
process AIRPLANE

 call TOWER giving GATE yielding RUNWAY

 work TAXI.TIME (GATE, RUNWAY) minutes

 request 1 RUNWAY

 work TAKEOFF.TIME (AIRPLANE) minutes

 relinquish 1 RUNWAY

end " process AIRPLANE

process AIRPLANE

 call TOWER giving GATE yielding RUNWAY

 work TAXI.TIME (GATE, RUNWAY) minutes

 request 1 RUNWAY

Since 1962S

Reference Handbook

from CACI.

ot assume
d herein is
uch change.

pany.
Copyright  1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cann
the responsibility for any consequences resulting from the use thereof. The information containe
subject to change. Revisions to this publication or new editions of it may be issued to incorporate s

SIMGRAPHICS I, SIMGRAPHICS II and SIMSCRIPT II.5 are registered trademarks of CACI Products Com

Windows is a registered trademark of Microsoft Corporation.

Table of Contents
Preface .. a

Formal Syntax Employed In This Publication ... c
A. DESCRIPTION OF SYNTAX .. c
B. PRIMITIVES AND METAVARIABLES REFERRED TO IN SYNTAX ... d

B.1 Primitives.. d
B.2 Metavariables ... e

PART I GENERAL REFERENCE ... 1

1. General Reference ... 3
1.1 ATTRIBUTES... 3

1.1.1 Function Attributes .. 3

1.2 CONSTANTS ... 3

1.2.1 Numeric Constants ... 3
1.2.2 Subprogram Literals ... 4
1.2.3 Text Literals .. 4
1.2.4 Alpha Literals .. 4

1.3 ARITHMETIC EXPRESSIONS .. 5

1.3.1 Arithmetic Operators ... 5
1.3.2 Hierarchy of Operations .. 5
1.3.3 Parentheses .. 6
1.3.4 Mixed Mode Expressions .. 6

1.4 LOGICAL EXPRESSIONS ... 7

1.4.1 Property Comparisons ..10
1.4.2 Arithmetic Relational Operators ..10
1.4.3 Compound Relational Expressions ...11
1.4.4 Mixed Mode Comparisons ..11
1.4.5 IS TRUE and IS FALSE Phrases ..11
1.4.6 AND and OR Logical Operators ...11

1.5 LABELS 12

1.5.1 Subscripted Labels ..12

1.6 MODES ... 13

1.6.1 Text Mode ... 13
1.6.2 Alpha Mode ...14
1.6.3 Mixed Numeric Modes ..14
1.6.4 Functions for Conversion ..15

1.7 NAMES ... 16
1.8 SYSTEM.. 17
1.9 VARIABLES .. 32

1.9.1 Dummy Variables ...32
1.9.2 Global Variables ... 32
1.9.3 Local Variables ...32
1.9.4 Monitored Variables ..33
1.9.5 Subprogram Variables ..34
i

SIMSCRIPT II.5 Reference Handbook
PART II. LANGUAGE REFERENCE ..35

2. Language Reference ..37
2.1 ACCUMULATE/TALLY STATEMENT .. 37

2.1.1 Histograms ... 42
2.1.2 Dummy Variables ... 42

2.2 ACTIVATE (PROCESS) STATEMENT ... 43

2.2.1 CALLED Phrase .. 44
2.2.2 GIVEN Phrase .. 44
2.2.3 AT Phrase... 44
2.2.4 IN Phrase .. 45
2.2.5 NOW Phrase ... 45

2.3 ADD STATEMENT.. 46

2.3.1 Complex Subscripted Variables... 46
2.3.2 Subscripts Containing Functions .. 47
2.3.3 Error Messages .. 47

2.4 AFTER STATEMENT .. 48
2.5 ALSO PHRASE .. 48
2.6 ALWAYS STATEMENT ... 48
2.7 BEFORE/AFTER STATEMENT ... 49
2.8 BEGIN HEADING STATEMENT.. 51

2.8.1 System Variables... 51

2.9 BEGIN REPORT STATEMENT ... 53

2.9.1 ON A NEW PAGE Phrase .. 53
2.9.2 PRINTING Phrase .. 54
2.9.3 PER PAGE Phrase ... 54
2.9.4 System Variables... 54

2.10 BREAK ... TIES STATEMENT ... 55

2.10.1 THEN BY Phrases .. 56
2.10.2 Order of Executing Events at the Same Simulated Time56

2.11 CALL STATEMENT .. 57

2.11.1 Argument Modes .. 57
2.11.2 Argument Definitions ... 58

2.12 CANCEL STATEMENT... 59
2.13 CAUSE STATEMENT ... 59
2.14 CLOSE STATEMENT ... 60
2.15 COMPUTE STATEMENT ... 61
2.16 CREATE STATEMENT... 63
2.17 CREATE EACH STATEMENT.. 65
2.18 CYCLE STATEMENT ... 66
2.19 DEFINE ... ROUTINE STATEMENT... 67

2.19.1 GIVEN and YIELDING Phrases .. 68

2.20 DEFINE ... SET STATEMENT ... 69

2.20.1 FIFO Sets ... 70
2.20.2 LIFO Sets.. 71
2.20.3 Ranked Sets ... 71
ii

Contents
2.20.4 WITHOUT ... ATTRIBUTES Phrase ... 71
2.20.5 WITHOUT ... ROUTINES Phrase ...72

2.21 DEFINE ... TO MEAN STATEMENT ...73

2.21.1 Purposes of DEFINE ... TO MEAN ...74

2.22 DEFINE ... (GLOBAL) VARIABLE STATEMENT .. 75
2.23 DEFINE ... (LOCAL) VARIABLE STATEMENT ..76
2.24 DEFINE ... VARIABLE STATEMENT ...77

2.24.1 NORMALLY and DEFINE ... VARIABLE Statements78
2.24.2 Global Variables ...78
2.24.3 Attributes ... 79
2.24.4 Local Variables ...79
2.24.5 Arrays ... 79
2.24.6 Arguments, Recursive Variables, and Saved Variables79
2.24.7 Subprogram Variables ..79
2.24.8 Dummy Variables ... 80
2.24.9 Monitored Variables ..80

2.25 DESTROY STATEMENT ..81
2.26 DESTROY EACH STATEMENT... 83
2.27 DO ... LOOP CONSTRUCT .. 84

2.27.1 Nested DO ... LOOP Constructs.. 85

2.28 ELSE STATEMENT .. 87
2.29 END STATEMENT .. 88
2.30 ENTER WITH STATEMENT ...89
2.31 ERASE STATEMENT ...90
2.32 EVENT STATEMENT ...91

2.32.1 Arguments ..92
2.32.2 SAVING Phrase ...92
2.32.3 Logical Expression for Event Routines ..92

2.33 EVENT NOTICES STATEMENT ..93
2.34 EVERY STATEMENT ... 95

2.34.1 General Rules ...97
2.34.2 Compound Entities ...97
2.34.3 Event Notices ..97
2.34.4 Process Notices...98
2.34.5 Equivalencing ... 98
2.34.6 Common Attributes ...98
2.34.7 Packing ... 98
2.34.8 Function Attributes ..99
2.34.9 Dummy Attributes ...100
2.34.10 Sets Named in EVERY Statements ...100

2.35 EXCEPT WHEN PHRASE ..100
2.36 EXTERNAL EVENTS/PROCESSES STATEMENT ... 101
2.37 EXTERNAL ... UNITS STATEMENT ..105
2.38 FILE STATEMENT .. 106

2.38.1 FIRST, LAST, BEFORE, and AFTER Phrases ...106
2.38.2 Arithmetic Expressions ...107
iii

SIMSCRIPT II.5 Reference Handbook
2.39 FIND STATEMENT .. 108

2.39.1 Alternative Forms .. 109
2.39.2 IF FOUND and IF NONE Phrases ... 109

2.40 FOR EACH (CLASS) PHRASE .. 110

2.40.1 Nested FOR EACH (class) Phrases .. 111
2.40.2 WITH, UNLESS, WHILE, and UNTIL Phrases ...111

2.41 FOR ... OF (SET) PHRASE ... 112

2.41.1 Nested FOR ... OF (set) Phrases ... 113
2.41.2 WITH, UNLESS, WHILE, and UNTIL Phrases ...113
2.41.3 Mechanism of FOR ... OF (set) ... 113

2.42 FOR ... TO (INDEX) PHRASE .. 114

2.42.1 Nested FOR ... TO (index) Phrases .. 116
2.42.2 WITH, UNLESS, WHILE, and UNTIL Phrases ...116

2.43 GO TO STATEMENT ... 117

2.43.1 Subscripted Labels ... 117
2.43.2 Error Conditions.. 118

2.44 GO TO ... PER STATEMENT ... 119

2.44.1 Error Conditions .. 120

2.45 HERE STATEMENT .. 121
2.46 IF ... ELSE ... ALWAYS CONSTRUCT .. 122

2.46.1 Nested IF ... ELSE ... ALWAYS Constructs... 124

2.47 INTERRUPT STATEMENT .. 126
2.48 JUMP STATEMENT .. 127
2.49 LAST COLUMN STATEMENT ... 128
2.50 LEAVE STATEMENT ... 129
2.51 LET STATEMENT .. 130
2.52 LIST STATEMENT ... 131
2.53 LIST ATTRIBUTES STATEMENT .. 132

2.53.1 Function Attributes .. 132

2.54 LIST ATTRIBUTES OF EACH STATEMENT ... 133

2.54.1 Output for LIST ATTRIBUTES OF EACH Statement 134
2.54.2 Function Attributes .. 134

2.55 LOOP STATEMENT ... 134
2.56 MAIN STATEMENT .. 135
2.57 MOVE STATEMENT ... 136
2.58 NEXT STATEMENT .. 137
2.59 NORMALLY STATEMENT ... 138
2.60 NORMALLY AND DEFINE ... VARIABLE STATEMENTS ..138

2.60.1 Mode ... 139
2.60.2 Saved and Recursive Variables .. 139
2.60.3 Dimensionality .. 139

2.61 NOW STATEMENT ... 140
2.62 OPEN STATEMENT .. 141
2.63 ROUTINE ORIGIN.R .. 141
2.64 OTHERWISE STATEMENT .. 142
iv

Contents
2.65 PERFORM STATEMENT ..142
2.66 PERMANENT ENTITIES STATEMENT .. 143

2.66.1 INCLUDE Phrase ..143

2.67 PREAMBLE STATEMENT ...144
2.68 PRINT STATEMENT ... 145

2.68.1 Format Lines ...146
2.68.2 DOUBLE Keyword ..147
2.68.3 Expressions ..149
2.68.4 GROUP Phrase ..149
2.68.5 SUPPRESSING Phrase ...150

2.69 PRIORITY STATEMENT .. 152
2.70 PROCESS STATEMENT ..153

2.70.1 Arguments ..154
2.70.2 Logical Expression for Process Routines ...154

2.71 PROCESSES STATEMENT... 155
2.72 ... RANDOM ... VARIABLE STATEMENT.. 156

2.72.1 Function RANDOM.F ..157
2.72.2 Mode and Stream Numbers...157
2.72.3 Using Random Variables ..157
2.72.4 Reading Values and Probabilities ...157

2.73 REACTIVATE STATEMENT ..158
2.74 READ (FORMATTED) STATEMENT... 159

2.74.1 Format Lists ..160
2.74.2 Skipping to Next Card ...160
2.74.3 Input Buffer ...164
2.74.4 AS BINARY Phrase ..164
2.74.5 AS DOUBLE BINARY Phrase .. 164
2.74.6 USING Phrase ..165
2.74.7 The Buffer ... 165
2.74.8 Controlled Statements ..165
2.74.9 End-of-File ..165

2.75 READ (FREE-FORM) STATEMENT... 167

2.75.1 Data Records.. 168
2.75.2 ARRAYS ...169
2.75.3 USING Phrase .. 169
2.75.4 Controlled READ (Free-Form) Statements ...169
2.75.5 System Variables.. 169

2.76 RECORD STATEMENT ...170
2.77 REGARDLESS STATEMENT ..170
2.78 RELEASE STATEMENT ..171
2.79 RELINQUISH STATEMENT .. 172
2.80 REMOVE STATEMENT... 173

2.80.1 Logical Expressions ..174

2.81 REPEAT STATEMENT ..174
2.82 REQUEST STATEMENT ...175
2.83 RESCHEDULE STATEMENT.. 176
v

SIMSCRIPT II.5 Reference Handbook
2.84 RESERVE STATEMENT ... 177

2.84.1 Dimensionality .. 178
2.84.2 AS Phrase ... 178
2.84.3 BY * Phrase .. 178
2.84.4 Pointers and Array Structures... 178
2.84.5 Function dim.f ... 180
2.84.6 Multiple RESERVE Statements .. 180

2.85 RESET STATEMENT .. 181
2.86 RESOURCES STATEMENT ... 182

2.86.1 Resource Classes ... 183
2.86.2 Resource Units ... 183

2.87 RESTORE STATEMENT ... 183
2.88 RESUME STATEMENT ... 184
2.89 RESUME SUBSTITUTION STATEMENT ... 185
2.90 RETURN STATEMENT ... 186
2.91 REWIND STATEMENT .. 187
2.92 ROUTINE STATEMENT .. 188

2.92.1 Routines Named TO and FOR ... 189
2.92.2 GIVEN Phrase .. 189
2.92.3 YIELDING Phrase ... 189
2.92.4 Argument Definitions .. 189
2.92.5 Argument Modes .. 190

2.93 SCHEDULE (EVENT) STATEMENT .. 191

2.93.1 CALLED Phrase ... 192
2.93.2 GIVEN Phrase ... 193
2.93.3 AT Phrase ... 193
2.93.4 IN Phrase .. 194
2.93.5 NOW Phrase... 194

2.94 SELECT CASE STATEMENT ... 195
2.95 SKIP STATEMENT .. 196
2.96 START NEW STATEMENT ... 198
2.97 START SIMULATION STATEMENT ... 199
2.98 STOP STATEMENT .. 200
2.99 STORE STATEMENT.. 201
2.100 SUBSTITUTE STATEMENT.. 202

2.100.1 Purposes of SUBSTITUTE ... 203
2.100.2 Rules ... 203

2.101 SUBTRACT STATEMENT ... 204

2.101.1 Complex Subscripted Variables.. 204
2.101.2 Subscripts Containing Functions .. 205
2.101.3 Error Messages ... 205

2.102 SUPPRESS SUBSTITUTION STATEMENT ... 206
2.103 SUSPEND STATEMENT... 207
2.104 SYSTEM STATEMENT .. 208
2.105 TALLY STATEMENT ... 208
2.106 TEMPORARY ENTITIES STATEMENT .. 209
vi

Contents
2.107 THE SYSTEM STATEMENT .. 210

2.107.1 Packing ..211
2.107.2 Function Attributes... 212
2.107.3 Dummy Variables ..212

2.108 [THEN] IF STATEMENT .. 213
2.109 TRACE STATEMENT .. 214

2.109.1 USING Phrase ..214
2.109.2 Output ... 214

2.110 UNLESS PHRASE ... 216
2.111 UNTIL PHRASE ... 217
2.112 UPON STATEMENT ..218
2.113 USE STATEMENT... 219
2.114 WAIT/WORK STATEMENT ... 220
2.115 WHEN PHRASE... 220
2.116 WHILE PHRASE .. 221
2.117 WITH PHRASE ... 222
2.118 WORK STATEMENT ... 223
2.119 WRITE STATEMENT... 223

2.119.1 AS BINARY Phrase ..231
2.119.2 AS DOUBLE BINARY Phrase .. 231
2.119.3 USING Phrase ..232
2.119.4 Controlled WRITE Statements ..232

Index ... 233
vii

SIMSCRIPT II.5 Reference Handbook
viii

List of Figures
Figure 1. Heading Section Within a Report Section ...52
Figure 2. Nested do ... loop Constructs and do ... loop Constructs Using

also for Phrases ..86
Figure 3. For ... to (index) Phrase Execution ...115
Figure 4. Structured if ... else ... always Construct 123
Figure 5. Structured if ... else ... always Construct with

Unconditional Transfer ..124
Figure 6. Then if Statements ..125
Figure 7. MOVE Statements.. 137
Figure 8. Sample Row and Column Repetition ...151
Figure 9. Sample One- and Two-Dimensional Arrays.. 179
Figure 10. Sample Event Notices... 193
ix

SIMSCRIPT II.5 Reference Handbook
x

pro-
uch as
ity to

n-

-
fully in

r
l mod-

ecific
etic or-
ling or

 com-

wing
Preface

SIMSCRIPT II.5 is a powerful, free-form, English-like, general-purpose simulation
gramming language. It supports the application of software engineering principles, s
structured programming and modularity, which impart orderliness and manageabil
simulation models.

SIMSCRIPT II.5 is a fully documented language:

• SIMSCRIPT II.5 Programming Language illustrates usage of the language co
structs without interactive graphics.

• Building Simulation Models with SIMSCRIPT II.5 is oriented toward real applica
tions of model building, and features the case study approach used success
the short course given regularly by CACI Products Company.

• SIMGRAPHICS II User’s Manual for SIMSCRIPT II.5 describes graphical edito
and language statements and data structures for creating interactive graphica
els with SIMSCRIPT II.5. These texts are available through CACI.

This handbook is intended for use by experienced SIMSCRIPT users who have sp
questions about syntax or usage of individual non-graphical statements. The alphab
ganization by keyword supports this usage. For more general questions of mode
strategy, the reader is referred to the other books mentioned above.

Free Trial Offer

SIMSCRIPT II.5 is available on a free trial basis. We provide everything needed for a
plete evaluation on your computer. There is no risk to you.

Training Courses

Training courses in SIMSCRIPT II.5 are scheduled on a recurring basis in the follo
locations:

La Jolla, California
Washington, D.C.
London, United Kingdom

On-site instruction is available. Contact CACI for details.

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
(619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 +44 (0) 1276.671.671

Fax: +44 (0) 0276.670.677
a

SIMSCRIPT II.5 Reference Handbook
For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:

CACI Products Company CACI Products Division
3333 N. Torrey Pines Court Coliseum Business Centre
La Jolla, CA 92037 Riverside Way
(619) 824.5200 Camberley
Fax: (619) 457.1184 Surrey

GU15 3YL UK
+44 (0) 1276.671.671
Fax: +44 (0) 0276.670.677
b

 II.5
ribe syn-
mmer.

re ap-

 and
super-

ars in

s op-
rack-
word,
per-
ons of

D.
Formal Syntax Employed In This
Publication

A. Description of Syntax

This publication employs a formal notation for describing the syntax of SIMSCRIPT
statements. Where necessary, the notation is supplemented by comments that desc
onyms for keywords, semantic constraints, and other considerations for the progra
View the comments as an integral part of the syntax wherever they are included.

The following conventions are used in the formal notation:

1. All of the following characters are to be used exactly as shown, except whe
pearing as a superscript (see 4, below):

General Term Characters

Uppercase letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

Digits 0123456789

Punctuation ' " . ,

Special characters () + - * / $: < > = ¬

Blanks, one or more
wherever indicated

2. All of the following characters are used by the notation to refer to primitives
metavariables (defined in paragraph B below), except where appearing as a
script (see 4 below):

General Term Characters

Lowercase italics abcdefghijklmnopqrstuvwxyz

3. When a list of words or expressions appear in brackets, i.e., [], a choice may be
made from the options indicated. When a list of words or expressions appe
braces, i.e., { }, a choice must be made from the options indicated.

4. Superscripted text immediately following a right-hand bracket or brace denote
tional repetition of the material, or choice of material, enclosed in that set of b
ets or braces. When the material to be repeated consists of a single key
primitive or metavariable, the superscripted text immediately follows. The su
scripted text itself denotes the connective that must appear between repetiti
the material, as follows:

c A comma, the word AND, or a comma followed by the word AN

c then Any of the above, followed by the word THEN.

by The word BY.
c

SIMSCRIPT II.5 Reference Handbook

ers,
er.

ast
 end
ame
w-
and  Either of the two words AND and OR; the choice depends
  on the logic that the programmer wishes to express.
or 
or The word OR. A comma can be used instead of OR.

i No connective; simply repeat the material.

B. Primitives and Metavariables Referred to in Syntax

B.1 Primitives

integer A sequence of digits delimited by blanks, special charact
or the end of a record; a numeral denoting a whole numb

name A sequence of letters, digits, and periods containing at le
one letter, delimited by blanks, special characters, or the
of a record. In some cases, a programmer can use any n
not already defined in the preamble. Most of the time, ho
ever, a name refers to one of the following:

attribute (sometimes further specified):

entity attribute (sometimes further specified):

permanent entity attribute

unsubscripted system attribute

entity (sometimes further specified):

permanent entity

temporary entity

event

label

process

resource

routine

set

variable (sometimes further specified):

array

global variable (sometimes further specified):

unsubscripted global variable

local variable

pointer variable

text variable
d

Formal Syntax

mal

ard,
 of

ord.

rac-
nks
 of a

scribe

ra-
statement A series of words (q.v.) that can be generated by the for
syntax notation employed in Part II of this publication for
any of the entries referred to as "statements". In this reg
a statement can only be defined by its inclusion in a list
allowable SIMSCRIPT II.5 statements.

string Any sequence of characters, delimited by the end of a rec

word Any single character, or a sequence of two or more cha
ters not containing a special character, delimited by bla
(unless the word is a single special character) or the end
record.

B.2 Metavariables

Metavariables are best defined by the portions of this publication that list and/or de
them.

c A comma, the word and , or a comma followed by the word
and .

for phrase A string defined by the syntax for any of the following:

for ... each (class)

for ... to (index) phrase

for ... of (set) phrase

logical expression Any of the entries described in table 1. Also read the pa
graph entitled Logical Expressions in Part I of this publica-
tion.

quantity A value (q.v.) which is of integer or real mode.

relational operator Any of the entries described in table 2.

selection phrase A string defined by the syntax for either of the following:

unless phrase

with phrase

set attribute Any of the letters defined in table 14.

set routine Any of the mnemonic abbreviations defined in table 15.

stat kywd Any of the statistical keywords described in tables 9 and 13.

termination phrase A string defined by the syntax for either of the following:

until phrase

while phrase
e

SIMSCRIPT II.5 Reference Handbook

o an
unconditional transfer A string defined by the syntax for the following:

cycle statement

go to statement

go to ... per statement

jump statement

leave statement

return statement

stop statement

value A constant, a variable, or any expression that evaluates t
integer, a real number, or a text string.
f

PART I
GENERAL REFERENCE
1

SIMSCRIPT II.5 Reference Handbook
2

cells
ame
and are

e a
 in two
 that
alues
ociated

ently,
uments
ttribute,
sional
rage in
ple, to

rs to a
 When
ample,
:

owed
1. General Reference

1.1 Attributes

Each entity in a SIMSCRIPT II.5 simulation is composed of a collection of memory
called attributes. The values define characteristics of the entity. All entities of the s
entity class have the same set of attributes, but the values of these attributes differ
set by the program. Attributes can have real or integer values (as declared in normally
or define ... variable statements). Each attribute of each entity must hav
different name, unless two or more attributes are placed in the same relative location
or more entities ("common attributes"). An attribute is similar to a global variable in
it pertains to the global environment and is initialized to zero. However, attribute v
can be packed, while values of global variables cannot. Entity classes and their ass
attributes are declared in every statements, and system attributes are declared in the
system statements.

1.1.1 Function Attributes

A function attribute is one whose value is computed by a function routine. Consequ
a routine must be written with the same name as the attribute and with as many arg
as the attribute has subscripts; that is, no arguments for an unsubscripted system a
one argument for a temporary or permanent entity, two arguments for a two-dimen
system attribute, and so on. Because function attributes designate routines, no sto
entity records is allocated for the values. Function attributes can be used, for exam
perform complex calculations and to monitor and print.

1.2 Constants

1.2.1 Numeric Constants

A constant is a quantity that remains unchanged during program execution, and refe
literal value. Integer and real (decimal) numbers, signed or unsigned, are permitted.
equivalent representations of a number exist, they all have the same value; for ex
+7.5, 7.5, and 07.5000 all represent the same number. Some integer constants are

l576 -53 +2000

and sample real numbers are:

0.25 -0.0756 +2.68 351.9 9.

Note: 9. is a real value. Constants in scientific notation (e.g., 1.56E04) are not all
in programs, although input data may be read in this form.
3

SIMSCRIPT II.5 Reference Handbook

 right-
routine,
are:

tation
tation
ause
f liter-

by two

 words

 char-
ly a sin-
lpha

ariable

es are
ise,
1.2.2 Subprogram Literals

A subprogram literal is formed by enclosing the name of a subprogram (subroutine or
hand function) in single apostrophe characters. This represents the address of that
which can then be stored in a subprogram variable for later indirect call. Examples

'cos.f' 'process'

1.2.3 Text Literals

A literal text constant is represented by a string of characters enclosed within two quo
(") marks; a quotation mark within a literal is represented by two successive quo
marks. The length of a text literal is limited only to the length of the input line. Bec
text literals are compiled directly into programs, they cannot be altered. Examples o
als are:

"word"

"a very long text literal string"

"Say ""hi"""

"0123456789"

The null string is a string of length zero that contains no characters. It is represented
quotation marks ("").

A text literal is stored as a pointer to an area of memory where one or more computer
contain the represented characters.

1.2.4 Alpha Literals

A literal alpha constant is similar to a text constant, except that a smaller number of
acters may be represented. On most implementations, alpha constants represent on
gle character. The SIMSCRIPT II.5 compiler distinguishes between text and a
constants by context. A character literal is an alpha constant if it is assigned to a v
of mode ALPHA, as follows:

define ALPHA as an alpha variable
define STRING as a 1-dim alpha array
.
.
let ALPHA = "k"
let STRING(1) = """"
let STRING(2) = "x"
let STRING(3) = """"

For those implementations limited to one character per alpha constant, alpha valu
stored right-justified within a computer word, padded on the left with zeros. Otherw
alpha values are stored left-justified, padded on the right with blanks.
4

Arithmetic Expressions

metic
 or vari-
pound
 of eval-

 and
 treated
erators

s the

ay not
 evalu-

rmed
1.3 Arithmetic Expressions

An arithmetic expression is written as a string of variables, constants, functions, arith
operators, and parentheses. The simplest expression consists of a single constant
able, and simple expressions can be combined with arithmetic operators to form com
expressions. Terms can be enclosed within parentheses to indicate a desired order
uation. Unless otherwise stated, an expression can include any of the following:

• System- and programmer-defined constants
• System variables
• Subscripted and unsubscripted local variables
• Subscripted and unsubscripted global variables
• Attributes and function attributes
• System- and programmer-defined function references
• Subprogram variables
• Subscripted and unsubscripted monitored variables.

1.3.1 Arithmetic Operators

All arithmetic operators must be expressed explicitly (e.g., no implied multiplication),
no two operators can appear consecutively. Because the exponentiation operator is
as a single unit, blanks cannot appear between the two asterisks. The arithmetic op
are:

+ Addition - Subtraction

* Multiplication / Division

** Exponentiation

1.3.2 Hierarchy of Operations

When computing the value of a complex expression, the following hierarchy specifie
order in which the different operations are performed relative to each other:

** Exponentiation

* and / Multiplication and division

+ and - Addition and subtraction

Expressions are generally evaluated from left to right. However, operands may or m
be accessed in this order, depending on the implementation. As each expression is
ated, exponentiation is performed before multiplication and division, which are perfo
before addition and subtraction. For example, the formula:

ax 2 + bx + c

can be expressed as:
5

SIMSCRIPT II.5 Reference Handbook

ns.

theses.
main-

st pair
ssion

 all pa-
 obtain
riables,
re sim-
e term,
es and
s.

l vari-
a * x**2 + b * x + c

SIMSCRIPT II.5 computes the value of this expression by:

1. Squaring x .
2. Multiplying x2 by a.
3. Multiplying x by b.
4. Adding the two products together.
5. Adding c to the result.

Step 3 may be done before step 1 or before step 2 by some language implementatio

1.3.3 Parentheses

The standard hierarchy of operations may be altered by enclosing terms within paren
SIMSCRIPT II.5 performs all operations within parentheses before completing the re
ing evaluation. For example, the system computes the value of the expression k/(m + n)
by:

1. Adding m and n.
2. Dividing k by this sum.

When pairs of parentheses are embedded within other pairs, terms within the innermo
are evaluated first. For example, SIMSCRIPT II.5 computes the value of the expre
(((a + b)*25.3)-c**2)/d by:

1. Adding a and b.
2. Multiplying this sum by 25.3 .
3. Squaring c .
4. Subtracting the square of c from the product in step 2.
5. Dividing the difference by d.

SIMSCRIPT II.5 processes parenthesized expressions from left to right and removes
rentheses before computing a final value. In removing parentheses, the system may
values of subscripted variables from storage and place these values in temporary va
or it may save only the subscript. Compound expressions containing parentheses a
plified. Whenever an expression enclosed within parentheses contains more than on
the hierarchy of operations determines the order of evaluation. Subscripted variabl
functions with argument lists are evaluated as if they were parenthesized expression

1.3.4 Mixed Mode Expressions

The result of evaluating simple arithmetic expressions involving both integer and rea
ables is as follows.
6

Logical Expressions

llow the

mpiler

A
ional

gram
ther a
rd
ith
l

Compound expressions are evaluated as a sequence of simple expressions that fo
above rules. For example, if a, b, c, x , and y are all integer, a*b/(x*y) is real, but
a*(x+y*(b+c)) is integer.

Constants in simple expressions will be converted to the appropriate mode by the co
to avoid run-time conversion.

1.4 Logical Expressions

Logical expressions are required in if ... else ... always constructs and in with ,
unless, while and until phrases. Table 1 lists the available logical expressions.
simple logical expression is formed by joining two arithmetic expressions with a relat
operator. Relational operators are listed in table 2. A logical expression is true if the
relationship expressed is true. It is false if the relationship is not true. During pro
execution, current values of variables in the arithmetic expressions determine whe
logical expression is true or false. A logical expression can optionally include the wois
for clarity (e.g., x is equal to y). Simple logical expressions can be combined w
relational operators, or with the and and or logical operators, to form compound logica
expressions. Some examples follow:

x = 0

True if the value of variable x is zero.

x + (a**2) + (b**2) > a * b

True if the value of expression x + (a**2) + (b**2) is greater than the value of a * b .

(x(1)**2 / y(1)**2) LS (max + factor)

True if the value of expression x(1)**2 / y(1)**2 is less than the value of
max + factor .

x < = SAMPLE < = y = LIMIT

True if all conditions are true: SAMPLE is greater than or equal to x ; SAMPLE is less than
or equal to y ; and y equals LIMIT .

NO.RUNWAYS(AIRPORT) is > = 5

if: then:

a b a + b a - b a*b a/b a**b

integer integer integer integer integer real real

integer real real real real real real

real integer real real real real real

real real real real real real real
7

SIMSCRIPT II.5 Reference Handbook

al
True if the value of attribute NO.RUNWAYS is greater than or equal to 5; the word IS is op-
tional.

CHARACTER equals (ALPHABET(I)) is false

True if the value of variable CHARACTER does not equal the I
th value of array ALPHABET.

mode is alpha and card is not new

True if both logical expressions, mode is alpha and card is not new , are true.

(FARE(PATRON) ls LOW is true) or DESTINATION(PATRON)= "sfo" is
false

True if either, or both, logical expressions are true: value of attribute FARE is less than the
value of low and/or the value of DESTINATION does not equal the alphanumeric liter
sfo . Logical expressions can be optionally enclosed in parentheses.

this FLIGHT is not in some WAITING.LINE

True if the entity whose index is the value of FLIGHT is not in a set of the class
WAITING.LINE.
8

Logical Expressions

ed.
Table 1. Logical Expressions

Any of the following logical expressions can be followed by the words is true or is false . Logical
expressions can also be joined by and and or , and enclosed in parentheses, to express the logic desir
Relational operators (referred to in the first example) are listed in table 2.

value [is] relational_ operator value

value [is] [not]

mode [is] [not]

data [is] [not] ended

card [is] [not] new

page [is] [not] first

 SET is [not] empty

ENTITY is [not] in SET

is [not]

positive

negative

zero 
 
 
 
 

integer

integer

alpha 
 
 
 
 

the

this

the

this

a

an

th e

some

event

process
 
 
 
 
 

endogenou s

exogenou s

interna l

externa l 
 
 
 
 
 
 
9

SIMSCRIPT II.5 Reference Handbook

r prop-

e

nding
ational
theses,
1.4.1 Property Comparisons

Some logical expressionss employ nonarithmetic comparisons to test for a particula
erty. For example, an arithmetic expression can be compared with the names positive ,
negative , or zero . Similarly, a set can be empty or not-empty . In these cases, a tru
or false condition will exist.

1.4.2 Arithmetic Relational Conditions

Table 2 lists the mathematical symbol for each relational operator and the correspo
forms permitted in SIMSCRIPT II.5. Unless the special characters are used, each rel
operator must be separated from the arithmetic expressions on either side by paren
or by at least one blank column.

Table 2: Relational Operators

Mathematical Symbol Permitted Forms

= =
eq

equals
equal to

≠ < >
ne

not equal to

< <
lt
ls

less than

> >
gt
gr

greater than

≤ < =
le

no greater than
not greater than

≥ > =
ge

no less than
not less than
10

Logical Expressions

ns are

pres-

on

expres-
losed
sion.

.

pound
t,
d
indi-
1.4.3 Compound Relational Expressions

Simple relational comparisons may be cascaded to indicate that multiple compariso
to take place. Consider the expression:

a = b > c and q/r = d = c

For this expression to be true, it must be the case that:

a = b and b > c and q/r = d and d = c

1.4.4 Mixed Mode Comparisons

If the modes of the arithmetic constituents of a logical expression differ, all integer ex
sions are converted to real before evaluating the logical expression as true or false.

