine statement in the preamble can declare the number of arguments
for a subroutine or function. If the number of arguments iroutine anddefine ...
routine statements disagree, SIMSCRIPT II.5 takes the following corrective action:

1. Disregards additional input and output arguments iroutine statement.

189

SIMSCRIPT I1.5 Reference Handbook

2. Considers omitted input arguments to be zero.
3. Reserves locations for missing output arguments so they can receive output values.

If the define ... routine statement contains only given arguments, the called routine
is assumed to yield no values. If define...routine statement contains only yield-
ing arguments, the called routine is assumed to have no given values.

2.91.5 Argument Modes

Disagreements in mode between argumencall statements and corresponding argu-
ments inroutine statements can be difficult to discover because the effects are subtle.
For example, an integer number used as a real number (converted to floating point with an
exponent) can effectively be zero. SIMSCRIPT I1.5 does not automatically check for or
convert argument values whose mode differs from that specified in the called routine.

190

SCHEDULE (event) Statement

2.92 SCHEDULE (event) Statement

Theschedule statement schedules the future occurrence of an event by filing an event no-
tice in the relevant event set.

schedule fa Fevent [called pointer variable] fniven value ¢]
lthe [above]] [{value) O
0 0
Fat auantity r
now r
] rdayls] n r
rin quantity Thourls] n 1
O Cminute[s] o d
Keywords Synonyms
schedule reschedule
cause
For a new event:
a an
For an existing event:
the [above] this
given giving
now next
in after
day/[s] unit[s]

EXAMPLES:

schedule a DELAY at time.v + 0.5

Creates an event notice of the cIDELAY, assigns the identification to global variable
DELAY, sets attributtime.a equal to the value of expresstime.v + 0.5, and files
the notice in the event set.

schedule the LANDING called EMERGENCY in 2 * READY minutes

Uses an existing event notice of the cLANDING, whose identification is assigned to
variableEMERGEN(, sets attributtime.a to the value of the current time plus 2 *
READ" minutes, and files the notice in the event set.

191

SIMSCRIPT I1.5 Reference Handbook

schedule a TAKEOFF given FLIGHT.NO, DEST.CODE, and NO.FIRST +
NO.TOURIST+ NO.ECONOMY in 3 hours

Creates an event notice of the cITAKEOFI, assigns the identification to global
variable TAKEOFI, sets the value of attributime.a to the current time plus three
hours, stores values of expressiFLIGHT.NO, DEST.CODE, andNO.FIRST +
NO.TOURIST + NO.ECONOW in attributes that immediately follow the special
attributes, and files the notice in the event set.

schedule a TAKEOFF(FLIGHT.NO, DEST.CODE, and NO.FIRST + NO.TOURIST
+ NO.ECONOMY) now

Creates an event notice of the cCTAKEOFI, assigns the identification to global variable
TAKEOFI, sets the value of attributime.a to the current time, stores values of
expressionsFLIGHT.NO, DEST.CODE and NO.FIRST + NO.TOURIST +
NO.ECONOWM in attributes that immediately follow the special attributes, and files the
notice in the event set.

Theschedule statement, which is used only for simulation, schedules the future occur-
rence of an internal event for the named class. This statement assigns values to event notice
attributes and files the notice in the eventev.s . In each event set, event notices are
ranked in ascending order of attribute (the time the event is to occur). Depending on the
form selected, this statement can create an event notice or use an existing one, can schedule
an event to occur at a future time, at some relative time, or at the current time, and can as-
sign values to attributes of the event notice. It can appear in any routine, but not in the pre-
amble. In this statement, the keywoan andthe are important:An designates that an

event notice is to be created, withe indicates that the event notice already exists.

Figure 10 illustrates a sample event notice which assumes that at ‘FLIGHT.NO,
DESTINATION, andNO.PASSENGEF were declared in aevery statement for an event

notice of the clasTAKEOFI. Theschedule statement assigns the event time to attribute
time.a and always seeunit.a to zero because the event is being scheduled internally.

In addition, this statement assigns values to attributes used only by the timing routine:
p.ev.s (predecessorinsels.ev.s (successorinset),am.ev.s (membership in set).

If the schedule statement includes expressions whose values are to be assigned to
attributes, the values are assigned in the order of their appearance. When an event notice
owns sets, or belongs to sets, owner and member attributes follow attributes declared by the
programmer.

2.92.1 CALLED Phrase

A called phrase included inschedule statement indicates either 1) that the identifica-

tion of the event notice is to be assigned to the named variable rather than to the global vari-
able having the event class name; or 2the keyword signals that an event notice already
exists, SIMSCRIPT II.5 assumes that the variable named icalled phrase contains

the event notice identification.

192

SCHEDULE (event) Statement

2.92.2 GIVEN Phrase

A given phrase assigns values to attributes of the event notice. These values in turn are
assigned by the timing routine as arguments for the respective event routine when it is ex-
ecuted. Thischedule statement assigns values of expressions to successive attributes of
the event notice, starting with the attribute that follows . Values are assigned to program-
mer-defined attributes in the same order in which attributes apgevery statements in
thepreamble . (Use ofin word phrases to arrange physical storage of attribute values
does not influence the order of selection of event arguments.) If there are fewer expressions
than attributes, SIMSCRIPT I1.5 assigns zeros to the remaining attributes. If no expres-
sions appear in the statement, and an event notice has defined attributes, the attributes are
setto zero. The keywc given can be omitted if expressions are enclosed in parentheses.

WORD 1 time.a

time event is to occur

2 eunit.a

= 0 for internal; (O for external

3 p.ev.s

predecessor in event set

4 S.ev.s

successor in event set

5 m.ev.s

membership attribute
6 flight.no

declared attribute for this event
7 destination

declared attribute for this event

8 no. passengers

declared attribute for this event

Note: The first five sample event notices are system maintained.

Figure 10. Sample Event Notices

2.92.3 AT Phrase

Theat phrase, which denotes when in the future the named event is to occur, sets attribute
time.a to the value of an expression. The expression must yield a real Time.a is

used to file this event notice in the event set in chronological order (the event set is ranked
on lowtime.a).

193

SIMSCRIPT I1.5 Reference Handbook

The value otime.a is used to updatéme.a , the current simulation time, whenever an
event notice or a process notice is selected from the event set by setting itnbe.the
value of the first event or process in the event set. The systetimgets to zero at the
start of simulation and increas@se.v as the simulation progresses. An absolute time
must always be specified in an phrase.

2.92.4 IN Phrase

Anin phrase specifies the relative time at which an event is to occur. This phrase enables
the programmer to schedule an eveninat.v plus a designated number of days, hours,

or minutes. (The keywonghits can be used in placeddys .) The units ofime.v are

days if thedays, hours , or minutes keywords are used in this phrase.hdfirs or

minutes is specified, the hours or minutes are automatically converted to days using the
system variableBours.v and minutes.v . The system initializelsours.v to 24 and
minutes.v to 60, but the programmer can modify these valueiméfv runs in units

other than days, thenits keyword should be used in &an phrase.

2.92.5 NOW Phrase

An event scheduled withrw phrase occurs as soon as the current event or process returns
control to the timing routine. Such an event will occur before any events or processes
having the same event time, scheduled previouslyawittrin phrases. Whesthedule
statements includeow phrases for two or more events, the events are ranked according to
the priority statement if they are of different classes, according toriek ...

ties statement if that statement appears for the event class, or first-in, first-btdgaka

... ties statement has not been included for the event class.

194

SELECT CASE Statement

2.93 SELECT CASE Statement

Theselect case statement is useful for distinguishing several cases in control flow. In-
stead of writing nesteif statements, selectcase statement can be written. The syn-
tax is:

select case EXPR
case CONST_LIST
STMT_GROUP
case CONST_LIST
STMT_GROUP
endselect

Meaning of the statement elements:

EXPR Expression of any mode.

CONST_LIST List of constants (of the moEXPF) that will select this case. Multiple
values are separated by commas.

The modes cEXPF andCONS must agree.

If EXPF is numeric integer, real or double), the values used as
CONS must be numeric.

If EXPF is of modealpha or text , thenCONS must be a literal string
delimited by double quotes.

If EXPF is a subprogram variablCONS must be a subprogram literal
delimited by single quotes.

STMT_GROUIGroup of statements to be executed in the selected case (0 or more state-
ments).

EXAMPLE:

‘- - switch on entered CMD

select case CMD

case “ON” STATUS =1

case “OFF” STATUS =2

case “E" * - - nothing happens here

default write as “*** illegal CMD ***”//
endselect

195

SIMSCRIPT I1.5 Reference Handbook

2.94 SKIP Statement

Theskip statement skips fields, records, and lines, and applies to the current input or cur-
rent output unit.

Mfields r]
[] 0 0
skip quantity Olinput 0 Cline[s] o d
OCoutput O Crecord[s] o d

Note: A real quantity will be rounded iinteger . Record[s] implyinput ; line[s]
imply output.

EXAMPLES:

skip 4 fields

Skips four fields on the current input unit.

skip 1 line

Skips one line on the current output unit.

skip 2 * (n - m + 1) records

Skips the remainder of the current record on the input unit, as well as a number of
records equal to the value of the expression minus one.

Theskip statement skips fields, records, and lines on either the current input or the current
output unit. The keyworfields specifies that some number of input data fields are to be
skipped. Data fields are contiguous strings of characters delimited by at least one blank.

When the system reads a field, it waits at (i.e., points to) the end of the field for the next
read (Formatted) statement. To skip a field means to position the input pointer at the end
of the field without reading it. Skipped fields can be on several input cards. Note that when
the system reads a field at the end of a data card, that card is retained until read iext
orskip statement is executed.

Using theskip fields statement with formatteread statements requires keeping very
careful track of where the input pointer is, and on which input recoread (Free-form)
statement automatically reads data values as they occur on input cards regardless of their
exact position.

When skipping records on the current input unitskip statement can skip the remainder
of a current data record when writterskip 1 record . The statement:

skip QUANTIT) records

skips the remainder of the current data record and th QUANTIT)-1 records.

196

SKIP Statement

When skipping output lines, the following rules apply:
1. If the value of the expression is negative, the system sets that value to zero.

2. If the value of the expression is greater than the vallines.v ~ (number of lines
permitted per page), the value of the expression is set to the v llines.v
Thus, the maximum number of lines that can be skipped with this statement is one

page.

When skipping records, or lines, the input (output) pointer is positioned at the beginning of
the next input (output) record.