1.4.5 IS TRUE and IS FALSE Phrases

A logical expression can be followed optionally by an is true or is false phrase. The
is true phrase is used for clarity, but an is false phrase negates the logical expressi
and is used to maintain a desired program logic. When an is true or is false phrase
appears in a compound logical expression, the phrase always applies to the logical
sion immediately preceding it. If this logical expression is compound, it must be enc
within parentheses, or the phrase will apply only to the immediately adjacent expres

1.4.6 AND and OR Logical Operators

Simple logical expressions can also be combined with the logical operators and and or to
form compound logical expressions, following the rules:

1. If two logical expressions are combined with an and logical operator, both logical
expressions must be true for the compound logical expression to be true.

2. If two logical expressions are combined with an or logical operator, the com-
pound logical expression is true if either, or both, logical expressions are true

When more than two simple logical expressions appear in an unparenthesized com
logical expression, the logical operator and is evaluated first. Proceeding from left to righ
successive logical expressions are used as operands of and operators, and these evaluate
expressions are then operands of or operators. Parentheses can be used, however, to
cate a specific order of evaluation. For example:

a = b or c < d and e > f

is logically equivalent to:

a = b or (c < d and e > f)

but could be changed with parentheses to:

(a = b or c < d) and e > f
11

SIMSCRIPT II.5 Reference Handbook

l.
e same
same
be-

phes.

diately
t mod-
xam-
ntly
a-
t equal

consec-
1.5 Labels

A statement label identifies a transfer point for a go to statement. Labels are always loca
Because a label always refers to a statement in the routine containing that label, th
label can appear in different routines. In addition, different labels can identify the
statement; they are then called equivalent labels. Of course, transfers cannot be made
tween routines by means of a go to statement.

A label can be any combination of letters, digits, and periods enclosed in apostro
Some sample labels are:

'writeoutputcard' 'region.2'

'write.output.card' 'transfer'

'999' 'error.13'

'...error'

1.5.1 Subscripted Labels

A label can be subscripted by placing a single positive integer in parentheses imme
after the label name. Subscripted labels permit labels to be added or deleted withou
ifying the go to statements that transfer control to them. They are convenient, for e
ple, in programs containing go to statements that direct control to segments in a freque
modified program. When the system executes a go to statement having a subscripted l
bel, control is transferred to the statement preceded by the same label and subscrip
to the integer value of the expression.

Subscripts need not start with the number 1, and subscripted labels need not be in
utive order in a program. Some examples of subscripted labels are:

'place(3)' 'input.card(32)' 'x(1)'
12

Modes

 are

s

nts of
ities, can
teger,
hould
rmed

 of al-
he spe-
may
 varies

tput,
hs the
s sub-
1.6 Modes

A variable can have integer, real, alpha , or text mode. On some
implementations, double-precision and single-precision floating point modes
recognized as double and real modes, respectively.

An integer variable represents a whole number or an entity pointer. A real (or double)
variable represents a number that may have fractional values. Alpha and text variables
represent character strings. The system assumes that the mode of a variable ireal
(double on some implementations) unless otherwise specified in normally or define
... variable statements. Subscripted variables can have any mode, but all eleme
an array have the same mode. System attributes, and permanent and temporary ent
also have any mode. Except for set pointers, which are automatically defined as in
the mode of all attributes is declared by the programmer. The use of a variable s
conform with its declared mode. Table 3 describes data conversion as perfo
automatically by SIMSCRIPT II.5 when reading input data.

1.6.1 Text Mode

The value of a text variable is a variable-length character string, that is, a sequence
phanumeric characters. An alphanumeric character can be a letter, a digit, or any of t
cial characters for the particular implementation of SIMSCRIPT II.5. A text variable
contain from 0 to 32,000 characters. The way in which the characters are represented
among the implementations.

Individual characters of a text string may be accessed by using the substr.f system func-
tion, which creates (or puts) a substring from (into) the text string. During input, ou
and substring manipulation, if the source and destination strings are of different lengt
source field is left-justified, with excess characters truncated from the right, and blank
stituted for missing characters.

Text mode variables may not be mixed with other modes in expressions or let statements,
except when using a mode conversion function.

Examples of possible values of text variables are:

X

0123456789

Dr. Mary P. Smith

****$2,347.02*

13

SIMSCRIPT II.5 Reference Handbook

a giv-
e rep-
riables

r from

ay be
olving

f a com-
s, and
ssion
ield a
alue.

e val-
to
1.6.2 Alpha Mode

Alpha variables represent fixed-length character strings, with the length constant for
en implementation (typically from 1 to 10 characters). Strings that are too long to b
resented by an alpha variable are truncated on the right. Possible values for alpha va
are similar to those for text variables, except for the fixed-length restriction.

Alpha variables are treated as integer, except for input and output and conversion to o
text values.

1.6.3 Mixed Numeric Modes

SIMSCRIPT II.5 permits mixed numeric mode. That is, integer and real variables m
combined in the same statement. The result of evaluating arithmetic expressions inv
mixed numeric modes was described above (see Mixed Mode Expressions). Briefly, the
system evaluates compound expressions as a series of simple expressions. Thus, i
pound expression having all integer variables contains only additions, subtraction
multiplications, the expression will yield an integer value; and if a compound expre
having all integer variables contains division or exponentiation, the expression will y
real value. The library function can divide two integers and yield a truncated integer v

Integer-to-real conversion converts the integer number to a real number with the sam
ue (e.g., -36 becomes -36.0 , and 75 becomes 75.0). The system rounds real values

Table 3. Input Data Conversions

Data
Entered

Variable Defined
As:

SIMSCRIPT II.5 Action:

Integer Integer Value stored in variable as integer.

Integer Real Value converted to real and stored in variable.

Integer Alpha Value stored as fixed-length string.

Integer Text Value stored as variable-length string.

Real Integer Program terminates with error condition.

Real Real Value stored in variable as real.

Real Alpha Value stored as fixed-length string.

Real Text Value stored as variable-length string.

Character Integer Program terminates with error condition.

Character Real Program terminates with error condition.

Character Alpha Value stored as fixed-length string.

Character Text Value stored as variable-length string.

Note: Character data are acceptable as both alpha and text variable data.
14

Modes

gative,
d

rom
 of the
a logi-
 before

ere
vari-

ble.
integers by adding 0.5 to the value, depending on whether the value is positive or ne
and truncating the result. Thus, if a real value is -1.50 , the rounded integer value woul
be -2 .

In let, add , and subtract statements, when the mode of the expression differs f
that of the variable, SIMSCRIPT II.5 converts the expression as above to the mode
variable before changing the value of the variable. When arithmetic expressions in
cal expression yield different modes, the integer expressions are converted to real
the system determines whether the logical expression is true or false.

1.6.4 Functions for Conversion

SIMSCRIPT II.5 provides seven library functions for data conversion:

1. Atot.f converts an alpha value to a text string.

2. Int.f converts a real expression to a rounded integer.

3. Itoa.f converts the first n digits of an integer expression to an alpha value, wh
n is the implementation-specific limit on the number of characters per alpha
able.

4. Itot.f converts an integer expression to a text value.

5. Real.f converts an integer expression to a real value.

6. Trunc.f converts a real expression to a truncated integer.

7. Ttoa.f converts the first n characters of a text string to an alpha value, where n is
the implementation-specific limit on the number of characters per alpha varia
15

SIMSCRIPT II.5 Reference Handbook

ses, and
tains at
riods
 system
1.7 Names

Attributes, variables, and routines must be named, as must entity classes, event clas
set classes. A name can be any combination of letters, digits, and periods that con
least one letter or two or more nonterminal periods. SIMSCRIPT II.5 disregards all pe
written at the end of names and numbers. Names can have terminal periods, but the
deletes them during compilation. Thus, the names flight... and flight.. become
flight when a program is compiled. Some sample names are:

33A33 table

region.1 ...89

first.class.seats consumed.fuel

x stockholder
16

System

 vari-
iables.
have pre-

ither
tter
1.8 System

The tables that follow describe the automatically-generated attributes, routines, and
ables, along with system constants, library functions, and system routines and var
These system names cannot be used as programmer-defined names because they
defined meanings. In forming system names, the following conventions are used:

a. Automatically-generated attributes, routines, and variables (listed in table 4) e
begin with a letter followed by a period, or end with a period followed by the le
A.

b. Constants (table 5) end with a period followed by the letter c .

c. Functions (table 6) end with a period followed by the letter f .

d. Routines (table 7) end with a period followed by the letter r .

e. Variables (table 8) end with a period followed by the letter v .
17

SIMSCRIPT II.5 Reference Handbook
Table 4. Automatically Generated Attributes, Routines, and
 Variables

Generated for Generated
Elements

Name Definition

Accumulated and
tallied variables

Routine R.variable A left-hand monitoring routine that
accumulates or tallies data.

Entities Variables entity Global variable having the entity
class name.

N.entity Number of entities of the class (per-
manent entities only).

Routines C.entity To reserve storage for permanent
entities (i.e. to create them).

D.entity Called when destroying a tempo-
rary entity to check for set member-
ship error.

L.entity Called to list the values of entity at-
tributes.

Event notices Variables event Global variable having the event
notice name.

I.event Global variable holding the sub-
script for this event class in the
event set.

Routine C.event File events, whose priorities are de-
clared in break ... ties state-
ments, in the proper event set.

D.event Called when destroying event no-
tice to check for set membership er-
ror.

L.event Called to list values of event notice
attributes.
18

System
Generated for Generated
Elements

Name Definition

Event notice
records

Attributes time.a Time event is to occur.

eunit.a Equals 0 for an endogenous event;
equals input unit number (≠ 0) for
an exogenous event.

p.ev.s Pointer to predecessor event in the
event set.

s.ev.s Pointer to successor event in the
event set.

m.ev.s Set to 1 if the event is in the set; set
to 0 if the event is not in the set.

Processes Routines C.process File processes, whose priorities are
declared in break ... ties
statements, in the proper event set.

D.process Called when destroying process no-
tice to check for set membership er-
ror.

Process notices Attributes time.a Next scheduled entry time for pro-
cess.

p.ev.s Pointer to predecessor process in
event set.

s.ev.s Pointer to successor process in
event set.

m.ev.s Set to < > 0 if the process is in the
set; set to 0 if the process is not in
the set.

sta.a State of process:
3: interrupted
2: suspended
1: active
0: passive

ipc.a The value of I.process for this
process class.

f.rs.s Set of resources owned.

Table 4. Automatically Generated Attributes, Routines, and
 Variables (Continued)
19

SIMSCRIPT II.5 Reference Handbook

.

.

Generated for Generated
Elements

Name Definition

Random variablesAttributes of
random.e

prob.a Probability values.

ivalue.a Sample value containing an integer
value.

rvalue.a Sample value containing a real val-
ue.

S.variable Pointer to successor.

Resources Sets Q.resource Set of processes using this resource

X.resource Set of processes using this resource

Attributes U.resource Capacity in resource units.

Sets Attributes of
owner entities

F.set Pointer to first entity in set.

L.set Pointer to last entity in set.

N.set Number of entities currently in set.

Attributes of
member enti-
ties

P.set Pointer to predecessor entity in set.

S.set Pointer to successor entity in set.

M.set Equals < > 0 if the entity is in the
set; equals 0 if the entity is not in the
set.

Routines T.set Files entity first or ranked highest in
set.

U.set Files entity last in set.

V.set Files entity before specified entity
in set.

W.set Files entity after specified entity in
set.

X.set Removes first entity from set.

Y.set Removes last entity from set.

Z.set Removes specific entity from set.

Table 4. Automatically Generated Attributes, Routines, and
 Variables (Continued)
20

System

t-
Note: In table 6 below, the abbreviations a, p, q , and t refer to alpha expressions, poin
er variables, quantities (numeric expressions), and text expressions, respectively.

Table 5. System Constants

Constant Mode Description

exp.c Real e; 2.718281828

inf.c Integer Largest integer value that can be stored.

pi.c Real π; 3.14159265

radian.c Real 57.29577 degrees/radian (57.29577 = 180/π)

rinf.c Real Largest real value that can be stored.

Table 6. System Functions

Function
 Mnemonic

Arguments Function
 Mode

Description

abs.f q Mode of q Returns the absolute value of the
expression.

and.f q1, q 2 Integer Returns the logical product of q1
and q2. (q1, q 2 = integers)

arccos.f q Real Computes the arc cosine of a real
expression; -1 ≤ q ≤ 1

arcsin.f q Real Computes the arc sine of a real
expression; -1 ≤ q ≤ 1

arctan.f q1, q 2 Real Computes the arc tangent of q2/

q1; q1,q 2 ≠ (0.0)

atot.f a Text Converts an alpha expression to
a text value.
21

SIMSCRIPT II.5 Reference Handbook
Function
 Mnemonic

Arguments Function
 Mode

Description

beta.f q1, q 2, q 3 Real Returns a random sample from a
beta distribution:

q1 = power of x , real;

 q 1 > 0

q2 = power of (1-x), real;

q2 > 0

q3 = random number stream, in-

teger

binomial.f q1, q 2, q 3 Integer Returns a random sample from a
binomial distribution:

q1 = number of trials, integer

q2 = probability of success, real

q3 = random number stream, in-

teger

concat.f t 1,t 2 Text Concatenates two text values to
produce a text value containing
the characters of each.

cos.f q Real Computes the cosine of a real
expression given in radians.

date.f q1, q 2, q 3 Integer Converts a calendar date to cu-
mulative simulation time:

q1 = month, integer

q2 = day, integer

q3 = year, integer

day.f q Integer Converts simulation time to the
day portion; q = cumulative sim-
ulation time, real.

dim.f p Integer Returns the number of elements
pointed to by the pointer variable
p, in the dimension of the array
p.

Table 6. System Functions (Continued)
22

System
Function Mnemonic Arguments Function
Mode

Description

div.f q1, q 2 Integer Returns the truncated value of
q1/q 2:

q1 = dividend, integer

q2 = divisor, integer;

 q 2 ≠ 0

efield.f None Integer Returns the ending column of
the next data field to be read by a
statement.

erlang.f q1, q 2, q 3 Real Returns a sample value from an
Erlang distribution:

q1 = mean, real

q2 = k , integer

q3 = random number stream, in-

teger

exp.f q Real Computes exp.c to the qth pow-
er; q must be real.

exponential.f q1, q 2 Real Returns a random sample from
an exponential distribution:

 q 1 = mean, real

q2 = random number stream,

integer

fixed.f t, q Text Returns a copy of t which is ei-
ther space-padded or truncated
so that its length is q.

t = text
q = integer

frac.f q Real Returns the fractional portion of
a real expression.

Table 6. System Functions (Continued)
23

SIMSCRIPT II.5 Reference Handbook
Function
Mnemonic

Arguments Function
Mode

Description

gamma.f q1, q 2, q 3 Real Returns a random sample from a
gamma distribution:

q1 = mean, real

q2 = k , real

q3 = random number stream, in-

teger

hour.f q Integer Converts event time to the hour
portion; q = cumulative event
time, real.

int.f q Integer Returns the rounded integer por-
tion of a real expression.

istep.f p, q Integer Returns a random sample from a
look-up table without interpola-
tion.

p = variable that points to
look-up table
q = random number stream in-
teger interpolation

itoa.f q Alpha Converts an integer expression
to an alpha value, left-adjusted
in a blank field.

itot.f q Text Converts an integer expression
to a text value.

length.f t Text Returns the length of a text vari-
able in characters.

log.e.f q Real Computes the natural logarithm
of a real expression;

q > 0

log.normal.f q1, q 2, q 3 Real Returns a random sample from a
log-normal distribution:

q1 = mean, real

q2 = standard deviation, real

q3 = random number stream,

integer

Table 6. System Functions (Continued)
24

System
Function
Mnemonic

Arguments Function
Mode

Description

log.10.f q Real Computes log10 of a real expres-

sion; q > 0.

lower.f t Text Converts letters in a text string to
lower case.

match.f t 1, t 2, q Integer Returns the location of a text
substring within a text string, or
0 if not found.

t 1 = source, text

t 2 = pattern to be matched,

text

q = number of characters of
source to be skipped, integer

max.f q1, q 2,

..., q n

Real, if any qi

real; if not,
integer

Returns the value of largest qi

min.f q1, q 2,

..., q n

Real, if any
qi real; if

not, integer

Returns the value of smallest qi

minute.f q Integer Converts event time to the
minute portion; q = cumulative
event time, real.

mod.f q1, q 2 Real if either
qi real; if not,

integer

Computes a remainder as:

q1 - trunc.f(q 1/q 2) *

q2; q 2 ≠ 0

month.f q Integer Converts simulation time to
month portion; q = cumulative
simulation time, real.

nday.f q Integer Converts event time to the day
portion; q = cumulative event
time, real.

Table 6. System Functions (Continued)
25

SIMSCRIPT II.5 Reference Handbook
Function
Mnemonic

Arguments Function
Mode

Description

normal.f q1, q 2, q 3 Real Returns a random sample from a
normal distribution:

q1 = mean, real

q2 = standard deviation, real

Returns a random sample

q3 = random number stream,

integer

out.f q Alpha Sets or returns the alpha value of
the qth character in the current
output buffer; q must yield an in-
teger value; q ≥ 0; both right-
and left-hand function.

or.f q1, q 2 Integer Returns the logical sum of q1
and q2.

poissson.f q1, q 2 Integer Returns a random sample from a
Poisson distribution:

q
1
 = mean, real

q
2
 = random number stream,

integer

randi.f q1, q 2, q 3 Integer Returns a random sample uni-
formly distributed between a
range of values:

 q1 = beginning value, integer

 q 2 = ending, value, integer

 q 3 = random number stream,

integer

random.f q Real Returns a pseudorandom num-
ber between zero and one;

q = random number stream,
integer.

real.f q Real Converts an integer expression
to a real value.

Table 6. System Functions (Continued)
26

System
Function
 Mnemonic

Arguments Function
 Mode

Description

repeat.f t, q Text Returns a text value which is
the concatenation of q copies of t .

t = text
q = non-negative integer

sfield.f None Integer Returns the starting column of
the next data field to be read by a
read (Free-Form) statement.

shl.f q1, q 2 Integer Returns the value of q1 shifted
left q2 bit positions.

shr.f q1, q 2 Integer Returns the value of q1 shifted
right q2 bit positions.

sign.f q Integer Indicates the sign of a real ex-
pression:

1 if q > 0
0 if q = 0
-1 if q < 0

sin.f q Real Computes the sine of a real ex-
pression given in radians.

sqrt.f q Real Computes the square root of a
real expression; a real expres-
sion; q ≥ 0

substr.f t 1, t 2, t 3 Text Sets or returns a substring of a
text value; both left- and right-
hand function; in the left-hand
usage, t 1 must be an unmoni-

tored variable:

t 1 = string, text

t 2 = position, integer

t 3 = length, integer

tan.f q Real Computes the tangent of a real
expression given in radians.

Table 6. System Functions (Continued)
27

SIMSCRIPT II.5 Reference Handbook
Function
 Mnemonic

Arguments Function
 Mode

Description

triang.f q1, q2, q3,

q4

Double Returns a random sample from a
triangular distribution.

q1 = minimum, double

q2 = mean, double

q3 = maximum, double

q4 = random number stream,
integer

trim.f t, q Text Returns a copy of t which has
leading and/or trailing blanks re-
moved. If q < 0, leading blanks
are removed. If q > 0, trailing
blanks are removed. To remove
both leading and trailing blanks,
use q= 0.

t = text
q = integer

trunc.f q Integer Returns the truncated integer
value of a real expression.

ttoa.f t Alpha Converts first characters of text
expression to alpha, subject to
the limit of the implementation.

uniform.f q1, q 2, q 3 Real Returns a uniformly distributed
random sample between a range
of values:

q1 = beginning value, real

q2 = ending value, real

q3 = random number
stream, integer.

upper.f t Text Converts letters in a text string to
upper case.

weekday.f q Integer Converts event time to the week-
day portion;

 q = cumulative event time, real.

Table 6. System Functions (Continued)
28

System
weibull.f q1, q 2, q 3 Real Returns a sample value from a
Weibull distribution:

q1 = shape parameter, real

q2 = scale parameter, real
q3 = random number stream,

integer.

xor.f q1, q 2 Integer Returns the logical difference of
q1 and q2.

year.f q Integer Converts simulation time to the
year portion:

q = cumulative simulation
time, real.

Table 7. System Routines

Routine Arguments Description
date.r Date

Time
Returns the current date and time as text:
Date: mm/dd/yyyy

mm = month
dd = day
yyyy = year

Time: hh:mm:ss

hh = hour
mm = minute
ss = second

exit.r q Terminates program execution passing the exit
status to the command level.

q = integer

origin.r m, d, y Establishes an origin time when the calendar for-
mat is used:

m = month, integer
d = day, integer
y = year, integer

snap.r None User-supplied routine called by SIMSCRIPT II.5
when an execution error is detected.

Table 6. System Functions (Continued)
29

SIMSCRIPT II.5 Reference Handbook
Table 8. System Variables

Variable Description Default
Value

batchtrace.v Variable that controls what happens when a run-time error
occurs:

0 SimDebug is invoked to allow interactive debugging.
1 SimDebug is not invoked. SIMSCRIPT shows the

run-time error in a message box and then writes the
traceback (including global variables) to the file
simerr.trc in the current directory.

2 SimDebug is not invoked and SIMSCRIPT does not
write a traceback.

0

between.v Subprogram variable called before each event is executed.0

buffer.v The length of the internal buffer. 132

eof.v End-of-file code; zero denotes that an end-of-file marker
is an error; 1 indicates return control with eof.v set to 2
when end-of-file is encountered; one for each input unit3.

event.v Code representing the event class to occur next. 0

events.v The number of event classes. 0

ev.s Event set; dimension is contained in events.v . 0

f.ev.s Array containing the first-in-set pointers for the event set,
ev.s (note that n.ev.s is not defined).

0

heading.v A subprogram variable tested by the system for each new
page.

0

hours.v Number of hours per simulated day. 24

line.v Number of the current output line3. 0

lines.v Number of lines per page3. 55

mark.v Termination character required on external event records
and on the input for random variables.

*

minutes.v Number of minutes per simulated hour. 60

page.v Number of the current page1.

pagecol.v If 0, column number in which the word page and the val-
ue of page.v are to be printed on the output listing.

0

30

lue
Variable Description Default
Value

parm.v Contains command line arguments passed to the program
when it was invoked.

process.v If not zero, a pointer to the process notice of the currently
executing process.

0

rcolumn.v Pointer to the last column read in the input buffer3. 0

ropenerr.v Indicates error occured on the current input unit. 0

read.v Number of the current input unit.1 0

record.v The number of records read from the current input unit, or
written on the current output unit; one for each input and
output unit.

0

rreclen.v Contains the length of the input record (number of charac-
ters) of the current input unit.

0

rrecord.v The number of records read from the current input unit.0

seed.v Array containing initial random numbers.1 0

time.v Current simulated time. 0

wcolumn.v The number of records written to the current output unit.02

wopenerr.v Indicates an error occured on the current output unit. 0

wrecord.v The number of records written in the current output
buffer3.

0

write.v Number of the current output unit1. 0

Notes: 1. Default differs for the various implementations of SIMSCRIPT II.5.

2. Some implementations set rcolumn.v to -1 before the corresponding input
unit is first used.

3. A separate value is maintained for each unit. Only the currently used va
is accessible to the program.

Table 8. System Variables (Continued)
31

SIMSCRIPT II.5 Reference Handbook

ing the
s are

 null
bpro-

 to the
riables
ut
icant
eclared
 in

 global
gardless

orarily

tines
uences
d
are not
er than

ently,
ferring
 time
riable

ables.
s, and
nt is
1.9 Variables

A variable is a name representing a memory location whose value can change dur
execution of a program. At the start of program execution, the values of all variable
automatically initialized to zero, except for text variables, which are initialized to the
string. The SIMSCRIPT II.5 system includes dummy, global, local, monitored and su
gram variables, each of which is described below:

1.9.1 Dummy Variables

Dummy variables, which can appear in conjunction with accumulate and tally
statements, are artificial variables or attributes, in that their values are not accessible
program. If a program does not require that the values of tallied or accumulated va
be accessible, accumulate and tally computations can be performed on them witho
having their values stored. In programs with many statistical variables, a signif
amount of storage can be saved by using dummy variables. Dummy attributes are d
in every or the system statements, while dummy global variables are declared
define ... variable statements.

1.9.2 Global Variables

A global variable, which must be declared in a define ... variable statement in the
preamble, has a common meaning throughout a program. Whenever the name of a
variable appears in a statement, the system references the same storage location re
of the routine in which the variable appears. Names of global variables can be temp
defined as local in subroutines by using their names in define ... variable statements
within the respective routines.

Side Effects. Unwanted side effects can occur when global variables are used in rou
that interact with other routines. For example, there may be unexpected conseq
when using functions in expressions in for ... to (index) phrases that are evaluate
before each iteration, and in complex logical expressions where all sub-expressions
always evaluated. These side effects can frequently be eliminated by using local rath
global variables.

1.9.3 Local Variables

A local variable applies only to the routine in which the variable appears. Consequ
the same name can be used for local variables in different routines, with the name re
to a different value in each routine. A local variable occupies storage only during the
between entry and return from the routine in which the variable appears. A local va
occupies storage for the duration of the run.

SIMSCRIPT II.5 assumes that variables not defined in the preamble are local vari
Normally statements in routines can specify general characteristics of local variable
define ... variable statements can declare any exceptions. Neither stateme
32

l vari-
 to the

e dy-
is called,
ntrol
cripted

s ex-
e
o. The
 calling

ment
 di-

t of the

e val-
 has a
 When-
tomati-

t. The

ou-
ided.
. In

mit

utine.
ri-

a value

d.
required in a routine if local variables are to have the characteristics of the last normally
statement in the preamble.

The system automatically assigns storage locations to unsubscripted (non-text) loca
ables and initializes them to zero when a routine is called. The storage is returned
system when control returns to the calling program.

Text variables require two storage areas. One, in a fixed location, is a pointer to th
namic storage area that contains the actual characters represented. When a routine
unsubscripted text variables are automatically initialized to the null string. When co
returns to the calling routine, the dynamic storage area associated with any unsubs
text variable is released.

SIMSCRIPT II.5 does not automatically assign storage to subscripted local variable
cept for the base pointer. Arrays must appear in reserve statements before they can b
used, and when an array is reserved, the elements are automatically initialized to zer
storage associated with an array should be released before control is returned to the
program.

A subscripted local variable that is not defined in a define ... variable statement
within a routine has the dimensionality implied by its first use. For example, the state
let x(i) = 0 declares that x is a one-dimensional array, regardless of background
mensionality. Of course, when the program is executed, a reserve statement incorporat-
ing the appropriate dimensionality must be processed before accessing an elemen
array.

1.9.4 Monitored Variables

A monitored variable is a subscripted or unsubscripted variable, or an attribute whos
ues are checked or used by a monitoring routine. A monitored variable, therefore,
storage location and a routine associated with it, both of which have the same name.
ever the value of a monitored variable is accessed, the corresponding routine is au
cally executed. A monitored variable must be declared in a define ... variable
statement as being monitored on the left, on the right, or on both the left and the righ
words left and right refer to the left and right side of an equal sign in a let statement.
Tally and accumulate statements automatically use the monitoring feature.

Monitoring Routines. If a variable is monitored on the right, a right-hand monitoring r
tine must be written and, if monitored on the left, a left-hand routine must be prov
Normally, the task of a right-hand routine is to return a value to the calling program
monitoring operations, an enter with statement is used in a left-hand routine to trans
a value to the left-hand routine. Also pertaining to monitoring routines is the move state-
ment, one form of which is used in a right-hand routine and another in a left-hand ro
Depending on the form used, the move statement transfers the value of a monitored va
able to a named variable in order to use that variable in computations, or it assigns
to the monitored variable. A monitoring routine cannot be called with a call statement.
It is executed only when the statement containing the monitored variable is execute
33

SIMSCRIPT II.5 Reference Handbook

tor-
all

ere are
a sub-

utine to

ted or
 when
, the
 the

stored
inguish

red
e sub-
ogram

ound
ed for

e

called
Subscripted Monitored Variables. Because a monitored variable represents both a s
age location and a routine, a name such as scan(i,j) is both a subscripted variable and a c
on a routine with arguments i and j . All data references are to scan(i,j) as if it were a typical
subscripted variable. The monitoring routine must have as many arguments as th
subscripts. During execution, arguments are automatically converted to integer (like
scripted variable), but transmitted to the monitoring routine (like a routine).

1.9.5 Subprogram Variables

A subprogram variable has the address of a routine as its value and enables that ro
be called indirectly. The statement:

let SUBR = 'sqrt.f'

where SUBR is a subprogram variable, stores the address of the library function sqrt.f in
the variable SUBR. The subprogram variable can subsequently be used in a call statement.
Subprogram variables can be global or local, saved or recursive, and subscrip
unsubscripted. They are initialized to zero when a program begins execution or
routines containing them (as recursive variables) are called. During compilation
number for a routine called with a subprogram variable is not compared with
declaration in the define ... routine statement.

Subprogram Arrays. Subprogram arrays can be defined, and routine names can be
in the elements, but they cannot be used to call routines. The programmer must dist
between the direct and indirect use of a subprogram array. If x is defined as a subprogram
array in a define ... variable statement, the statement release x releases the stor-
age allocated to array x , but the statement x(2) releases the routine whose name is sto
in x(2) . Thus, when reference is made to all elements of a subprogram array, th
program array itself is the object of a statement. When a particular element of a subpr
array appears, it is an indirect reference to a routine.

Calling Functions. Subprogram variables can call functions as follows.

The subprogram variable must be declared in a define ... variable statement. The
mode of the variable is either explicitly defined or declared by the current backgr
mode. All functions called with the subprogram variable must be of the mode declar
that variable.

An indirect function call is indicated by placing a dollar sign ($) before the subprogram
variable. For example, if a has been declared as a subprogram variable, let x = a assigns
the name of a routine to variable x , but let x = $a computes a value by executing th
function whose name is stored in a and stores the computed value in x .

When arguments follow a subprogram variable, the arguments apply to the function
indirectly, not to the subprogram variable itself.
34

PART II.
 LANGUAGE REFERENCE
35

SIMSCRIPT II.5 Reference Handbook
36

ACCUMULATE/TALLY Statement

o-
sis.

nges,

),

ni-
s-

m
f

e of
2. Language Reference

2.1 ACCUMULATE/TALLY Statement

The accumulate/tally statement computes statistical quantities and prepares hist
grams for time-dependent variables. It specifies automatic data collection and analy

accumulate   as [the][name] stat kywd   c

 tally  name (quantity to quantity by quantity) as the [name] histogram  
     

of unsubscripted global variable 
 entity attribute 

unsubscripted system attribute 

Keyword Synonym

 as =

EXAMPLES:

accumulate AVG.STAT as the mean of STATUS

STATUS becomes a left-hand monitored global variable. Each time its value cha
the monitoring routine computes STATUS * (time.v - A.1) and stores it in A.3 .
AVG.STAT is a function that returns (A.3 + STATUS * (time.v - A.1)) /
(time.v - A.2) at any time during the simulation. A.1 , A.2 , and A.3 are
generated system attributes representing TL (the beginning of the observation period
T0 (the time of the last change in the variable), and ∑ xi * ti (where X is a sample value
of STATUS), respectively.

accumulate NUM.CARS as the num and MAX.CARS as the max of NO.PARKED CARS

Assuming NO.PARKED.CARS is an attribute of an entity, it becomes a left-hand mo
tored attribute. NUM.CARS and MAX.CARS become attributes of the entity class(es) a
sociated with NO.PARKED.CARS. The monitoring routine will increment NUM.CARS
each time the value of NO.PARKED.CARS changes. It also keeps track of the maximu
value of NO.PARKED.CARS in MAX.CARS (no other attributes are generated). O
course, the number of samples and maximum of NO.PARKED.CARS is kept for each
particular entity created in the class(es) for which NO.PARKED.CARS is an attribute.

accumulate TOTAL.MAX as the max , MAX.CARS as the weekly max, and
CAR.GRAPH (1000 to 10000 by 50) as the histogram of NO.PARKED.CARS

Assuming NO.PARKED.CARS is an attribute of the permanent entity class AIRPORT, both
TOTAL.MAX and MAX.CARS are attributes used to keep track of the maximum valu
no.parked.cars for each entity created. By appropriate use of reset (for example,
37

SIMSCRIPT II.5 Reference Handbook

ed
s.

-

e

ple, if

to the

mon-
lled

lobal ar-

lso

 mon-

m,
for each AIRPORT, reset weekly totals of NO.PARKED.CARS(AIRPORT))
in an event that occurs each time a week of simulated time has elapsed, MAX.CARS at
any time will hold the maximum value of NO.PARKED.CARS for that week, while the
TOTAL.MAX attribute will hold the overall maximum for each entity. An array nam
CAR.GRAPH is reserved when the AIRPORT entities are created to hold histogram value
It will be two-dimensional, the first dimension being N.AIRPORT and the second (10000
1000) / 50 + 1 = 181. Each time the value of NO.PARKED.CARS changes, the monitoring
routine adds the amount of time (time.v - T

L
) that this attribute has held this valu

to the running sum in the appropriate element of the histogram array. For exam
the value of NO.PARKED.CARS(2) has been 2010 for three hours (time.v - T

L
 =

3, time.v in hours) and then changes to 2032, three will be added at the time
value of CAR.GRAPH(2,21) by the left-hand monitoring routine.

tally AVERAGE.LIST as the mean of LIST

Assuming that LIST is a one-dimensional array, the system generates a left-hand
itoring routine named LIST , with the subscript as an argument. This routine is ca
whenever a value is assigned to LIST . The function counts the number of times LIST
changes value and accumulates sum and number. The system also generates g
rays A.1 and A.2 , each having as many elements as LIST , in which to keep the sum
and number for each element of LIST in order to compute the means. The system a
generates a function named AVERAGE.LIST that computes a mean from A.1 and A.2
whenever the function is referenced in the program.

tally NUM.POP as the num and MAX.POP as the max of POPULATION

Assuming that POPULATION is an attribute of permanent entity class CITY , the system
generates a left-hand monitoring routine named POPULATION with the index number
of the entity as an argument. This routine uses the NUM.POP attribute of the entity CITY
to tally the number of changes to POPULATION for each entity. MAX.POP is an attribute
which contains the maximum population assigned to each city as computed in the
itoring routine.

tally VAR.POP as the weekly variance, TOTAL.VAR as the cumulative
variance and GRAPH(0 TO 1000 BY 100) as the histogram of POPULATION

Assuming that POPULATION is an attribute of permanent entity class CITY , the system
generates a left-hand monitoring routine named POPULATION with the index number
of the entity as an argument. The system also generates attributes A.1 , A.2 , A.3 ,
A.4 , A.5 , and A.6 , each having N.CITY elements, to accumulate the number, su
and sum of squares for each entity for both the weekly and cumulative variances.
The system also generates function variances named VAR.POP and TOTAL.VAR which
compute the variance whenever the function is referenced. VAR.POP uses attributes
A.1 , A.2 , and A.3 , while TOTAL.VAR uses attributes A.4 , A.5 , and A.6 . The
system also defines a two-dimensional array named GRAPH to hold histogram values
for a range of values from 0 to 1000 , in intervals of 100 , indicating the number of times
38

ACCUMULATE/TALLY Statement

tatis-
global
n table
al

e
tatistics
col-
s. The

esults
ogram-

 left-
le. This
al vari-
d

s are as-

 per-
istical
al vari-
s of

 is as-
sample values fall within each interval. The array will be reserved when the CITY
entities are created and will be dimensioned N.CITY by (1000-0) / 100 + 1 .