197

SIMSCRIPT I1.5 Reference Handbook

2.95 START NEW Statement

Thestart new statement starts a new page, a new record, or a new line, and is applied
to the current input or output unit.

Hoage r
r rnri
start new Mlinput 1 Tline rn r
OCoutput 0 Crecord o o

Note: Record implies inputjline implies output.

EXAMPLES:

start new page

Ejects a page on the current output unit.

start new record

Starts a newrecord on the current input unit.

start new output record
Starts a ne'record on the current output unit.
Thestart new statement can be used to skip the remainderrecord on the current

input unit, to eject a page before printing, and to start a new line on the current output unit.
This statement can appear in any routine, but it cannot be included in the preamble.

198

START SIMULATION Statement

2.96 START SIMULATION Statement

The start simulation statement begins a simulation by passing control to the timing
routine, which removes the first event notice from the event set and executes that event.

start simulation

Only one form of this statement exists.

The start simulation statement causes the timing routine to begin selecting and
executing events and processes from the event set. Vstartsimulation statement

is executed, the timing routine first initializes the external event reading mechanism, if
there are any external events. It reads information regarding the first event named on each
external event unit, schedules the first event from each unit, and initializes the system for
subsequent external events. The first event is selected from the event set and executed.
While events are being executed, the timing routine, which is called kstart

simulation ~ statement, controls program execution. When the timing routine finds no
more scheduled events in the event set, program control transfers to the statement that

follows thestart simulation statement. Therefore, a simulation can be stopped by
simply ceasing to schedule future events. Control will then eventually pass to the statement
after thestart simulation statement when events that are currently scheduled have

been executed.

Every simulation model must havestart simulation statement. The statement can
appear in any routine, but not in the preamble.

199

SIMSCRIPT I1.5 Reference Handbook

2.97 STOP Statement
Thestop statement halts program execution and is used to signal the logical end of a pro-
gram and return control to the operating system.

stop

Only one form of this statement exists.

Thestop statement, which terminates program execution, can appear in any routine, but
cannot be included in the preamble. A program can have any nunstop Statements,
and this statement need not be placed at the physical end of the program deck.

To exit from the program and return status to the operating system, you cexit.r
instead of thestop statement.

200

STORE Statement

2.98 STORE Statement
The store statement sets a variable equal to the value of an expression, without mode
conversion.

store valuein variable

EXAMPLES:

store XinY

Stores the value X in variabley.

store pi.c * R**2 in CONSTANT "pi.c is a system variable
Storesnr? as the value « [CONSTAN. Commentary text follows the two apostrophe
characters.

store "laff" in MOVIE(FLIGHT)

Stores the alphanumeric litellaff as the value of attribuMOVIE for entity class
FLIGHT.

Thestore statement permits the value of an expression to be assigned to a variable with-
out altering the mode of either the expression or the variable. It is similarllet state-

ment, although when mixed modes appearlet statement converts the expression to
the mode of the variable. For example,store statement can be used to store integer or
real values in real variables when one does not la priori whether the mode of the value

will be real or integer. This statement can appear in any routine, but it cannot be included
in the preamble.

An arithmetic expression specified in istore statement can be any of the following:

1. Aninteger expression, which can be a data value, an array pointer, or an entity iden-
tification number

An integer constant
A real constant or expression

An alphanumeric variable or literal

a r NN

A subprogram variable.

201

SIMSCRIPT I1.5 Reference Handbook

2.99 SUBSTITUTE Statement

Thesubstitute statement permits a string to be substituted for a word in the succeeding
statements. The string can appear on one or more cards.

substitute Cthis (integen line [for string i
lthese integer lines r]
O O
EXAMPLES:

substitute this line for X
matrix

Substitutes the worMATRIX for the characteX.

substitute this line for FORMULA
A*X**2+B*X+C

Substitutes the expressiA * X**2 + B* X + C for the wordFORMULA

substitute these 2 lines for INPUT.FORMAT
B5,110,S 3,D(7,2),/,B 25,316

Substitutes the strit B5,110,S 3,D(7,2),/,B 25,316 for the word
INPUT.FORMA.

substitute these 3 lines for ANSWER

letX=A+B
call CALCULATE(X)
go to NEXT

Substitutes:
letX=A+B
call CALCULATE(X)
go to NEXT

for the wordANSWE =R

The substitute statement replaces the designated word, which may be a name, a
number, an alphanumeric literal, or a character, with the lines that immediately follow the
statement. During compilation, whenever the compiler detects the specified word, it
substitutes the string for the word and compiles the statement with the substitution. This
statement is similar to tldefine ... to mean statement, bisubstitute permits a

string to appear on several individual cards. substitute statement offers extensive
capabilities for generating macro instructions; whole sequences of statements can be

202

SUBSTITUTE Statement

inserted directly into a program. Substitution can appear in strings foisubstitute
or define ... to mean statements permitting several levels of substitution.

The substitute statement can appear anywhere in the preamble and in routines. When
it appears in the preamble, the substitution affects the entire program. In a routine, the
substitution is local and affects only that routine until supersedesuppress
substitution statement can override the effect ‘substitute statement, while a
resume substitution statement can reinstate the effect.

2.99.1 Purposes of SUBSTITUTE
Thesubstitute statement can be used for any of the following purposes:

1. To change a word in a routine to the same word used in other routines in a large
program.

2. To change statement keywords to another vocabulary.

3. To define a macro instruction, that is, a compound instruction generated from a sin-
gle keyword.

4. To define format strings in order to call them by name, so as to minimize the num-
ber of characters that must be written when several statements have identical format
lists.

5. To define names as synonyms, substitute one variable name for another, and replace
a name with complete statements.

Redefining statement keywords must be handled carefully to avoid substituting a new
string for an optional keyword, or for any other characters that might cause incorrect com-
pilation because the statement syntax was not followed.

2.99.2 Rules

The following rules apply to thsubstitute statement:

1. Aline to be substituted cannot contain comments, cannot consist entirely of blanks,
and cannot be the form line oprint statement.

2. Substitution will not take place if the word is embedded in nonblank characters.

203

SIMSCRIPT I1.5 Reference Handbook

2.100 SUBTRACT Statement

Thesubtract statement subtracts the value of an arithmetic expression from the value of
a variable, and the difference becomes the new value of the variable.

subtract quantity from variable

EXAMPLES:

subtract 2.5 from X
Subtracts 2.5 from the value of variaX.e
subtract COLUMN(I) from LIST(l) "one-dimensional arrays

Subtracts thi " element in arraCoOLUM from thel t element in arraLIST . Com-
mentary text follows the two apostrophe characters.

subtract CONSUMED.FUEL(FLIGHT) from TOTAL.FUEL(FLIGHT)

Subtracts the value of attribt CONSUMED.FUE from the value oTOTAL.FUEL for
the entity whose identification number is contained in the varFLIGHT.

Thesubtract statement, which subtracts the value of an arithmetic expression from the
value of a variable, is similar to tlet statement, although tlsubtract statement in-
cludes the subtraction operator in the statement itselfsubtract ~ statement can appear

in any routine, but not in the preamble. If the expression and the variable differ in mode,

SIMSCRIPT II.5 converts the expression to the mode of the variable before assigning the
difference to the variable (see llet statement for conversion rules).

2.100.1 Complex Subscripted Variables
Before compilation, thsubtract statement is translated to:
let variable = variable - quantity

If the variable has complex subscript references, it is more efficient to compute the sub-
scripts separately than to have the compiler compute them twice. For example:

subtract 1 from X(Y*(AB-2),DIFF**N)
translates to:

let X(Y*(AB-2),DIFF**N) = X(Y*(AB-2),DIFF**N) - 1

204

SUBTRACT Statement

which causes the subscrify*(AB-2) andDIFF**N to be evaluated twice. To conserve
storage space and computer time, subtract statement could be written as:

let | = Y*(AB-2)
let J = DIFF**N
subtract 1 from X(l,J)

2.100.2 Subscripts Containing Functions
If the subscript of the variable is a function, or contains a function, unexpected results can
occur. This is especially true when a function is involved that has side effects, such as call-
ing the random number generator. For example:

subtract 1 from TABLE(uniform.f(A,B,1))
translates to:

let TABLE(uniform.f(A,B,1)) = TABLE(uniform.f(A,B,1)) - 1

before compilation. This causes two random numbers to be generated, and possibly two dif-
ferent elements ctable to be accessed. The intent may have been:

let | = uniform.f(A,B,1)
subtract 1 from TABLE(I)

2.100.3 Error Messages

A subtract statement having complex subscripted variables or function references can
cause duplicate error messages to be produced because of intermediate translations.

205

SIMSCRIPT I1.5 Reference Handbook

2.101 SUPPRESS SUBSTITUTION Statement

Thesuppress substitution statement nullifies all current substitutions.
suppress substitution

Only one form of this statement exists.

The effect ¢ define ... to mean anc substitute statements is nullified by a
suppress substitution statement. This statement should appear on a card by itself,
because a substitution takes place for a complete card before the contents are interpreted.
If other statements appear on the same card' suppress substitution statement,
substitutions are made for these statements beforsuppress substitution

statement is recognized. 7 suppress substitution statement can appear in the
preamble or in any routine. All substitutions are reinstated wiresume
substitution statement.

206

SUSPEND Statement

2.102 SUSPEND Statement
Thesuspend statement is used to place the current process in the passive state and return
control immediately to the timing routine without destroying the current process.

suspend [process]

EXAMPLES:

suspend

Places the current process (corresponding to the routine in which the statement appears)
in the passive (created) state, and returns control immediately to the timing routine.

suspend process "ship

The same as above, with an optional keyword and a comment adding to the clarity of
the statement.

When executed in a process routine suspend statement causes the current process to

be placed in a suspended state and control to be relinquished to the timing routine. The pro-
cess will not resume execution unless the model saves the pointer to the process notice and
another routine reactivates the process. Once reactivated, the process resumes execution
after thesuspend statement.

The suspend statement may only appear in a process routine.

207

SIMSCRIPT I1.5 Reference Handbook

1.103 SYSTEM Statement

Seethe system statemer.t

1.104 TALLY Statement

Seeaccumulate/tally statemer.t

208

TEMPORARY ENTITIES Statement

1.105 TEMPORARY ENTITIES Statement

Thetemporary entities statement indicates thevery statements which follow de-
clare temporary entities.

temporary entities [include entity]

Only one form of this statement exists.