The accumulate statement specifies data collection variables, routines to compute s
tical quantities, and arrays to collect histograms for time-dependent variables in a
environment. The statistical keywords used to specify the desired statistics appear i
9. SIMSCRIPT II.5 permits accumulate statements for each preamble-defined glob
variable or attribute, (called the accumulated variable in this description). Whenever th
value of the accumulated variable changes, computations are made to compile the s
required in the accumulate statement(s). These computations include time, i.e., the
lected observations are weighted by the length of time they have retained their value
results are used in time-series analyses.

The accumulate statement can appear only in the preamble. Because the principal r
from simulation models are statistical measurements, this statement relieves the pr
mer of the necessity of writing the required routines. Tally and accumulate statements
cannot be declared for the same variable.

For each accumulate statement, the system generates attributes and routines. A
hand routine that accumulates data is always generated for each accumulated variab
monitoring routine has the same name as the accumulated variable. Generated glob
ables and attributes are named A.1 , A.2 , ..., A.N , and the number of other routines an
attributes generated depends on the statistics requested (see table 10). Counter
signed as follows:

If the accumulated variable is a global variable, system attribute, or attribute of a
manent entity, the system automatically reserves as many variables for stat
counters as there are elements of the accumulated variable. For example, a glob
able will only require single counters, while a permanent entity will use array
counters.

If the accumulated variable is an attribute of a temporary entity, each entry record
signed statistical accumulation attributes.
39

SIMSCRIPT II.5 Reference Handbook
Table 9. Statistical Keywords for Accumulate/Tally Statement

Statistic Accumulate
 Computation

Tally Computation

NUMBER N = The number of
changes in X

N = The number of samples of
X

SUM ∑ (X(time.v - TL)) ∑ X

MEAN Sum ____
(time.v - To)

Sum
N

SUM.OF.SQUARES ∑ (X2(time.v - TL)) ∑ X2

MEAN.SQUARE Sum.of.squares
 (time.v - To)

Sum.of.squares
 N

VARIANCE Mean.square - Mean2 Mean.square - Mean2

STD.DEV

MAXIMUM M = Maximum (X) for all X M = Maximum (X) for all X

MINIMUM m = Minimum (X) for all X m = Minimum (X) for all X

Notes:
time.v = current simulated time.

TL = simulated time at which variable was set to its current value.

To = simulated time of last reset for this variable.

X = sample value of variable before change occurs.

VARIANCE VARIANCE
40

ACCUMULATE/TALLY Statement

rent
others
tics on

ed

n
so

n

n
so

n

n

n

ed
t.

ed
t.

le and
A programmer-defined qualifying name may optionally be supplied to specify diffe
types of a particular statistic. These qualifiers allow some statistics to be reset while
are not. Using a qualifier is a handy way to keep both periodic and cumulative statis
a variable or attribute. See reset statement.

Table 10. Attributes & Functions for Accumulate/Tally Statement

Statistical Keyword System Action

NUMBER The named data collection variable is an attribute of the observ
variable.

SUM12 A function having the same name as the named data collectio
variable is generated. An attribute with an arbitrary name is al
generated.

MEAN1 A function having the same name as the named data collectio
variable is generated. A SUM attribute is generated whether or not
requested.

SUM. OF SQUARES1 A function having the same name as the named data collectio
variable is generated. An attribute with an arbitrary name is al
generated.

MEAN.SQUARE A function having the same name as the named data collectio
variable is generated. An SSQ attribute is generated whether re-
quested or not.

VARIANCE1 A function having the same name as the named data collectio
variable is generated. SSQ and SUM attributes are generated
whether requested or not.

STD.DEV1 A function having the same name as the named data collectio
variable is generated. SSQ and SUM attributes are generated
whether requested or not.

MAXIMUM The named data collection variable is an attribute of the observ
variable. A NUM attribute is generated whether requested or no

MIMIMUM The named data collection variable is an attribute of the observ
variable. A NUM attribute is generated whether requested or no

Notes:

1. For accumulate statements, attributes are generated for TL and T0. These values are not directly

available to the user, as they are arbitrarily named, e.g., A.1 and A.2 .
2. For tally statements, the attribute has the same name as the named data collection variab

no function is generated.
41

SIMSCRIPT II.5 Reference Handbook

eld a
r glo-

t be re-
tes a

ble.

ariable
 is less
ater

ssible
le be

g its
n

2.1.1 Histograms

The accumulate statement is used to collect data on the total time a variable has h
value within a particular range during the simulation. Histograms can be requested fo
bal variables, system attributes, and attributes of permanent entities, but they canno
quested for attributes of temporary entities. The system automatically genera
histogram array of one more dimension than that of the accumulated variable.

When requesting histograms, the phrase:

(quantity1 to quantity2 by quantity3)

defines a range of values from quantity
1
 to quantity

2
, which is divided into intervals

of quantity
3
 units. SIMSCRIPT II.5 reserves the histogram array with (quantity

2
 -

quantity
1
)/quantity

3
 + 1 elements for each element of the accumulated varia

Each time the value of the accumulated variable changes, the length of time the v
retained the value is added to the pertinent element of the histogram array. If a value
than quantity

1
, the time for that value is added to the first element. If a value is gre

than or equal to quantity
2
, it is added to the last element.

Qualifiers can be used with histograms to identify particular arrays for selective reset , as
with other accumulated statistics.

2.1.2 Dummy Variables

A dummy variable is a preamble-defined variable or attribute whose value is not acce
to the program. If a program does not require that the value of the tallied variab
accessible, accumulate computations can be performed on the variable without havin
value stored. Only number, maximum , and minimum statistics can be collected o
dummy variables in an accumulate statement. Dummy attributes are declared in every
or the system statements, while dummy global variables are declared in define ...
variable statements.
42

ACTIVATE (process) Statement

ocess

s control
 the

e
cated
oc-
2.2 ACTIVATE (process) Statement

The activate statement activates the future occurrence of a process by filing a pr
notice in the relevant process set.

   
activate  a process  [called pointer variable given valuec 

the [above] event  (valuec) 

at quantity 
now 
 day[s]  
in quantity hour[s]  
 minute[s]  

Keywords Synonyms

activate reactivate

a an (For a new process)

the [above] this (For an existing process)

given giving

now next

in after

day[s] unit[s]

EXAMPLES:

activate a CUSTOMER now

Creates a process notice of the class customer and schedules its entry as soon a
is returned to the timing routine. A pointer to this process notice is placed in
variable CUSTOMER.

reactivate this SHIP in UNLOADING.TIME(SHIP) hours

The process SHIP is to be entered when time.v has been updated to time.a (SHIP) ,
which is UNLOADING.TIME(SHIP)/ hours.v units of simulated time beyond th
time.v at reactivation. The process notice already exists, and a pointer to it is lo
in variable SHIP. The reactivate statement keyword is used by the modeller to d
ument the fact that the process notice already exists.
43

SIMSCRIPT II.5 Reference Handbook

s

e

ous to
cess

,

uses

m to be
x-
mmer-

ess ar-
eros to
ed

ets at-
alue.
event

 a
alue of
activate a STORM giving LOCATION and DURATION in 2 days

Creates a process notice of the class STORM which has two user-defined attribute
whose values are to be set to the values of LOCATION and DURATION. The process is
scheduled to begin when time.v has been updated to time.a (STORM), which is two
days beyond the time.v at activation.

activate a CAR called NEXT.CAR in 5 minutes

Creates a process notice of the class CAR, but puts the pointer to it in the variabl
NEXT.CAR rather than in CAR. The process is scheduled to begin when time.v has
been updated to time.a (NEXT.CAR) , which is 5 minutes beyond the time.v at ac-
tivation.

The activate statement schedules the future occurrence of a process and is analog
the use of the schedule statement with events. This statement assigns values to pro
notice attributes and files the notice in the event set, ev.s . It can appear in any routine
but not in the preamble.

2.2.1 CALLED Phrase

If the the keyword signifies that the process notice already exists, SIMSCRIPT II.5
the variable name in the called phrase to locate that process notice. If the the keyword
is not used, the variable is assigned a pointer to the process notice created.

2.2.2 GIVEN Phrase

A given phrase assigns values to attributes of the process notice, which causes the
passed as arguments to the process routine. The activate statement assigns values of e
pressions to successive attributes of the process notice, starting with the first progra
defined attribute declared in the every statement. (Use of in word phrases to arrange
physical storage of attribute values does not influence the order of selection of proc
guments.) If there are fewer expressions than attributes, SIMSCRIPT II.5 assigns z
the remaining attributes. The keyword given can be omitted if expressions are enclos
in parentheses.

2.2.3 AT Phrase

The at phrase, which denotes when in the future the named process is to occur, s
tribute time.a to the value of an expression. The expression must yield a real v
time.a is used to file this process notice in the event set in chronological order (the
set is ranked on low time.a) .

The value of time.a is used to update time.v , the current simulation time, whenever
process notice or an event notice is selected from the event set by setting it to the v
of the first process or event in the event set. The system sets time.v to zero at the start of
44

ACTIVATE (process) Statement

t al-

nables
rs,

days

vent
ses or

 are
 to
st-in,
.
simulation and increases time.v as the simulation progresses. An absolute time mus
ways be specified in an at phrase.

2.2.4 IN Phrase

An in phrase specifies the relative time at which a process is to occur. This phrase e
the programmer to schedule a process at time.v plus a designated number of days, hou
or minutes. (The keyword units can be used in place of days .) The units of time.a are
days if the days, hours , or minutes keywords are used in this phrase. If hours or
minutes is specified, SIMSCRIPT II.5 automatically converts the hours or minutes to
using the system variables hours.v and minutes.v . The system initializes hours.v to
24 and minutes.v to 60, but the programmer can modify these values. If time.v runs in
units other than days, the units keyword should be used in an in phrase.

2.2.5 NOW Phrase

A process scheduled with a now phrase occurs as soon as the current process or e
returns control to the timing routine. Such a process will occur before any proces
events having the same event time, scheduled previously with at or in phrases. When
activate statements include now phrases for two or more processes, the processes
ranked according to the priority statement if they are of different classes, according
the break ... ties statement if that statement appears for the process class, or fir
first-out if a break ... ties statement has not been included for the process class
45

SIMSCRIPT II.5 Reference Handbook

riable,

ariable
efore

 sub-

e

2.3 ADD Statement

The add statement adds the value of an arithmetic expression to the value of a va
and the sum becomes the new value of the variable.

add quantity to variable

EXAMPLES:

add 1 to X

Adds 1 to the value of variable X.

add A * X**2 + B * X + C to Y ''quadratic formula

Adds AX2 + BX + C TO the value of variable Y. Commentary text follows the two
apostrophe characters.

add BAGGAGE.WEIGHT(FLIGHT) to TOTAL.WEIGHT(FLIGHT)

Adds the value of attribute BAGGAGE.WEIGHT to the value of TOTAL.WEIGHT for the
entity whose identification number is in the variable.

The add statement adds the value of an expression to the value of a variable. An add state-
ment can appear in any routine, but not in the preamble. If the expression and the v
differ in mode, SIMSCRIPT II.5 converts the expression to the mode of the variable b
assigning the sum to the variable (see the let statement for conversion rules).

2.3.1 Complex Subscripted Variables

Before compilation, the add statement is translated to:

let variable = variable + quantity

If the variable has complex subscript references, it is more efficient to compute the
scripts separately than to have the compiler compute them twice. For example:

add 1 to x(y*(ab-2),diff**n)

translates to:

let x(y*(ab-2),diff**n) = x(y*(ab-2),diff**n) + 1

which causes the subscripts y*(ab-2) and diff**n to be evaluated twice. To conserv
storage space and computer time, this add statement could be written as:

let i = y*(ab-2)
46

ADD Statement

ts can
e of the

nd pos-
re-

 cause
let j = diff**n

add 1 to x(i,j)

2.3.2 Subscripts Containing Functions

If the subscript of the variable is a function, or contains a function, unexpected resul
occur when the function has side effects. For example, note what happens becaus
following calls to the random number generator.

add 1 to TABLE(uniform.f(a,b,1))

translates to:

let TABLE(uniform.f(a,b,1)) = TABLE(uniform.f(a,b,1)) + 1

before compilation. This statement causes two random numbers to be generated, a
sibly two different elements of TABLE to be accessed. The programmer may have p
ferred:

let I = uniform.f(a,b,1)

add 1 to TABLE(i)

2.3.3 Error Messages

An add statement having complex subscripted variables or function references can
duplicate error messages to be produced because of intermediate translations.
47

SIMSCRIPT II.5 Reference Handbook
2.4 AFTER Statement

 See before/after statement.

2.5 ALSO Phrase

See do ... loop construct, for each (class) phrase, for ... of (set) phrase, for

... to (index) phrase, until phrase, or while phrase.

2.6 ALWAYS Statement

 See if ... else ... always construct.
48

BEFORE/AFTER Statement

ream-

n
-

of
 the
2.7 BEFORE/AFTER Statement

The before/after statement is a debugging statement that can appear only in the p
ble. It can trace six types of SIMSCRIPT II.5 statements.

after creating c [a] temporary entity  
before destroying  event  
    
before  filing c c [in] set  , call routine
after  removing   
     
before  scheduling c c [a] process  
after  canceling   event  
       

Keywords Synonyms

a an

the

any

scheduling activating

causing

canceling interrupting

call perform

now

EXAMPLES:

before destroying a FLIGHT, call PLANE.CHECK

Calls subroutine PLANE.CHECK each time the destroy statement is executed for a
entity of the entity class FLIGHT. The identification number of the entity is auto
matically passed as an argument to the subroutine.

before filing and removing from RESERVATIONS, call CHECK.RESERVATIONS

Calls subroutine CHECK.RESERVATIONS each time the file and remove statements
are executed for the set class RESERVATIONS. The identification number of the entity
being filed or removed automatically becomes an argument of the subroutine.

after scheduling a TAKEOFF, call TEST

Calls subroutine TEST each time the schedule statement is executed for an event
the class TAKEOFF. The identification number of the event being scheduled and
time of occurrence automatically become arguments of the subroutine. The routine
statement could appear as routine TEST given NUMBER and TIME.
49

SIMSCRIPT II.5 Reference Handbook

d

 event
ty

 passed
e
g the

ments

d

 is

d
or
.

the
The purpose of the before/after statement is to monitor the create, destroy,
file, remove, schedule, activate , and cancel statements. The name
subroutine is called whenever one of these statements is executed if a before/after
statement is included in the preamble for the specified entity class, set class, and
class. SIMSCRIPT II.5 permits one before/after statement for each temporary enti
class, set class, and event class. To use the before/after statement, write a routine with
the name that appears in the statement and the number of arguments automatically
for the statement being monitored. Although the call phrase does not show th
arguments, the routine statement must have the correct number of arguments. Usin
arguments, the routine can trace entity identifications, subscripts, or event times.

Table 11 lists the arguments automatically given to the named subroutine. All argu
are integer except the event time, which is real.

Table 11. Arguments Automatically Given to the Subroutine

Statement Form Arguments

creating an entity Identification number of the entity. Before cannot be used
with this form.

destroying an entity Identification number of the entity. After cannot be used
with this form.

filing in a set Identification number or index of the entity to be filed an
the set subscripts. In file ... before and file ...
after statements, the identification of the second entity
not passed as an argument.

removing from a set Identification number or index of the entity to be remove
and the set subscripts, if any. The entity identification f
the remove first and last statements is passed as zero

scheduling an event Identification number of the event or process notice and
time the event is to occur.

canceling an event Identification number of the event or process notice.
50

BEGIN HEADING Statement

port

 sec-
when-

ent
untered
 output
ithin
le.

e-

r

ons.
2.8 BEGIN HEADING Statement

The begin heading statement marks the beginning of a heading section within a re
section.

begin heading

Only one form of this statement exists.

The begin heading statement can appear only within a report section. A heading
tion is used, for example, to print titles, column headings, and computational results
ever a page ejects. As shown in figure 1, a heading section starts with a begin heading
statement and ends with an end statement. SIMSCRIPT II.5 executes the program segm
included between these two statements the first time the program segment is enco
and whenever a page is ejected by an output statement within the report section. The
statement, such as a print statement, must appear after the heading section, but w
the enclosing report section. A begin heading statement cannot appear in the preamb

Within a heading section, the logical expressions:

page is first

page is not first

can be used in an if ... else ... always construct to select statements to be ex
cuted for the first page of output but not for succeeding pages, or vice versa.

Pages are ejected whenever the current line count (line.v) exceeds the maximum numbe
of lines to be printed per page (lines.v).

2.8.1 System Variables

See table 12 for a list of global variables frequently used in heading and report secti
51

SIMSCRIPT II.5 Reference Handbook

i-

or

-

.

-
e

d

begin report

begin heading

Program segment executed the first

time encountered and whenever a

page is ejected
end '' heading section

for i = 1 to 60, print ...

Page ejects here; heading program

segment executed
end '' report section

Figure 1. Heading Section Within a Report Section

Table 12. Line and Page System Variables

Name Value Description

line.v Current line number Refers to the current output device; automatically
set to 1 when the device is first used and automat
cally incremented by 1 whenever a line is printed.
The maximum value of line.v is lines.v . Reset
to 1 on page ejection. Separate value maintained f
each output device.

lines.v Maximum lines per
page

Automatically set to 55 when a program begins ex
ecution, but can be modified within the program.
Separate value maintained for each output device

page.v Current page numberRefers to the current output device. Can be reset
within the program. Numbering then continues se
quentially, beginning with the new value. Separat
value maintained for each output device.

pagecol.v Report column num-
ber

A single integer variable used to number the printe
pages. If pagecol.v ≠ 0 , PAGE xxx (where xxx
= value of page.v) is printed at the top of each new
page. The word PAGE begins in the column denoted
by the value of pagecol.v .

heading.v Name of a routine A single subprogram variable tested by the system
for each new page. If heading.v ≠ 0 , the system
executes the routine whose name is stored in
heading.v .
52

BEGIN REPORT Statement

new

cted, if

alues
r
 of col-

lude
junction

ction
t
ading
gs

n

blank.
n by
2.9 BEGIN REPORT Statement

The begin report statement marks the beginning of a report section with optional
page and column repetition features.

begin report [on a new page] [printing for phrase, in groups of integer value
[per page]]

EXAMPLES:

begin report

Marks the beginning of a report section.

begin report on a new page

Marks the beginning of a report section and indicates that a page should be eje
necessary.

begin report on a new page printing for J = 1 to 20 in groups of 8
per page

Marks the beginning of a report section using column repetition. Groups of eight v
of index variable J are to be used by a print statement as eight-column indices fo
each execution of the report section. Report begins a new page, and each group
umn indices applies to a new page.

The begin report statement, which marks the beginning of a report section, can inc
a phrase that begins each report on a new page, as well as two phrases used in con
with a print statement for column repetition. As shown in figure 1 above, a report se
begins with a begin report statement and ends with an end statement. Within a repor
section, print statements can specify the content and format of the report, and a he
section (denoted by a begin heading statement) can include titles and column headin
to be printed on each page of the report. The begin report statement cannot appear i
the preamble.

2.9.1 ON A NEW PAGE Phrase

Each report can start on a new page by including the optional phrase on a new page .
This phrase ejects a page on the output device unless the current page is
SIMSCRIPT II.5 determines whether or not the current page contains informatio
testing the system variables line.v (current line number) and wcolumn.v (column
number of the current output pointer); line.v = 1 and wcolumn.v = 0 , if the current
page is blank.
53

SIMSCRIPT II.5 Reference Handbook

nt re-
g, in-

n a

ns

 corre-
be exe-

ups.

 of the
een

ge. If
leted.
2.9.2 PRINTING Phrase

The printing phrase in a begin report statement is used with the in groups of
phrase in a print statement for column repetition. Together, these phrases can pri
ports with more columns of data than can be fitted across a single page. After printin
dividual pages produced by the print statement can be placed side-by-side to obtai
wide page. For example, the statement:

begin report printing for j = 1 to 20 in groups of 8 per page

used with the pertinent print statement will print 20 columns of data, with eight colum
on each page. Values generated by the index variable j in this for ... to (index)
phrase are considered to be column indices. That is, each value of the index variable
sponds to a column in a printed report. This statement causes the report section to
cuted three times: first with j = 1, ..., 8 ; second with j = 9, ..., 16 ; and third
with j = 17, 18, 19, 20 . The column indices are used by the report section in gro
The print statement uses one group at a time. As shown in the above begin report
statement, the number of column indices generated need not be an even multiple
group size. If the controlling for phrase produces no values (for example, none have b
selected by a with phrase), the entire report section is not executed.

2.9.3 PER PAGE Phrase

The per page phrase denotes that each group of column indices applies to a new pa
this phrase is omitted, printing continues on the current page until that page is comp

2.9.4 System Variables

Table 12 lists global variables frequently used in heading and report sections.
54

BREAK ... TIES Statement

vent

t

t

es of

es of

ass.

amed
king
 first-
n

le.
2.10 BREAK ... TIES Statement

The break ... ties statement establishes the priority order within a process or e
class in case processes or events have the same event time.

break event  ties by high  attribute c THEN

process   low  
   

Keyword Synonym

by on

EXAMPLES:

break SEAT.RESERVE ties by high PRIVILEGE.CODE

When two or more event notices of event class SEAT.RESERVE have the same even
time, priority is given to the event having the highest value of PRIVILEGE.CODE.

break SEAT.RESERVE ties
 by high PRIVILEGE.CODE, then
 by high FARE, then

by low CLUB.NUMBER

When two or more event notices of event class SEAT.RESERVE have the same even
time, priority is given to the event having the highest value of PRIVILEGE.CODE; but
if several event notices have identical event times, and identical highest valu
PRIVILEGE.CODE, priority is given to the event having the highest value of FARE. If
several event notices have identical event times, identical highest valu
PRIVILEGE.CODE, and identical highest values of FARE, priority is given to the event
having the lowest value of CLUB.NUMBER.

The break ... ties statement establishes priorities within an internal event cl
When two or more event notices of the same class have the same event time, thebreak
... ties statement declares that the event having the highest (lowest) value of the n
attribute should occur first. Only internally-generated event notices have ran
attributes, while externally-generated events compete with them on a first-come,
served basis. Attributes named in the break ... ties statement must be defined i
every statements. SIMSCRIPT II.5 permits one break ... ties statement for each
internal event class. The break ... ties statement can appear only in the preamb
See priority statement for resolving ties among events of different classes.
55

SIMSCRIPT II.5 Reference Handbook

 when
aming
ken by
there
ording
d

xecuted
2)
 if a
2.10.1 THEN BY Phrases

Then by phrases can include additional attributes whose values determine priorities
ties also exist in values of the first attribute named in the statement. For example, n
the first attribute declares that when ties occur in event times, the ties should be bro
giving priority to the event having the highest (lowest) value of the named attribute. If
are ties in event times and ties in values of the first attribute, the ties are broken acc
to values of the second attribute named. Any number of then by phrases can be include
to break successive ties that can exist.

2.10.2 Order of Executing Events at the Same Simulated Time

If several events have been scheduled at the same simulated time, the events are e
in an order corresponding to (1) the priority statement if they are of different classes, (
the break ... ties statement if it has been included, or (3) a first-in, first-out basis
break ... ties statement has not been included for the event class.
56

CALL Statement

ists.

-

an ex-
n the
nsub-

n this is
riable
 to the

u-
ubtle.
int with
2.11 CALL Statement

The call statement calls a subroutine and can include input and output argument l

call routine given value c  [yielding variable c]
(value c) 

Keywords Synonyms

call perform

now

given giving

the

this

EXAMPLES:

call PROCESS

Calls the routine named PROCESS.

call PRINT.MESSAGE(NUMBER)

Calls the routine named PRINT.MESSAGE. The variable NUMBER, enclosed in parenthe
ses, is an input argument.

call PRINT.MESSAGE given MSG.NO(I), 4 * NO.WORDS yielding ERROR.FLAG

Calls the routine named PRINT.MESSAGE. The variables MSG.NO(I) and 4 *
NO.WORDS are input arguments, and ERROR.FLAG is an output argument.

The call statement calls a subroutine named in a routine statement. The call state-
ment can include input arguments, output arguments, or both. An input argument is
pression whose value will be transmitted to the corresponding local variable withi
routine. An output argument, however, must be a variable, either subscripted or u
scripted. The call statement can appear in any routine, but not in the preamble.

The same variable name can appear as both an input and an output argument. Whe
done, the value of the input argument is transmitted to the corresponding local va
within the called routine, the computation is performed, and a new value is assigned
output argument before control is returned to the calling routine.

2.11.1 Argument Modes

Disagreements in mode between arguments in call statements and corresponding arg
ments in routine statements can be difficult to discover because the effects are s
For example, an integer number used as a real argument (assumed to be floating po
57

SIMSCRIPT II.5 Reference Handbook

ants in

ents

values

tine
-

an exponent) can effectively be zero. One must be particularly careful to pass const
the mode expected by the routine.

2.11.2 Argument Definitions

A define ... routine statement in the preamble can specify the number of argum
for a subroutine. If the number of arguments in the call and define ... routine
statements disagree, SIMSCRIPT II.5 takes the following corrective action:

1. Disregards additional input and output arguments in the call statement.

2. Considers omitted input arguments to be zero.

3. Reserves locations for missing output arguments so they can receive output
(although these will be inaccessible to the calling program).

4. Emits a warning message.

If the define ... routine statement contains only given arguments, the called rou
is assumed to yield no values. If the define ... routine statement contains only yield
ing arguments, the called routine is assumed to have no given values.
58

CANCEL Statement

t per-
he
ed, but
uled

d to

ber of
2.12 CANCEL Statement

The cancel statement removes a scheduled event notice from the event set.

 
cancel [the [above]] event  [called pointer variable]

process 

Keywords Synonym

the [above] this

EXAMPLES:

cancel TAKEOFF

Cancels an event notice for the event class TAKEOFF. The identification number of the
event notice cancelled is that assigned to the global variable named TAKEOFF.

cancel this DELAY called FIXED

Cancels an event notice for the event class DELAY. The identification number of the
event notice is that assigned to the variable named FIXED.

The cancel statement removes an event notice from the event set. This statemen
forms the opposite task of the schedule statement, which schedules an event by filing t
event notice in the event set. The cancelled event notice is not automatically destroy
can be destroyed with a destroy statement. If an event notice that has not been sched
is cancelled, SIMSCRIPT II.5 terminates the program with an error message. The cancel
statement is used only for simulation and cannot appear in the preamble.

When the call ed phrase is omitted, SIMSCRIPT II.5 cancels the event notice pointe
by the global variable having the same name as the event class. If the call ed phrase is
included, however, the named variable is assumed to contain the identification num
an event notice of the same class.

2.13 CAUSE Statement

See schedule statement.
59

SIMSCRIPT II.5 Reference Handbook
2.14 CLOSE Statement

The close statement closes a UNIT previously opened with an open statement. The file
is closed and internal buffers are flushed to the disk.

close [unit] UNIT

EXAMPLE

close unit .FEX.UNIT
60

COMPUTE Statement

s each
ontrol

nsion-

xpres-
ne

n and
 to log-
t it

es
2.15 COMPUTE Statement

The compute statement calculates requested statistics for an expression and assign
statistical value to a named variable. This statement must be controlled by a logical c
phrase. It computes the indicated statistics of the expression after the loop statement if the
control is over a do ... loop construct.

compute {name as the stat kywd }c of variable

Keyword Synonym

 as =

EXAMPLES:

for I = 1 to 10, compute TOTAL = SUM of X(I)

Adds the values in array X and stores the sum in variable TOTAL.

for J = 1 to N, do
 COMPUTE VR = variance, SD as STD.DEV

loop

Computes the variance, standard deviation, and number of values in the one-dime
al array LIST , and stores these statistics in variables VR, SD, and NO, respectively.

for each FLIGHT of DEPARTURES, with DEPARTURE.TIME ls 1200,
compute FMAX as maximum, FMIN as minimum, IMAX as
max(FLIGHT), IMIN as min(FLIGHT) of NO.PASSENGERS(FLIGHT)

Selects, from the set named DEPARTURES, entities with values of DEPARTURE.TIME
that are less than 1200, and stores the maximum value of NO.PASSENGERS in FMAX,
the minimum value of NO.PASSENGERS in FMIN, the value of FLIGHT for the entity
having the maximum value in IMAX, and the value of FLIGHT for the entity having the
minimum value in IMIN .

The compute statement calculates requested statistics (described in table 13) on an e
sion or from values stored in arrays. This statement must be controlled by at least ofor
each (class), for ... of (set), or for ... to (index) phrase, or an until
or while termination phrase, any of which can have appended phrases. Terminatio
selection phrases can terminate the iteration or can select specific values, according
ical expressions in the phrases. The compute statement can appear in any routine, bu
cannot be included in the preamble.

When a compute statement is included with other statements in a do ... loop con-
struct, SIMSCRIPT II.5 computes the requested statistics when the first loop statement is
encountered. Any variables included in the compute statement are set to statistical valu
61

SIMSCRIPT II.5 Reference Handbook

he

.

after the iterations. The statistics are undefined, however, if control transfers out of tdo
... loop construct.

Table 13. Statistical Keywords for Compute Statement

Statistical Keyword Synonym Computation Definition

NUMBER NUM Number of values select-
ed.

SUM ∑ expression Sum of the selected values
of the expression.

MEAN AVG AVERAGE SUM/NUMBER Sum of the selected values
of the expression divided
by the number of values
selected.

SUM.OF.SQUARES SSQ ∑ expression2 Sum of the squares of se-
lected values of the ex-
pression.

MEAN.SQUARE MSQ SUM.OF.SQUARES/
NUMBER

Sum of the squares of se-
lected values of the ex-
pression divided by the
number of values selected

VARIANCE VAR MEAN.SQUARE -

(MEAN)2

STD.DEV STD SQRT.F
(VARIANCE)

Square root of the vari-
ance.

MAXIMUM MAX Maximum value of the se-
lected values of the ex-
pression.

MIMIMUM MIN Minimum value of the se-
lected values of the ex-
pression.

MAXIMUM
(index)

MAX(index) Value of the index vari-
able that produced the
maximum value.

MINIMUM
(index)

MIN(index) Value of the index vari-
able that produced the
minimum value.
62

CREATE Statement

nd set
igns (to

gram
e as
 point-
ch

porary
ttribute
2.16 CREATE Statement

The create statement allocates a block of storage for one instance of the attributes a
pointers of the specified temporary entity class (or event or process notice), and ass
the named variable) a pointer to that block.

temporary entity 
create [a] process  [called pointer variable]

event 

Keyword Synonyms

 a an

the

this

EXAMPLES:

create FLIGHT

Allocates storage for an entity of the temporary entity class FLIGHT. The pointer to this
block is assigned to the global variable named FLIGHT. All attributes of this FLIGHT
entity are set to zero.

create a FLIGHT called JET(I)

Allocates storage for an entity of the temporary entity class FLIGHT. The pointer to this

block is the I th value of array JET. All attributes of JET(I) are set to zero.

create a STOCK.CERTIFICATE called STOCK

Allocates storage for an entity of the temporary entity class STOCK.CERTIFICATE.
The pointer to this block is assigned to the variable named STOCK, and attribute values
are set to zero.

create TAKEOFF

Allocates storage for an event notice of the event class TAKEOFF. The pointer to this
block is assigned to the global variable named TAKEOFF, and each word in the block is
set to zero.

SIMSCRIPT II.5 allocates storage for each temporary entity as it is created during pro
execution. The create statement locates a contiguous block of storage words for us
a temporary entity, or for an event notice, and provides a pointer to these words. This
er, also called the entity identification number, is assigned to a variable. The value of ea
attribute of this new entity is set to zero by setting each storage word to zero. A tem
entity may have more attributes than the number of computer storage words used if a
packing or equivalencing is performed.
63

SIMSCRIPT II.5 Reference Handbook

ari-
,

h a
.
mble.
When the called phrase is omitted, the entity identification is assigned to the global v
able having the same name as the entity class. If the called phrase is included, however
the entity identification will be assigned to the variable named in the phrase.

A word block allocated by a create statement can be returned to the system wit
destroy statement. See the User's Manual for the specific storage allocation algorithm
The create statement can appear in any routine, but it cannot be included in the prea
64

CREATE EACH Statement

ity or

f perma-
nent
te val-
ated by
y

tity or

uested.

spec-

 value
ded
2.17 CREATE EACH Statement

The create each statement allocates arrays for the attributes of the permanent ent
resource classes named in the statement.

  c
create each permanent entity  [(integer value)] 

resource  

Keyword Synonyms

each a

a every

all

EXAMPLES:

create each AIRPORT

Allocates arrays for the attributes of the permanent entity class AIRPORT. Each array
will have N.AIRPORT elements.

create every CITY, AIRPORT and RUNWAY

Allocates arrays for the attributes of the permanent entity classes CITY , AIRPORT,
and RUNWAY, with dimensions N.CITY , N.AIRPORT, and N.RUNWAY, respectively.

create every AIRLINE(5) and STOCKHOLDER(4)

Allocates arrays for the attributes of the permanent entity classes AIRLINE and
STOCKHOLDER. Each AIRLINE array will have 5 elements and each STOCKHOLDER
array will have 4 elements. N.AIRLINE is set to 5 and N.STOCKHOLDER is set to 4.

Attributes of permanent entities are stored in arrays. Resources are a special case o
nent entities. The create each statement allocates storage for the attributes of perma
entities. During program execution, the arrays are reserved together, and the attribu
ues stored in the arrays are set to zero. Arrays for several entity classes can be cre
including several names in this statement. The create each statement can appear in an
routine, but not in the preamble.

The create each statement must be used before any attributes of a permanent en
resource are referenced, either explicitly or implicitly. For resources, the create each statement must
be used and the U.resource attribute set to a nonzero value before any resource units may be req

If the value of N. entity (number of entities in the entity or resource class) has not been
ified previously, an arithmetic expression can be included in the create each statement
to specify attribute arrays. The value of this expression automatically becomes the
of N. entity. Either N. entity must be nonzero or the arithmetic expression must be inclu
when the create each statement is executed.

Storage space for entity or resource attributes can be returned to the system with a destroy
each statement.
65

SIMSCRIPT II.5 Reference Handbook

ack

re

r-

he
n cou-
2.18 CYCLE Statement

The cycle statement within a do ... loop construct of code causes control to pass b
to the loop's controlling statements.

 
 cycle 
 next 

This statement consists of exactly one word.

The cycle statement is used within a do ... loop construct of code to cause prematu
ending of one iteration of the loop. Control is passed back into the controlling for or
until logic, to select the next index value or to end the loop. In effect, cycle functions
as if control had been transferred to the loop statement, except that no programme
defined label is needed.

The statements cycle and leave clarify programs by eliminating labels, and provide t
concept of local labels to SIMSCRIPT II.5. These features are especially useful whe
pled with the substitute statement features of SIMSCRIPT II.5.
66

DEFINE ... ROUTINE Statement

unc-

use

tput

tput
2.19 DEFINE ... ROUTINE Statement

The define ... routine statement declares characteristics of subroutines and f
tions.

integer 
real 

define routine c as [a] double  [fortran] routine [s]
alpha 
text 

[given integer [argument [s]]] [[,] yielding integer [argument [s]]]

Keywords Synonyms

a an

routine[s] function[s]

given giving

with

argument[s] value[s]

fortran

nonsimscript non-simscript

EXAMPLES:

define DEPOT.SOURCING as a routine

Defines DEPOT.SOURCING as a subroutine. No checking will be performed beca
argument numbers are omitted.

define QUOTA and SALES as routines with 3 values

Defines QUOTA and SALES as subroutines, each having three input values and no ou
values.

define ANSWER as an alpha function

Defines ANSWER as a function whose value will be alphanumeric.

define PRINT.MESSAGE as a routine given 2 arguments yielding 1

Defines PRINT.MESSAGE as a subroutine having two input arguments and one ou
argument.

define square.fn as a double function given 1

define low_level_call3 as a nonsimscript integer function given 4

define speed as fortran routine given 3
67

SIMSCRIPT II.5 Reference Handbook

nce”

s re-

, re-

. It
i-
lare the
orrect
brou-
-

harac-

e-

tional

e
IPT

s (but

tine
-
t num-
 can be
Notes:

1. When you specify “fortran” routine, parameters are passed in “call by refere
mode as required by FORTRAN compilers.

2. When you specify “nonsimscript” routine, parameters are passed “by value” a
quired by C-compilers.

3. For more details about interfacing with non-simscript and FORTRAN routines
fer to the SIMSCRIPT II.5 User’s Manual for your platform.

The define ... routine statement is used to declare subroutines and functions
appears only in the preamble. Each function must be declared to distinguish it from a var
able in a subroutine. Subroutines need not be declared. This statement can dec
mode (for functions only), whether the subroutine or function is releasable, and the c
number of input and output arguments for subroutines. More than one function or su
tine can be declared in a single define ... routine statement, but a function or sub
routine name can appear only once in a define ... routine statement. If a function
is defined as alphanumeric, the value returned by the function is considered to be a c
ter string, not a numerical value.

A combination of normally and define ... routine statements can appear in the pr
amble. Normally statements could specify the predominant characteristics, and define
... routine statements could declare any exceptions, as well as declaring addi
characteristics.

2.19.1 GIVEN and YIELDING Phrases

The correct number of arguments for a subroutine can be specified in the define ...
routine statement by including given and yielding phrases. Subsequently, if th
pertinent call and routine statements have a varying number of arguments, SIMSCR
II.5 applies the following corrective action:

1. Disregards additional input and output arguments in call and routine state-
ments.

2. Considers omitted input arguments to be zero.

3. Reserves locations for missing output arguments so they can receive value
these values are inaccessible to the calling routine).

4. Emits a warning message.

If the define ... routine statement contains only given arguments, the called rou
is assumed to yield no values. If the define ... routine statement contains only yield
ing arguments, the called routine is assumed to have no given value. If no argumen
bers are specified, no checking is performed, and variable-length calling sequences
used.
68

DEFINE ... SET Statement

r and
ber at-

ted

es.

ute

g

s set
), and

 charac-
2.20 DEFINE ... SET Statement

The define ... set statement names one or more sets and defines ranking, owne
member attributes, generated routines, and optional deletion of owner and mem
tributes and processing routines.

fifo    high   
define set c as [a] lifo  set [s] ranked by low  attribute  c then 

   

[without set attribute c attribute [s]] [[,] without set routine c routine [s]]

Keyword Synonym

 a an

EXAMPLES:

define PORTFOLIO and RESERVATIONS as sets

Defines PORTFOLIO and RESERVATIONS as generalized sets having all the genera
set attributes and routines.

define WAITING.LINE as a fifo set

Defines WAITING.LINE as a fifo set having all generated set attributes and routin

define REGULATIONS as a set ranked by low NUMBER

Defines REGULATIONS as a set ranked by low values (ascending order) of attrib
NUMBER.

define ARRIVALS as a set ranked by low ARRIVAL.TIME, then by high
NO.PASSENGERS without l and p attributes

Defines ARRIVALS as a set ranked by low values (ascending order) of attribute
ARRIVAL.TIME , and resolves ties of ARRIVAL.TIME values by high values (descendin
order) of NO.PASSENGERS. Attributes L. ARRIVALS and P. ARRIVALS are not gen-
erated.

define AIRLINES as a set ranked by low NAME without l and p
attributes, without fl, fb, fa, and r routines

Defines AIRLINES as a set ranked by low values (ascending order) of attribute NAME.
Set attributes L. AIRLINES and P. AIRLINES and set routines fl, fb, fa, rf, rl ,
and rs are not generated.

The define ... set statement, which can appear only in the preamble, describe
characteristics, including set discipline, owner and member attributes (see table 14
generated set handling routines (see table 15). Two or more sets having the same
69

SIMSCRIPT II.5 Reference Handbook

itted,
y the

ly)

n the
 filed.
u-
teristics can be defined in the same statement. Sets can be defined as fifo or lifo , or can
be ranked by high or low values of member attributes. When the set discipline is om
SIMSCRIPT II.5 assigns a generalized set whose organization will be determined b
programmer. A define ... set statement must follow (not necessarily immediate
the every statement that declares the owner and member entities of the set.

2.20.1 FIFO Sets

In a fifo set, entities are filed on a first-in, first-out basis. Each entity is placed last i
set as it is filed, and entities are removed from the top in the order in which they were
A fifo set requires only F.set, L.set , and S.set attributes. It generates seven ro
tines: ff, fl, fb, fa, rf, rl , and rs .

Table 14. Automatically Generated Set Attributes

Letter Attribute
Name

Definition Attributes of

F F.set Pointer to first entity in set. Owner entities

L L.set Pointer to last entity in set. Owner entities

N N.set Number of member entities
currently in the set.

Owner entities

P P.set Pointer to predecessor in set. Member entities

S S.set Pointer to successor in set. Member entities

M M.set Membership attribute that is
<>0 if an entity is in the set and
0 if the entity is not in the set.

Member entities
70

DEFINE ... SET Statement

 Each
he re-

f enti-

alues

he
o
lly-gen-
wner
pt of a
2.20.2 LIFO Sets

In a lifo set, entities are filed in, and removed from, sets on a last-in, first-out basis.
entity is placed first in the set as it is filed, and entities are removed from the top in t
verse order in which they were filed. A lifo set requires only F.set and S.set at-
tributes. It generates seven routines: FF, FL, FB, FA, RF, RL , and RS.

2.20.3 Ranked Sets

Ranking is specified by naming the attribute whose values are to control the order o
ties in the set. Ranking can be cascaded by including any required number of then by
phrases. A then by phrase specifies how ties are to be resolved when two or more v
are identical for a ranking attribute. ... before and file ... after statements can-
not be used with a ranked set. Ranked sets generate four routines: ff, rf, rl , and rs .

2.20.4 WITHOUT ... ATTRIBUTES Phrase

Owns and belongs phrases in an every statement automatically provide attributes for t
owner and member entities, but the without ... attributes phrase can be used t
delete any unnecessary set attributes. Each specified letter deletes the automatica
erated attribute formed by prefixing that letter and period to the set name. Any or all o
and member attributes can be deleted, but deleting all attributes destroys the conce
set. See table 16 for attributes required for various set operations.

Table 15. Automatically Generated Set Routines

Mnemonic Required
Set Attributes

Routine Name Purpose

FF F S T.set Files entity first or ranked

FL F L S U.set Files entity last

FB F P S V.set Files entity before specified enti-
ty.

FA F S W.set Files entity after specified entity.

F Generates no file routines.

RF F S X.set Remove first entity.

RL F L P S Y.set Remove last entity.

RS R P S Z.set Remove specified entity.

R Generates no file routines.
71

SIMSCRIPT II.5 Reference Handbook

en

leted to
es
2.20.5 WITHOUT ... ROUTINES Phrase

Naming a set in an every statement with an owns phrase automatically provides the sev
set routines, but the without ... routines phrase can be included in the define ...
set statement to delete any unnecessary set routines. Any set routine can be de
conserve storage. If the letters F or R are specified, all file routines or all remove routin
are deleted, respectively.

Table 16. Required Set Attributes and Routines

Set
Statement

Attributes Required Routines Required

f l p s m n ff fl fb fa rf rl rs

file in a ranked set x x x x

file first x x x

file last x x x x

file before x x x x

file after x x x

remove first x x x

remove last x x x x x

remove specific x x x x

is empty x

is in set x

Automatic checking x

for each v in set x x

for each v in set in
reverse

x x

for each v from w
in set

x

for each v from w
in set in rev.

x

for each v after w
in set

x

for each v after w
in set in rev.

x

72

DEFINE ... TO MEAN Statement

 for
s of the

ord
name, a
ted for
or more
ment,

which
om-
ith the
 to be
d. Sub-

hen
. In a
d. A
2.21 DEFINE ... TO MEAN Statement

The define ... to mean statement allows the programmer to substitute any word
any string in subsequent statements. During compilation, all subsequent occurrence
word are replaced by the string.

define WORD to mean STRING

EXAMPLES:

define X to mean MATRIX

Substitutes the string MATRIX for the variable X.

define Y to mean A * X**2 + B * X + C

Substitutes the expression A * X**2 + B * X + C for the variable Y.

define SUBSECTION to mean ROUTINE

Substitutes the SIMSCRIPT II.5 keyword ROUTINE for the word SUBSECTION.

define FORMAT.LIST to mean I 4, 3 I 5

Substitutes the format list I 4, 3 I 5 for the word FORMAT.LIST.

The define ... to mean statement substitutes a string of words for the indicated w
in all subsequent statements, until superseded. The word can be a single letter, a
number, a special character, or an alphanumeric literal, and the string to be substitu
the word can be any string of characters such as a single character, a name, one
SIMSCRIPT II.5 statements, an expression, a format string for an input/output state
or an argument list.

SIMSCRIPT II.5 considers the string to be all the remaining characters of the card on
the define ... to mean statement appears. During compilation, whenever the c
piler detects the specified word, it substitutes the string and compiles the statement w
substitution. Substitution takes place only when the word for which substitutions are
made appears as a complete token, but not when it appears as part of another wor
stitutions can appear in strings for other define ... to mean or substitute state-
ments, thus allowing several levels of substitution.

The define ... to mean statement can appear in the preamble or in a routine. W
this statement appears in the preamble, the substitution affects the entire program
routine, the substitution is local and is effective only for that routine until supersede
suppress substitution statement can override the effect of a define ... to mean
statement, while a resume substitution statement can reinstate the effect.
73

SIMSCRIPT II.5 Reference Handbook

e pro-

rom a

num-
format

replace

a new
 com-
e state-
2.21.1 Purposes of DEFINE ... TO MEAN

The define ... to mean statement can be employed for any of the following purposes:

1. To change a word in a routine to the same word used in other routines in a larg
gram.

2. To change statement keywords to another vocabulary.

3. To define a macro instruction, meaning a compound instruction generated f
single keyword.

4. To define format strings in order to call them by name. This can minimize the
ber of characters that must be written when several statements have identical
lists.

5. To define names as synonyms, substitute one variable name for another, or
a name with complete statements.

Redefining statement keywords must be handled very carefully to avoid substituting
string for an optional keyword, or for any other characters that might cause incorrect
pilation because the statement syntax was not followed. For example, preceding th
ment every MAN can own some DOGS with the statement define CAN to mean
BOTTLE results in a syntax error when attempting to compile with the substitution: every
MAN BOTTLE own some DOGS.
74

DEFINE ... (Global) VARIABLE Statement

ri-
2.22 DEFINE ... (Global) VARIABLE Statement

The define ... (Global) variable statement defines the properties of global va
ables.

integer 
real  subprogram 

define global variablec as [a] double  [integer-dim] dummy 
alpha  stream [integer] 
text 
signed integer 

 variable[s]  monitored on the left [c [the] right]   
 array[s]   right [c [the] left]  
      

Keywords Synonyms

a an

dim dimensional

For further information, see the define ... variable statement.
75

SIMSCRIPT II.5 Reference Handbook

ri-
2.23 DEFINE ... (Local) VARIABLE Statement

The define ... (Local) variable statement defines the properties of local va
ables.

 integer 
 real 

define local variablec as [a]  double  [integer-dim] variable[s] 
 alpha  array[s] 
 text 

  c   
[subprogram] saved    variable[s] 

recursive    array[s] 



For further information, see the define ... variable statement.
76

DEFINE ... VARIABLE Statement

ari-

rrent

s,

b-
routine
2.24 DEFINE ... VARIABLE Statement

The define ... variable statement defines characteristics of global and local v
ables, of attributes, and of arrays.

integer 
real  dummy 

define variablec as [a] double  [integer-dim] subprogram 
alpha  stream [integer] 
text 
signed integer 

saved  variable[s]  monitored on the left [c [the] right]  
recursive  array[s]   right [c [the] left]  

     

Keywords Synonyms

a an

dim dimensional

EXAMPLES:

define NUMBER as a variable

Defines NUMBER as a variable having the mode, type, and dimensionality of the cu
background conditions.

define ORIGIN, DESTINATION, and MOVE as alpha variables

Defines ORIGIN, DESTINATION, and MOVE as variables having alphanumeric value
type, and dimensionality as specified by background conditions.

define BOX as an integer, 3-dimensional array

Defines BOX as a three-dimensional array whose elements have integer values.

define a, b, and c as real, recursive variables

Defines a, b, and c as variables whose values are real and recursive.

define LOCATIONS and ADDRESSES as 1-dimensional, saved, subprogram
arrays

Defines LOCATIONS and ADDRESSES as one-dimensional arrays containing su
program variables, whose values (addresses of routines) are saved from one sub
call to another.
77

SIMSCRIPT II.5 Reference Handbook

the

les,
ifies the
riables
ristics of
istics
 one

r
 global

e
st

rac-

tly

u-
 or
-
where

es the
cluded

is a

ecifi-
define NAME as dummy variable

Defines NAME as a dummy variable, which has a name but no storage location.

define DATA and RESULT as integer, 2-dimensional arrays monitored
on the left and right

Defines DATA and RESULT as two-dimensional arrays monitored on the left and
right; elements of the arrays have integer values.

The define ... variable statement defines the mode of one or more variab
declares whether variables are saved or recursive, subprogram or dummy, and spec
dimensionality of arrays. A given variable has several characteristics, and several va
can be named in a single statement. This statement can be used to define characte
global and local variables, and of attributes and arrays that differ from character
declared in normally statements. Each variable, attribute, or array can appear in only
define ... variable statement. The define ... variable statement may appea
in the preamble and in routines, depending on whether the variable to be defined is
or local.

2.24.1 NORMALLY and DEFINE ... VARIABLE Statements

A combination of normally and define ... variable statements can appear in th
preamble and in routines. In the preamble, normally statements usually declare the mo
prevalent characteristics of the global environment, called the background conditions,
while define ... variable statements declare any exceptions and additions. Cha
teristics that have been defined in a define ... variable statement override those
declared in preceding normally statements, while the background conditions implici
fill in unspecified characteristics for each variable.

Characteristics defined in the last normally statement in the preamble apply to all ro
tines, unless superseded by normally statements within the routines. In a subroutine
function, normally and define ... variable statements define the local environ
ment, with definitions applying only to that routine. These statements can appear any
within the routine, but their relative order is important.

2.24.2 Global Variables

A global variable, which has a common meaning throughout a program, referenc
same storage location whenever the variable is used. Each global variable must be in
in a define ... variable statement in the preamble to inform the compiler that it
global variable. If its characteristics are declared in a preceding normally statement, the
define ... variable statement need not repeat the characteristics. The type sp
cation is meaningless for global variables, as they are always saved.
78

DEFINE ... VARIABLE Statement

 of

e
e the

ent or

aving
ved or

r in a
nt.

ter word

d vari-
howev-
cursive

licitly

 zero.
tine in
he rou-

or of a
iable
2.24.3 Attributes

In the preamble, a define ... variable statement is used to define characteristics
attributes that differ from those declared in the effective normally statement. A define
... variable statement must follow every and the system statements whenever th
define ... variable statement includes attributes named in either statement. Se
... random ... variable statement for defining random variable attributes.

2.24.4 Local Variables

Local variables, whose characteristics differ from those of the current local environm
that have the same names as global variables, must be included in define ... variable
statements in their respective routines. Variables not appearing in a define ...
variable statement are automatically defined by the compiler as local variables h
the current background characteristics. Local variables can be defined as sa
recursive.

2.24.5 Arrays

The dimensionality of an array must be specified in the preamble with either a normally
or a define ... variable statement. Any dimensionality declared in a normally
statement can be superseded by a subsequent declaration in a define ... variable
statement, but the dimensionality is permanent after appearing in a define ...
variable statement. If an array is an argument, the dimensionality must appea
define ... variable statement in the subroutine to which the array is an argume

Arrays can be declared as saved or recursive. This means that the array base poin
is either saved, or set to zero each time the routine is called.

2.24.6 Arguments, Recursive Variables, and Saved Variables

Three types of local variables are provided: arguments, recursive variables, and save
ables. Any local variable can be declared as either saved or recursive. Arguments,
er, are always stored as recursive variables. They are automatically defined to be re
when named in a routine statement, no matter what is said about them in a define ...
variable statement. It is always best to define other argument characteristics exp
to avoid later confusion.

The first time a routine is called, all saved and recursive local variables are set to
Thereafter, a recursive local variable has an initial value of zero each time the rou
which it appears is called, but a saved local variable retains the value stored when t
tine was last executed.

2.24.7 Subprogram Variables

A subprogram variable is defined as a variable having the address of a subroutine,
function, as its value, enabling the routine to be called indirectly. A subprogram var
79

SIMSCRIPT II.5 Reference Handbook

 the

es but

ogram.

 a sub-
ecuted.
it, each
he left,
me as

 as a
red
e

le, one
sub-
assed
can be used as an argument, in let statements, in logical expressions, etc., to stand for
specific piece of computation defined by the routine that is the value of this variable.

2.24.8 Dummy Variables

Global variables and attributes can be defined as dummy variables, which have nam
no storage locations. These variables are used in accumulate and tally statements to
compute statistics on variables and attributes that otherwise are not used in a pr
Dummy global variables must also be defined in a define ... variable statement, and
dummy attributes must also be declared in every or the system statements.

2.24.9 Monitored Variables

A monitored variable is a variable whose values are monitored (checked or used) by
routine. Each time a monitored variable is accessed, its associated subroutine is ex
Therefore, a monitored variable has both a value and a subroutine associated with
with the same name. In fact, because variables can be monitored on the right, on t
or on both the right and left, both a left- and right-hand subroutine with the same na
the monitored variable might be associated with it. The words left and right refer to
the occurrence of the variable to the left or right of an equal sign in a let statement. A
define ... variable statement can declare a variable, an array, or an attribute
monitored variable. The enter statement allows the value assigned to a left-monito
variable to be used within the monitoring routine. The move statement gives access to th
value of a right-monitored variable or assigns a value to a left-monitored variable.

Note that monitored variables behave more like variables than routines. For examp
can never call a monitored variable directly. When a monitored variable is used, its
scripts are automatically converted to integer (like a subscripted variable), but also p
as arguments to the monitoring routine.
80

DESTROY Statement

cess,
e spec-

ass
ed

o-
ned. If
n the
tain a
2.25 DESTROY Statement

The destroy statement returns a block of storage serving as a temporary entity, pro
or an event notice to available system storage. It releases the block of storage for th
ified entity pointer variable.

temporary entity 
destroy [a] process  [called pointer value]

event 

Keyword Synonyms

 a an

 the

 this

EXAMPLES:

destroy FLIGHT

Returns a block of storage for an entity of the temporary entity class FLIGHT. The
pointer to this block is assigned to the global variable named FLIGHT.

destroy the FLIGHT called JET(I)

Returns a block of storage for an entity of the temporary entity class FLIGHT. The

pointer to this block is the I
th value of the array named JET.

destroy the STOCK.CERTIFICATE called STOCK

Returns a block of storage for an ent i ty of the temporary ent i ty cl
STOCK.CERTIFICATE. The pointer to this block is assigned to the variable nam
STOCK.

destroy TAKEOFF

Returns a block of storage for an event notice of the event class TAKEOFF. The pointer
to this block is assigned to the global variable named TAKEOFF.

The destroy statement returns a block of storage, which was created by a create state-
ment, to available storage. If the called phrase is omitted, SIMSCRIPT II.5 uses the gl
bal variable having the same name as the entity class to locate the block to be retur
the called phrase is included, however, SIMSCRIPT II.5 uses the variable named i
called phrase to locate the block. In either case, the appropriate variable must con
pointer to (the address of) the storage block to be returned.
81

SIMSCRIPT II.5 Reference Handbook

to
llocated
r may

 when

 fatal
n the
When an entity is destroyed, that piece of storage is made available for use by create
statements (and, in some implementations, reserve statements as well). References
that entity are invalid after it is destroyed because the storage may have then been a
to represent a new entity. Depending on the implementation, attribute values may o
not be set to zero on destroying an entity. (Attributes will, of course, be set to zero
this storage block is used to create an entity.)

An entity that is still in a set cannot be destroyed. Any attempt to do so will result in a
error. The destroy statement can appear in any routine, but it cannot be included i
preamble.
82

DESTROY EACH Statement

entity

 or a
ch array

 the

lid and,

. The
 the
2.26 DESTROY EACH Statement

The destroy each statement deallocates arrays for the attributes of the permanent
or resource classes named in the statement.

permanent entity 
destroy each  

resource 

Keyword Synonyms

each every

all

EXAMPLE:

destroy each AIRPORT

Releases all arrays associated with the permanent entity AIRPORT.

The destroy each statement returns storage allocated for a permanent entity
resource. When the entity or resource is destroyed, the storage associated with ea
forming the entity is made available for later create each or reserve statements (and,
in some implementations, create statements as well). Released storage includes
SIMSCRIPT-defined attributes involved in set operations and accumulate and tally
operations. References to attributes of any entities or resources in that class are inva
on some implementations, will be detected as such.

An entity that is still in a set cannot be destroyed. This will be detected as an error
destroy each statement can appear in any routine, but it cannot be included in
preamble.
83

SIMSCRIPT II.5 Reference Handbook

cuted

tion

 two

re
tly
2.27 DO ... LOOP Construct

The do ... loop construct designates the beginning of a program segment to be exe
repeatedly.

do statement i loop

Keyword Synonym

this the following

EXAMPLES:

for I = 1 to 10, do

Executes controlled statements with values of index variable I ranging from 1 to 10;
that is, the program segment is executed 10 times.

for I = 1 to 10, for J = 1 to N , do this

Executes controlled statements with values of index variable I ranging from 1 to 10,
and J ranging from 1 to N. That is, the inner loop is executed n times for each execu
of the outer loop.

until X**2 - Y**2 is negative, do ' 'calculations

Executes controlled statements until X
2
 - Y

2
 yields a negative value. Negative is a

keyword available for use in logical expressions. Commentary text follows the
apostrophe characters.

for each CITY, with POPULATION(CITY) greater than 500000, do

Executes controlled statements for each entity of entity class CITY if the value of at-
tribute POPULATION exceeds 500,000.

for each AIRPORT, for each FLIGHT of ARRIVALS, do the following

Executes controlled statements for each entity of entity class FLIGHT filed in the set
named ARRIVALS at each airport.

A program segment to be executed repeatedly must begin with a do statement and end with
a loop statement, and do ... loop constructs must be preceded by at least one for
each (Class), for ... of (Set), or for ... to (Index) phrase, or by a while or
until termination phrase. Normally, a do ... loop construct is executed over the enti
range of controlling for phrases, because for phrases control a program segment exac
as they control a single statement. Any combination of for phrases and selection and
termination phrases can precede the do ... loop construct, with the program
segment being executed once for each iteration of controlling for phrases. The do ...
loop construct can appear in any routine, but it cannot be included in the preamble.
84

DO ... LOOP Construct

within

.

2.27.1 Nested DO ... LOOP Constructs

A do ... loop construct can be nested within other do ... loop constructs for control
over subscripted variables having two or more subscripts. Subscript indexing occurs
the limits of the do statement and loop statement. When do ... loop constructs ter-
minate at the same place, the for phrases can be preceded by the keyword also in order
to eliminate redundant loop statements. In this event, SIMSCRIPT II.5 matches thedo
statement that follows the also for phrase with the loop statement of the do ... loop
construct of the preceding for phrase. In figure 2, nested do ... loop constructs are
illustrated on the left, and the same loops are shown using also for phrases on the right
85

SIMSCRIPT II.5 Reference Handbook
Figure 2. Nested do ... loop Constructs and do ... loop Constructs

Using also for Phrases

for . . .
do
.
.
.

for . . .

 do
.
.
.

for . . .
 do

.

.

.
for . . .
 do

.

.

.

 loop
.
.
.

 loop
.
.
.

 loop
 .
 .
 .

loop

 for . . .
 do
 .
 .
 .

 for . . .
 do
 .
 .
 .
 also for . . .
 do
 .
 .
 .
 also for
 do

.

.

.
 loop

 .
.

 .
 loop

86

ELSE Statement
2.28 ELSE Statement

See if ... else ... always construct.
87

SIMSCRIPT II.5 Reference Handbook

nt, pro-

m el-
2.29 END Statement

The end statement designates the physical end of the program preamble, of each eve
cess, function, and program routine, and of each report and heading section.

end

Only one form of this statement exists. It consists of exactly one word.

An end statement must be placed at the physical end of each SIMSCRIPT II.5 progra
ement to ensure correct compilation. Each of the following must have an end statement
to mark the physical end of the programming modules:

Preamble Report section

Main routine Heading section

Subroutine External event routine

Function routine Internal event routine

Process routine
88

ENTER WITH Statement

riable

of the

ent
e as-
unsub-
ssion
mble.
y
ing the
2.30 ENTER WITH Statement

The enter with statement is used to transfer a right-hand expression to a local va
within a left-hand function.

enter with variable

EXAMPLES:

enter with NUMBER

Specifies that the value received by a left-hand routine is stored in the variable NUMBER.

enter with LIST(I)

Specifies that a value received by a left-hand routine is to be stored in the I
th element

in the one-dimensional array named LIST .

A value can be passed to a left-hand function by writing the function on the left side
equal sign in a let statement, using it as a yielding argument, using it in a read state-
ment, and so on. The enter with statement, which must be the first executable statem
in every left-hand function, specifies that the value computed "on the right" is to b
signed to the named variable. The variable can be local or global, subscripted or
scripted, or an attribute (for use within the left-hand routine). The mode of the expre
assigned to the function must agree with the mode defined for the function in the prea
After transferring the value with an enter with statement, a left-hand function is like an
other routine. For example, computations or other processing can be performed us
variable. In order to store a value in a variable monitored on the left, a move from state-
ment is used in the left-hand routine.
89

SIMSCRIPT II.5 Reference Handbook

s.

me
ivalent

he
2.31 ERASE Statement

The erase statement is used to release storage designated for text variables.

erase text variable

EXAMPLES:

erase AUTHOR

Releases the storage previously designated for the text variable AUTHOR, and assigns a
null value to the variable.

erase NAME, STREET.ADDRESS and CITY.ADDRESS

Releases the storage previously designated for the text variables NAME,
STREET.ADDRESS, and CITY.ADDRESS, and assigns null values to all three variable

Text variables may be erased by using the erase statement. The statement has the sa
effect as assigning a null value to the variable. Thus, the first example above is equ
to:

let AUTHOR = ""

Note: The name of the text variable itself is still recognized by SIMSCRIPT II.5. T
erase statement merely erases the stored value.
90

EVENT Statement

nt, or

 be-

l-
use an

er rou-
 execut-
d by

 for ex-
e. The
2.32 EVENT Statement

The event statement names an event routine for an internal event, an external eve
both.

event [to] event given value
c  [saving the event notice]

(value c) 

Keywords Synonyms

event upon

to for

given giving

the

this

EXAMPLES:

event MANAGEMENT.REPORT

Declares MANAGEMENT.REPORT as an event routine, and destroys the event notice
fore entering the event routine.

event TAKEOFF given FLIGHT.NO, DESTINATION, NO.PASSENGERS

Declares TAKEOFF as an event routine having FLIGHT.NO, DESTINATION , and
NO.PASSENGERS as arguments; destroys the event notice.

upon TAKEOFF(FLIGHT.NO, DESTINATION, NO.PASSENGERS) saving the
event notice

Declares TAKEOFF as an event routine having FLIGHT.NO, DESTINATION , and
NO.PASSENGERS as arguments. Saves the event notice.

An event routine, which is declared with an event statement, is similar to a subroutine a
though an event routine does not return output values. It cannot yield values beca
event routine is called by the timing routine, and consequently cannot return to anoth
tine. Each event class must have an event routine. When an event is generated (by
ing a schedule statement or by an external event card), the timing routine is informe
the event notice when the event is to occur in the future. The schedule statement includes
the simulated time for internal events, and external event data cards specify the time
ternal events. Events take place instantaneously and do not consume simulated tim
event statement cannot appear in the preamble.
91

SIMSCRIPT II.5 Reference Handbook

 values
u-
t

nternal
local to

ore an

r that

e, can
g

2.32.1 Arguments

An internal event is triggered by an event notice, as a result of a schedule statement. Be-
sides the five special attributes that all event notices have, an event notice transmits
of any additional attributes from the schedule statement to arguments of the event ro
tine. (Additional attributes must be defined in every statements.) An event routine tha
simulates only external events cannot have arguments, but a routine used for both i
and external events can have arguments. The arguments of the event routine are
the routine. If their specifications differ from the last normally specifications in the pre-
amble, they must be defined in the event routine.

2.32.2 SAVING Phrase

Event notices can be reused. An event notice is automatically destroyed just bef
event routine is executed unless a saving the event notice phrase is included in this
statement. The pointer to the event notice will no longer be valid without the saving
phrase.

2.32.3 Logical Expression for Event Routines

SIMSCRIPT II.5 provides a logical expression to determine, within an event, whethe
event was generated internally or externally. The logical expression is of the form:

endogenous 
event is [not] exogenous 

internal 
external 

and yields a true or false value. This logical expression, which tests the event notic
be included in an if ... else ... always construct to make decisions regardin
events.
92

EVENT NOTICES Statement

t

 with
ip of,

-
e

st
tically
eclare

 which
tes, in
ents in

.

rated,
even-
2.33 EVENT NOTICES Statement

An event notices statement declares that the following every statements define even
notices for internal events.

event notices [include event c]

Keywords Synonyms

event notices events

include are

EXAMPLES:

event notices

Indicates that event notice declarations follow. The declarations will be made
every statements, and will name user-defined attributes. They denote ownersh
and membership in, sets.

event notices include ARRIVAL and WEEKLY.REPORT

Identifies ARRIVAL and WEEKLY.REPORT as event notices requiring only the system
defined attributes for event notices. Every statements may follow this form of th
event notices statement.

An event notice is a temporary entity that has five special attributes. An event notices
statement, which declares that the following every statements define event notices, mu
be included in the preamble for internal events. Because SIMSCRIPT II.5 automa
places the special attributes in the event notice record, the programmer must not d
these attributes. One cannot place other attributes in the words of an event notice
contain the special attributes. An event notice may consist of only the special attribu
which case the event notice triggers the event, but does not transmit values to argum
the event routine. The attributes of an event notice record are described in table 17

Event notices are created and destroyed like temporary entities.

An event notice carries information about an internal event. When an event is gene
the event notice transmits this information about the event to the timing routine, and (
tually) from the timing routine to the event routine when the event occurs.
93

SIMSCRIPT II.5 Reference Handbook

ulated
ed time.
class,
If no
vent

er var-
d

r the

n-

eep
Event notices are used to schedule events for occurrence at some time in the sim
future. Many events of the same event class can be scheduled at the same simulat
A break ... ties statement declares priorities among events of the same event
while a priority statement declares priorities among different classes of events.
priority statement is present, priority is given according to the order in which the e
notices have been defined in the include phrase or in subsequent every statements.