Thetemporary entities statement, which can appear only in the preamble, indicates
that entity classes named in the followevery statement are temporary. Storage for each
entity of the entity class is allocated individually as the entity is created \create
statement. Seve temporary entities statements may appear in the preamble, and
each can be followed by a grouj every , define ... variable , anddefine ...

set statements.

209

SIMSCRIPT I1.5 Reference Handbook

1.106 THE SYSTEM Statement

A the system statement specifies attributes of the system and sets owned by the system.
It also specifies optional attribute packing, equivalencing, word assignments, and func-
tions.

rhas 1 Cfunction oy [
rl Fa attribute [(packing code)] T'in Tarrav [integer rr] r]
the system r M N rword 1] o n
r [l c 0 0 0 oo r
r owns {a sei} r]
0
Keywords Synonyms
has can have
may have
a an
the
some
EXAMPLES:

the system has a CONTROL.VALUE and a CODE
Declares thaCONTROL.VALU andCODI are system attributes.

the system has some RULES and owns a QUEUE
Declares thaRULES is a system attribute and ttQUEUI is a system-owned set.

the system ownsa QUEUE andhasan F.QUEUE inarray 1and an L.QUEUE
in array 2

Declares theQUEUI is a system-owned set, and that the first-in-set poitF. QUEU.:
are to be assigned to array one and the last-in-set pc L. QUEU|, to array two.

the system has some FAA.REGULATION.NO(*/4)

Declares that values of the system attritFAA.REGULATION.NC are to be intra-
packed with four consecutive values per word.

the system has a (CONTROL.VALUE(L/2), CODE(3/4), NUMBER(17/24))

Declares thi CONTROL.VALU, CODI, andVALUE are system attributes. A value of
control.value is to be stored in the first half of a word, a valueCODI in the third
guarter of the same word, and a valuNUMBE in bits 17 through 24 of the same
word.

210

THE SYSTEM Statement

the system has a DECISION function and a NEW.RULE
Declares thaDECISION is a function attribute arNEW.RULI is an attribute.

A the system statement declares system attributes and sets owned by the system. Sys-
tem attributes are particularly useful as pointers which enable the system as a whole to own
sets. Another advantage of system attributes is that they can be packed, equivalenced, or
placed in specific array locations, while global variables cannot. In the statement format,
the keywordshe system are followed by attribute phrases and set-owner ph hass:
denotes an attribute phrase w owns denotes a set-owner phrase. The phrases can be in
any desired order, and more than one of each phrase type can appear in a single statement.
In an attribute phrase, names can be made equivalent (synonymous), and packing factors
can be included to declare the word portions, or specific bits, to be occupied by values of
an attribute. In addition, values of system attributes can be assigned to specific array loca-
tions, enabling the compiler to generate more efficient code than it can when array assign-
ments are omitted.

Other variations of an attribute phrase are used to name function attributes and dummy at-
tributes.

The following general rules apply tcthe system statement:

1. More than one cthe system statements can appear in the preamble.

2. The current background mode is assigned to the declared system attributes, except
for automatically generated set pointers, which always have integer values. Mode
can be overridden with subsequ define ... variable statements.

3. System attributes are subscripted if the current background dimensionality is
greater than zero. Dimensionality can be overridden in subsedefine ...
variable statements.

4. Subscripted system attributes used as data, or as set pointers, must be reserved with
areserve statement before the attributes can be used.

5. Subscripted system-owned sets can be defined by setting the background dimen-
sionality so that set pointers are arrays.

The same data value can be given several names by placing the names in parentheses, sep-
arated by commas, in an attribute phrase. A value will thereby occupy a memory location
that is referenced by several names.

Equivalent attributes are assigned to the same computer word. Any attribute can be equiv-
alenced, except text attributes, which can only be equivalenced to other text attributes.

1.106.1 Packing

Packing is defined as storing two or more values in a single word. Values can be packed
into fractions of a word (e.g., a byte), or into specific bits, or several values of one attribute
can be packed into a single word. lthe system statement, packing is specified by ap-
pending a packing factor, enclosed in parentheses, to an attribute name.

211

SIMSCRIPT I1.5 Reference Handbook

Field packing designates which fraction of a word — typically a half, quarter, or sixth —
is to be occupied by values of the named attribute. For example, the packing factor (1/2)
specifies the first half of a word, and (4/4) specifies the fourth quarter of a word.

A bit packing factor designates bits to be occupied by values. For example, a bit packing factor
of (7-10) specifies that values of an attribute are to occupy bits 7 through 10 of a word. Bits are
numbered sequentially from left (most significant) to right (least significant) starting with 1.

An intrapacking factor is specified I(*/integer). The asterisk denotes intrapacking,
and/NTEGEF is the number of values to be packed per word. For example, intrapacking
notation(*/2) packs two consecutive values per word.

The following rules apply to packing:

1. Packing is specified by appending a packing factor, enclosed in parentheses, to an
attribute name.

2. If values of more than one attribute are to occupy the same word, the attribute names
must be enclosed in parentheses, separated by commas, for e)(first
(1/2), second(4/4)).

3. More than one group of attributes to be packed can be specified in athe gle
system statement.

4. System attributes can be packed, but global variables cannot.

Integer and alpha values can be packed, but text values cannot. Real values and set
pointers may or may not be packed, depending on the implementation.

6. All integer and alpha subscripted system attributes can have field, bit, and
intrapacking. Zero-dimensional system attributes cannot be packed in any way.

7. Overlapping packing specification is allowed.
8. If two attributes have the same packing factors, their names are synonymous.
9. Packing does not apply to function attributes or dummy variables.

10.The default for packed integers is unsigned. Signed integers can be specified in a
define ... variable statement.

1.106.2 Function Attributes

A function attribute is defined as an attribute whose value is computed by a function rou-
tine. Consequently, a routine must be written having the same name as the attribute, and
the system does not allocate storage in entity records for the values.

2.106.3 Dummy Variables

A dummy attribute, which does not have a storage location, must be decle define
statement. The attribute must also appear in eitthe system statement or aevery
statement. This declaration permits the dummy attribute to be ustally and
accumulate statements without having its value stored.

212

[THEN] IF Statement

2.107 [THEN] IF Statement

Secif ... else ... always construc.t

213

SIMSCRIPT I1.5 Reference Handbook

2.108 TRACE Statement

Thetrace statement provides a backtrack of the current function and subroutine calls.

0,]
trace rusing rtane I integer value T]
O funit 0O O
EXAMPLES:
trace

Beginning with the location of thtrace statement, provides a backtrack of function
or subroutine calls using the current output unit.

trace using unit CHECK.OUT

Beginning with the location of thtrace statement, provides a backtrack of function
or subroutine calls using the output unit whose device number is the value of variable
CHECK.OU'”

The trace statement provides a dynamic map of the function and subroutine calls that are
in effect when the statement is executed. It can be inserted in programs, for example, where
error tests are made. Subsequently, the programmer can reconstruct the flow and locate the
source of the error. This statement displays the memory location from whitrace
statement was executed, as well as the names of all higher-level calling routines. The
trace statement can appear in any routine, but not in the preamble. SIMSCRIPT IL.5 itself
uses thdrace statement whenever it detects an error.

2.108.1 USING Phrase

The trace statement normally displays output on the current output uniusing

phrase, however, can locally override the current output unit declareuse statement.

This phrase designates a device as the output unit for the duratio trace statement
execution. After execution of titrace statement, SIMSCRIPT 1.5 automatically reas-
signs the previous unit as the current output unit. If a program includes an error test while
a tape, disk, or drum is the current unit, a printer should be specified beftrace state-

ment is used. SIMSCRIPT II.5 displays the output on the standard output device whenever
it uses therace statement.

2.108.2 Output

Output from th trace statement includes the following information:
at location...
called from...

called from...

214

TRACE Statement

called from...

Theat location line displays the memory location of trace statement in the object
program. The firscalled from line displays the name of the routine that called the rou-
tine that included thtrace statement, and so on. called from line does not appear

if thetrace statement is executed in the main routine. (In order to interpret the output, see
theUser's Manue for the particular implementation.)

In addition, for each routine in the backtrack sequence, the system prints the computer rep-
resentation values (e.g., hexadecimal, octal) of all input and output arguments, as well as
the values of any recursive local variables.

Current values are also printed for the following system variables:

time.v Current simulated time.

event.v Zero for an internal event or the number of the external event unit.
read.v Number of the current input unit.

write.v Number of the current output unit.

For each active input/output device, the system displays values of:

record.v Number of the current input or output record or output record.
rcolumn.v Column number in the current input or output pointer.
or
wcolumn.v
eof.v End-of-file action code.

215

SIMSCRIPT I1.5 Reference Handbook

2.109 UNLESS Phrase

Anunless phrase is used to control the iterations of a precefor phrase. If the logical
expression is true, the controlled statement is not executed. Iteration continues regardless
of the value of the logical expression. It may also be usecwhile oruntii phrases.

fand 1]
for r]
0 0
unless logical expression []
Keyword Synonym
unless except when

EXAMPLES:

for I =1 to N, unless X(1)**2 / Y(I)**2 < MAX

Controlled statements will be executed with values generated Ifor ... to
(index) phrase when the logical expressX(l)**2 / Y(I)**2 < MAX is false.

for each AIRPORT, unless NO.OF.RUNWAYS(AIRPORT) less than
MIN.NUMBER and AREA(AIRPORT) less than MIN.AREA

The controlled statements will be executed with values generated for ... to
(index) phrase when both logical expressiNO.OF.RUNWAYS(AIRPORT less
than MIN.NUMBEF anc AREA(AIRPORT) less than MIN.AREA are false.

for every PATRON of RESERVATIONS except when FARE(PATRON)
Is LOW or DESTINATION(PATRON) = "sfo" is true

The controlled statements will be executed with values generated for ... of
(se) phrase only when both logical express FARE(PATRON) is LOW and
DESTINATION(PATRON' =" sfo " are false.

An unless phrase can be appended to any offor phrases and twhile anduntil

phrases whewhile anduntil are used as independent statements. Logical expressions
in anunless phrase are tested for each new value of the index variablefor phrases.

If the logical expression is true, the controlled program segment is not executed. Converse-
ly, the controlled statements are executed if the logical expression is false.

216

UNTIL Phrase

2.110 UNTIL Phrase

Anuntil phrase is used to control iteration for phrase. As long as the logical ex-
pression is false, the controlled statements are executed and iteration contiruntil n
phrase may also be used independentlyfor phrase.