In addition to the five special attributes, event notices can have attributes that are eith
iables or functions. Event notices can own and belong to sets. Every statements are use
to declare the attributes and sets.

Event notices with additional attributes must be declared in every statements. Event
notices with no additional attributes can be named in the include phrase of the event
notices statement, and the first five words of the event notice record will be used fo
five special attributes.

Table 17. Event Notice Attributes

Attribute Description

time.a Simulated time at which the event is to occur.

eunit.a Code to indicate whether internal or external. Number of input unit co
taining event information for external events; zero for internal events.

p.ev.s Pointer to predecessor in ev.s * .

s.ev.s Pointer to successor in ev.s * .

m.ev.s Membership attribute that is <>0 if the event notice is in ev.s *, and 0 if
the event is not in ev.s *.

Note: * ev.s refers to the event set. That is, the set used by the timing routine to k
track of scheduled events.
94

EVERY Statement

erma-
ttribute
2.34 EVERY Statement

The every statement declares entity, attribute, and set structure for temporary and p
nent entities, resources, and event and process notices. It also specifies optional a
packing, equivalences, word assignments, and functions.

   function  c c

 has  a attribute [(packing code] in array  integer   
entity      word    

every event  c   {attribute [(packing code)]}
c      

process   
   
resource   

   owns    c 
  belongs to   a set  

      
 
 

Keywords Synonyms

has have

can have

may have

a an

the

some

owns own

can own

may own

belongs to belong to

can belong to

may belong to

EXAMPLES:

every CITY has a NAME, an AREA, and a POPULATION

Declares that entities of the permanent entity class CITY have attributes named NAME,
AREA, and POPULATION.
95

SIMSCRIPT II.5 Reference Handbook

ss

utive

 3,

es

anent

tity, sets
d, this
ow set
ibute
ummy
every PATRON has a NAME, a DESTINATION, and a FARE, and belongs to
some RESERVATIONS

Declares that entities of the temporary entity class PATRON have attributes named
NAME, DESTINATION , and FARE. The entities are members of the set cla
RESERVATIONS.

every TAKEOFF has a FLIGHT.NO, a DESTINATION, and SOME
(NO.PASSENGERS, NUMBER.OF.PASSENGERS)

Declares that event notices of the class TAKEOFF have attributes named FLIGHT.NO,
DESTINATION, and NO.PASSENGERS. NUMBER.OF.PASSENGERS is a synonym for
NO.PASSENGERS.

every AIRPORT has a NO.OF.RUNWAYS(*/4) and owns some JET.RUNWAYS,
some ARRIVALS, some DEPARTURES, and some TERMINALS

Declares that entities of the permanent entity class AIRPORT have an attribute named
NO.OF.RUNWAYS whose values are to be intrapacked in an array, with four consec
values per word. The entities own sets of the set classes JET.RUNWAYS, ARRIVALS,
DEPARTURES, and TERMINALS.

every STOCKHOLDER has a NAME, a FINANCIAL function, owns a
PORTFOLIO, has the F.PORTFOLIO in array 1, the L.PORTFOLIO in array
2, and the N.PORTFOLIO in array 3

Declares that entities of the permanent entity class STOCKHOLDER have an attribute
named NAME and a function attribute named FINANCIAL . The entities own sets of the
set class PORTFOLIO, and have attributes (set pointers) F.PORTFOLIO,
L.PORTFOLIO, and N.PORTFOLIO that are to be assigned to arrays 1, 2, and
respectively.

every FLIGHT has some (FIRST.CLASS.SEATS(L/2), TOURIST.SEATS(2/2))
in word 1, and the (NO.PASSENGERS(1-10), NO.IN.CREW(11-16), and
SEATING.CAPACITY(2/2)) in word 2

Declares that entities of the temporary entity class FLIGHT have five attributes. Values
of attribute FIRST.CLASS.SEATS are to be stored in the first half of word 1, and valu
of TOURIST.SEATS in the second half of word 1. Values of NO.PASSENGERS are to
be stored in bits 1-10 of word 2, values of NO.IN.CREW in bits 11-16 of word 2, and
values of SEATING.CAPACITY in the second half of word 2.

The every statement, which declares entities, attributes, and sets, is used for perm
and temporary entities, resources, and for event and process notices. Every statements
name an entity class, or event or process notice class, and define attributes of the en
owned by the entities, and sets of which the entities are members. When compile
statement establishes set pointers and set attributes for owner entities that all
memberships to be constructed. Variations of this statement declare attr
equivalencing and packing factors, array and word assignments, and function and d
96

EVERY Statement

y

s, set-
and more
cify the
nd
can be
of an
ned to
ords.
licit

appear

ords
entity

 to the

e.

hich

ating

consist
ry en-

 com-

 their

pecial
e
 sys-
s re-
attributes. In the preamble temporary entities, permanent entities ,
resources, process notices , and event notices statements must be followed b
their respective groups of every statements.

In the statement format, the name of an entity class is followed by attribute phrase
owner phrases, and set-member phrases. The phrases can be in any desired order,
than one of each phrase type can be included in a single statement. Keywords spe
phrase type: has denotes an attribute phrase, owns denotes a set-owner phrase, a
belongs to denotes a set-member phrase. In an attribute phrase, packing factors
included to declare the word portions, or specific bits, to be occupied by values
attribute. In addition, attributes of permanent entities and resources can be assig
specific arrays, and attributes of temporary entities can be assigned to specific w
Explicit array and word assignments generate more efficient code than imp
assignments generate.

2.34.1 General Rules

1. The name of an entity, resource, or process class, or of an event notice, can
in more than one every statement.

2. Two entities cannot have an attribute with the same name placed in different w
within the entity records, because attribute names specify relative locations in
records.

3. The current background mode and dimensionality characteristics are assigned
declared attributes (but may be overridden by a subsequent define ...
variable statement). Automatically-defined set attributes are of integer mod

4. Attributes are consecutive words or arrays in entity records in the order in w
they are defined unless other specifications appear in the every statement. For
those implementations requiring hardware alignment of double precision flo
point numbers, a used word must be left to properly align a double variable.

2.34.2 Compound Entities

Compound entities are entities that jointly have attributes and own sets. They can
of permanent entities, temporary entities, or a combination of permanent and tempora
tities, but the attributes of compound entities that consist only of temporary entities, or
bined permanent and temporary entities, must be functions. In the every statement,
compound entities are specified by naming two or more entity classes, followed by
joint attributes and sets.

2.34.3 Event Notices

An event notice, which is generated for an event, is a temporary entity that has five s
attributes. Event notices are declared when an event notices statement precedes th
pertinent every statements in the preamble. The compiler automatically places the
tem-defined attributes in the first words of each event notice. The number of word
97

SIMSCRIPT II.5 Reference Handbook

ed by
t

ne spe-
e
 sys-
words
 used
-

 names
n said to

 equiv-

re than

ntity

ts.

a

acked
ribute
d-

h —
r (l/2)

cking
0 of a
quired varies with the implementation. No other attributes can be placed in words us
the system-defined attributes. The general rules for every statements also apply to even
notices.

2.34.4 Process Notices

A process notice, which is generated for a process, is a temporary entity that has ni
cial attributes. Process notices are declared when a processes statement precedes th
pertinent every statements in the preamble. The compiler automatically places the
tem-defined attributes in the first words of each process notice, with the number of
required varying with the implementation. No other attributes can be placed in words
by the system-defined attributes. The general rules for every statements also apply to pro
cess notices.

2.34.5 Equivalencing

Data values for the same entity can be given different attribute names by placing the
in parentheses, separated by commas, in an attributes phrase. These names are the
be equivalent.

Equivalent attributes are assigned to the same computer word. Any attribute can be
alent, except text attributes, which can only be equivalenced to other text attributes.

2.34.6 Common Attributes

Common attributes are attributes that are common to (have the same name in) mo
one entity class. Rules applying to common attributes are:

1. Values of common attributes must have the same relative locations in all e
records.

2. Common attributes must have the same packing factors and word assignmen

3. Common attributes must specify the word in a temporary entity record in which
value is to be stored.

2.34.7 Packing

Packing is defined as storing two or more values in a single word. Values can be p
into fractions of a word (e.g., a byte), or into specific bits, or several values of one att
can be packed into a single word. In the every statement, packing is specified by appen
ing a packing factor, enclosed in parentheses, to an attribute name.

Field packing designates which fraction of a word — typically a half, quarter, or sixt
is to be occupied by values of the named attribute. For example, the packing facto
specifies the first half of a word, and (4/4) specifies the fourth quarter of a word.

A bit-packing factor designates bits to be occupied by values. For example, a bit pa
factor of (7-10) specifies that values of an attribute are to occupy bits 7 through 1
98

EVERY Statement

t sig-

r is
 (

, to an

ames

ord

iables

ed. Set

our-
le be-

ames

d in a

onse-
unction
word. Bits are numbered sequentially from the left (most significant) to the right (leas
nificant) starting with 1.

A factor is denoted by (*/integer) . The asterisk indicates intrapacking, and intege
the number of values to be packed per word. For example, the intrapacking notation*/2)
packs two consecutive values per word.

The following rules apply to packing:

1. Packing is specified by appending a packing factor, enclosed in parentheses
attribute name.

2. If values of more than one attribute are to occupy the same word, the attribute n
must be enclosed in parentheses and separated by commas. For example, (FIRST
(1/2), SECOND (4/4)) . Alternatively, they may be assigned the same w
number.

3. More than one group of attributes to be packed can be specified in a single every
statement.

4. Attributes of permanent and temporary entities can be packed, but global var
cannot (see rule 8).

5. Integer and alpha values can be packed. Text and real values cannot be pack
pointers may or may not be packed, depending on the implementation.

6. All integer and alpha attributes can have field and bit packing.

7. Overlapping the packing specification is allowed. However, this usage is disc
aged. Programs containing overlapped attributes might not be transferrab
tween different computer types.

8. Only attributes of permanent entities can specify intrapacking.

9. If two attributes placed in the same word have the same packing factors, their n
are synonyms.

10.Packing does not apply to function attributes or dummy variables.

11.The default for packed integers is unsigned. Signed integers can be specifie
define ... variable statement.

2.34.8 Function Attributes

A function attribute is an attribute whose value is computed by a function routine. C
quently, a routine must be written having the same name as the attribute. Because f
attributes designate routines, no storage in entity records is allocated for the values.
99

SIMSCRIPT II.5 Reference Handbook

-
-

c-

.

e same

which
 sub-
2.34.9 Dummy Attributes

A dummy attribute, which does not have a storage location, must be declared in a define
statement. This declaration permits the dummy attribute to be used in accumulate/
tally statements without having its value stored.

2.34.10 Sets Named in EVERY Statements

The following rules and characteristics apply to sets named in every statements:

1. Owner entities have attributes F. set and L. set (pointers to the first and last mem
bers of the set, respectively), as well as N. set (whose value is the number of mem
ber entities currently in the set).

2. Member entities have attributes P. set and S. set (pointers to predecessor and su
cessor members of the set, respectively), and a membership attribute named M.set
(which is non-zero if the entity is in the set and 0 if the entity is not in the set)

3. Set pointers have integer values.

4. When entities belong to common sets, the set pointers must be assigned to th
words or arrays.

5. Set members are ranked as first-in, first-out when they are placed in a set,
gives priority to the first entity placed in the set. This may be overridden by a
sequent define ... set statement.

2.35 EXCEPT WHEN Phrase

 See unless phrase.
100

EXTERNAL EVENTS/PROCESSES Statement

. The
ally.

vents
ternally,

I.5

em will
ternal,
d exter-
 notice
al event
l event

e name
ndatory
s) rou-
t devic-
ats for
2.36 EXTERNAL EVENTS/PROCESSES Statement

The external events statement declares events that can be generated externally
external processes statement declares processes that can be generated extern

 
external event[s] are event

c 
process[es] are process c 

Keywords Synonyms

external exogenous

are is

EXAMPLES:

external event is MANAGEMENT.REPORT

Declares MANAGEMENT.REPORT as an external event.

external events are SNOW and MANAGEMENT.REPORT

Declares SNOW and MANAGEMENT.REPORT as external events.

external process is STORM

Declares STORM as an externally-triggered process.

The external events statement, which can appear only in the preamble, declares e
that can be generated external to the simulation model. Events can be generated ex
internally, or both. External events must be declared in an external events statement,
while an event notices statement is required for internal events. SIMSCRIPT I
permits one external events statement for each event class.

If an event is declared as external, and is not declared as an event notice, the syst
use an event notice having only the five special attributes. However, if an event is ex
and is also declared as an event notice, the event can be triggered both internally an
nally and the event notice can have more than the five special attributes. The event
will have the same name as the declared event, and is prepared each time an extern
record containing the event name is read from the external event input unit. (Externa
input units must be declared in the external ... units statement.)

An external event record, which generates an external event or process, contains th
of an event (process) class, the time the event (process) is to occur, and the ma
mark.v character. It may also optionally contain data to be read by the event (proces
tine. The system reads these records as free-format data from the external unit inpu
es. They must be in chronological order. Table 18 describes the possible time form
external event records. Examples follow:
101

SIMSCRIPT II.5 Reference Handbook

-
utine

tine
END.SIMULATION 12.35 *

Generates an external event of the class END.SIMULATION to occur at day 12.35 of the
simulation.

 WEATHER 1 13 45 SLEET 0.1 *

Generates an external event of the class WEATHER to occur on the second day of simu
lation at 1:45 p.m.. SLEET and the number 0.1 are data to be read by the event ro
named WEATHER.

MANAGEMENT.REPORT 2/17/91 9 30 WEEK 25.0 89.6 *

Generates an external event of the class MANAGEMENT.REPORT to occur on February
17, 1991 at 9:30 a.m.. WEEK, 25.0 and 89.6 are data to be read by the event rou
named MANAGEMENT.REPORT.
102

EXTERNAL EVENTS/PROCESSES Statement

ates an
ttribute

PT II.5

ss) rou-
al
 the
re read
the
ess no-
nism.

t notice
e such
e event
) notice
s (pro-

ternal
 both.

 a

ur
r.
 to

p-

ay,
r

30
SIMSCRIPT II.5 reads each card as it is required, interprets the contents, and cre
event or process notice of the named class. It stores the time of occurrence in a
time.a of the event (process) notice, and the number of the external unit in eunit.a .
Then it files the notice in the event set corresponding to the event class. See the external
... units statement for action in case of multiple external units.

When an external event (process) becomes the current event (process), SIMSCRI
stores the number of the unit containing the event data in the system variable read.v and
transfers control to the event or process routine, as appropriate. In the event (proce
tine, either read (Free-form) or read ((Formatted) statements can read the option
data. Rcolumn.v (current input pointer) is positioned to read the first column after
time. After executing the external event or process, the next event (process) data a
from the read.v unit. SIMSCRIPT II.5 skips any unread data included before
mark.v character. Reading in the next external event card sets up the event or proc
tice, as above, and control is then passed to the event and process selection mecha

If the events or processes of the named class are generated only externally, an even
contains only five system-defined attributes, and a process notice contains only nin
attributes. However, if the events or processes can also be generated internally, th
(process) notice may have additional attributes. In the event set, the event (process
for an external event (process) is merged with notices for internally generated event
cesses) of the same class.

The external processes statement declares processes that can be generated ex
to the simulation model. Processes can be generated externally, internally, or
External processes must be declared in an external processes statement, while a

Table 18. Time Formats for External Event Cards

Format Definition

Decimal time units Day of the simulation at which the event is to occur; must be
real number.

Examples: 0.0; 12.35; 18.0

Day hour minute Three integers, separated by blanks, that specify the day, ho
of the day, and minute of the hour when the event is to occu
All three numbers must appear. Hours are numbered from 0
24, minutes from 0 to 60.

Examples: 0 0 0 indicates the start of simulation. 1 13 45 re
resents the second day at 1:45 p.m.

Calendar time Date on which the event is to occur, denoted as a calendar d
and the hour and minute of the hour as integers. Years afte
1999 and before 1900 must be completely expressed.

Example: 2/17/91 9 30 represents February 17, 1991 at 9:
a.m.
103

SIMSCRIPT II.5 Reference Handbook

 one

ever,
n
an the
eclared
 process
processes statement is required for internal processes. SIMSCRIPT II.5 permits
external processes statement for each process class.

If a process is declared as external, and is not declared using the processes statement, the
system will use a process notice having only the nine system-defined attributes. How
if a process is external and is also declared in the processes statement, the process ca
be triggered both internally and externally and the process notice can have more th
nine system-defined attributes. The process notice will have the same name as the d
processes, and is prepared each time an external process data card containing the
name is read from an external unit.

The external processes statement can appear only in the preamble.
104

EXTERNAL ... UNITS Statement

and

re to

cess
 but vari-
state-
 on the
 be in-

ata ap-

 each

 first
ead from
2.37 EXTERNAL ... UNITS Statement

The external ... units statement names input units from which external event
process data are to be read.

 external event  unit[s] are integer value
c

process 
 

Keywords Synonyms

external exogenous

are is

EXAMPLES:

external event unit is 1

Names 1 as the unit from which external event and process data are to be read.

external process units are 7 and EX.UNIT

Names 7 and EX.UNIT as the units from which external event and process data a
be read.

The external ... units statement declares units from which external event or pro
data are to be read. Integer constants or unsubscripted variables can name devices,
ables must be initialized to valid device numbers before the start of simulation. If this
ment is omitted, SIMSCRIPT II.5 assumes that external event and process data are
standard input unit. When using several input devices, the standard input unit must
cluded if that unit is a source of external events or processes.

Data for events and processes may be interspersed on the same external unit. All d
pearing on the unit must be arranged in order of increasing values of time.a .

At the start of simulation, the first external event or process record is read from
external input unit. The system creates event or process notices, stores the time.a and
eunit.a information, and files all the notices in the event set before selecting the
event or process to be executed. Subsequent external event (process) records are r
whatever external unit is required.

The external ... units statements can appear only in the preamble.
105

SIMSCRIPT II.5 Reference Handbook

an be
y the

d in

r
an be

e deter-
t be
2.38 FILE Statement

The file statement files a permanent or a temporary entity in the named set, which c
a fifo, lifo , ranked set, or a generalized set whose organization is determined b
programmer.

first 
file [the] pointer variable last  in [the] set

 before  pointer variable 
 after  
   

Keyword Synonym

the this

EXAMPLES:

file FLIGHT in WAITING.LINE

Files the entity, whose identification is the value of global variable FLIGHT, in the set
named WAITING.LINE (owned by the system), according to the discipline declare
a define ... set statement (or on a fifo basis if no discipline is declared).

file this PATRON first in RESERVATIONS

Files the entity, whose identification is the value of variable PATRON, first in the set
named RESERVATIONS owned by the system.

file the STOCK.CERTIFICATE after UNITED in the PORTFOLIO(CLIENT)

Files the entity, whose identification is the value of variable STOCK.CERTIFICATE, af-
ter the entity whose identification is the value of variable UNITED in the set named
PORTFOLIO owned by the entity CLIENT.

When a program begins execution, all sets are empty. The file statement is used to alte
set pointers to file an entity in the named set during execution. Entities filed in sets c
either permanent or temporary. When filing in sets declared as fifo, lifo , or ranked in
a define ... set statement, the declared set discipline is the default if the first,
last, before , and after phrases are omitted from the file statement. Typically,
these phrases are used only for generalized sets organized according to a disciplin
mined by the programmer. The file statement can appear in any routine, but it canno
included in the preamble.

2.38.1 FIRST, LAST, BEFORE, and AFTER Phrases

When file ... first is specified, the entity is filed at the beginning of the set. If file
... last is specified, however, the entity is filed at the end of the set. Before and
106

FILE Statement

these
of the

mber.

r-

nced
xpres-
after phrases file an entity before or after an entity already in the set. Either of
phrases require the identification of the entity to be filed, as well as the identification
entity before which or after which that entity is to be filed.

2.38.2 Arithmetic Expressions

An arithmetic expression in this statement must evaluate to an entity identification nu
This is either the address of a temporary entity record from a prior create statement, or
an integer index denoting one of the N. entity (number of entities in an entity class) pe
manent entities.

Note that an entity identification number can itself be held in an attribute that is refere
by another identification number. Entities can be nested to any level, but a nested e
sion must evaluate to an entity identification number.
107

SIMSCRIPT II.5 Reference Handbook

condi-

d, de-

is

ing

f
iable

ss

ended
2.39 FIND Statement

The find statement searches for the first value, in a group of values, that satisfies
tions in designated logical expressions. This statement must be controlled by a for phrase
with a selection phrase, but cannot be within a do ... loop construct. The optional if
found or if none phrase directs control after the control phrase has been complete
pending on the outcome of the find search.

     
find the first case  [,] [then] if found  [,] 

{variable = [the] [first] value}c   none  

EXAMPLES:

for I = 1 to 10, with X(I) < 5, find the first case

Searches for the first value that is less than 5 in the one-dimensional array X. Vari-
able I will have the index of the first such value.

for I back from N to 1, with SALES(I) ls QUOTA, find LAST.VALUE =
first 1, if found, go to REVIEW

Starting at the end of the one-dimensional array SALES, searches for the first value that
less than the value of QUOTA. The index variable value is assigned to LAST.VALUE.
Control transfers to 'REVIEW' if any such value is found. Otherwise, the statement follow
a subsequent else statement is executed.

for each CITY, when POPULATION(CITY) gr 500000, find LARGE = CITY

Searches entities of permanent entity class CITY for the first entity having a value o
POPULATION greater than 500,000, and assigns the index variable value to var
LARGE.

for each STOCKHOLDER, for each STOCK.CERTIFICATE in PORTFOLIO, when
CORPORATION(STOCK.CERTIFICATE) = "TWA", find HOLDER = STOCKHOLDER
and NUMBER = STOCK.CERTIFICATE

Searches each set named PORTFOLIO, owned by permanent entities of entity cla
STOCKHOLDER, for the first entity whose value of CORPORATION is the alphanumeric
literal TWA. The value of index variable STOCKHOLDER is assigned to variable HOLDER,
and the value of entity identification variable STOCK.CERTIFICATE is assigned to
variable NUMBER.

A find statement must always be controlled by at least one for each (class) , for ...
of (set) , or for ... to (index) phrase that has an appended phrase, such as a with
phrase. The for phrase must not control a do ... loop construct, however. This
statement searches for the first value that satisfies conditions specified in any app
108

FIND Statement

n

f
re sat-
 on the

ion as

be
he

 in the
gical
phrases and sets a variable equal to an expression. The find statement cannot appear i
the preamble, but can be included in any routine.

The for phrase steps the index variable (specified in the for phrase) through the group o
values, and searches for the first value that satisfies the criteria. When the criteria a
isfied, generation of index values terminates and the expression is computed, based
selected index assigned to the named variable. If more than one for phrase is specified,
the find statement usually includes more than one variable and arithmetic express
shown in the fourth example above.

2.39.1 Alternative Forms

The alternative, find the first case , can be used when no expression is to
computed. This form bypasses generation of a let statement that assigns the value of t
"found expression" to the specified variable. The other alternative, find variable =
expression, evaluates the arithmetic expression and assigns that value to the variable
find statement. This evaluation occurs when the first value is found for which the lo
expression is true.

Note: If you select a variable named FIRST , the optional word FIRST must also be
specified in order to compile correctly.

2.39.2 IF FOUND and IF NONE Phrases

A find statement can include either an if found or an if none phrase that yields a
true or false condition. All rules for if statements (e.g., the use of else and always) ap-
ply to these statements.
109

SIMSCRIPT II.5 Reference Handbook

tity of

lled

ass,
anent

rom 1

ariable
e

2.40 FOR EACH (class) Phrase

The for each (class) phrase causes a program segment to be executed for each en
a permanent entity class.

for each permanent entity  [called pointer variable] [,]
resource 
 

Keyword Synonyms

each every

all

EXAMPLES:

for each AIRPORT

Executes controlled statements for each entity of entity class AIRPORT. Global variable
AIRPORT is automatically set to the entity indices.

for every AIRPORT called STRIP

Executes controlled statements for each entity class AIRPORT. Variable STRIP is auto-
matically set to the entity indices.

for each CITY, for every AIRPORT called JET, with NO.RUNWAYS(JET)
> = 5, while COUNTRY(CITY) equals "US"

Executes controlled statements for each entity of entity class CITY , and for each entity
of class AIRPORT if the value of attribute NO.RUNWAYS is greater than 5. Variables
CITY and JET are automatically set to the respective entity indices. The contro
statements are executed as long as the value of attribute COUNTRY is the alpha-numeric
literal US.

The for each (class) phrase steps through all entities of a permanent entity cl
enabling controlled statements to be executed for each entity of that class. Perm
entities, which have their attributes stored as arrays, are indexed sequentially f
through N. entity , and the short form of the for each (class) phrase is equivalent to:

for ENTITY = 1 to N. ENTITY

When this short form is used, the sequential index values are assigned to the global v
having the same name as the entity class. If the called phrase is included, however, th
110

FOR EACH (class) Phrase

 the

 index
x vari-

-
.

index values will be assigned to the variable named in the phrase, and the for each
(class) phrase is then equivalent to:

for variable = 1 to N. entity

The for each (class) phrase can appear in any routine, but it cannot be included in
preamble.

2.40.1 Nested FOR EACH (class) Phrases

For each (class) phrases can be nested within other for each (class) , for ... of
(set) , and for ... to (index) phrases. When two for each (class) phrases are
nested, for example, the first for phrase controls the outer loop, and the second for
phrase controls the inner loop. When computing values of index variables, the inner
variable is stepped through its entire range of values for each value of the outer inde
able. The controlled statements are executed each time.

2.40.2 WITH, UNLESS, WHILE, and UNTIL Phrases

With, unless, while , and until phrases can be appended to a single for each
(class) phrase, as well as to nested for phrases. When phrases follow for phrases, each
unless and with applies to the for phrase immediately preceding it, but each while
and until phrase applies to all preceding for phrases. SIMSCRIPT II.5 permits any com
bination of phrases to be appended, and allows more than one of each phrase type
111

SIMSCRIPT II.5 Reference Handbook

tities

iable

nd no

. This
ns the

tepped
2.41 FOR ... OF (set) Phrase

The for ... of (set) phrase enables a program segment to be executed for all en
stored in the named set.

   
for each entity pointer  from  entity pointer  of set [in reverse order] [,]

 after  

Keywords Synonyms

each every

all

To begin processing with the
 entity identified by the expression:

from --

To begin processing with the
entity that follows the identified entity:

after --

EXAMPLES:

for each FLIGHT of DEPARTURES

Executes controlled statements for each entity in the set named DEPARTURES. FLIGHT
will contain the entity identification number for each iteration.

for each RUNWAY after 6 of JET.RUNWAYS

Executes controlled statements for each entity filed in the set named JET.RUNWAYS,
starting with the permanent entity after the entity whose index is 6. The var
RUNWAYS contains the indices of the entities in the set.

for each AIRPORT, for each FLIGHT of DEPARTURES in reverse order,
unless DESTINATION(FLIGHT) equals "ASIA"

Executes controlled statements for each entity called FLIGHT filed in the set named
DEPARTURES at each airport. Set members are processed in reverse order, a
statements are executed if the value of attribute DESTINATION of a FLIGHT is ASIA .

All the members of a set can be processed with statements controlled by a for ... of
(set) phrase. Set members can be temporary entities, permanent entities, or both
phrase selects set members from first to last (i.e., in order of their ranking) and assig
entity identification numbers as values of the named variable. A set can also be s
through backward by including the optional phrase in reverse order . If the set is emp-
112

FOR ... OF (set) Phrase

from,
in the
d mem-

 index
x vari-

a-

st be
on-
ty, the system bypasses the program segment controlled by the for ... of (set) phrase.
This phrase can appear in any routine, but it cannot be included in the preamble.

The for ... of (set) phrase can specify that set members be processed starting
or after, a particular entity. In either case, the entity identification must be included
phrase, and the system terminates the program with an error message if the identifie
ber is not in the set.

2.41.1 Nested FOR ... OF (set) Phrases

For ... of (set) phrases can be nested within other for each (class), for ...
of (set) , and for ... to (index) phrases. When two for ... of (set) phrases
are nested, for example, the first for phrase controls the outer loop, and the second for
phrase controls the inner loop. When computing values of index variables, the inner
variable is stepped through its entire range of values for each value of the outer inde
able. The controlled statements are executed each time.

2.41.2 WITH, UNLESS, WHILE, and UNTIL Phrases

With, unless, while , and until phrases can be appended to a single for ... of
(set) phrase, as well as to nested for phrases. When phrases follow for phrases, each
unless and with applies to the for phrase immediately preceding it, but each while
and until applies to all preceding for phrases. SIMSCRIPT II.5 permits any combin
tion of phrases to be appended, and allows more than one of each phrase type.

2.41.3 Mechanism of FOR ... OF (set)

The for ... of (set) phrase works as follows:

let variable = f. set

go to test
'again'

let variable = v
' test '

if variable = 0, go out
else

let v = S.set(variable)
Controlled statement
go to again

'out'

F. set will be subscripted for a subscripted set. A group of controlled statements mu
enclosed within a do ... loop construct. The value of the variable is retained when c
trol transfers out of the loop.
113

SIMSCRIPT II.5 Reference Handbook

alue

.1.

or a
ng the

e pre-
2.42 FOR ... TO (index) Phrase

The for ... to (index) phrase, which is a loop control statement, increments the v
of a variable for each execution of a program segment.

= 
for variable back from  quantity to quantity [by quantity] [,]

 

EXAMPLES:

for I = 1 to 10

Steps index variable I through 1, 2, ..., 10, using increments of 1.

for I back from 10 to 0 by 2

Steps index variable I through 10, 8, ..., 0, using decrements of 2.

for N = -0.5 to 0.7 by 0.1

Steps index variable N through -0.5, -0.4, ..., 0.0, 0.1, ..., 0.7, using increments of 0

for ROW = 1 to NO.FLIGHTS.FLOWN, for COLUMN = 1 to NO.DAYS.IN.PERIOD

Steps index variable ROW through 1, 2, ..., NO.FLIGHTS.FLOWN, and index variable
COLUMN through 1, 2, ..., NO.DAYS.IN.PERIOD for each value of ROW.

for J = A to B by 2 * DELTA, for K = X to Y by EPSILON / 3

Steps index variable J through the values of A to B, using increments of 2 * DELTA ,
and steps index variable K through the values of X to Y, using increments of EPSILON/
3, for each value of J .

The for ... to (index) phrase controls the number of times a single statement,
program segment, is to be executed. It provides an index operation by incrementi
value of a variable for each execution of the controlled statements. Quantity1 and quantity2
define the range of values assumed by the index variable, while quantity3 defines the incre-
ment. The for ... to (index) phrase is diagrammed in figure 3.

To control a program segment (group of statements), the segment is enclosed in a do ...
loop construct. This phrase can appear in any routine, but it cannot be included in th
amble.

The following rules and characteristics apply to the for ... to (index) phrase:
114

FOR ... TO (index) Phrase

 the

dex

.

 affect

 ini-
d

Forward Stepping:

let variable = quantity 1

go to TEST
'AGAIN'

let variable = variable + quantity 3

'TEST'
if variable > quantity 2, go to OUT

else
controlled statement
go to AGAIN

'OUT'

Backward Stepping:

let variable = quantity 1

go to TEST
'AGAIN'

let variable = variable - quantity 3

'TEST'
if variable < quantity 2, go to OUT

else
controlled statement
go to AGAIN

'OUT'

Figure 3. For ... to (index) Phrase Execution

1. Mode conversions are automatically performed if all quantities do not have
same mode.

2. If any quantity is real, all computations required to compute values of the in
variable will be real.

3. Quantity 2 and quantity 3 are computed each time the loop is repeated.

4. The index variable, quantity 2, and quantity 3 can be recomputed within a loop

Recomputing values can affect the subsequent index variable values, and can
computations performed by the program.

5. A controlled statement is not executed if its terminating condition is satisfied
tially. For example, the statement for i = 1 to n does not execute the controlle
segment if n equals zero.
115

SIMSCRIPT II.5 Reference Handbook

gnizes
i-

one

es
alues
d each
r state-

o be
6. All rules that apply to the incremental option pertain to the back from option, the
only difference being the direction in which the index variable changes value.

7. Program control can transfer in and out of loops as long as each transfer reco
the organization of the for ... to (index) phrase. The value of the index var
able is retained when control transfers out of the loop via a go to statement or
when the loop is exhausted.

2.42.1 Nested FOR ... TO (index) Phrases

Any number of for ... to (index) phrases can be nested for arrays of more than
dimension. When for ... to (index) phrases are nested, the first for phrase controls
the outer loop, and the second for phrase controls the inner loop. When computing valu
of I and J , for example, the inner statement is stepped through its entire range of v
for each value of the outer index variable. The controlled statements are execute
time. Index variables of outer statements can appear in any expression of the inne
ments because their values are defined within these statements.

2.42.2 WITH, UNLESS, WHILE, and UNTIL Phrases

With, unless, while , and until phrases can be appended to a single for ... to
(index) phrase, as well as to nested for each (class) , for ... of (set) , and for
... to (index) phrases. When phrases follow for phrases, each unless and with
applies to the for phrase immediately preceding it, but each while and until applies to
all preceding for phrases. SIMSCRIPT II.5 permits any combination of phrases t
appended, and allows more than one of each phrase type.
116

GO TO Statement

 label.

cified
amble.
ement.
r when

ses, that
osed in
-
nd sub-
ith the

uently
the

se of
2.43 GO TO Statement

The go to statement transfers program control to the statement having the specified

go [to] label [(integer value)]

Note: label[(value)] may be enclosed within apostrophes.

EXAMPLES:

go START

Directs program control to the statement preceded by the label START.

go to 'FINISH'

Directs program control to the statement preceded by the label FINISH . Apostrophe
characters are optional.

go to 'POINT(INDEX+BASE-1)'

Directs program control to the statement preceded by the label POINT, subscripted by
the value of (INDEX+BASE-1) . Apostrophe characters are optional.

The go to statement directs program control to the statement preceded by the spe
label. This statement can appear in any routine, but it cannot be included in the pre
Two distinct labels, which are considered to be equivalent, can identify the same stat
Equivalent labels are useful for program segments that have not yet been written, o
segments can be included or omitted without destroying the logic.

2.43.1 Subscripted Labels

Labels can be subscripted. A subscript must be an expression, enclosed in parenthe
evaluates to an integer value. The complete subscripted label can be optionally encl
single apostrophe characters. When the system executes a go to statement having a sub
scripted label, control is transferred to the statement preceded by the same label a
script equal to the integer value of the expression. Subscripts need not start w
number 1 and need not be in consecutive order within a program.

Subscripted labels are useful when transferring control to various segments in a freq
modified program because they permit labels to be added or deleted without altering go
to statements. It is often more economical to use subscripted labels in go to statements
(rather than call statements) to produce the effect of a subroutine without the expen
recursion.
117

SIMSCRIPT II.5 Reference Handbook

 the
fined.
incor-
2.43.2 Error Conditions

An error condition will occur if the value of the expression is not within the range 1 to
number of labels, or if a label is undefined. System action on this condition is unde
An implementation may or may not print an error message, terminate, or continue
rectly at some unknown point.
118

GO TO ... PER Statement

veral

f

g the

ond

ntrol
of 1, to
d to the

 same
n writ-

verse-
2.44 GO TO ... PER Statement

The go to ... per statement transfers control to a labeled statement or one of se
labeled statements in a list according to the integer value of the transfer expression.

go [to] LABEL
OR

 per QUANTITY

Note: LABEL may be enclosed in apostrophes.

Keyword Synonym

or , (comma)

EXAMPLES:

go X, Y per A

Directs program control to either label X or label Y, depending on whether the value o
A is 1 or 2.

go to 'ONE' or 'TWO' or 'THREE' per M * N + COUNT / N

Directs program control to labels ONE, TWO, or THREE, depending on whether M * N
+ COUNT / N yields a value of 1, 2, or 3. Single apostrophe characters enclosin
label names are optional.

go to ADD, SUBTRACT, MULTIPLY or DIVIDE per OPERATOR.CODE

Directs program control to labels ADD, SUBTRACT, MULTIPLY, or DIVIDE , depend-
ing on whether OPERATOR.CODE is 1, 2, 3, or 4.

The go to ... per statement transfers program control to the first label, to the sec

label, or to the nth label according to the value of the expression. That is, program co
transfers to the statement preceded by the first label if the expression yields a value
the statement preceded by the second label if the expression yields a value of 2, an

statement preceded by the nth label if the expression yields a value of n. SIMSCRIPT II.5
rounds a real value.

Two or more distinct labels, which are considered to be equivalent, can identify the
statement. Equivalent labels are useful for program segments that have not yet bee
ten, or when segments can be included or omitted without destroying the logic. Con
ly, the same label can appear several times in a go to ... per statement. The go to
... per statement may appear in any routine, but not in the preamble.
119

SIMSCRIPT II.5 Reference Handbook

 the
fined.
incor-
2.44.1 Error Conditions

An error condition will occur if the value of the expression is not within the range 1 to
number of labels, or if a label is undefined. System action on this condition is unde
An implementation may or may not print an error message, terminate, or continue
rectly at some unknown point.
120

HERE Statement

le
2.45 HERE Statement

The here statement acts as a label for nearby jump statements.

here

Only one form of this statement exists. It consists of exactly one word.

The here statement provides a "proximate label" for preceding jump ahead statements
and for following jump back statements in the same routine. Several jump statements
may refer to the same here statement, and several here statements may appear in a sing
routine.

The here statement can appear in any routine, but not in the preamble.
121

SIMSCRIPT II.5 Reference Handbook

es-
 state-
ers

-

llows
2.46 IF ... ELSE ... ALWAYS Construct

The if ... else ... always construct determines whether a specified logical expr
sion is true or false. If the condition is true, execution continues with the succeeding
ment until the corresponding else statement. If the condition is false, execution transf
to statements following the corresponding else statement.

[then] if logical expression [,] [statementi] [else [statementi]] always 
unconditional transfer else [statement

i] 
 

Keywords Synonyms

else otherwise

always regardless

endif

EXAMPLES:

if X = 0.0

Executes succeeding statements when the value of variable X equals 0 (logical expres-
sion is true). Executes the program that follows else when the expression is false.

if b**2 > 4*a*c

Executes the succeeding statements when b**2 > 4ac . Executes the program seg
ment that follows else when the logical expression is false.

if mode is alpha and card is not new

Executes the succeeding statements when both logical expressions mode is alpha
and card is not new are true. Executes the program segment that follows else
when either logical expression is false.

if NAME(DOG) eq "FIDO"
 add 1 to FIDO.COUNT

always

If attribute NAME of entity DOG contains the text literal " FIDO" , the value of variable
FIDO.COUNT is increased by one. Regardless, the program segment that fo
always is executed.
122

IF ... ELSE ... ALWAYS Construct

at
he
al ex-
of
uct can
if X = 0
for each TEMP in S
with TYPE (TEMP) = 1
find the first case

then if found
let Y = 1

always

When X equals 0, this statement causes the set S to be searched for a member with TYPE
= 1 . If such a member exists, Y is set equal to 1.

The structured if ... else ... always construct is used to program decisions th
transfer control according to the truth value (true or false) of logical expressions. Tif
phrase is immediately followed by a group of statements to be executed if the logic
pression is true. It may also be followed by an else statement and an alternative group
statements to be executed if the logical expression is false (see figure 4). This constr
appear in any routine, but not in the preamble.

Figure 4. Structured if ... else ... always Construct

Logica l Express ion

First Group of
S ta tements

a lways

else

Second Group o f
S ta tements

True

False

i f logical_expression
 statement
else
 statement
a lways
123

SIMSCRIPT II.5 Reference Handbook

ments

of
 trans-

sion is
place

,

lse
l

Strict adherence to structured programming would require that the first group of state
not end with an unconditional transfer (e.g., a go to, return , or stop statement). When
no unconditional transfer exists, an always statement must follow the second group
statements (see figure 4). If the first group of statements ends with an unconditional
fer, no corresponding always statement is allowed. In such a case, else should be re-
placed by otherwise (see figure 5).

Figure 5. Structured if ... else ... always Construct with

Unconditional Transfer

If there is no alternative group of statements to be executed when the logical expres
false, the else statement can be omitted. (In such a case, some programmers re
always with regardless , but this is not recommended.)

2.46.1 Nested IF ... ELSE ... ALWAYS Constructs

If ... else ... always constructs can be nested by inserting other if ... else
... always constructs. An always statement is required for each if ... else ...
always construct. Frequently, when if ... else ... always constructs are nested
the optional keyword then can precede if and redundant always statements can be
eliminated. However, the then if applies only to nested logical tests in which the fa
condition is the same for each test. When any then if has a false condition, contro
transfers to the always statement corresponding to the previous if ... else ...
always construct. Figure 6 illustrates the logic of then if ... else ... always
constructs.

Logical Expression

else Uncondi t ional Transfer

Group of Statements

False

i f logical_expression
 statement
 uncondi t ional_transfer
else

True
124

IF ... ELSE ... ALWAYS Construct

 en-
Figure 6. Then if Statements

A useful alternative to nested if ... else ... always constructs is the use of the go
to statement with subscripted labels. While "pure" structured programming would
force the rule of single-entry/single-exit, this alternative (described under go to) may be
less confusing in some cases.

if

Cont inue

always

then
if

then
if

Statements

Statements

Statements

Start

True

True

True

False

False

False
125

SIMSCRIPT II.5 Reference Handbook

rupted

ed

p-

er
in the
uting
2.47 INTERRUPT Statement

The interrupt statement takes a process in the active state and places it in the inter
state.

interrupt [the [above]] process [called pointer variable]

Keyword Synonym

the [above] this

EXAMPLES:

interrupt the GENERATOR

Interrupts a GENERATOR that is in the pending list as a result of a wait statement. The
amount of time remaining until the GENERATOR would have been resumed is captur
and recorded as a process attribute time.a . If the GENERATOR is later resumed, this
value is used to determine the new waiting period.

interrupt SHIP called OTHER.SHIP

Interrupts the SHIP that has been identified by a pointer variable, OTHER.SHIP, by a
previous assignment. OTHER.SHIP is in the pending list as a result of a work statement,
and the amount of time remaining until OTHER.SHIP would have been resumed is ca
tured and recorded as a process attribute time.a . If OTHER.SHIP is later resumed,
this value is used to determine the new period of work.

Any process in the active state (i.e., in a work statement) may be interrupted by any oth
process, event, or routine. The amount of time remaining to be worked is placed
time.a attribute. If the process is resumed, it works the remaining time before exec
subsequent statements.

The interrupt statement can appear in any routine, but not in the preamble.
126

JUMP Statement

.

2.48 JUMP Statement

The jump statement provides a label-free transfer of control.

jump ahead 
back 
 

EXAMPLES:

jump ahead

Causes execution to proceed with the next here statement in the program.

jump back

Causes execution control to pass to the nearest previous here statement in the program

The jump statement can appear in any routine, but not in the preamble.
127

SIMSCRIPT II.5 Reference Handbook

 Char-

entary

d the
umber
ters in
ing. If
r state-

outine.
mns
2.49 LAST COLUMN Statement

The last column statement designates the last card column used for statements.
acters beyond that column will be disregarded by the SIMSCRIPT II.5 compiler.

last column is integer

Keyword Synonym

 is =

EXAMPLES:

last column is 72

Designates that column 72 is the last card column containing statements.

last column = 60 ''PREAMBLE STATEMENT

Designates that column 60 is the last card column containing statements. Comm
text follows the two apostrophe characters.

The last column statement specifies that program statements do not extend beyon
designated card column. This feature enables programmers to identify cards or to n
them sequentially using the right-hand columns. SIMSCRIPT II.5 disregards charac
succeeding card columns during the compilation process, but prints them on the list
this statement is omitted, the compiler assumes that all 80 card columns are used fo
ments.

This statement can appear anywhere in a preamble, but it cannot be included in a r
Whenever a last column statement appears in the preamble, the number of card colu
pertaining to program statements can change. The final last column statement, howev-
er, applies to all routines that follow the statement.
128

LEAVE Statement

it
t fol-
es

he
oupled
2.50 LEAVE Statement

The leave statement causes exit from within a do ... loop construct of code.

leave

Only one form of this statement exists. It consists of exactly one word.

The leave statement is used within a do ... loop construct to cause premature ex
from the loop. Execution of a leave statement causes control to pass to the statemen
lowing the next loop or repeat statement in the program. Controlling index variabl
in the for phrases driving the loop are left unchanged.

The statements cycle and leave clarify programs by eliminating labels, and provide t
concept of local labels to the system. These features are especially useful when c
with the substitute statement features of SIMSCRIPT II.5.
129

SIMSCRIPT II.5 Reference Handbook

 of in-

, per-
 named
r spec-
r

ssion
ssion.
teger
ion in-
 pos-
2.51 LET Statement

The let statement assigns the value of an expression to a variable. If the variable is
teger mode and the expression is real, the result is rounded before storing.

let variable = variable

EXAMPLES:

let X = X + 1

Sets variable X equal to X + 1 .

let X1 = (-B + sqrt.f(B**2 - 4 * A * C)) / (2 * A)

Sets variable X1 equal to the positive root of a quadratic equation.

let CAPACITY(FLIGHT) = FIRST.CLASS.SEATS(FLIGHT) +
TOURIST.SEATS(FLIGHT) + ECONOMY.SEATS(FLIGHT)

Sets attribute CAPACITY equal to the sum of the values of FIRST.CLASS.SEATS ,
TOURIST.SEATS, and ECONOMY.SEATS, for entity class FLIGHT.

The let statement evaluates the expression specified to the right of the equal sign
forms any required computations, and assigns the computed results to the variable
to the left of the equal sign. In this statement, the equal sign is an assignment operato
ifying the replacement of the current value with a new value. A let statement can appea
in any routine, but it cannot be included in the preamble.

If the expression and the variable differ in mode, SIMSCRIPT II.5 converts the expre
to the mode of the variable before setting the variable equal to the value of the expre
Conversion from integer to real is accomplished simply by taking the whole number in
value and converting it to a real number of the same value. Real-to-integer convers
volves rounding the value of the expression (by adding -0.5 if it is negative or +0.5 if
itive, and truncating) to a whole number before storing the value in the variable.
130

LIST Statement

and el-

ormat
2.52 LIST Statement

The list statement labels and displays, in a standard format, values of expressions
ements of one- and two-dimensional arrays.

list variable using  tape  integer value 
  unit  

EXAMPLES:

list NUMBER

Displays the value of variable NUMBER.

list A, B, C, B * C / LENGTH

Displays values of variables A, B, and C, and of the expression B * C / LENGTH .

list COLUMN, VERTICAL, and TABLE

Displays elements of the one-dimensional arrays COLUMN and VERTICAL, and of the
two-dimensional array TABLE.

list GRAPH, PI.C * R**2, RADII

Displays elements of the two-dimensional array named GRAPH, the value of expression
PI.C * R**2 , and elements of the one-dimensional array RADII . PI.C is a system
constant whose value is π.

The list statement can appear in any routine, but not in the preamble. The exact f
of the output is implementation-dependent.
131

SIMSCRIPT II.5 Reference Handbook

nent

the
is state-
format.
ever
riables,

 the
isted. If
te the

ing
y this
2.53 LIST ATTRIBUTES Statement

The list attributes statement displays attribute values for one entity of a perma
or temporary entity class.

list attributes of entity [called pointer variable]

  tape  
using  unit  integer value 
   

EXAMPLES:

list attributes of FLIGHT

Displays values of all attributes for an entity of the entity class FLIGHT. The entity
identification is contained in the global variable named FLIGHT.

list attributes of CITY called NEW.YORK

Displays values of all attributes for an entity of the entity class CITY . The entity index
is contained in the variable named NEW.YORK.

The list attributes statement, which displays attribute values for one entity of
designated entity class, can be used for both permanent and temporary entities. Th
ment displays data in a standard system format rather than in a programmer-defined
The list attributes statement is convenient for debugging purposes and when
tailored reports are not required. Some attributes, the set pointers and random va
are not printed by the list attributes statement. However, N. set (number in set)
and M.set (set membership) attributes are printed. The list attributes statement can
appear in any routine, but it cannot be part of the preamble.

When the called phrase is omitted, SIMSCRIPT II.5 uses the global variable having
same name as the entity class to locate the specific entity whose values are to be l
the called phrase is included, however, the value of the expression is used to loca
entity.

2.53.1 Function Attributes

When using the list attributes statement, input/output operations (such as chang
output device numbers) should not be performed in attribute functions invoked b
statement. Note also that function attributes invoked within a list attributes state-
ment can affect control of the listing loop, causing incorrect printing.
132

LIST ATTRIBUTES OF EACH Statement

n a
d in a

are
2.54 LIST ATTRIBUTES OF EACH Statement

The list attributes of each statement displays attribute values for all entities i
permanent entity class, or displays values for all permanent or temporary entities file
named set.

 
list attributes of each entity  from  entity pointer  in [the] set

 after  
   

[in reverse order] selection phrase  c
termination phrase 

Keywords Synonyms

To begin processing with the
entity identified by the expression:

from --

To begin processing with the
entity that follows the
identified entity:

 after --

 in of

 at

 on

 the this

EXAMPLES:

list attributes of each CITY

Displays attribute values for all entities of the entity class CITY .

list attributes of each PATRON in RESERVATIONS(FLIGHT)

Displays attribute values for all entities of the entity class PATRON filed in the set named
RESERVATIONS. FLIGHT is the identification number of the set owner.

list attributes of each FLIGHT in DEPARTURES(AIRPORT) in reverse order

Displays attribute values for all entities of the entity class FLIGHT filed in the set named
DEPARTURES. AIRPORT is the identification number of the set owner. Values
displayed beginning with the last entity.
133

SIMSCRIPT II.5 Reference Handbook

d

l

 in
ry en-

er than

are not
 by the

on-
its col-
 many
ceeding
cause a
 class

 as
oked
list attributes of each STOCK.CERTIFICATE from DELTA in
PORTFOLIO(STOCKHOLDER), until CORPORATION(STOCK.CERTIFICATE)
equals "TWA"

Displays attribute values for entities of the entity class STOCK.CERTIFICATE filed in
the set named PORTFOLIO. STOCKHOLDER is the set owner. Values are displaye
beginning with the entity whose identification number is assigned to the variable DELTA,
and entities are processed until attribute CORPORATION contains the alphanumeric litera
TWA.

The list attributes of each statement can display attribute values for all entities
a permanent entity class, or it can display attribute values for permanent or tempora
tities filed in a set. This statement displays values in a standard system format rath
in a programmer-defined format (as in a print statement). The list attributes of
each statement is convenient for debugging purposes and whenever tailored reports
required. The attributes used for set pointers and random variables are not printed
list attributes of each statement. However, N. set (number in set) and M.set
(set membership) attributes are printed. The list attributes of each statement can
appear in any routine, but it cannot be part of the preamble.

2.54.1 Output for LIST ATTRIBUTES OF EACH Statement

The list attributes of each statement prints attribute values in an implementati
defined format. Columns are printed across a page, with the attribute name above
umn of values. A specific number of positions are allotted for each column, and as
columns as possible are printed across the page. Columns are continued on a suc
page if the entity contains more attributes than can be printed across the page. Be
single heading is printed, the labeled output is meaningful only for sets with one entity
filed in them.

2.54.2 Function Attributes

When using the list attributes of each statement, input/output operations (such
changing output device numbers) should not be performed in attribute functions inv
by this statement. Note also that function attributes invoked within a list attributes
of each statement can affect control of the listing loop.

2.55 LOOP Statement

See do ... loop construct.
134

MAIN Statement

uc-
ith the
r
rly the
d by a
2.56 MAIN Statement

The main statement signals the beginning of the main routine in a program.

main

Only one form of this statement exists. It consists of exactly one word.

The main statement, which is optional, informs the SIMSCRIPT II.5 compiler that s
ceeding cards contain statements of the main routine. Program execution begins w
first executable statement that follows main . If the main statement is omitted, the compile
assumes that any unlabeled routine is the main routine. In order to distinguish clea
main routine from subroutines, it is recommended that the main routine be precede
main statement. A program can have only one main statement.
135

SIMSCRIPT II.5 Reference Handbook

 value

l

 of the
ng

riable

-

gned to

onitor-
into a
o the
e like

mon-
2.57 MOVE Statement

The move statement is used within monitoring routines either to access or to set the
of the monitored variable.

move from  variable
to 
 

EXAMPLES:

move from NUMBER

Assigns the value of variable NUMBER to the monitored variable.

move to NUMBER

Assigns the value of the monitored variable to variable NUMBER.

move to LIST(I) '' SET LIST TO MONITORED VARIABLE

Assigns the value of the monitored variable to the I th element of the one-dimensiona
array LIST . Commentary text follows the two apostrophe characters.

The move statement is used in monitoring routines either to access or to set the value
monitored variable. The move from form of the statement is used in left-hand monitori
routines to assign the value of an expression to the monitored variable, while the move to
form is used in right-hand monitoring routines to assign the value of the monitored va
to a variable within the routine. Figure 7 illustrates both forms of the move statement.
Monitored variables must be declared in define ... variable statements in the pre
amble.

Typically, a value is transmitted to the left-hand monitoring routine by the enter with
statement, computation or other processing is performed, and a value must be assi
the monitored variable by the move from form of the statement. The move to form ob-
tains the value of the monitored variable and makes it accessible to the right-hand m
ing routine. In effect, this statement can convert a conventional right-hand routine
right-hand monitoring routine. After assigning the value of the monitored variable t
named variable, the named variable can be used in the right-hand monitoring routin
any other variable. A value is transmitted from a right-hand monitoring routine to the
itored variable with a return statement.
136

NEXT Statement

ught

o the
Legend:

1 In a right-hand monitoring routine, the value of the monitored variable is bro
from memory with a move to statement.

2 The possibly-modified value produced by the right-hand routine is returned t
point of reference using the return with statement.

3 A left-hand monitoring routine obtains its left-function value via an enter with
statement.

4 The value of a monitored variable is placed in memory using the move from state-
ment.

Figure 7. MOVE Statements

2.58 NEXT Statement

See cycle statement.

right routine x
move to number
 .
 .
 .
return with number
end

left routine x
enter with number
 .
 .
 .
move from number
return
end

location “x”

4
1

let x = x + 1

2

3

137

SIMSCRIPT II.5 Reference Handbook

butes,

 mode.

 mode

s, at-

func-
ouble,
e num-
ed by

ation

 to
ristics
2.59 NORMALLY Statement

The normally statement declares general characteristics for values of variables, attri
and functions, as well as defining the dimensionality of arrays.

 integer  c

 real  
 double  
 mode is alpha  
 text  
 undefined  

normally [,]    
 
type is saved  
 recursive  
   
dim is integer 

Keyword Synonym

 is =

 dim dimension

EXAMPLES:

normally mode is integer

Declares that generally values of variables, attributes, and functions have integer

normally, mode = integer, dimension = 1

Declares that generally values of variables, attributes, and functions have integer
and that variables are one-dimensional arrays.

normally, dim is 2, mode is real and type is recursive

Declares that generally variables are two-dimensional arrays, values of variable
tributes, and functions are real, and local variables are recursive.

The normally statement declares general characteristics for values of variables,
tions, attributes, and arrays. It declares whether the mode is usually integer, real, d
alpha, or text, specifies whether local variables are saved or recursive, and defines th
ber of dimensions for arrays. These characteristics remain effective until supersed
subsequent normally statements or overridden by define ... variable statements.
Phrases of the normally statement can appear in any desired order, or each declar
can be a separate statement.

2.59.1 NORMALLY and DEFINE ... VARIABLE Statements

Both normally and define ... variable statements can appear in the preamble
declare characteristics of the global environment, and in routines to declare characte
138

NORMALLY and DEFINE ... VARIABLE Statements

k-
p-

 not
rac-

ed by

ly-
t their

 text
strings,
d local
ode as

ames

ts are
ll local
le has
 local

nerally
ne

ther a

ent

n-
of local environments. In the preamble, normally statements can make general "bac
ground" declarations, while define ... variable statements can declare any exce
tions and additions. Characteristics declared in a define ... variable statement
override those appearing in normally statements. Characteristics of variables that are
defined in define ... variable statements are assumed to be the background cha
teristics as specified by the normally statements (or by default).

The last normally statement in the preamble applies to all routines, unless supersed
declarations within the routines themselves. In a subroutine or function, normally and
define ... variable statements define the local environment, with definitions app
ing only to that routine. These statements can appear anywhere within a routine, bu
relative order is important.

2.59.2 Mode

A phrase in the normally statement can declare the mode — integer, real, alpha, or
— for variables; the default is real. Alpha and text variables are treated as character
not as numerical quantities. Variables having any mode can be multidimensional, an
variables can be either saved or recursive. If the programmer declares the default m
undefined , the compiler will generate a warning message for all uses of variable n
that have not been explicitly defined. This is the recommended mode.

2.59.3 Saved and Recursive Variables

The terms "saved" and "recursive" apply only to local variables and arrays (argumen
automatically stored as recursive variables). Global variables are always saved. A
variables are zero the first time a routine is called. Thereafter, a recursive local variab
an initial value of zero each time the routine in which it appears is called, but a saved
variable retains the value stored when the routine was last executed. A normally
statement in the preamble can declare whether local variables and arrays are ge
saved or recursive, but a normally statement in a routine is effective only for the routi
in which the normally statement appears. If a type phrase is not included in a normally
statement, local variables and arrays are recursive by default.

2.59.4 Dimensionality

The dimensionality of arrays must be specified in the preamble or in routines with ei
phrase of the normally statement or a define ... variable statement. When de-
clared in a define ... variable statement, the dimensionality of arrays is perman
and cannot be superseded by other normally or define ... variable statements. If
the dimensionality does not appear in a normally statement, variables are zero-dime
sional.

Note: Variables whose dimensions do not appear in define ... variable statements
take on the current background dimensionality. Thus:

normally dim = 2
139

SIMSCRIPT II.5 Reference Handbook
define X as a real, saved variable

defines X as a two-dimensional, real, saved array.

2.60 NOW Statement

See call statement.
140

OPEN Statement

t.

ult in

o

r time
.

cifica-
ssumes
2.61 OPEN Statement

The open statememt opens a file for input or output and assigns it to a specified uni

open [unit] unit for input  [options]
output 
 

When the option “noerror” is given, an error (such as a non-existing file) does not res
a SIMSCRIPT II.5 runtime error, but in setting the system variable ropenerr.v to a value
other than 0. This value can then be checked. Use the close statement to close a unit.

Note: On PC WindowsNT and Windows 95 platforms unit s can be assigned to files als
by means of the units.cfg file which must be in the current directory.

EXAMPLE

function FILE.EXISTS.F(FNAME)
define FNAME as text variable
define SAVEDREAD.V as integer variable

‘‘ -- remember old READ.V since it gets changed by USE
SAVEDREAD.V = READ.V
open unit .FEX.UNIT for input, name = FNAME, noerror
use .FEX.UNIT for input
if ROPENERR.V <> 0

close .FEX.UNIT
READ.V = SAVEDREAD.V
return .FALSE

else
close .FEX.UNIT
READ.V = SAVEDREAD.V
return .TRUE

endif
end

2.62 Routine ORIGIN.R

When the calendar format is used, an origin must be provided with which the calenda
can be compared. This must occur before the start simulation statement is executed
The calendar date of the state of simulation is set by calling the system routine origin.r
as follows:

call origin.r(month, day, year)

Integer values must be used for month, day, and year.

Because time is stored as a real value in the system variable Time.v and in attribute
time.a of event notices, conversions must be made between the calendar time spe
tions and the computer representation values. When converting values, the system a
141

SIMSCRIPT II.5 Reference Handbook

(0000
e 19
ulation
ed.
that Monday is the origin day, and that simulation starts at the beginning of that day
hours). Time.v is set to zero at the start of simulation. The functions listed in tabl
convert the expressions representing the year, month, and day into cumulative sim
times, and vice versa. Routine origin.r must be executed before the functions are us

2.63 OTHERWISE Statement

See if ... else ... always construct.

2.64 PERFORM Statement

See call statement.

Table 19. Time Conversion Functions

Name Arguments Value of the Function

date.f Three expressions yielding integer val-
ues that are the month, day, and year.

Example: date.f (6,30,91)

Current simulation day; an inte-
ger

month.f Expression yielding a real value that is
the cumulative simulation time.

Example: month.f (539.5)

Current month, 1-12; an integer

day.f Expression yielding a real value that is
the cumulative simulation time.

Example: day.f (539.5)

Day of current month, 1-31; an
integer

year.f Expression yielding a real value that is
the cumulative simulation time.

Example: year.f (539.5)

Current year; an integer
142

PERMANENT ENTITIES Statement

d in

 two

ates

l-

 and
ed by a

that do
the
ame
2.65 PERMANENT ENTITIES Statement

The permanent entities statement indicates that permanent entities are declare
the every statements that follow.

permanent entities [include entity c]

Keyword Synonym

include are

EXAMPLES:

permanent entities

Indicates that permanent entities are declared in the every statements that follow.

permanent entities include COUNTRY '' country has no attributes

Indicates that permanent entities are declared in the every statements that follow, and
that COUNTRY is an entity class having no attributes. Commentary text follows the
apostrophe characters.

The permanent entities statement, which can appear only in the preamble, indic
that permanent entities are declared in the every statements that immediately follow. A
preamble can have several permanent entities statements, each of which must be fo
lowed by its respective group of every, define ... variable , and define ...
set statements. The create each statement creates a group of permanent entities,
the attributes of the entities are stored as arrays. Storage for the arrays is allocat
create each statement.

2.65.1 INCLUDE Phrase

The permanent entities statement has an optional include phrase, which can name
one or more permanent entity classes that do not have attributes. (Entity classes
have attributes must be named in every statements.) For each entity class named in
include phrase, SIMSCRIPT II.5 automatically defines a global variable having the s
name as the entity class, and another global variable, N. entity (the number of entities in the
entity class). For example, the statement:

permanent entities include COUNTRY and GOVERNMENT

causes the global variables COUNTRY and N.COUNTRY and GOVERNMENT and
N.government to be defined. These global variables permit statements such as:

for every COUNTRY

for every GOVERNMENT

to be used to step through a sequence of values from 1 to N. Create each statements
cannot be used to set the values of N. entity for these entities.
143

SIMSCRIPT II.5 Reference Handbook

tate-
itions

 and di-
h case
ed glo-
s and

 struc-
routines

d.
2.66 PREAMBLE Statement

The preamble statement marks the beginning of a program preamble.

preamble

EXAMPLES:

preamble

Marks the beginning of the program preamble.

The preamble statement must be the first statement of a program preamble. All s
ments in a program preamble are nonexecutable, and provide the compiler with defin
regarding entities, attributes, and sets, events and routines, background mode, type
mensionality, and global variables and arrays. The preamble can be omitted, in whic
the SIMSCRIPT II.5 default conditions are used. In this case, there are no user-defin
bal variables, and a preamble is implied (consisting of the system-defined function
variables).

When a preamble is compiled, tables are constructed that define the variables and
tures. These tables are used to compile all routines. The preamble also generates
that support the entity, attribute, set, and event declarations.

Changes to statements in the preamble require that an entire program be recompile
144

PRINT Statement

ust be
ions,

 third
2.67 PRINT Statement

The print statement, which displays messages, titles, and computational results, m
immediately followed by one or more format lines containing text or format specificat
or both.

print integer[double] line [s]  with variable  c

 a group of integer value c fields  
   

[suppressing from column integer] thus

Keyword Synonyms

thus like this

as follows

EXAMPLES:

print 1 line thus
Weekly Flight Report

Prints one line containing the text Weekly Flight Report , with blank columns on
either side.

print 3 lines as follows
Weekly Flight Report

Airline Flight Date Passengers

Prints three lines, the first containing the heading Weekly Flight Report , with
blank columns on either side, the second containing a blank format line, and the
containing the headings referring to Airline , Flight , Date , and Passengers .

print 1 line with MONTH, DAY, YEAR thus
*** ** 19**

Prints one line containing the values of variables MONTH, DAY, and YEAR. The digits
19 in the format line are text.

print 3 lines with FARE, DISTANCE, and DISTANCE/HOURS as follows
FARE IS $****.**
DISTANCE IS *****
AVERAGE IS *** MILES PER HOUR

Prints three lines. The first contains the text FARE IS and a $, followed by the decimal
value of variable FARE. The second contains the text DISTANCE IS , followed by the
integer value of DISTANCE. The third contains the text AVERAGE IS, followed by the
integer value of the quotient DISTANCE/HOURS, followed in turn by the text MILES
PER HOUR.
145

SIMSCRIPT II.5 Reference Handbook

t

s of

-
ari-

es

a pro-
g mes-
mat of
ports
at

ions.
, are
-

e
ariable

at the

x-
e val-
olumn
at ap-
print 1 double line like this

Prints one line of dashes. The keyword double indicates that twice as many forma
lines follow, as is designated by the line count.

for each CITY, print 1 line with NAME, POPULATION and AREA thus
************ ***** ******.*

Prints, for each entity of the class CITY , one line containing values of attributes NAME,
POPULATION, and AREA. The number of lines printed equals the number of entitie
the class CITY .

for I = 1 to 60, print 1 line with I, and a group of X(I,J) fields,
TOTAL(I) suppressing from column 47 as follows

** *** *** *** *** *** *** *** *** |****
 column 47

Assuming the print statement is preceded by a begin report statement that spec
ifies groups of 8 , prints 60 lines with nine columns per page (values of index v
able I and eight values of X(I,J)) ; prints values of I according to the first format
field, and values of X(I,J) in the eight succeeding fields. When all column indic
have been used, prints the values of TOTAL(I) according to the last format field.

The print statement displays titles, column headings, and computational results in
grammer-defined format. This statement can perform both as a means of displayin
sages and as a complex report layout statement. It is possible to specify the for
printed results, to control the printing of headings and titles, and to arrange "wide" re
on standard-width paper. Each print statement must be followed by one or more form
lines indicating the text and format specifications for printing values of express
group and suppressing phrases, which can be optionally included in this statement
used only in report sections that have column repetition. Print statements generally ap
pear in heading and report sections, and are often controlled by for each (class) , for
... of (set) , and for ... to (index) phrases, as well as until or while phrases.

Values of specific attributes can be displayed by the print statement. Naming an attribut
in this statement causes retrieval and display of a single value, just as a subscripted v
or function reference does. Print output starts at the current wcolumn.v pointer loca-
tion. After output, the system skips to the next output line and positions the pointer
beginning (sets wcolumn.v = 0).

2.67.1 Format Lines

One or more format lines must follow the print statement. A format line can have a ma
imum of 80 columns of text and format specifications for arithmetic expressions whos
ues are to be printed. The number of columns from column 1 to the last nonblank c
determines the length of a format line. See table 20 for format specifications, rules th
146

PRINT Statement

ying

at line

 with

 aster-

at on
allel
 con-
n-

n are

lumns.
ntain
ntain
ply to the different specifications, and conventions used by SIMSCRIPT II.5 in displa
values.

The following general rules apply to format lines:

1. A print statement can appear on a card with prior statements, but each form
must be on a separate card.

2. A blank column in a format line will appear as a blank space on the printout.

3. Blank lines can be inserted between lines of output with a blank format line or
the skip statement.

4. SIMSCRIPT II.5 prints text exactly as it appears, and any character except an
isk (*) or a parallel (|) can be included as text.

5. When values are to be printed contiguously, a parallel must terminate a form
the left, or two contiguous formats will merge into a single format. The par
character always acts as the first asterisk of a new format. For example, two
tiguous, five-character integer fields can be indicated as *****|****, and four co
tiguous one-digit fields can be indicated as ||||.