":and r
. Dor H
[also] until logical expression []
EXAMPLES:
for 1 =1 to N, until X(I) = Y()
Allows values to be transmitted from tfor ... to (index) phrase to the con-
trolled statements as long as the logical expresX(l) = Y(I) is false. The loop

terminates when the logical expression is true or the loop is exhausted.

for each CITY, until COUNTRY(CITY) ne "us"

Values will be transmitted from ttfor each (clas$) phrase to the controlled state-
ments as long as the logical expressCOUNTRY(CITY)ne "US" isfalse. The loop
terminates when the logical expression is true or the loop is exhausted.

also until mode is alpha, do

Allows values to be transmitted to the controlled statements as long as the logical ex-
pressiol mode is alpha is false. Program segment execution terminates when the
logical expression is true. The keywcalso is assumed to eliminate a redundant
loop statement.

An until phrase can be appended to any offor phrases, or it can appear as an inde-
pendent statement. This phrase allows values to be transmitted from pr for each

(class), for...of(se), andfor ... to (index) phrases, to the controlled state-
ments as long as the logical expression is false. Logical expressior until phrase

are tested for each new value of the index varia for phrases. If the logical expression

is false, the controlled program segment is executed, and selection terminates when the log-
ical expression is true.

Until phrases can appear as independent statements. In this case, variables specified in
the logical expressions are set by computations performed within the range of the phrase,
and not frorrfor phrase iterations. The range of an indepenuntil phrase must be
delimited by &do ... loop construct. The programmer must be careful to provide for

the termination of a loop because SIMSCRIPT II.5 does not automatically terminate an in-
dependeruntil phrase.Until phrases can be modified with andunless phrases,

and can be nested with other indepenuntil andwhile phrases and witfor phrases.

If nestecuntil phrases end on the saloop statement, the keywc also can precede

until to eliminate redunda loop statements.

217

SIMSCRIPT I1.5 Reference Handbook

2.111 UPON Statement

Seeevent statemer.t

218

USE Statement

2.112 USE Statement

Theuse statement establishes the indicated input or output device as the current input or
output unit. All subsequent input/output statements that do not specify their own devices
inusing phrases use these current units. Specitthe buffer causes reading or writ-

ing to an internal file.

Tthe buffer |)

lise ' ltape Il quantity for Finput r]
M1 [unit a r] Moutput r]
a a a a

Note: A real quantity will be rounded to integer.
EXAMPLES:

use 5 for input

Declares that un5 is the current input unit.

use tape WRITE for output

Declares that the unit whose number is the value of vaWRITE is to be the current
output unit.

use the buffer for output

Declares that the buffer is to be used for output; that is, data are written on an internal
file.

Use statements designate the current input and output units. Thereaftread ll

(Freeform) , read (Formatted) , andwrite statements that do not incluusing

phrases read from and write to these units. Input/output statements can be used with
devices other than the standard card reader and printer. Execuse statement causes

the designated device to become the current input or output unit.

A device cannot be used simultaneously for both input and outputuse statement

names the current input unit as the current output unit, SIMSCRIPT I1.5 changes the input
unit to the standard card reader. use statement names the current output unit as the
current input unit, SIMSCRIPT I1.5 changes the output unit to the standard line printer.
These conventions ensure that error messages are correctly displayed, and aid in detecting
errors in device assignments. Of course, the standard output unit (printer) can never be
used for input, and the standard input unit can never be used for output.

Theuse statement can appear in any routine, but not in the preamble.

219

SIMSCRIPT I1.5 Reference Handbook

2.113 WAIT/WORK Statement

Thewait/work statement causes a process to remain in the passive/active state for a spe-
cific period of time.

) rdavisl r
Mwait rl Thourls] r]
rwork [quantity ~ Tminute[s] rl
O O O O
Keywords Synonyms
day[s] unit[s]
EXAMPLES:
wait 7 days

Halts execution of the current process for 7 days sta.a setto0 (passive state).

work JOB.TIME minutes

Halts execution of the current process for a quantity of minutes equal to the value of the
variable JOB.TIME; is set tcl (active state).

work exponential.f{(MEAN.TIME, 3) hours

Halts execution of the current process for a quantity of hours determined by drawing
from an exponential distribution wiMEAN.TIME as its mean, using the third random
number streansta.a is set tcl (active state).

Within a process routine,wait orwork statement may be used to halt the process exe-
cution for a given lapse of simulated time. The effect of these statements is to file the pro-
cess notice associated with the process back in the event set, after adjutime.a 2
attribute to indicate the future time at which execution of the process routine should re-
sume. When simulated time has advanced so that the process notice again becomes eligible
for execution, this execution is resumed at the statement followi wait orwork state-

ment. Other events and activities may, of course, be executed during the time lapse. The
two statements differ only in the status attributed to the process during the passage of sim-
ulated time. This status is recorded in a special attribute of the processsta.a ,

where it may be interrogated by any other executing rouSta.a is useful for gathering
statistics about the states of processes. Values for possible states are table < (Part

| of this publication).

Thewait/work statement may only appear in a process routine.

2.114 WHEN Phrase

Seewith phras:.

220

WHILE Phrase

2.115 WHILE Phrase

A while phrase is used to control iterations ifor phrase. As long as the logical ex-
pression is true, the controlled statements are executed and iteration conti while A
phrase may also be used independentlyfor phrase.

rand Il
ror 1
_ 0 [
[also] while logical expression [.]
EXAMPLES:
for | = 1 to N, while X(I) is positive
Allows values to be transmitted from tfor ... to (index) phrase to the con-
trolled statements as long as the logical expre(l) is positive is true.

for each FLIGHT of ARRIVALS while ORIGIN(FLIGHT) ne "lax"

Allows values to be transmitted from tfor ... of (se) phrase to the controlled
statements as long as the logical expre: ORIGIN(FLIGHT) ne "lax" is true.

while VALUE Is MAX, unless VALUE = X, do

Controlled statements will be executed as long as the logical expriVALUE Is
MA> is true except when the logical expressVALUE = X is also true.

A while phrase can be appended to any ofor phrases or it can appear as an indepen-
dent statement. This phrase allows values to be transmitted from prefor each

(clasy), for ... of (se), anc for ... to (index) phrases to the controlled
statements, as long as the logical expression is true. Logical expressiwhile phrase

are tested for each new value of the index varialfor phrases. If the logical expression

is true, the controlled program segment is executed. Segment execution terminates when
the logical expression is false or when the loop is exhausted.

While phrases can appear as independent statements. In this case, variables specified in
the logical expressions are set by computations performed within the range of the phrase,
and not frorrfor phrase iterations. The range of an indepenwhile phrase must be
delimited by i do ... loop construct. The programmer must be careful to provide for

the termination of a loop because SIMSCRIPT II.5 cannot automatically terminate an in-
dependent phrasiwhile phrases can be modified with andunless phrases and may

be nested with other independwhile anduntil phrases and witfor phrases. If nest-
edwhile phrases end on the saloop statement, the keywoalso can prececwhile

to eliminate redundailloop statements.

221

SIMSCRIPT I1.5 Reference Handbook

2.116 WITH Phrase

A with phrase is used to control iteration ifor phrase. If the logical expression is true,
the controlled stament is executed. Iteration continues regardless of the value of the log-

ical expressior A with phrase may also be used \ while or until phrases.
rand 1]
ror 1
0 0

with Jogical expression []

Keyword Synonym
with when
EXAMPLES:

for 1 = 1 to N, with X(I) * Y(I) > Z(I)

Controlled statements are executed with values generatedfor ... to (index)
phrase when the logical expressx(1)*Y(1)>Z(l) istrue. Controlled statements
are not executed when the expresX(l) * Y(1) > Z(1) is false.

for each CITY with POPULATION(CITY) gr 500000 and AREA(CITY) less
than SQ.MILES/2

The statement controlled by tforeach (class) phrase will be executed when both
logical expressionPOPULATION(CITY) GR 500000 andAREA(CITY)lessthan
SQ.MILES/2 are true.

for every FLIGHT of DEPARTURES when NO.PASSENGERS(FLIGHT) Is
MINIMUM or DESTINATION(FLIGHT) ne "lax" is true

The statements controlled by tfor ... of (se) phrase will be executed when
either (or both) of the logical expressiiNO.PASSENGERS (FLIGHT) Is MINIMUM
andDESTINATION(FLIGHT) ne "LAX" is true.

A with phrase can be appended to any ofor phrases and while anduntil phras-

es wherwhile anduntil are used as independent statements. This phrase selects values
to be transmitted from precediforeach(clas), for...of (se), andfor...

to (index) phrases to the controlled statements when the logical expression is true. Log-
ical expressions inwith phrase are tested for each new value of the index variefor in
phrases. If the logical expression is true, the controlled program segment is executed, but
program control in effect transfers around the controlled statements if the logical expres-
sion is false.

222

WORK Statement

2.117 WORK Statement

Se¢ wait/work statemer.t

2.118 WRITE Statement

Thewrite statement writes data to the specified device or the previously established out-
put device according to the specified format.

_ o n . n n MNthe buffer]
write varable ~ as [(integer)| formai N T using [llitape [integer value]
[[double] binary o d Olunit a N

Note: Double optional on implementations where full precision requires more than one
computer word.

EXAMPLES:

write A, B,and Xas2i3andi4

Beginning with the column that follows the current position of the output pointer,
writes the values cA andB as two integer fields of three characters each, then writes
the value oX as an integer field of four characters.

write INTEGER, DECIMAL, X**2 - Y**2 as i 4, d(8,2), e(9,1)

Beginning with the column that follows the current position of the output pointer,

writes the value oINTEGEF as an integer field of four characters, writes the value of

DECIMAL as a decimal field of eight characters with two fractional digits, and writes the
value ofx2 - Y 2 as a scientific notation field having a total of nine characters with

one fractional digit.

write A, B,and X,Y,Zasa4,s62,a2,//// 3d(10,2)

Beginning with the column that follows the current position of the output pointer,
writes the values (A andB as two alphanumeric fields of four characters and two char-
acters, spaced 62 columns apart; then skips three lines and writes the vX, Y, of

anc Z on the fourth line as three decimal fields of ten characters each with two frac-
tional digits in each field.

write CODE as *, /,/,/,/, b 56, "statistical table", a 3

Starts a new output page, skips four lines, and, beginning in column 56, writes the char-
acter stringstatistical table followed by the value cCODI as an alphanumeric
field of three characters.

223

SIMSCRIPT I1.5 Reference Handbook

for1=1to N, write LIST(l) and HEX(l) as (4) I 3and C 4

Beginning with column 1 of a new line, writes four groups of data (four integer ele-
ments from arraLIST and four computer representation elements from HE») on
each line untiN pairs of values have been printed.

for=1to N, for J =1 to N, write MATRIX(I,J) as binary using
the buffer

Writes the two-dimensional arriMATRIX in binary into the internal buffer.

for each CITY, write NAME, AREA, POPULATIONasa3,i5,i8

For each entity of entity claCITY, writes the value of attribuNAMI as a three-char-
acter alphanumeric field, the valueARE/ as a five-character integer field, and the val-
ue of POPULATIOLI as an eight-character integer field.

Thewrite statement transfers values of expressions to line printers, magnetic tapes, or
other output devices according to a format list. In this statement, each expression is eval-
uated, and the value is printed in the form described by its corresponding format. Formats
in a format list must correspond, in order, to the values of expressions to be output. Each
format includes a descriptor that is a code defining the type of data (e.qg., integer, decimal)
to be written on the output device. There are ten descriptors: five are data descriptors that
apply to numeric and alphanumeric values, and five are control descriptors used for spac-
ing, skipping columns and records, ejecting pages, and printing character strings. In addi-
tion to writing formatted data, this statement can also write binary data. Either formatted
or binary data can be written on an output device (perhaps to a unit other than the current
output unit) or data can be written to an internal buffer.

During execution of write statement, the format list is scanned from left to right, and
individual formats are used to write values. The data descriptors included in the formats
apply to integer, decimal, scientific notation, alphanumeric, and computer representation
values, while control descriptors designate beginning columns, how many columns and
records are to be skipped, where pages are to be ejected, and character strings to be printed
exactly as they appear. Descriptors are further defined in table 24. Values being written
must agree in mode with their descriptors, except for integer and alphanumeric modes,
which can be interchanged. When interchanged, the mode implied by the descriptor gov-
erns.

A write statement does not necessarily start at the beginning of a new output record as in
FORTRAN, because records are changed under programmer control, and not automatically
after each statement. This statement processes a continuous string of characters and skips
to a new record when directed or when a complete field will not fit on the current record.

A buffer, whose length is one record, is provided for each output unit. The current buffer

is calledout.f , and characters in it may be examined or replaced at will. The current out-
put pointer, which is the system variawcolumn.v , points to the column last written in

the output buffer. For each new reccwcolumn.v starts at zero. (Before an output unit

is used for the first time, some implementationswcolumn.v to-1.) As output is pro-

cessed, the pointer moves along the buffer according to the format list. For each value writ-

224

WRITE Statement

ten,wcolumn.v is positioned to the last column written. The buffer of output data is sent
to the output device when a new output record is started. The vawcolumn.v can be
advanced by the Beginning Colunb), Skip Columns), Skip to New Record), and

Skip to New Page*) descriptors, and trstart new statement. Thb, s,/ , and*
descriptors can be combined with other format descriptors, or they can appear alone in a
write statement.

225

SIMSCRIPT I1.5 Reference Handbook

Table 24. Descriptors for Write Statement

n is the optional number of con
secutive fields

i Is the descriptor
w is the field width

I: INTEGER
Format Rules
niw . Parameten must be an integer, bw can be
an expression.
where:

. At least one blank must appear between n

. On the output, integers are right-adjusted

. Leading zeros are suppressed, but the rig

. Numbers that exceed the field width are g

. Positive numbers are unsigned; negative

i and betweei andw.

fields of the specified width.

most zero in a zero-valued integer is print

verted to scientific notation.

numbers are signed.

and

n

ht-
ed.

on-

n is the optional number of con
secutive fields

d is the descriptor

a is the total field width including
the sign, integer digits, decim
point, and fractional digits

b is the number of fractional dig
its

D: DECIMAL
Format Rules
n d(a,b) . Parameter n must be an integer,a andb
can be expressions.
where:

. At least one blank must appear betwn n

. On the output, positive numbers are unsigr

. Leading zeros are suppressed. Trailing z4

. Numbers more precise than their allotted

andd.

but negative numbers are signed. A miny
sign immediately precedes the highest-or
digit.

are printed unless the number is exactly 7

put format are rounded.

ed in scientific notation.

ed,
S
Her

LIOS
ero.

Dut-

. Numbers that exceed the field width are ptint-

226

WRITE Statemen

Table 24. Descriptors for Write Statement (Continued)

t

E: SCIENTIFIC NOTATION
Format Rules
n e(a,b) 1. Parameten must be an integer, batandb
can be expressions.
where:
. . 2. Atleast one blank must appear betweand
n is the optional number of con o
secutive fields '
e is the descriptor 3. On the output, numbers haveecimal plac
a is the total field width includind es, and a scale factor is printed indicating|the
the sign, integer digits, decim| true value of the number.
points, fractional digits, the le| 4. Positive scale factors are printed without fhe
tere, sign of the exponent, ar plus sign.
the exponent : C
) P i | 5. A minus sign is printed after tlefor nega-
b :tssthe number of fractional dig tive scale factors.

6. The width of the output, in positions, is eqpal
to a; the last four positions contain the scale
factor.

7. Table 25 lists the action taken if the field

width is insufficient to display the value.

Table 24. Descriptors for Write Statement

A: ALPHANUMERIC

Rules

Format
naw
where:
n is the optional number of co

secutive fields
is the descriptor
is the field width

1. Parameter n must be an integer,waan be

2. At least one blank must appear betweand

an expression.

a and between andw.

3. The firstw characters are printed from the

leftmost part of the associated expressior].

22

7

SIMSCRIPT I1.5 Reference Handbook

Table 24. Descriptors for Write Statement (Continued)

C: COMPUTER REPRESENTATION

Format

Rules

nce
where:

n is the optional number of co
secutive fields

c Iis the descriptor

e is the number of characters
the internal representation
the computer

1. Parameten must be an integer, batcan be

. At least one blank must appear between 1

. Thec descriptor is computer-dependent.
example, on the IBM 360, the format ¢

an expression.

¢ and between ande.

writes four hexadecimal characters; on
Honeywell 600/6000, 2 C 5 writes two fie
of five octal characters each.

and

-or

the
ds

B: BEGINNING COLUMN

Format

Rules

bn
where:
b is the descriptor

n is the column number

. Parameten can be an expression.

. At least one blank must appear betwieand

. B descriptors need not be in ascending d

n.

. Parameten specifies the position in whig¢

the first character of an output value is lo
ed, and the system positions the current
put pointer to that location.

in a format list.

h
Cat-
out-

rder

S: SKIP COLUMN

Format

Rules

sn

where:
s is the descriptor

n is the number of columns
skip

. Parameten can be an expression.

. At least one blank must appear betweamd

. Parameten specifies the number of po

. On the output, skipped positions remain

n.

tions.

touched.

un-

228

WRITE Statement

Table 24. Descriptors for Write Statement (Continued)

/: SKIP TO NEW RECORD

Format

Rules

Each slash skips to a new record on the cu
output unit, e.g., the next print line.

rrent

*: SKIP TO NEW PAGE

Format

Rules

1. The * descriptor ejects one page on a ling
printer.

2. This descriptor is disregarded if used in ot
circumstances.

her

""" CHARACTER STRING

Format

Rules

1. All characters to be printed exactly as they
pear are enclosed in quotation marks.

2. The underscore within quotation markj
printed as ".

3. A character string cannot exceed the leng
a printed line.

4. A longer character string can be specifie
more than one string, each separated
slash.

5. The spacing of the character string can b
dicated by B, S, and / descriptors.

ap-

b IS

th of

H as
by a

b in-

229

SIMSCRIPT I1.5 Reference Handbook

Table 24. Descriptors for Write Statement (Continued)

n is the optional number of co
secutive fields

t is the descriptor
w is the field width

T: text
Format Rules
ntw . Parameten must be an integer, butcan b
an expression.
where:

. At least one blank must appear betwae

andt and between andw.

leftmost part of the associated text value.

. Ifwis greater than the length of the text str|

the string is followed by trailing blanks.

. The length of the string is used as the 1e|d

width. All the characters of the string
used; when the string is longer than the oy

-

. The firstw characters are printed from the

ng,

re
tput

record, it is split between successive records.

Format

Rules

nt*
where:

n is the optional number of co
secutive fields

t* is the descriptor

. Parameten must be an integer.

. At least one blank must appear between 1

t and betweemn and*. * may optionally
be enclosed in parentheses.

and

230

WRITE Statement

Table 25. Order of Character Printing in the " e" Format

Field Width Characters Printed Example:
-.0234567

1 e e

2 Sign of numbere -e

3 Sign of numbere; sign of exponent -e-

4 Sign of numberg; sign of exponent; d -e-2

d = digit if 0< exponenk 9

= * jf exponent=> 10

5 Sign of numbere; exponent -e-02

6 Sign of number; digite; exponent -2e-02

7 Sign of number; digit;; e; exponent -2.e-02

8 Sign of number; digit;; digit; e; exponent -2.3e-02

=9 Sign of number; digit; ; additional digitsg; -2.35e-02

exponent -2.346€-02

-2.3457e-02
-2.34567e-02

2.118.1 AS BINARY Phrase

Theas binary phrase writes binary information. The binary data can be written on the
current output unit, orasing phrase can be appended tovhiee statement to designate
another output unit. Binary and formatted data cannot be written together on the same unit.
Binary information avoids output conversion and hence is a more efficient way to store data
temporarily, to be later read in by the same or a different program, as with scratch data.

For integer, real, or alpha values, tsdinary statement outputs a single computer word
of information. For text values, it outputs an integer computer word with the length of the
string, followed by successive words of the string until all the characters have been output.

2.118.2 AS DOUBLE BINARY Phrase

On those implementations for which the maximum floating-point precision is more than
one computer word, thevrite as double binary statement outputs two computer
words for a floating-point (real) number.

231

SIMSCRIPT I1.5 Reference Handbook

2.118.3 USING Phrase

A using phrase can locally override the current output unit, which is the printer or the unit
declared in the most recently executed statement. This phrase designates a device as
the current output unit for the duration of thkte statement execution. After execution

of this statement, SIMSCRIPT I1.5 automatically reassigns the previous unit as the current
output unit. Data can be written into an internal file by including the keyweds

buffer in ausing phrase, or to any output unit by specifying the device number of that
unit.