2.67.2 DOUBLE Keyword

If more than 80 columns must be printed on a line, the keyword double can be included
in the print statement. This keyword indicates that twice as many format lines (tha
specified by the line count) follow. When the double keyword appears, SIMSCRIPT II.5
reads the format lines in pairs and interprets each pair as one format line of 160 co
Assuming that printer paper having 132 columns is used, the first format line would co
text and format specifications for 80 columns, and the second format line would co
text and format specifications for the next 52 columns.
147

SIMSCRIPT II.5 Reference Handbook

 as
ve

te-
es-

.

r to
Table 20. PRINT STATEMENT FORMAT SPECIFICATIONS

Value and
Examples

Rules and Conventions

Integer

*

**

1. Prints an integer value.

2. Treats the rightmost character as the low-order position and prints
many digits to the left of the * as possible up to the next consecuti
* or text character.

3. Only the rightmost * need appear in a format line.

4. Prints in scientific notation if insufficient space was allocated.

5. If an expression does not yield integer values, prints a rounded in
ger by adding 0.5 (depending on the sign) to the value of the expr
sion and truncating the result.

Decimal

.

**.*

.*

1. Prints a decimal value.

2. Treats the integer portion according to the rules for integer values

3. Rounds the decimal portion to the number of asterisks that appea

the right of the decimal point. An expression is rounded in the nth

decimal place by adding 0.5 (10-n) and truncating at the nth decimal
place.

4. Prints trailing zeros.

Rounded deci-
mal

**.

***.

*.

Prints a rounded integer.

Fraction

.*

.**

.****

Prints a fraction between 0 and 1.
148

PRINT Statement

isted in
ust ap-
d real

es ac-
of the
value

ort
group
d by a

nt-

nly
ar-
.

2.67.3 Expressions

When values of arithmetic expressions are to be printed, the expressions must be l
a print statement, and format specifications that correspond to expression values m
pear in format lines. Note that integer values can be printed with decimal format an
values can be printed in integer format.

During execution, SIMSCRIPT II.5 evaluates the expressions and then prints the valu
cording to the specifications in left to right order. That is, the system prints the value
first expression according to the first format specification in the format line, prints the
of the second expression according to the second format specification, and so on.

2.67.4 GROUP Phrase

The a group of ... fields phrase is used only for column repetition within a rep
section. Column repetition is defined as repeating a group of format fields for each
of values of an index variable. Groups of values of the index variable are generate
preceding begin report statement that contains a printing phrase. One group of index

Value
and

Examples

Rules and Conventions

Scientific

……..

1. A minimum of eight consecutive periods must appear in a format
line.

2. Prints a number of the general form:

 xxx.xxxExx

3. The value of the printed expression is

 xxx.xxx(10xx)

4. 0 ≤ |decimal number| < 10

Alphanumeric

**

*

1. Prints alphanumeric characters.

2. Each character must be indicated by * or |.

3. Only the leftmost positions are used if more characters are represe
ed than are stored in an alphanumeric word.

Text

1. Prints alphanumeric characters of a text variable or literal.

2. Each character must be indicated by * or |.

3. If the text string contains fewer characters than are represented, o
the leftmost positions are used. If the text string contains more ch
acters than are represented, only its leftmost characters are used

Table 20. PRINT STATEMENT FORMAT SPECIFICATIONS (Continued)
149

SIMSCRIPT II.5 Reference Handbook

 of
is con-

 be
cross a

ields
 must
ontain
s lines.

til all
 begin-
 indi-
ignated
variable values is used by the print statement at one time in order to print one group
data (see figure 8). When column repetition is used, each column of grouped data
sidered to have a column index that is one value of the index variable. The printing
phrase in a begin report statement must specify the number of column indices to
used in a group. This number is the number of columns of grouped data to appear a
page.

In the format line, a format field must appear for each value in a group. All format f
in a group need not be identical. For example, * and ** are permitted, but all values
have the same mode (e.g., ** and *.* are not permitted). Report columns can also c
data that are not part of a group, such as the value of the index variable that control

2.67.5 SUPPRESSING Phrase

The suppressing phrase enables the program to suppress specific values un
grouped data have been printed. This phrase specifies that all format specifications,
ning with the format in the designated column, are to be disregarded until all column
ces have been used. Values are then printed using the formats that start in the des
column.
150

PRINT Statement
Figure 8. Sample Row and Column Repetition

PAGE 1

1 xxx xxx ... xxx

2 xxx xxx ... xxx

.

.

.

45 xxx xxx ... xxx

PAGE 3

1 xxx xxx ... xxx

2 xxx xxx ... xxx

.

.

.

45 xxx xxx … xxx

PAGE 5

1 xxx xxx xxx xxx xxxx

2 xxx xxx xxx xxx xxxx

.

.

.

45 xxx xxx xxx xxx xxxx

PAGE 2

46 xxx xxx ... xxx

47 xxx xxx ... xxx

.

.

.

60 xxx xxx … xxx

PAGE 4

1 xxx xxx ... xxx

2 xxx xxx ... xxx

.

.

.

60 xxx xxx ... xxx

PAGE 6

46 xxx xxx xxx xxx xxxx

47 xxx xxx xxx xxx xxxx

.

.

.

60 xxx xxx xxx xxx xxxx
 |

 Column 47 →|

let page.v = 0 let pagecol.v = 44

begin report on a new page printing for j = 1 to 20 in groups of
8 per page.

for i = 1 to 60, print 1 line with i, and a group of x(i,j) fields,

total (i) suppressing from coulmn 47 as follows:

** *** *** *** *** *** *** *** *** ****
 | ← Column 47
 |
151

SIMSCRIPT II.5 Reference Handbook

ts.

 of the

es are

 This
event
ses and
 to
st

ve the
 and so
times,

er in

ies than
order of

time, the
-

2.68 PRIORITY Statement

The priority statement assigns priorities to different classes of processes or even

priority order is event c

process 
 

EXAMPLES:

priority order is WEATHER and MANAGEMENT.REPORT

If two or more events of different classes are scheduled for the same time, events
class WEATHER will be executed first.

priority order is DELAY, LANDING, TAKEOFF, SEAT.RESERVE and
END.SIMULATION

If two or more events of different classes are scheduled for the same time, prioriti
assigned to event classes in the following order: DELAY, LANDING, TAKEOFF,
SEAT.RESERVE, and END.SIMULATION.

The priority statement assigns priorities to classes of processes or events.
statement resolves conflicts that can exist when two or more events of different
classes are scheduled for the same simulated time. Both external and internal proces
events can be named in the same priority statement. Priorities cannot be assigned
external event (process) units, however. If a priority statement lists event names, it mu
follow all event notices, external events , and external event unit
statements in the preamble. If it lists process names, it must follow all process ,
external processes , and external event notices statements.

If a priority statement is included, events (processes) of the first-named class ha
highest priority, events of the second-named class have the second highest priority,
on. Subsequently, when event notices have identical simulated occurrence
SIMSCRIPT II.5 selects events for execution in the order of their priorities.

When the priority statement is omitted, priorities are assigned by default in the ord
which events and processes are declared in the preamble, using event notices ,
processes , and every statements. If some event classes are named in priority
statements and others are not, the named classes automatically have higher priorit
the omitted ones. The omitted event classes are ranked among themselves in the
their appearance.

When several events or processes are scheduled to occur at the same simulated
events are selected to be executed according to the priority statement (or default order
ing) if they are of different classes, according to the break ties statement (if any) for
events in the same event class, and first-in, first-out otherwise.
152

PROCESS Statement

 be de-

tering

-

ted
til one

routine
s may
2.69 PROCESS Statement

The process statement names a process routine for a process. The process must
clared in the preamble.

process [to] process given value
c 

(value
c) 

Keywords Synonyms

to for

given giving

the

this

EXAMPLES:

process TAKEOFF

Declares TAKEOFF as a process routine, and destroys the process notice before en
the process routine.

process SERVICE.CUSTOMER given DEPARTMENT and CUSTOMER.TYPE

Declares SERVICE.CUSTOMER as a process routine having DEPARTMENT and
CUSTOMER.TYPE as arguments. Destroys the process notice.

A process routine, which is declared by the process statement, is similar to an event rou
tine, in that it can only be called by the timing routine. Each process class must have a
process routine.

Processes are generated by the activate process statement, which specifies the simula
time at which the process is to begin. Control remains within the process routine un
of the following occurs:

1. A return statement is encountered.

2. A work or wait statement is executed.

3. A request statement refers to an unavailable resource.

Because a process routine may relinquish control before completion, the process
should be considered re-entrant. That is, the values of saved or global variable
change upon execution of a work, wait or request statement.

The process statement can only appear at the beginning of a process routine.
153

SIMSCRIPT II.5 Reference Handbook

.
as four

e of the
 rou-

r that
:

ce, can
g

2.69.1 Arguments

A process is triggered by a process notice as the result of an activate process statement
In addition to the five special attributes an event notice has, every process notice h
attributes that are specific to processes.

Process notices also transmit the value of any given arguments from the activate state-
ment to the process routine. Each such argument must be declared as an attribut
process using the every statement. The arguments of a process routine are local to the
tine and distinct for multiple entries of a process routine.

2.69.2 Logical Expression for Process Routines

SIMSCRIPT II.5 provides a logical expression to determine, within a process, whethe
process was generated internally or externally. The logical expression is of the form

endogenous 
exogenous 

process is [not] internal 
external 

and yields a true or false value. This logical expression, which tests the process noti
be included in an if ... else ... always construct to make decisions regardin
processes.
154

PROCESSES Statement

s

 at-

mation
rmation

d future.
d time. A
 class,
 If no
 pro-

that are

s

ames
2.70 PROCESSES Statement

The processes statement declares that the following every statements define proces
notices.

processes [include process
c
]

Keyword Synonym

include are

EXAMPLES:

processes

Denotes that process declarations follow. The declarations will be made with every
statements, and will name user-defined attributes.

process include TAKEOFF and LANDING

Identifies TAKEOFF and LANDING as processes requiring only the system-defined
tributes for processes. Every statements may follow this form of the processes
statement.

The processes statement can appear only in the preamble.

Process notices are created and destroyed like temporary entities, and carry infor
about a process. When a process is generated, the process notice transmits this info
to the timing routine, and then to the process routine when the process begins.

Process notices are used to schedule processes to occur at some time in the simulate
Many processes of the same process class can be scheduled at the same simulate
break ties statement declares priorities among processes of the same process
while a priority statement declares priorities among different classes of processes.
priority statement is present, priority is given according to the order in which the
cess notices have been defined in the include phrase or in subsequent every statements.

In addition to the nine system-defined attributes, process notices can have attributes
either variables or functions. Process notices can own and belong to sets. Every state-
ments are used to declare the attributes and sets.

Process notices with additional attributes must be declared in every statements. Proces
notices with no additional attributes can be named in the include phrase of the
processes statement. This phrase notifies the system that the following names are n
of processes and that standard process notices will be used for them.
155

SIMSCRIPT II.5 Reference Handbook

ari-
ociated
sing the
 se-
ce by

 another

e either
n have
tween
 mode
an
s

2.71 ... RANDOM ... VARIABLE Statement

The ... random ... variable statement declares a random variable.

the system  has a attribute random step  variable  in word  integer 
every entity  linear   array  
       

Keyword Synonym

 has have

can have

may have

 a an

the

some

EXAMPLES:

the system has a SAMPLE random step variable

Declares that the system attribute SAMPLE is a random step variable.

every AIRPORT has a TRAFFIC random linear variable

Declares that every entity of the class AIRPORT has an attribute named TRAFFIC,
which is a random linear variable.

The ... random ... variable statement declares a random variable. Random v
ables are table look-up variables, each of which has a list of possible values and ass
probabilities. The system selects a sample value by generating a random number (u
function random.f), matching the random number with the possible probabilities, and
lecting the corresponding sample value from the look-up table. Sampling takes pla
drawing successive pseudo-random numbers from random number stream 1, unless
stream number is requested.

For a random step variable, the system samples from the table values, which can hav
integer or real values, in a step-like manner. For a random linear variable, which ca
only real values, the system performs sampling by employing linear interpolation be
the sample values. The mode of the values can be implied through the background
at the time the ... random ... variable statement is encountered, or the mode c
be defined in a subsequent define ... variable statement. However, linear value
may only be real.
156

... RANDOM ... VARIABLE Statement

1. The
ers are
 with
ed in the
signed

-ran-

e

ction.
cuted.
erwise
ar, he

d only.
igns or

 sample

a sam-

ee at-
2.71.1 Function RANDOM.F

Function random.f generates a stream of pseudo-random numbers between 0 and
algorithm used in this function depends on the implementation. The generated numb
statistically independent of one another. All SIMSCRIPT II.5 programs are initialized
10 random number streams, and the starting numbers for these streams are contain
system array seed.v . As pseudo-random numbers are generated, new values are as
to seed.v so that it contains the current number as an integer.

Random.f can be viewed in two ways — as generating uniformly distributed pseudo
dom numbers between 0 and 1, or as generating probabilities.

2.71.2 Mode and Stream Numbers

Either of the following forms of the define ... variable statement is used to declar
the mode of a random variable and to designate a stream number.

define variable as [a] [real] [, stream integer] variable
define variable as [an] [integer] [, stream integer] variable

where 0< integer ≤ 10.

2.71.3 Using Random Variables

Sampling is always automatic. That is, a random variable is similar to a right-hand fun
Whenever a random variable appears, a routine that performs sampling is exe
SIMSCRIPT II.5 generates these routines using random number stream 1 unless oth
specified. If the programmer requires another type of sampling other than step or line
must omit the words step or linear from the ... random ... variable statement
and provide his own sampling function. Random variables can be read and sample
Assignments cannot be made to them (i.e., they cannot appear to the left of equal s
as yielding arguments).

2.71.4 Reading Values and Probabilities

Special storage assignments are made for sample values and probabilities. These
values and probabilities can be read only by a read (Free-form) statement and not by the
read (Formatted) statement. Only one random variable can appear in each read state-
ment. When a random variable appears in a read (Free-form) statement, the system:

1. Reads pairs of values until a mark.v character (default) appears.

2. Assumes that the first value of each pair is a probability and that the second is
ple value.

3. Creates an entity record for each pair of values. Each entity record has thr
tribute words: the probability, the sample value, and a successor.

4. Maintains the entities in a set-like list.
157

SIMSCRIPT II.5 Reference Handbook

e ran-

s are
they
val-
 1, the
ilities
babil-
.

5. Ensures that the pointer to the random list occupies the storage declared for th
dom variable or attribute.

Probabilities read by the system can be cumulative or individual. If the probabilitie
cumulative, the last probability must be 1.0; and if the probabilities are individual,
must sum to 1.0. All probabilities are stored cumulatively, but if individual probability
ues are read, SIMSCRIPT II.5 accumulates the values. Thus, if the last probability =
probabilities are assumed to be cumulative, and if the last probability = 1, the probab
are summed so that they are stored cumulatively. The last probability is set to 1. Pro
ity values less than 0 or greater than 1 terminate the program with an error message

2.72 REACTIVATE Statement

See activate statement.
158

READ (Formatted) Statement

 one

 inte-
our

 deci-

alues to

ue in

lue to

d one
 in-

s 5 to
s
ent of

teger
of array
2.73 READ (Formatted) Statement

The read (Formatted) statement reads formatted or binary data.

read variable
c as [(integer)] FORMAT

c  using  the buffer  
[double] binary    tape   
    unit  integer value  

Note: Double is optional on implementations where full precision requires more than
computer word.

EXAMPLES:

read A, X, and Y as I 3, 2 I 4

Beginning with the column that follows the input pointer, reads a three-character
ger value and assigns that value to A, then reads two successive integer values of f
characters each, and assigns the values to X and Y.

read X, Y, Z and A(1), A(2), A(3), as 3 d(8,2) and 3 a 4

Beginning with the column that follows the input pointer, reads three successive
mal values of eight characters each, and assigns the values to X, Y, and Z; then reads
three successive alphanumeric values of four characters each, and assigns the v
the first three elements of array A.

read DISTANCE and QUANTITY as B 1, E(10,2), /, E(10,2)

After positioning the input pointer at column 1 of the current record, reads a val
scientific notation from columns 1 to 10 and assigns that value to DISTANCE; then skips
to the next record and reads a value from columns 1 to 10 and assigns that va
QUANTITY.

start new card

for I = 1 to N, read X(i), Y(1) as (4) I 5, D(7,2)

Beginning with column 1 of a new record, reads four pairs of data (one integer an
decimal value) from each record until N pairs of values have been read. Assigns the
teger values to elements of array X and the decimal values to elements of array Y.

read A(1), B(2), and X(1), X(2), X(3) as B 5, I 10, S 3, D(7,2),/,
B 25, 3 I 6

Beginning in column 5 of the current record, reads an integer value from column
14 and assigns that value to the first element of array A; then skips three columns, read
a decimal value from columns 18 to 24, and assigns that value to the second elem
array B; then skips to the next record, and beginning in column 25 reads three in
values of six characters each, and assigns the values to the first three elements
X.
159

SIMSCRIPT II.5 Reference Handbook

 col-
e

d as-
t corre-
udes a
d from
ric and
ipping
o read
ta can

 to
n turn,
tation,

signate
ther de-
pt for
d, the

 data
matical-
m non-
ring of

it
for I = 1 to N, for J = 1 to N, read MATRIX(I,J) as binary using
the buffer

Reads the two-dimensional array MATRIX in binary form from the internal buffer.

read WEATHER.TYPE and VISIBILITY as B 35, A 4, D(7,3)

Beginning in column 35 of the current record, reads an alphanumeric value from
umns 35 to 38 and assigns that value to WEATHER.TYPE; then reads a decimal valu
from columns 39 to 45 and assigns the value to VISIBILITY .

The read (Formatted) statement reads data from cards according to a format list an
signs these data to variables named in the statement. Formats in a format list mus
spond in order to the desired values punched on data cards. Each format incl
descriptor, which is a code defining the type of data (e.g., integer, decimal) to be rea
the cards. There are eight descriptors: five are data descriptors that apply to nume
alphanumeric values, and three are control descriptors used for spacing and for sk
columns and records. In addition to reading formatted data, this statement can als
binary data. Either formatted or binary data can be read from any input device, or da
be read from an internal file.

2.73.1 Format Lists

During execution of a read (Formatted) statement, the format list is scanned from left
right, and individual formats are used to read values from data cards. The values, i
are assigned to variables. The data descriptors apply to integer, decimal, scientific no
alphanumeric, and computer representation values, while the control descriptors de
beginning data columns and columns and records to be skipped. Descriptors are fur
fined in table 21. Values being read must agree in mode with their descriptors, exce
integer and alphanumeric modes, which can be interchanged. When interchange
mode implied by the descriptor governs.

2.73.2 Skipping to Next Card

A read (Formatted) statement does not necessarily start at the beginning of a new
card (record), because records are changed under programmer control and not auto
ly after each statement. Consequently, data can be split between cards or read fro
contiguous parts of the same card. This statement processes a continuous st
characters and skips to a new data card only when directed.

When starting a new input record, the value of record.v is incremented by one. Thus,
keeps track of the number of records read in so far.
160

READ (Formatted) Statement

,

-

d

-

Table 21. Descriptors for READ (Formatted) Statements

I. INTEGER

Format Rules

n i w

where:

n is the optional number
of consecutive fields

i is the descriptor

w is the field width

1. Parameter n must be an integer, but w can be an expres-
sion.

2. At least one blank must appear between n and i and be-
tween i and w.

3. The system treats leading, embedded, and trailing
blanks as zeros.

4. If the value to be read exceeds the capacity of one word
only the right-most digits are used.

5. If the value is less than one word, the digits are right-ad
justed with leading zeros.

6. Only digits (and an optional sign character) can be use
in I data fields.

D: DECIMAL

Format Rules

n d(a,b)

where:

n is the optional num-
ber of consecutive
fields.

d is the descriptor

a is the total field width
including the sign,
integer digits, deci-
mal point, and frac-
tional digits

b is the number of frac-
tional digits

1. Parameter n must be an integer, but a and b can be ex-
pressions.

2. At least one blank must appear between n and d.

3. A decimal point is optional in the input data field.

4. If the decimal point is omitted, a decimal point is im-
plied before the first digit of the b field.

5. When a decimal point is included, it overrides the loca
tion implied by b.

6. Very large and small decimal numbers can be input in
scientific notation.
161

SIMSCRIPT II.5 Reference Handbook

r

e
c-

E: SCIENTIFIC NOTATION

Format Rules

n e(a,b)

where:

n is the optional num-
ber of consecutive
fields

e is the descriptor

a is the total field width
including the sign,
integer digits, the let-
ter e, and sign of the
exponent

b is the number of frac-
tional digits

1. Parameter n must be an integer, but a and b can be ex-
pressions.

2. At least one blank must appear between n and e.

3. Data read by the e format must have the general form:

xxx.xxxexx

4. The e format is similar to the d format, but the e format
must have an appended scale factor.

5. The scale factor on the input can exclude either the lette
e or the sign of the exponent, but not both.

A: ALPHANUMERIC

Format Rules

n a w

where:

n is the optional num-
ber of consecutive
fields

a is the descriptor

w is the field width

1. Parameter n must be an integer, but w can be an expres-
sion.

2. At least one blank must appear between n and a and be-
tween a and w.

3. Characters are left-adjusted in a word with trailing
blanks.

4. If more characters are specified than can be stored, th
leftmost characters are stored and the remaining chara
ters are excluded.

C: COMPUTER REPRESENTATION

Format Rules

n c e

where:
n is the optional num-

ber of consecutive
fields

c is the descriptor
e is the number of char-

acters in the internal
representation of the
computer

1. Parameter n must be an integer, but e can be an expres-
sion.

2. At least one blank must appear between n and c and be-
tween c and e.

3. The c descriptor is computer-dependent; for example,
on the IBM 360, the format C 4 reads four hexidecimal
digits; on the Honeywell 600/6000, the format 2 C 5
reads two fields of five octal digits each.

Table 21. Descriptors for READ (Formatted) Statements (Continued)
162

READ (Formatted) Statement

i-

at

e
B: BEGINNING COLUMN

Format Rules

b n

where:

b is the descriptor

n is the column number

1. Parameter n can be an expression.

2. At least one blank must appear between b and n.

3. Parameter n specifies the column in which the first char-
acter of an input value is located, and the system pos
tions the current input pointer to that column.

4. B descriptors need not be in ascending order in a form
list.

S: SKIP COLUMN

Format Rules

s n

where:

s is the descriptor

n is the number of col-
umns to skip

1. Parameter n can be an expression.

2. At least one blank must appear between s and n.

3. Parameter n specifies the number of columns to be
skipped before reading the next field on the card.

4. The system disregards data punched in skipped col-
umns.

/: SKIP TO NEW RECORD

Format Rules

/ Each slash skips to a new record on the current input unit.

T: text

Format Rules

n t w

where:

n is the optional num-
ber of consecutive
fields

t is the descriptor

w is the field width

1. Parameter n must be an integer, but w can be an expres-
sion.

2. At least one blank must appear between n and t and be-
tween t and w.

3. The length of the text variable is set equal to the field
width, and all the characters in the field are stored in th
text variable.

Table 21. Descriptors for READ (Formatted) Statements (Continued)
163

SIMSCRIPT II.5 Reference Handbook

tains

r
to the
e

 and

 once.
r alone

 the

e unit.

er
th of
en in-

than
s

-

rs
-

2.73.3 Input Buffer

A buffer whose length is one record is provided for each input unit. This buffer con
the data fields. The current input pointer, which is the system variable rcolumn.v , points
to the last column read in the current input buffer. For each new record, rcolumn.v is
zero. (Some implementations initialize rcolumn.v to -1 before the input unit is read fo
the first time.) As input is processed, the pointer moves along the buffer according
format list. For each value read, rcolumn.v is positioned to the last column read. Th
value of rcolumn.v can be advanced by the Beginning Column (B), Skip Column (S),
Skip to New Record (/) descriptors and by the start new statement. Note that the B
format can move the column pointer backward, allowing values to be read more than
The B, S, and / descriptors can be combined with other formats, or they can appea
in a read (Formatted) statement.

2.73.4 AS BINARY Phrase

The as binary phrase reads binary information. The binary data can be read from
current input unit, or a using phrase can be appended to the read statement to designate
another input unit. Binary and formatted data cannot be read together from the sam

For integer, real, or alpha values, the read as binary statement inputs a single comput
word of information. For text values, it inputs an integer computer word with the leng
the string, followed by successive words of the string until all the characters have be
put.

2.73.5 AS DOUBLE BINARY Phrase

On those implementations for which the maximum floating-point precision is more
one computer word, the read as double binary statement enters two computer word

‘1

Format Rules

n t *

where:

n is the optional
number of consec-
utive fields

t * is the descriptor

1. Parameter n must be an integer.

2. At least one blank must appear between n and t and be-
tween t and *. * may optionally be enclosed in pa-
rentheses.

3. The next nonblank input character is treated as a delim
iter character; the input is scanned for the next occur-
rence of that character, and all characters between the
two delimiters are stored in the text variable.

4. The length of the string is set to the number of characte
between the delimiters. The field may span multiple in
put records.

Table 21. Descriptors for READ (Formatted) Statements (Continued)
164

READ (Formatted) Statement

 II.5
d from

 to any

iting

ame,
rray
 of an
 for each
d

ew
ment

e
end-
lized
n
CRIPT
for a floating-point (real) number. The read as double binary statement should only
be used for values produced using the write as double binary statement.

2.73.6 USING Phrase

A using phrase can locally override the current input unit declared in a use statement.
This phrase designates a device as the current input unit for the duration of theread
(Formatted) statement execution. After execution of this statement, SIMSCRIPT
automatically reassigns the previous unit as the current input unit. Data can be rea
an internal file by including the keywords the buffer in a using phrase, or from an
input unit by specifying the device number of that unit.

2.73.7 The Buffer

A special area of memory can be made available as an internal buffer not connected
external device for read statements. Its length is the value of buffer.v (default 132).
Space is allocated (the amount depending on the value) when the first write ... using
the buffer, read ... using the buffer , or use the buffer statement is
executed. It is initialized to all blanks. This internal buffer is generally used for data ed
employing the formatting capabilities of read and write statements. All data in the
buffer must have been put there by write statements. The buffer is reinitialized to
blanks each time its usage changes from input to output.

2.73.8 Controlled Statements

A read (Formatted) statement cannot read an entire array by listing only the array n
but a controlled read (Formatted) statement that includes a repetition factor can read a
elements conveniently (see the fourth example above). A repetition factor, consisting
expression enclosed in parentheses, must precede a format list that is to be repeated
card. When a repetition factor is used, the read (Formatted) statement must be controlle
by a for ... statement, and the input must start with a new card. (a start new state-
ment, for example, can position the input pointer to a new card.)

With this form of the read (Formatted) statement, the system automatically skips to a n
card after reading the specified number of fields from an individual card. This state
can terminate with the input pointer positioned in the middle of a record.

2.73.9 End-of-File

An end-of-file can be encountered when a read (Formatted) statement is executed. Th
value of the global variable eof.v determines the action taken by the system when an
of-file is detected. This variable is automatically defined for each input unit and initia
to zero when a program begins execution. Variable eof.v can retain a zero value or ca
be set equal to 1. Subsequently, when an end-of-file marker is encountered, SIMS
II.5 interprets the values of eof.v as follows:
165

SIMSCRIPT II.5 Reference Handbook

e-
By testing eof.v immediately after a read (Formatted) statement, the programmer can d
termine whether the statement read actual values or encountered an end-of-file.

Value of eof.v Interpretation

0 Consider an end-of-file marker to be an error.

1 Assign zeros to variables named in the statement, set eof.v to 2 ,
and returns control to the statement that follows this read
(Formatted) statement.

2 An end-of-file has been read; continue as if eof.v = 1 .
166

READ (Free-Form) Statement

amed

,

them

 them to

lues
2.74 READ (Free-Form) Statement

The read (Free-form) statement reads unformatted values and assigns them to the n
variables.

 the buffer  
read variable

c using  tape integer value  
  unit   

EXAMPLES:

read A, B, and C

Assuming that A, B, and C are variables, reads three values and assigns them to A, B, and C.

read CODE, A, B, X(2), Y(4), Z(2,4)

Assuming that CODE, A, and B are variables, that X and Y are one-dimensional arrays
and that Z is a two-dimensional array, reads six values and assigns them to CODE, A,
and B and to the subscripted variables X(2), Y(4), AND Z(2,4) .

read A, LIST(3), COLUMN, MATRIX, X, LIST(x)

Assuming that A and X are variables, and that LIST , COLUMN, and MATRIX are arrays,
reads and assigns a value to a, reads and assigns a value to the third element of LIST ,
reads and assigns as many values as there are elements in COLUMN, reads and assigns
as many values as there are elements in MATRIX, reads and assigns a value to X, and
reads and assigns a value to the element of LIST whose index is the value of X.

for I = 1 to 3, read X(i) and Y(i)

Assuming that X and Y are one-dimensional arrays, reads six values and assigns
to X(1), Y(1), X(2), Y(2), X(3), AND Y(3) .

read NUMBER, DATUM for J = 1 to 3, read X(J) read Y

Assuming that NUMBER and DATUM are variables and that X and Y are one-dimensional
arrays reserved as 3 and 4 elements, respectively, reads nine values and assigns
NUMBER, DATUM, X(1), X(2), X(3), Y(1), Y(2), Y(3) , and Y(4) . Three
read statements are shown here, one of which is controlled by a for ... to (index)
statement.

read TABLE using the buffer

Assuming that TABLE is a two-dimensional array reserved as 3 by 3, reads nine va
from the internal buffer and assigns them row by row as follows: TABLE(1,1),
TABLE(1,2), TABLE(1,3), TABLE(2,1), TABLE(2,2), TABLE(2,3),
TABLE(3,1), TABLE(3,2), AND TABLE(3,3) .
167

SIMSCRIPT II.5 Reference Handbook

tities

m an
cution,
scripted

 Com-
 a sin-

 current

e
tement

r

e per-
 Nu-
mbers
tion as

data

ause a
es by
after

ters
ter, al-
for each CITY, read NAME(CITY), AREA(CITY), and POPULATION(CITY)

Assuming that CITY is a permanent entity class, reads attribute values for all en
and assigns them to the attribute arrays named NAME, AREA, and POPULATION.

The read (Free-form) statement reads integer, decimal, and alphanumeric values fro
input unit and assigns the values to variables named in the statement. During exe
this statement reads as many values from a data card as there are variables — unsub
variables, elements of arrays, and attributes — specified or implied in the statement.
binations of variables, individual elements of arrays, and entire arrays can be read by
gle statement. The free-form data cards can be read from a device other than the
input unit, or data can be read from an internal buffer. A read (Free-form) statement can
be controlled by a for each (class), for ... of (set) , or for ... to (index)
phrase, and can appear within a do ... loop construct. Implied subscripts cannot b
used to read attributes of permanent entities because an attribute name in this sta
causes the entire attribute array to be read. The read (Free-form) statement may appea
in any routine, but not in the preamble.

2.74.1 Data Records

When preparing data records (in an input file), values can occupy any columns, but th
missible magnitude of numbers may vary with each SIMSCRIPT II.5 implementation.
merical values can be written in either integer or decimal format. For example, the nu
3, 3.0, and 3.0000 are equivalent. Numbers can also be expressed in scientific nota
long as there are no embedded blanks. [See E format under read (Formatted) statement.]
It is an error to try to read real values into integer variables.

Successive read (Free-form) statements do not necessarily — but could — read new
records, because input data are treated as a continuous stream of values.

The following rules apply to the preparation of data records:

1. Values need not occupy specific columns.

2. Values must be separated from each other by at least one blank column.

3. A value cannot be split between records.

4. Blank characters cannot be read as values of alphanumeric variables bec
blank character terminates a field. SIMSCRIPT II.5 reads alphanumeric valu
beginning with the first nonblank character and ending with the first blank, or
reading as many characters as the variable can contain.

5. An integer or decimal value to the right of a full word of alphanumeric charac
need not be separated from the alphanumeric characters by a blank charac
though a blank is permissible.
168

READ (Free-Form) Statement

e ar-

der.
es to
cript po-

closed
s, such
es.
ore be-

 a de-

vious
 key-
m-

ad

ariable
ript,

ariable
y to the

arac-
a state-
s of the
er. The
2.74.2 ARRAYS

The read (Free-form) statement can read entire arrays or individual elements. Entir
rays are read by listing only the array name. For example, the statement read column
reads all elements of the array column and assigns the values in ascending subscript or
A multidimensional array is read row by row. That is, SIMSCRIPT II.5 assigns valu
successive elements whose subscripts change in ascending order, with the last subs
sition varying most rapidly.

Individual elements can be read by listing the array name followed by a subscript en
in parentheses. A variable list can include elements whose subscripts are expression
as TABLE(N*M+2/J) or TABLE(I) , if variables in the expressions have assigned valu
Variables are processed from left to right, and values are assigned if they appear bef
ing used as subscripts. For example:

read N, M, TABLE(N), TABLE(LIST(N) + M)

uses the values of N and M as subscripts after they are read.

2.74.3 USING Phrase

A using phrase can locally override the current input unit. This phrase designates
vice as the current input unit for the duration of the read (Free-form) statement execution.
After execution of this statement, SIMSCRIPT II.5 automatically reassigns the pre
unit as the current input unit. Data can be read from an internal file by including the
words the buffer in a using phrase, or from an input unit by specifying the device nu
ber of that unit.

2.74.4 Controlled READ (Free-Form) Statements

FOR phrases can control read (Free-form) statements. For example, one may wish to re
individual elements of arrays. A for phrase controls the entire read (Free-form) state-
ment, not just the indices of variables appearing in the statement. Therefore, each v
in a controlled read (Free-form) statement must contain the index variable as a subsc
or successive values will be assigned to unsubscripted variables while the index v
iterates over its range of values. This could cause values to be assigned incorrectl
unsubscripted variables.