2.118.4 Controlled WRITE Statements

A write statement cannot write an entire array by listing only the array name, but a con-
trolled write statement that includes a repetition factor can write array elements conve-
niently (see the fifth example above). A repetition factor, consisting of an expression
enclosed in parentheses, must precede a format list that is to be repeated for each record.
When a repetition factor is used, thte statement must be controlled bfpa phrase,

and the output must start with a new line (record)sté#& new statement, for example,

can position the output pointer to a new line.) Withvthiee statement, the system auto-
matically skips to a new line after writing data as prescribed by the format on an individual
line. This statement can terminate with the output pointer positioned in the middle of a
record.

232

A

A format forread (Formatted) stateme........ 160
A format forwrite statemer....................... 223
A.set routine - Se.set routine.................. 71
abs.f library function..............cceeecviniiinnnnnn, 21
accumulate statement........ccooceviviniiinennns 39, 42
accumulate/tally

statemen............... 37-41, 100, 181, 208
activate (process) stateme...........cccceeeeenn. 43
activate statemen...........ccoei 154
add Statement............eeevvveeeriieierires 46.
after Phrast.....ccccceeevveiicciiiieiiieeeee e 106
after StateMer.........uvueeieii s 48
alsofor Phras.......ccccccceiiiiciiiiiieieeee e, 86
also Phrase.......ccccceveveeeeiiiiiiiieeeee e 48.
Alternative forms..........ccccccoiiiiiiiiiieen. 109
always Statemen...........ccoeveviiiiieeiiiieeiee e 48
arccos.f library functior...............ccccevvvnnnen. 21
arcsin.f library functior...............ccccoeinneen. 21
arctan.f library functior...............cccccvvvnnen. 21
o o 18] =T o | U PRRRS 92.
Argument Definitions............cccveeeeeeiiieeinnns 58
Argument MOdE.........ccvvveeevreeeeeeiiiiienns 57, 190
Argumentt.......cviieriieii e 79, 154
arithmetic expressior.........cccccoeeeunneee. 107, 149
S = Y 79, 169, 178
as binary phrase...........cccoeevvvvvnnnnn. 164, 231
as double binary phrase........cccccccceeeeenn, 231
AS PRraS...ccccciiiiieeee e 178
at Phras.....cccccvveeiieeeee e 44,193
atot.f library function.............c..ccccoiiiinnnn 21
ALIIDULES. ..o, 79.

B

before phrast.......ccooooeiiiii, 106
before/after statemer......cooeveveiveeennnn, 48, 49
begin heading statemer.........c.....ccceeeeee. 51
begin report statemer.......cccceevevvveeiiiinn, 53
beta.f library function.............ccoooiviinennnnn. 22
binomial.f library functior..............coeevvvnen, 22
break ... ties Statemen........ccccceeeeveeviennn, 55
break ties statement.............cccccvvveeneeneenn, 152

by * Phrase......ccccccveeviiiiiiciiiiiieee s 178
C
call statemen.............ccccciiiiii, 57, 190
called phrast......cccccevveeeeeeeeiiiccnnnnn, 44, 64, 192
cancel Statemer.........ccccccvveiiiiiiiiiiieeecee e 59
card library function.............ccccccceeiiiniiin 170
cause StateMeN.......ccccovcuvvriieiiieeeieriiieeeeeen 59
Common attribute...........cccevvviveeeiiniieeeee 98
complex subscripted variab.................. 46, 204
Compound entiti€...........ccocecvivieereeeeeee e 9.
compute Statemer..........ccovvviiieiiveeiieeieee e, 61
concat.f library functior............ccccccceeeeeen. 22
Controlledread (Free-Form) stateme......... 169
cos.f library functioncccoovvvvveeeiiiiinne, 22
create each statemen..........ccccevvveeeeeeeeenne, 65
create StatemMeN........ccccccvviiiiiiiiiiiiieeeeeee 63
cycle Statemer........ccoooveveiiieeeiiieece e 137
D
data cards........oeveiiiiiiiiie e 168
data elemer........cccooveiieiiiiie 178
data library function............cccccccceeiiiiniiiin 170
date.f library function.........ccccccvvveeeeiiiiinns 22
date.f time conversion functio.................. 142
day.f library functionccccceeeiiiiiiinnnn, 22
day.f time conversion functior.................... 142

define ... (global) variable statemer 75

define ... (local) variable statemer.. 76

define ... routine statemen......58, 67, 189
define ... set statemen.......cccceeeeeeiiinns 69
define ... to mean statemen.................. 73
define ... variable statemen......... 77, 157
define statemen.............ccccceiiiiiiiiiiiiniennnns 100
destroy each statemen........ccccceeeeeeveeiinnnnn, 83
destroy statemen............cccccceeieeieieviiiiieneees 81
dim.f library function...............cecccecvvvvvnnennns, 22
dimensionality...........ccccoeeiiiiiiiiiiiiiiieeeeeen, 178
dimensionality of array.........ccccceeeveviinnnnnn 139
div.f library function..............ccoeeeevvvvnnnnnnns, 23
do ... loop (o70] 0157 1 (1[0} IR 84,174
double KeYWOId.........cccevviiiiiviiiiiiieeeeeeeeeens 147

233

SIMSCRIPT I1.5 Reference Handbook

dummy attribute..........eeeeeveviieeeeeannnn... 100, 212

dummy vaiable..........ceeeeeviieeee e 80
E

efieldf library function...........cccevivee.n.

el se Statemer...........uuevvvmeeemiiieiiimeee 87, 122

end StateMeN.......ovviuiiiiiii e 88

eNA-Of-il€....ueeiiviie e

ef i eld.f

ent er with

library functioncceeeouveemneeenee.

StateMETr....ccveeive e
EqQUIVAlENCING ..o
erase statement...........coeiiiiimie e
erl ang.f library function..............coooeeeee.
€ITOr CONAILION. ..ot et
Error MeSSage:......ovvuuieeieeice e
attribute ... 94
weeeemennns 97,193

93

eunit.a
eVeNt NOWEScovvrnvvieeee e
statemen........ouevvevemeeeenn.
event Statemer.........coooieeiniiiieeviveeenenewn.. 91
every statement............c...u......... 95, 100, 152
100
23
library function.................. 23

event notices

exceptwhen Phrase.......ccceeeiueeeiueeeneeeen,
exp.f library function..........cccoeiiiiiiinne.
exponential.f

ext ernal ... units statemen................ 105

ext ernal events/pro cesses
Y =1 (=] 1 =]

F.set attribute..........eueeiiuriicniiiiiiee e
fi FO St
fi le statemen.......covieiinii i
fi Nd SEACH ...ovveiivei e
fi nd statemen........covevvvmeiioie e
fi rst PAraSe ...ceiiceee e
(set) phras......cc.vvvmeeeen... 112, 113
(index) phrase........ceeeemeeennnnes
for each (class) phase€.....ccvvmeevvmerenennns

for ...of

for ...to

Format INeS......ouvveveieeiee e
{014 1 01= LR 1] A
library function................ .23

fr ac.f
function attribute...................... 99,132, 134, 212

234

G

gamna.f library function.............

give n phrase.......cccccuee

Global variable.........cuevueieeieeiiee e

got o..per

got o statement..........ociiiiiiiiii
group Phrasevveeiiiiiseccie e

Heading Sectio.................

here sStatemen..........ccvvvviiiiniie e
HIStOgrams.cceeevve e it e

hour . f library function.......
I

If ...else...a | ways

if f

ifn one phrase...............

ound phrase...............

if StatemMen... ..o
in phrase......coeevvviiiniiimeiene
incl ude Phrase........evvveeevmeeeme e

int.

internal buffer.......ccviiiieiinie
inte rrupt statemen.........ccocoiiiiiiiinniinae
iste p.f library functior........c..cvimeiinniiinn.

itoa
itot
J

jump Statemen........oooeeiiiiie e

L.set attribute.........vu..e.

last column statement....
last
leave statemer.................
leng t h.f

let

library function .

lifo
Line Systen Variable............
lis t attributes of e
list attributes

list

Local variables.......u..eueeeioeeeiie e

statement........coooeveennne

f library function..........ceeoveeviieviceviians

.f library functon ...
.f library functon........ccoovvvvievviinns

0] = LT T

ach statemen........
statemen.....................
statemen. ...

ceenen. 44,68, 189, 193

78
119
117
149

121
42

corstruct ...122-124
..................... 108-109
..................... 108-109
e 213
wereemeeen 45, 194
143

24
165
126
24
24
24

127

128
106
129
130
71
52
133
132
131
79

log.10.f library functior..........cccccvvveeeeeenn. 25
log.e.f library function..............cccccvvvnnnnnn. 24
log.normal.f library function..................... 24
logical eXpressior.....vveeevevecciiieeneennn, 154, 174
Logical expressions for event routir.............. 92
loop StatemMeN........cocvvvviiiiiiireecee e, 134
lower.f library function...........c.cccccoeveevvnnnen. 25
M
m.ev.s attribute...........cccevviiiiiiicccen e, 94
m.set attribute.........ccccveeveeiiie, 70
main Statemen..........coceeeviieei, 135
match.f library function................ccccoeie 25
max.f library function...........cccccovveeeeienennn, 25
maximum (index) statistical keywor............... 62
maximum statistical Keyworc...........c..ccccoeeuee 62
MEAN statistical keyword...............ccccvvveeennn. 62
mean.square statistical keyword................... 62
mimimum statisitcal Keyworc...............cccooenee 62
min.f library function...........ccccccceee il 25
minimum (index) statistical keywor............... 62
minute.f library function.........................e. 25
mod.f library functionccccceeveeniiiniinnd) 25
mode library functioncccccceeveeeeeeninnn, 170
monitored variable...............ccoooiid 80
month.f library function................cccoeeevvnnee. 25
month.f time conversion functia................. 142
MOVE STAEMENL.....uueiiiiiia e, 136
N
N.Q.resource attribute..........cccvvvvvvvvnnvnnnnn. 182
N.resource attributecccooeveeiiiiiiennnnins, 182
N.set attribute.......ccooooeiiiiii, 70.
N.SEt FOULINE ..o 70.
N.X.resource attribute.........ccoovvveiiiiinnnns 182
NDAY.F library functioncccccvvvveenenennnd 25
Neste(do ... loop CONStruC........ccvvuneennnn. 85
Nestedfor ... of (set) phras................... 113
Nestecfor ... to (index) phras............... 116
Nestecfor each (class) phras.................... 111
next Statemen..........cccocciii, 137
normal.f function........ccccccceeveeiiiiniiieee, 26

Index

normally anddefine ... variable

statement........ccccceeeeeeeiniiiinnnen 78, 138
normally statemen............ccoooeeviiiieein, 138
NOW PRFaSe.....cccoeiiiiiiiiiiiiecee s 45, 194
NOW StAtEMEN.evvieieiiieiiiii e 140
number statistical keywor..............ccccccuvveeee.. 62
o]
onanewpage Phras.......ccccccceeiiiiiininnnnn, 53
open Statemer........cccoceveiieiiii e, 141
Order of Executing Even............cccccccceeeenn, 56
origin.r SyStem routin€............ccoeeennvnnnn. 141
otherwise Statemen..........ccoccvivveeeeeeennnne 142
out.f library function..............coeceiiiiinnnns, 26
P
p.ev.s attribute...........ccoeei, 94,
p.set attribute...............cciiiii, 70.
P.SEt TOULINEcoeiieiieeevveeiiii e 70.
Packingcccceveeeeiiiiiiiiiieee e 98, 211
Page System Variabl...........cccccccooiiiiinnnnn, 52
perpage Phrase........ccccccvveiiiiiiiiiininineneeennd 54,
perform statemen.............ccoevviiiiieeeeeinnnnnn. 142
permanent entities statemen.................. 143
POINEIS ..o 178
poissson.f library function........................... 26
preamble statemer..........cccooevvvvviiiiieerennnn, 144
print statemer..........cccooeeviiiiiiie e, 145
prining Phrase........cccccevveeiiiiiiciiieeeee 54,
priority statemen.......cccoeeeeeveeiiii e, 152
probabilities.........cceveeeiiiie e 157
o] g0 ot TSI o] 1o S 98.
process Statemen...........ccccvvvvviiiieeeeennnnnnn. 153
processes Statemen.............ccccceeeeeeeens 98, 155
Q
Q.resource attributi.........coooveeiiiiiieneeenins 182
R
randi.f library function............cccccvveeeeeen. 26
random ... variable statemer................ 156
random variable.............ccccciiiiiiiiniiie, 157
random.f library function..................... 26, 157
Ranked Sel.......ccccuuiiiiiii e 71
reactivate statement.........ccoceeeeeeeeieiiinnnnn. 158

235

SIMSCRIPT I1.5 Reference Handbook

re ad (Formatted) stement.............ccevvunnn. 159
re ad (Free-Form) statemel........c..cccvevvunnn. 167
re ad as binary statemen...........ccevueenna. 164
re ad as double bina ry statemer............ 164
re ad statemen..........oeeevvneiioeieineeeineeeaneeen. 165
re al.f library functior.........c...ceeiiiviiiveeeene. 26
re cord Statement............oeeeeeeeemeervmerrnnnnnn. 170
recursive variable............cccovvvineee w79, 139
re gardless Stat€mer........cccevviueiiimeeennnnnn. 170
re |l ease StatemMent.....occvvvvvevinreennnnn. 171, 180
re | inquish statemen.........ccccoveevienvnnnn. 172
re move first statemen........ccoeeeeevevviereenn. 50
re nove Statemenl...........ceveeveimreeimesnieeeews 173
re peat statement..........ccoeeveviivreviveevennnn. 174
repetifon fador...........c.eeemeeeciiciiimerinnnn. 165
re quest statement........cc.ccoeviimeeiineerinennn. 175
re schedule statemen........cc...cceevvmevvnneeen. 176
re serve statemeni.......coceeeeeeevmeesvaeevieennn. 177
re set StatemMer........vmeveimieeveiiieiiieeeeiies 181
FESOUICE ClaS.......uureeeueeeimiimeriemeeesmrvienenene 183
Reurce units.......ocooveeiieiiniiimeeeimeiinnnnen. 183
re sources Statemen..........c.ooveevimeeinneean. 182
re store Statemen.........ooevvveiiiveeevmeeiie e, 183
re SUME StateMEeN.......oceevv e e 184
re sume substitution statement............... 185
return statemeni..........coccveiiimresisesien.. . 186
re wind statemen............oeooiiiiniinnn, 187
ro utine Statemeni..............eeveimiens 188, 190
Routines Nameto ancfor ccoceeennnn. 189
rs tep.f library function..........ccocoeviiee . 27
S
s. ev.s attribute....oeviiviiiiiee . 94
attributeeveieiiiiieiieeceiiinn. 70

ST = A (0101 [Y O

S. set

Saved vaables..........cceueeueiennn..
saving phrase ..o 92
(event) staMeN.......cceeeeueeeveeenn. 191
schedule statemen...........ccccceveiiuiiinnnnnn. 176
sfieldf library function.........cc....c..... 27,170
library function..........ccoeecemccneeennn. 27

sc hedule

si gn.f

236

sinf library function..........coeeeveee e evevevnn. 27
skip Statemen.........oceviveeiiii e 196
sgrt . f library functiof.........coviviiiiiiinn. 27
star t new Statemer..........ccvevcceeevveeeneeenn. 198
star t simulation statemen.............c...... 199
Statistical kewords for Compute stateme...... 62
std. dev statistical keywort...........ceecueeeeun. 62
Stop StatEMEr....c.coviiceice e 200
store StateMel......o.vveeeeiieiiiiiiie e 201
subprogram variabl..........ccccovviiieee e 79
Subscipted labels...........oeeeemeeeneiimerinnnnnn. 117
statement........coeecceeeeunnn. 202, 206

library functionccccovcineeeenn. 27

subs t itute
subs tr.f

subt ract statemen........c.ccoceeiveeeiniiiineenn. 204
SUM datisical Keyworc.........cevveeeimeiiieeern.. 62
SUM.OF.SQUARES statistical kewpord 62
supp r ess substitutio n statemen.......... 206
suppressing phrase......cccccovecccneeiweseseenewn 150
susp end statement..........cccoveeveeeevmeennnnna. 207
syst en statement...........ccevviveevieeeeee e, 208
system variable:........ccoocoviiiviiin e,

T
T.S€t FOULINE....coicce e 11
tally statemen........ccoceeviiveeevieremeevieeenn. 208
tan. f library function.........cceeomevvimevinnnnn. 27
temp orary entities statemen................ 209
the system statemeni..........ccoeevennn... 208-213
thenby phrases......cccccceeeiiireinivvmeeesivinn. 56
thenif statement.........cccceeeiviiiivniineennn. 125
Time conversiofunctions.............cccvvvweveen. 142
time . a attributecccceevieeiiir . 94
trac e statement
trun c.f library functior...........ccvvevienenenn. 28
ttoa .f library functon.........c..ccciiiniiine. 28
U

U.re source attribueceeevvvvvvnrvvvnerinnnnnn. 182
U.set TOULINE....co.ooueiieeeiiieiiiieeeiiiieiiieen. 1
unif orm.f library function...........cc.............. 28

unle ss phrase.......cc.cuvvvvmeevemennnn. 113, 116, 216

Index

until Phrast.....cccceevecvvvvieeneeeeenn, 113, 116, 217
UpoN StateMEN........covviiiiii e, 218
upper.f library function...............cccooinnnne. 28
use Statement.........cccoovviiiiiieiieeenn e 219
use the buffer statemer.........cccvvevvveennne. 165
using Phrast.......ccceevveeneens, 165, 169, 214, 232
V
V.SBt TOULINE .vvvviiiiiiiiee et 71
VaAlUBS. ..o 157
variance statistical keywor..............ccc..oe.... 62
w
W.Set FTOULINE.....ccoeiiiiiiiiiiiie e 71
WAIT/WORI Statemen............eeeeveeeeerinnininnnn, 220
WEEKDAY | library function................ccccvvveee. 28
WEIBULL.F library function................cccuuuveee. 29
WHE Phrase........ccocoveviiie e 220
WHILE phrase€..........cccooeeecvvvvvveennnnn. 113, 116, 221
WITE phrase.........ccccveeeeeeeenn. 113, 116, 220, 222
WITH, UNLESS, WHILE , andUNTIL phrase.. 111
WITHOUT ... ATTRIBUTES phrase................ 71
WITHOUT ... ROUTINES phrase.................... 72
WOR Statement.......ccooviiiriiiieee e 223
WRITE Statemer.........cccvveveeeenniniiiiineeen, 165, 223
X
X.resource attribute........cccccevveeeeeiiiiiiinnn, 182
X.SBt TOULINE....eeveeiiiiiiiee it 71
Y
Y.SEt TOULINE.....eeviiieiiiiiee e 71
YEAR.F library function...........cccccceeviviinnnnnen, 29
YEAR.F time conversion functio.................. 142
YIELDING phrast.....cccccccveveeeeeeiieiinnnnnnn, 68, 189
Z
Z.set TOULINE ..oooiiiiiiiiieeceee e 71.

237

SIMSCRIPT I1.5 Reference Handbook

238

	Table of Contents
	List of Figures
	Preface
	PART I. GENERAL REFERENCE
	1. General Reference
	1.1 Attributes
	1.1.1 Function Attributes

	1.2 Constants
	1.2.1 Numeric Constants
	1.2.2 Subprogram Literals
	1.2.3 Text Literals
	1.2.4 Alpha Literals

	1.3 Arithmetic Expressions
	1.3.1 Arithmetic Operators
	1.3.2 Hierarchy of Operations
	1.3.3 Parentheses
	1.3.4 Mixed Mode Expressions

	1.4 Logical Expressions
	1.4.1 Property Comparisons
	1.4.2 Arithmetic Relational Conditions
	1.4.3 Compound Relational Expressions
	1.4.4 Mixed Mode Comparisons
	1.4.5 IS TRUE and IS FALSE Phrases
	1.4.6 AND and OR Logical Operators

	1.5 Labels
	1.5.1 Subscripted Labels

	1.6 Modes
	1.6.1 Text Mode
	1.6.2 Alpha Mode
	1.6.3 Mixed Numeric Modes
	1.6.4 Functions for Conversion

	1.7 Names
	1.8 System
	1.9 Variables
	1.9.1 Dummy Variables
	1.9.2 Global Variables
	1.9.3 Local Variables
	1.9.4 Monitored Variables
	1.9.5 Subprogram Variables

	PART II. LANGUAGE REFERENCE
	2. Language Reference
	2.1 ACCUMULATE/TALLY Statement
	2.1.1 Histograms
	2.1.2 Dummy Variables

	2.2 ACTIVATE (process) Statement
	2.2.1 CALLED Phrase
	2.2.2 GIVEN Phrase
	2.2.3 AT Phrase
	2.2.4 IN Phrase
	2.2.5 NOW Phrase

	2.3 ADD Statement
	2.3.1 Complex Subscripted Variables
	2.3.2 Subscripts Containing Functions
	2.3.3 Error Messages

	2.4 AFTER Statement
	2.5 ALSO Phrase
	2.6 ALWAYS Statement
	2.7 BEFORE/AFTER Statement
	2.8 BEGIN HEADING Statement
	2.8.1 System Variables
	Figure 1. Heading Section Within a Report Section

	2.9 BEGIN REPORT Statement
	2.9.1 ON A NEW PAGE Phrase
	2.9.2 PRINTING Phrase
	2.9.3 PER PAGE Phrase
	2.9.4 System Variables

	2.10 BREAK ... TIES Statement
	2.10.1 THEN BY Phrases
	2.10.2 Order of Executing Events at the Same Simul...

	2.11 CALL Statement
	2.11.1 Argument Modes
	2.11.2 Argument Definitions

	2.12 CANCEL Statement
	2.13 CAUSE Statement
	2.14 CLOSE Statement
	2.15 COMPUTE Statement
	2.16 CREATE Statement
	2.17 CREATE EACH Statement
	2.18 CYCLE Statement
	2.19 DEFINE ... ROUTINE Statement
	2.19.1 GIVEN and YIELDING Phrases

	2.20 DEFINE ... SET Statement
	2.20.1 FIFO Sets
	2.20.2 LIFO Sets
	2.20.3 Ranked Sets
	2.20.4 WITHOUT ... ATTRIBUTES Phrase
	2.20.5 WITHOUT ... ROUTINES Phrase

	2.21 DEFINE ... TO MEAN Statement
	2.21.1 Purposes of DEFINE ... TO MEAN

	2.22 DEFINE ... (Global) VARIABLE Statement
	2.23 DEFINE ... (Local) VARIABLE Statement
	2.24 DEFINE ... VARIABLE Statement
	2.24.1 NORMALLY and DEFINE ... VARIABLE Statements...
	2.24.2 Global Variables
	2.24.3 Attributes
	2.24.4 Local Variables
	2.24.5 Arrays
	2.24.6 Arguments, Recursive Variables, and Saved V...
	2.24.7 Subprogram Variables
	2.24.8 Dummy Variables
	2.24.9 Monitored Variables

	2.25 DESTROY Statement
	2.26 DESTROY EACH Statement
	2.27 DO ... LOOP Construct
	2.27.1 Nested DO ... LOOP Constructs
	Figure 2. Nested do ... loop Constructs and do

	2.28 ELSE Statement
	2.29 END Statement
	2.30 ENTER WITH Statement
	2.31 ERASE Statement
	2.32 EVENT Statement
	2.32.1 Arguments
	2.32.2 SAVING Phrase
	2.32.3 Logical Expression for Event Routines

	2.33 EVENT NOTICES Statement
	2.34 EVERY Statement
	2.34.1 General Rules
	2.34.2 Compound Entities
	2.34.3 Event Notices
	2.34.4 Process Notices
	2.34.5 Equivalencing
	2.34.6 Common Attributes
	2.34.7 Packing
	2.34.8 Function Attributes
	2.34.9 Dummy Attributes
	2.34.10 Sets Named in EVERY Statements

	2.35 EXCEPT WHEN Phrase
	2.36 EXTERNAL EVENTS/PROCESSES Statement
	2.37 EXTERNAL ... UNITS Statement
	2.38 FILE Statement
	2.38.1 FIRST, LAST, BEFORE, and AFTER Phrases
	2.38.2 Arithmetic Expressions

	2.39 FIND Statement
	2.39.1 Alternative Forms
	2.39.2 IF FOUND and IF NONE Phrases

	2.40 FOR EACH (class) Phrase
	2.40.1 Nested FOR EACH (class) Phrases
	2.40.2 WITH, UNLESS, WHILE, and UNTIL Phrases

	2.41 FOR ... OF (set) Phrase
	2.41.1 Nested FOR ... OF (set) Phrases
	2.41.2 WITH, UNLESS, WHILE, and UNTIL Phrases
	2.41.3 Mechanism of FOR ... OF (set)

	2.42 FOR ... TO (index) Phrase
	Figure 3. For ... to (index) Phrase Execution
	2.42.1 Nested FOR ... TO (index) Phrases
	2.42.2 WITH, UNLESS, WHILE, and UNTIL Phrases

	2.43 GO TO Statement
	2.43.1 Subscripted Labels
	2.43.2 Error Conditions

	2.44 GO TO ... PER Statement
	2.44.1 Error Conditions

	2.45 HERE Statement
	2.46 IF ... ELSE ... ALWAYS Construct
	Figure 4. Structured if ... else ... always Constr...
	Figure 5. Structured if ... else ... always Constr...
	2.46.1 Nested IF ... ELSE ... ALWAYS Constructs
	Figure 6. Then if Statements

	2.47 INTERRUPT Statement
	2.48 JUMP Statement
	2.49 LAST COLUMN Statement
	2.50 LEAVE Statement
	2.51 LET Statement
	2.52 LIST Statement
	2.53 LIST ATTRIBUTES Statement
	2.53.1 Function Attributes

	2.54 LIST ATTRIBUTES OF EACH Statement
	2.54.1 Output for LIST ATTRIBUTES OF EACH Statemen...
	2.54.2 Function Attributes

	2.55 LOOP Statement
	2.56 MAIN Statement
	2.57 MOVE Statement
	Figure 7. MOVE Statements

	2.58 NEXT Statement
	2.59 NORMALLY Statement
	2.59.1 NORMALLY and DEFINE ... VARIABLE Statements...
	2.59.2 Mode
	2.59.3 Saved and Recursive Variables
	2.59.4 Dimensionality

	2.60 NOW Statement
	2.61 OPEN Statement
	2.62 Routine ORIGIN.R
	2.63 OTHERWISE Statement
	2.64 PERFORM Statement
	2.65 PERMANENT ENTITIES Statement
	2.65.1 INCLUDE Phrase

	2.66 PREAMBLE Statement
	2.67 PRINT Statement
	2.67.1 Format Lines
	2.67.2 DOUBLE Keyword
	2.67.3 Expressions
	2.67.4 GROUP Phrase
	2.67.5 SUPPRESSING Phrase
	Figure 8. Sample Row and Column Repetition

	2.68 PRIORITY Statement
	2.69 PROCESS Statement
	2.69.1 Arguments
	2.69.2 Logical Expression for Process Routines

	2.70 PROCESSES Statement
	2.71 ... RANDOM ... VARIABLE Statement
	2.71.1 Function RANDOM.F
	2.71.2 Mode and Stream Numbers
	2.71.3 Using Random Variables
	2.71.4 Reading Values and Probabilities

	2.72 REACTIVATE Statement
	2.73 READ (Formatted) Statement
	2.73.1 Format Lists
	2.73.2 Skipping to Next Card
	2.73.3 Input Buffer
	2.73.4 AS BINARY Phrase
	2.73.5 AS DOUBLE BINARY Phrase
	2.73.6 USING Phrase
	2.73.7 The Buffer
	2.73.8 Controlled Statements
	2.73.9 End-of-File

	2.74 READ (Free-Form) Statement
	2.74.1 Data Records
	2.74.2 ARRAYS
	2.74.3 USING Phrase
	2.74.4 Controlled READ (Free-Form) Statements
	2.74.5 System Variables

	2.75 RECORD Statement
	2.76 REGARDLESS Statement
	2.77 RELEASE Statement
	2.78 RELINQUISH Statement
	2.79 REMOVE Statement
	2.79.1 Logical Expressions

	2.80 REPEAT Statement
	2.81 REQUEST Statement
	2.82 RESCHEDULE Statement
	2.83 RESERVE Statement
	2.83.1 Dimensionality
	2.83.2 AS Phrase
	2.83.3 BY * Phrase
	2.83.4 Pointers and Array Structures
	Figure 9. Sample One- and Two-Dimensional Arrays
	2.83.5 Function dim.f
	2.83.6 Multiple RESERVE Statements

	2.84 RESET Statement
	2.85 RESOURCES Statement
	2.85.1 Resource Classes
	2.85.2 Resource Units

	2.86 RESTORE Statement
	2.87 RESUME Statement
	2.88 RESUME SUBSTITUTION Statement
	2.89 RETURN Statement
	2.90 REWIND Statement
	2.91 ROUTINE Statement
	2.91.1 Routines Named TO and FOR
	2.91.2 GIVEN Phrase
	2.91.3 YIELDING Phrase
	2.91.4 Argument Definitions
	2.91.5 Argument Modes

	2.92 SCHEDULE (event) Statement
	2.92.1 CALLED Phrase
	2.92.2 GIVEN Phrase
	Figure 10. Sample Event Notices
	2.92.3 AT Phrase
	2.92.4 IN Phrase
	2.92.5 NOW Phrase

	2.93 SELECT CASE Statement
	2.94 SKIP Statement
	2.95 START NEW Statement
	2.96 START SIMULATION Statement
	2.97 STOP Statement
	2.98 STORE Statement
	2.99 SUBSTITUTE Statement
	2.99.1 Purposes of SUBSTITUTE
	2.99.2 Rules

	2.100 SUBTRACT Statement
	2.100.1 Complex Subscripted Variables
	2.100.2 Subscripts Containing Functions
	2.100.3 Error Messages

	2.101 SUPPRESS SUBSTITUTION Statement
	2.102 SUSPEND Statement
	1.103 SYSTEM Statement
	1.104 TALLY Statement
	1.105 TEMPORARY ENTITIES Statement
	1.106 THE SYSTEM Statement
	1.106.1 Packing
	1.106.2 Function Attributes
	2.106.3 Dummy Variables

	2.107 [THEN] IF Statement
	2.108 TRACE Statement
	2.108.1 USING Phrase
	2.108.2 Output

	2.109 UNLESS Phrase
	2.110 UNTIL Phrase
	2.111 UPON Statement
	2.112 USE Statement
	2.113 WAIT/WORK Statement
	2.114 WHEN Phrase
	2.115 WHILE Phrase
	2.116 WITH Phrase
	2.117 WORK Statement
	2.118 WRITE Statement
	2.118.1 AS BINARY Phrase
	2.118.2 AS DOUBLE BINARY Phrase
	2.118.3 USING Phrase
	2.118.4 Controlled WRITE Statements

	Index