2.74.5 System Variables

SIMSCRIPT II.5 provides five system variables that enable the programmer to test ch
teristics of input data before the data are read. When a system variable is used in
ment, the system automatically determines the characteristics based on the statu
current input data, and the programmer can then use the value in any desired mann
system variables, as well as definitions and examples, are shown in table 22.
169

SIMSCRIPT II.5 Reference Handbook

ible),
2.75 RECORD Statement

Not available for all implementations. See User's Manual for your computer type.

2.76 REGARDLESS Statement

See if ... else ... always construct.

Table 22. System Variables to Test Characteristics of Input Data

Name Value1 Description Example

sfield.f 0 Starting column of
the next data field

if sfield.f equals 40, go
to...

efield.f 0 Ending column of
the next data field

let N=efield.f-sfield.f+1

mode alpha Mode of the next
data field:
integer, real or
alpha

if mode is integer, go to...

card new First data field on
card indicator:
card is new or
card is not new

if card is new, go to ...

data ended No data items in data
deck indicator:

data is ended or
data is not end-
ed

if data is ended, stop

1 When there are no data (e.g., all data have been read and look-ahead is not poss
system variables have the listed values.
170

RELEASE Statement

ibutes

rray,

age
r-

ibutes
 of per-
several
r to an
n array
le is set
tion in

ream-
es of a

-
be-
 In this
 same

e array,
xt entry
2.77 RELEASE Statement

The release statement releases storage previously reserved for arrays and for attr
of permanent entities.

 
release array 

permanent entity attribute 

EXAMPLES:

release COLUMN(*)

Returns storage occupied by the array named COLUMN to system storage.

release CODES and A(*)

Returns storage occupied by a two-dimensional array named CODES and the one-di-
mensional array named A, to system storage. Note that when releasing an entire a
the star notation for the pointer variable is optional.

release STOCKHOLDER, and MATRIX(2,*)

Assuming that STOCKHOLDER is an attribute of a permanent entity class, returns stor
occupied by the STOCKHOLDER attribute array and by row 2 of the two-dimensional a
ray named MATRIX to system storage.

The release statement returns storage (occupied by arrays, parts of arrays, and attr
of permanent entities) to system storage. Names of pointer variables and attributes
manent entities can be listed in this statement, and a single statement can include
names of the different types. A variable named in this statement must be a pointe
array, or some portion of an array (e.g., a row of a ragged table). Once storage for a
has been released, that array is undefined until reserved again. The pointer variab
to zero. Arrays can be reserved and released continually throughout program execu
order to conserve storage by reusing it.

The release statement can appear in any routine, but it cannot be included in the p
ble. Permanent entities can be deleted by releasing their attributes, but all attribut
permanent entity should be released at the same time.

Local arrays are not automatically released when a return statement is executed in rou
tines in which the arrays appear. A release statement should therefore be executed
fore returning to the calling program unless the array has been declared as saved.
way fresh recursive arrays will be reserved each time the routine is executed while the
saved arrays will be used each time. If the programmer neglects to release a recursiv
that storage becomes inaccessible because the pointer to it is zeroed out on the ne
to the routine.
171

SIMSCRIPT II.5 Reference Handbook

ilable

.

ome or
ing

nt of the
e units
 termi-

diately
2.78 RELINQUISH Statement

The relinquish statement makes the specified number of units of the resource ava
for automatic reallocation of resource units.

relinquish integer value [unit [s] of] resource [(integer value)]

EXAMPLES:

relinquish 1 WORKER(2)

Relinquishes one unit of the resource named WORKER, of the second type (where
N.WORKER 2).

relinquish 2 MACHINE(JOB.TYPE)

Relinquishes two units of the resource named MACHINE, of the type JOB.TYPE, whose
value has either been assigned, or defined by a define ... to mean statement.

relinquish 3 units of MATERIAL

Relinquishes three units of the resource named MATERIAL, of which only one type exists

A process that has previously requested some units of a resource may relinquish s
all of them, using the relinquish statement. The number of units of the resource be
relinquished is added to the total quantity available.

If any processes are enqueued awaiting the resource, they are scanned from the fro
queue. Each is reactivated, with a corresponding reduction in the quantity of availabl
of resource, until one is found whose request cannot be satisfied. The scan is then
nated.

The process relinquishing the resource continues execution at the statement imme
following the relinquish statement.

The relinquish statement can appear only in process routines.
172

REMOVE Statement

 is

ve the
 first

n the
he first
p at-
f the

ng
 entity

t it

e iden-
2.79 REMOVE Statement

The remove statement removes an entity from the named set.

[the] first 
remove [the] last  pointer variable from [the] set

 the [above] 

Keywords Synonym

the [above] this

EXAMPLES:

remove first PATRON from RESERVATIONS(FLIGHT)

Removes the first entity from a set of the class RESERVATIONS and assigns the entity
identification to variable PATRON. The set owner is an entity whose identification
contained in the FLIGHT variable.

remove the STOCK.CERTIFICATE from the PORTFOLIO

Removes the entity whose identification number is the value of STOCK.CERTIFICATE
from the set PORTFOLIO. The set owner is the system .

remove the above FLIGHT from this WAITING.LINE(RUNWAY)

Removes the entity whose identification is the value of variable FLIGHT from a set of
the class WAITING.LINE . The set owner is an entity of the class RUNWAY.

The remove statement, which removes an entity from the designated set, can remo
first entity, the last entity, or a specific entity. If this statement specifies removal of the
entity, the system removes the entity pointed to by attribute F. set (first in set) of the set
owner. After removing the first entity, the system stores the pointer to that entity i
named variable and places the second entity first in the set. The attribute values of t
entity (e.g., S. set, the P. set and pointers) remain the same, except for the membershi
tribute, M. set, which is set to zero. Conversely, if the statement specifies removal o
last entity, the system removes the entity pointed to by attribute L. set (last in set) of the
set owner. An alternative form of the remove statement removes a specific entity by usi
the designated arithmetic expression, which must evaluate to the identification of the
to be removed. The successor and predecessor entities have their P and S attributes
changed to reflect the removal. The remove statement can appear in any routine, bu
cannot be included in the preamble.

The program terminates if the value of the designated arithmetic expression is not th
tification of an entity currently in the set (denoted by a <>0 in M. set) or if the named set is
empty.
173

SIMSCRIPT II.5 Reference Handbook

 set

is
ecause
e than
e time.

mbers.
2.79.1 Logical Expressions

The membership attribute M. set provides both error checking and decisions regarding
membership. The logical expressions:

entity is in set

entity is not in set

can be used in if ... else ... always constructs to determine if a specific entity
filed in the set. In these logical expressions, the set name cannot be subscripted b
M.set denotes class, not specific owner, membership. An entity cannot belong to mor
one set of a given class (e.g., the same kind of set owned by different entities) at on

The first pointer of each set is used to determine whether or not a specific set has me
The logical expressions:

set is empty

set is not empty

can be used for these decisions.

2.80 REPEAT Statement

See do ... loop construct.
174

REQUEST Statement

e units.

,

ss con-
d
y entity

een

 If it is
initial-
. Note
at ex-

s zero.
2.81 REQUEST Statement

The request statement is used by processes to request a specific number of resourc
If not available, the requesting process is enqueued in priority order and suspended
awaiting availability of the resource.

request integer value [unit [s] of] resource [(integer value)] [[,] with priority
integer value]

EXAMPLES:

request 1 WORKER(2) with priority 2

Requests one unit of the resource named WORKER, of the second type (where N.WORKER
2), and assigns a priority.

request 2 MACHINE(JOB.TYPE)

Requests two units of the resource named MACHINE, of the type JOB.TYPE, whose val-
ue has either been assigned or defined by a define ... to mean statement. The
priority is treated as zero.

request 3 units of MATERIAL with priority 5

Requests three units of the resource named MATERIAL, of which only one type exists
and assigns a priority.

A process requests a quantity of any given resource using a request statement. If the re-
quested quantity of the resource is available, it is given to the process, and the proce
tinues execution at the statement following the request statement. If the requeste
quantity is not available, the process is put in a passive state, and a special temporar
(qc.e) is created and filed in the set of resources associated with this process, (process), as
well as X. resource or Q. resource (depending on whether or not the request has b
satisfied).

As the resource name is, in fact, a permanent entity name, it should be subscripted.
not, the variable of the same name is used as an implicit subscript. This variable is
ized to 1 at resource creation, but care should be taken if it is subsequently altered
that some implementations use an implicit subscript value of 1. It is recommended th
plicit subscripting be used in all cases.

An optional with priority expression may be added to the request statement. The
queue is ranked on high priority. If the phrase is not present, the priority is treated a

The request statement can appear only in process routines.
175

SIMSCRIPT II.5 Reference Handbook
2.82 RESCHEDULE Statement

See schedule statement.
176

RESERVE Statement

le. If
wise,

named
ality

 arrays

iables,
ay can
quired
2.83 RESERVE Statement

The reserve statement allocates blocks of storage of the specified size to the variab
by * is specified, only pointer space (for multidimensional arrays) is allocated. Other
the data storage is also allocated.

reserve {variable c
 as quantity BY

 [by *]}
c

Note: A real quantity will be rounded to integer.

EXAMPLES:

reserve column as 10

Allocates storage for a base pointer and ten data elements to the array named column .

reserve codes(*,*) as 4 by 5

Allocates storage for base and row pointers and 20 data elements to the array
codes . Note that the optional (*,*) notation is used to emphasize the dimension
of the pointer variable.

reserve X, Y, and Z as 6 by 10

Allocates storage for base and row pointers and 60 data elements to each of the
named X, Y, and Z.

reserve A(*) as N, MATRIX(*,*) as N by 2*N, and B(*) as S*T/2

Allocates storage for a base pointer and N data elements to the array named A, for base
and row pointers, and 2N2 data elements to the array named MATRIX, and for a base
pointer and ST/2 data elements to the array named B.

reserve VALUES(*,*) as 7 by *

Allocates storage for seven row pointers to the base pointer VALUES(*,*).

reserve DATA(1,*) as 10

Allocates storage for ten data elements to the row pointer DATA(1,*).

reserve A(*) as 4, MATRIX(J,*) as N+5

Allocates storage for a base pointer and four data elements to the array namedA, and
for N+5 data elements to the row pointer MATRIX(J,*) .

The reserve statement, which allocates storage to data elements and to pointer var
can be used to reserve complete or partial arrays. A typical vector or rectangular arr
be reserved simply by naming the array and describing the dimensions; pointers re
177

SIMSCRIPT II.5 Reference Handbook

base and
riable

 zero for
e

 These
pply

sly

tes an
 if the
t value

 yield a
r mes-

ointer
en the
ing

he
ted,

ubscript

 point-
ts in the
s are

ents (a

ters,
for the data elements need not be considered for complete arrays. When the reserve
statement is executed, the system allocates storage for arrays, sets the value at the
other pointers, and initializes the elements of each array to zero. A subscripted va
must be reserved before it can be used in any statement. The base pointer must be
reserve to allocate new storage to the array. The reserve statement is an executabl
statement that can appear in any routine, but not in the preamble.

2.83.1 Dimensionality

The dimensionality of each array can be denoted by asterisks in subscript positions.
asterisks can be omitted, however, and SIMSCRIPT II.5 will automatically su
asterisks, causing the dimensionality to agree with specifications in a prior normally or
define ... variable statement. If the dimensionality has not been previou
declared, the system uses the number of expressions as the dimensionality.

2.83.2 AS Phrase

The as phrase must include one or more arithmetic expressions, each of which deno
array dimension. An arithmetic expression can include other subscripted variables
variables have been previously defined. When an expression yields a real value, tha
is rounded to an integer before being used as a dimension. An expression cannot
zero or a negative value, as either will cause the program to terminate with an erro
sage.

2.83.3 BY * Phrase

A by * phrase is used when allocating storage for pointers. In this event, the p
variable (array name) must have at least one asterisk in a subscript position. Wh
reserve statement includes a by * phrase, the asterisk indicates that pointers are be
reserved and that subsequent reserve statements will allocate data elements to t
pointers. Only one by * phrase is permitted to indicate that pointers are being alloca
and this phrase must appear after expressions that define dimensions of preceding s
positions. If the reserve statement does not contain a by * phrase, SIMSCRIPT II.5
reserves a data array that is pointed to by the named pointer variable.

2.83.4 Pointers and Array Structures

Figure 9 illustrates sample one- and two-dimensional arrays that include the required
ers. As shown, each array has as many computer words as there are data elemen
array, together with the number of words required for pointers. Data element block
stored contiguously in memory. Pointers and data elements are related as follows:

1. For a one-dimensional array, the base pointer points to a vector of data elem
vector is a one-dimensional array).

2. For a two-dimensional array, the base pointer points to a vector of row poin
each of which points to a vector of data elements.
178

RESERVE Statement

nters,
oints

inters.
or, re-
nsions
ata can
pointer
struct

nters are
3. For a three-dimensional array, the base pointer points to a vector of row poi
each of which points to a vector of column pointers, and each column pointer p
to a vector of data elements.

4. For higher dimensional arrays, similar relationships exist.

An array can be reserved in a piecewise fashion by allocating storage to individual po
This is done by reserving a vector of pointers, and then, for each pointer in the vect
serving a new vector of pointers, and so on. This can be carried on for as many dime
as are desired. When the desired "depth" is reached for a given pointer, a vector of d
be reserved instead of a vector of more pointers. Note that in this scheme, each
points to a "sub-array". By reserving arrays in this manner, the programmer can con
ragged tables, manipulate matrices, and create special data structures. Because poi
storage addresses, they always have integer values.

Figure 9. Sample One- and Two-Dimensional Arrays

RESERVE COLUMN AS 10
Elements Elements

COLUMN (1) CODES (1,1)

COLUMN (2) CODES (1,2)

Base Pointer COLUMN (3) CODES (1,3)

COLUMN (*) COLUMN (4) CODES (1,4)

COLUMN (5) CODES (1,5)

COLUMN (6) CODES (2,1)

COLUMN (7) CODES (2,2)

COLUMN (8) CODES (2,3)

COLUMN (9) CODES (2,4)

COLUMN (10) CODES (2,5)

CODES (3,1)

RESERVE CODES (*,*) AS 4 BY 5 CODES (3,2)

CODES (3,3)

Row Pointers CODES (3,4)

Base Pointer CODES (1,*) CODES (3,5)

CODES (*,*) CODES (2,*) CODES (4,1)

CODES (3,*) CODES (4,2)

CODES (4,*) CODES (4,3)

CODES (4,4)

CODES (4,5)
179

SIMSCRIPT II.5 Reference Handbook

ector.
 as an
e

ll but
n array

in.
2.83.5 Function dim.f

Associated with each data or pointer vector is a number indicating the length of that v
The dim.f function accesses this number. This function requires a pointer variable
argument and returns the length of the vector pointed to. Dim.f eliminates the need to sav
the values of dynamically-computed array sizes in some other variables.

2.83.6 Multiple RESERVE Statements

If a reserve statement is executed more than once, SIMSCRIPT II.5 disregards a
the first execution. A nonzero base pointer shows that an array has been reserved. A
reserved by a reserve statement can be returned to storage with a release statement,
and the array (after execution of the release statement) is undefined until reserved aga
Arrays can be reserved and released continually throughout program execution.
180

RESET Statement

in the

tical
s are

ative

quest-
 the
2.84 RESET Statement

The reset statement initializes counters used by accumulate/tally statements.

reset [the] [name]
c
 total[s] of variable c

EXAMPLES:

reset totals of LIST

Initializes all counters required to accumulate or tally variable LIST .

reset weekly totals of POPULATION(CITY)

Initializes the weekly counters required for attribute POPULATION of entities of the
class CITY .

reset weekly and monthly totals of N.QUEUE and POPULATION(CITY)

Initializes the weekly and monthly counters required for attributes N.QUEUE and
POPULATION.

The reset statement initializes counters that are associated with variables named
statement and that are required by tally and accumulate statements. Each tally and
accumulate variable has a routine that initializes counters used in calculating statis
quantities. Some of these counters are not zero initially. The initializing routine
named R. name, where name is the variable or attribute being tallied or accumulated.

Qualifying words in a reset statement enable reports to be prepared on both a cumul
and periodic basis at the same time. The appearance of one or more qualifiers in a reset
statement specifies that only the indicated counters, defined in an accumulate or tally
statement for a particular statistic, are to be reset. Any number of qualifiers can be re
ed. If a reset statement does not include qualifiers, all counters associated with
named variables are initialized.

The reset statement can appear in any routine, but not in the preamble.
181

SIMSCRIPT II.5 Reference Handbook

entity

e
e

es must
ar in
2.85 RESOURCES Statement

The resources statement is a preamble statement marking the start of resource
declarations.

resources [include resource
c
]

Keyword Synonym

include are

EXAMPLES:

resources

Denotes that resource declarations follow. The declarations will be made with every
statements, and will name user-defined attributes.

resources include TELLER and AUTOMATED.TELLER.MACHINE

Identifies TELLER and AUTOMATED.TELLER.MACHINE as resources requiring only th
system-defined attributes for resources. Every statements may follow this form of th
resources statement.

The resources statement indicates that resource classes are declared in every statements
that immediately follow, or in the include phrase of the resources statement. If a re-
source class has attributes in addition to the system-defined attributes, those attribut
be declared in an every statement. Automatically-generated resource attributes appe
table 23.

Table 23. Automatically Generated Resource Attributes

Attribute Significance Attribute of

N. resource Number of resources in class. System

U. resource Number of resource units per resource. Resource

Q. resource Set of processes waiting for a resource Resource

N.Q. resource Number of processes waiting for a resource. Resource

X. resource Set of processes currently using a resource. Resource

N.X. resource Number of processes currently using a resource.Resource
182

RESTORE Statement

roup of
ange

ub-

he at-

which
ferenced.

thereof.
aximum

rs (e.g.
source

er of re-
-

2.85.1 Resource Classes

A resource class is similar to a permanent entity class: The preamble declares a g
similar entities, while an individual entity is referred to by an integral subscript in the r
1 to N. entity.

In the request or relinquish statement, individual resources are referred to by s
scripts of the resource class. For example:

request LOTSIZE units of CANNER(7)

relinquish 1 PROCESSOR(CPU.NO)

As with permanent entities, attributes of resources are specified by subscripting t
tribute name with the resource number.

The create each statement is used to create the resources in a resource class,
should be done before any resources are requested or any resource attributes are re
The number of resources must be specified either in the create each statement or by
assigning a value to the system attribute N. resource.

2.85.2 Resource Units

Resource units are a measure of the total capacity of a resource or some fraction
Each resource in a resource class has an integral capacity of resource units. The m
available resource units for a resource is the subscripted attribute U. resource.

In some cases (e.g. bank tellers), the number of resource units may be unity. In othe
a machine capacity), the number of resource units may differ among resources in a re
class.

Each resource of a resource class should be assigned an integral value of the numb
source units available by changing the U. resource attribute. The following examples illus
trate how U. resource is assigned a value for each resource in a resource class.

for each MACHINE, let U.MACHINE = CAPACITY

read U.PRINTER ''reads for I = 1 to N.PRINTER

The value of U. resource is initially zero.

2.86 RESTORE Statement

Not available for all implementations. See User's Manual for your computer type.
183

SIMSCRIPT II.5 Reference Handbook

nding

 the
ng

-
-

 in the
nam-

ctive)
g

2.87 RESUME Statement

The resume statement is used to restore a previously-interrupted process to the pe
list with the remaining "time-to-go" taken from time.a (process) .

resume [the [above]] process [called pointer variable]

Keywords Synonym

the [above] this

EXAMPLES:

resume the GENERATOR

Resumes a GENERATOR that had previously been interrupted and removed from
pending list. The GENERATOR is placed back in the pending list to resume its waiti
period.

resume SHIP called OTHER.SHIP

Resumes the SHIP with the pointer variable OTHER.SHIP that had previously been in
terrupted and removed from the pending list. OTHER.SHIP is placed back in the pend
ing list to resume its period of work.

A previously-interrupted process may be returned to the active state, that is, replaced
event set, by a resume statement. The statement may be issued by any other routine
ing the interrupted process (including another process routine).

The time.a attribute at the time of resumption is used to schedule the end of the (a
or (passive) state. It is incremented by the current time.a before being used as a rankin
attribute for filing in the event set (or any other set).

The resume statement can appear in any routine, but not in the preamble.
184

RESUME SUBSTITUTION Statement

 by

d
y it-
erpret-

e-
2.88 RESUME SUBSTITUTION Statement

The resume substitution statement reinstates the substitutions previously nullified
a suppress substitution statement.

resume substitution

Only one form of this statement exists.

Substitutions declared by define ... to mean and substitute statements, which
were subsequently nullified by a suppress substitution statement, are reinstate
with a resume substitution statement. This statement should appear on a card b
self because substitutions are nullified for a complete card before the contents are int
ed. If other statements appear on the same card as a resume substitution statement,
substitutions will not be resumed for these statements before the resume substitution
statement is recognized. The resume substitution statement can appear in the pr
amble or in any routine.
185

SIMSCRIPT II.5 Reference Handbook

ne or

e,

ot of

able

utine,
tine

el. A
xit

alling

es of

g
s

2.89 RETURN Statement

The return statement returns program control to the calling program from a subrouti
from a function routine, and returns to the timing routine from an event routine.

return with quantity 
(quantity) 

EXAMPLES:

return

Returns control to the calling program if the return statement appears in a subroutin
or to the timing routine if the return statement appears in an event routine.

return(sqrt.f(X)) ' 'sqrt.f is a library function

Returns control to the calling program from a function routine with the square ro
X. Commentary text follows the two apostrophe characters.

return with NUMBER

Returns control to the calling program from a function routine with the value of vari
NUMBER.

A return statement must appear in each subroutine, function routine, and event ro
in order to return control to the calling program or to the timing routine. An event rou
always returns to the timing routine, which is the central routine in a simulation mod
routine can have more than one return statement to indicate different exits, and each e
can return a different value.

Subroutines and event routines use only the keyword return , but a function routine re-
quires either of the following forms:

return (quantity)

return with quantity

In functions, the value of the quantity is computed before the function returns to the c
program, and the quantity must be in the mode declared in a define ... routine state-
ment.

A routine can be both a subroutine and a function if that routine includes both typ
return statements. In such a case, when control returns from a return statement to the
calling program, the values assigned to yielding arguments are used by the callin
program. When the routine returns from a return with statement, a single value i
returned to the calling program.
186

REWIND Statement

alue
t (first
und,

he
T
t unit,
nd the
not
2.90 REWIND Statement

The rewind statement rewinds an input/output device.

rewind tape  integer value
unit 

EXAMPLES:

rewind 5

Rewinds the unit identified by the number 5.

rewind unit MESSAGES

Rewinds the unit whose number is the value of variable MESSAGES.

The rewind statement "rewinds" the input/output device whose identification is the v
of an expression. That is, this statement positions a file on a device to its starting poin
record). Rewind can be used to rewind tapes, disks, and drums. After a unit is rewo
that unit must appear in a use statement or in the using phrase of a read (Free-form),
read (Formatted), or write statement before reading or writing can occur. If t
designated unit is the current input unit when a rewind statement is executed, SIMSCRIP
II.5 makes the card reader the input unit. If the designated unit is the current outpu
SIMSCRIPT II.5 changes the output unit to the printer. Of course, the card reader a
printer cannot be rewound. The rewind statement can appear in any routine, but it can
be included in the preamble.
187

SIMSCRIPT II.5 Reference Handbook

 The
nc-

ction

e.
lly de-
2.91 ROUTINE Statement

The routine statement marks the beginning of a subroutine or of a function routine.
prefix left or right is used for declaring monitoring routines. A routine used as a fu
tion has only given arguments.

left  routine [to] routine given value c  [yielding variable
c
]

right  (value
c) 

Keywords Synonyms

routine function

subroutine

to for

given giving

the

this

EXAMPLES:

routine SOURCING

Names SOURCING as a routine having no arguments.

left routine RESULT

Names RESULT as a left-hand routine having no arguments.

routine FINANCIAL(SHARES, PRICE)

Names FINANCIAL as a routine having variables SHARES and PRICE as input argu-
ments.

routine to PRINT.MESSAGE given MESSAGE and LENGTH yielding FLAG

Names PRINT.MESSAGE as a routine having variables MESSAGE and LENGTH as input
arguments and FLAG as an output argument.

The routine statement, which must be the first statement of each subroutine and fun
routine, is used for both left-hand and right-hand routines. If the routine statement names
a subroutine, that name must appear in a call statement in order to execute the subroutin
Subroutines can have both input and output arguments. Arguments are automatica
fined as local recursive variables. They need not be declared in define ... routine
statements in the preamble.
188

ROUTINE Statement

fying
uently,
trans-
ction

g its

-
,
lways

al
Only

f rou-
receive

t
nes
al

ents

:

If the routine statement names a right-hand function, that function is called by speci
its name, followed by any arithmetic expression enclosed in parentheses. Subseq
when the function routine is called, values of expressions in the argument list are
ferred to local variables in the routine, and the function returns a single value. A fun
must be declared in a define ... routine statement in the preamble.

If the routine statement names a left-hand function, it is also called by specifyin
name and a list of argument expressions. This will appear, however, to the left of an equal
sign in a let statement, as a yielding argument to another routine or in a read statement.
Instead of returning a value to the calling routine with a with statement, a left-hand func
tion receives a value from the calling routine via an enter with statement. From there
a left routine can perform computations like any other program. Left routines are a
used in the function sense rather than as subroutines to be called. All functions must be
declared in the preamble in a define ... routine statement.

2.91.1 Routines Named TO and FOR

If a subroutine or function is named either TO or FOR, the routine name and the option
words to and for must be used in a prescribed manner in order to compile correctly.
the following forms will be compiled:

routine to TO routine for TO

routine to FOR routine for FOR

The practice of naming a routine TO or FOR should be avoided.

2.91.2 GIVEN Phrase

The given phrase can be used for either a subroutine or a function. For both types o
tines, arguments in the phrase must be unsubscripted local variables. These will
values from the calling routine.

2.91.3 YIELDING Phrase

A yielding phrase can be appended to the routine statement for subroutines. It is no
used for functions (although see return statement for routines used both as subrouti
and functions). Arguments included in a yielding phrase must be unsubscripted loc
variables. These will transmit values from the called routine to the calling routine.

2.91.4 Argument Definitions

A define ... routine statement in the preamble can declare the number of argum
for a subroutine or function. If the number of arguments in the routine and define ...
routine statements disagree, SIMSCRIPT II.5 takes the following corrective action

1. Disregards additional input and output arguments in the routine statement.
189

SIMSCRIPT II.5 Reference Handbook

alues.

tine
-

u-
ubtle.

ith an
or or
.

2. Considers omitted input arguments to be zero.

3. Reserves locations for missing output arguments so they can receive output v

If the define ... routine statement contains only given arguments, the called rou
is assumed to yield no values. If the define ... routine statement contains only yield
ing arguments, the called routine is assumed to have no given values.

2.91.5 Argument Modes

Disagreements in mode between arguments in call statements and corresponding arg
ments in routine statements can be difficult to discover because the effects are s
For example, an integer number used as a real number (converted to floating point w
exponent) can effectively be zero. SIMSCRIPT II.5 does not automatically check f
convert argument values whose mode differs from that specified in the called routine
190

SCHEDULE (event) Statement

nt no-

le

o
*

2.92 SCHEDULE (event) Statement

The schedule statement schedules the future occurrence of an event by filing an eve
tice in the relevant event set.

schedule a event [called pointer variable] given value
c 

the [above]  (value
c) 

 

at quantity 
now 
 day[s]  
in quantity hour[s]  
 minute[s]  

Keywords Synonyms

schedule reschedule

cause

For a new event:

a an

For an existing event:

the [above] this

given giving

now next

in after

day[s] unit[s]

EXAMPLES:

schedule a DELAY at time.v + 0.5

Creates an event notice of the class DELAY, assigns the identification to global variab
DELAY, sets attribute time.a equal to the value of expression time.v + 0.5, and files
the notice in the event set.

schedule the LANDING called EMERGENCY in 2 * READY minutes

Uses an existing event notice of the class LANDING, whose identification is assigned t
variable EMERGENCY, sets attribute time.a to the value of the current time plus 2
READY minutes, and files the notice in the event set.
191

SIMSCRIPT II.5 Reference Handbook

l

l

le
f

 the

cur-
t notice
re
on the
chedule

can as-
e pre-

t
ute
ally.
utine:

ed to
t notice
 by the

a-
al vari-
dy
schedule a TAKEOFF given FLIGHT.NO, DEST.CODE, and NO.FIRST +
NO.TOURIST+ NO.ECONOMY in 3 hours

Creates an event notice of the class TAKEOFF, assigns the identification to globa
variable TAKEOFF, sets the value of attribute time.a to the current time plus three
hours, stores values of expressions FLIGHT.NO , DEST.CODE, and NO.FIRST +
NO.TOURIST + NO.ECONOMY in attributes that immediately follow the specia
attributes, and files the notice in the event set.

schedule a TAKEOFF(FLIGHT.NO, DEST.CODE, and NO.FIRST + NO.TOURIST
+ NO.ECONOMY) now

Creates an event notice of the class TAKEOFF, assigns the identification to global variab
TAKEOFF, sets the value of attribute time.a to the current time, stores values o
expressions FLIGHT.NO , DEST.CODE, and NO.FIRST + NO.TOURIST +
NO.ECONOMY in attributes that immediately follow the special attributes, and files
notice in the event set.

The schedule statement, which is used only for simulation, schedules the future oc
rence of an internal event for the named class. This statement assigns values to even
attributes and files the notice in the event set, ev.s . In each event set, event notices a
ranked in ascending order of attribute (the time the event is to occur). Depending
form selected, this statement can create an event notice or use an existing one, can s
an event to occur at a future time, at some relative time, or at the current time, and
sign values to attributes of the event notice. It can appear in any routine, but not in th
amble. In this statement, the keywords an and the are important: An designates that an
event notice is to be created, while the indicates that the event notice already exists.

Figure 10 illustrates a sample event notice which assumes that attributes FLIGHT.NO,
DESTINATION, and NO.PASSENGERS were declared in an every statement for an even
notice of the class TAKEOFF. The schedule statement assigns the event time to attrib
time.a and always sets eunit.a to zero because the event is being scheduled intern
In addition, this statement assigns values to attributes used only by the timing ro
p.ev.s (predecessor in set), s.ev.s (successor in set), and m.ev.s (membership in set).
If the schedule statement includes expressions whose values are to be assign
attributes, the values are assigned in the order of their appearance. When an even
owns sets, or belongs to sets, owner and member attributes follow attributes declared
programmer.

2.92.1 CALLED Phrase

A called phrase included in a schedule statement indicates either 1) that the identific
tion of the event notice is to be assigned to the named variable rather than to the glob
able having the event class name; or 2) if a the keyword signals that an event notice alrea
exists, SIMSCRIPT II.5 assumes that the variable named in the called phrase contains
the event notice identification.
192

SCHEDULE (event) Statement

rn are
t is ex-
tes of
gram-

lues
ssions
pres-

utes are
ses.

ttribute

ranked
2.92.2 GIVEN Phrase

A given phrase assigns values to attributes of the event notice. These values in tu
assigned by the timing routine as arguments for the respective event routine when i
ecuted. The schedule statement assigns values of expressions to successive attribu
the event notice, starting with the attribute that follows . Values are assigned to pro
mer-defined attributes in the same order in which attributes appear in every statements in
the preamble . (Use of in word phrases to arrange physical storage of attribute va
does not influence the order of selection of event arguments.) If there are fewer expre
than attributes, SIMSCRIPT II.5 assigns zeros to the remaining attributes. If no ex
sions appear in the statement, and an event notice has defined attributes, the attrib
set to zero. The keyword given can be omitted if expressions are enclosed in parenthe

Note: The first five sample event notices are system maintained.

Figure 10. Sample Event Notices

2.92.3 AT Phrase

The at phrase, which denotes when in the future the named event is to occur, sets a
time.a to the value of an expression. The expression must yield a real value. Time.a is
used to file this event notice in the event set in chronological order (the event set is
on low time.a).

WORD 1 time.a

time event is to occur

2 eunit.a

= 0 for internal; (0 for external

3 p.ev.s

predecessor in event set

4 s.ev.s

successor in event set

5 m.ev.s

membership attribute

6 flight.no

declared attribute for this event

7 destination

declared attribute for this event

8 no. passengers

declared attribute for this event
193

SIMSCRIPT II.5 Reference Handbook

n

me

nables
rs,

g the

turns
esses

ing to
The value of time.a is used to update time.a , the current simulation time, whenever a
event notice or a process notice is selected from the event set by setting it to the time.a
value of the first event or process in the event set. The system sets time.v to zero at the
start of simulation and increases time.v as the simulation progresses. An absolute ti
must always be specified in an at phrase.

2.92.4 IN Phrase

An in phrase specifies the relative time at which an event is to occur. This phrase e
the programmer to schedule an event at time.v plus a designated number of days, hou
or minutes. (The keyword units can be used in place of days .) The units of time.v are
days if the days, hours , or minutes keywords are used in this phrase. If hours or
minutes is specified, the hours or minutes are automatically converted to days usin
system variables hours.v and minutes.v . The system initializes hours.v to 24 and
minutes.v to 60, but the programmer can modify these values. If time.v runs in units
other than days, the units keyword should be used in an in phrase.

2.92.5 NOW Phrase

An event scheduled with a now phrase occurs as soon as the current event or process re
control to the timing routine. Such an event will occur before any events or proc
having the same event time, scheduled previously with at or in phrases. When schedule
statements include now phrases for two or more events, the events are ranked accord
the priority statement if they are of different classes, according to the break ...
ties statement if that statement appears for the event class, or first-in, first-out if a break
... ties statement has not been included for the event class.
194

SELECT CASE Statement

 In-
n-

l

 state-
2.93 SELECT CASE Statement

The select case statement is useful for distinguishing several cases in control flow.
stead of writing nested if statements, a select case statement can be written. The sy
tax is:

select case EXPR
case CONST_LIST

STMT_GROUP
case CONST_LIST

STMT_GROUP
endselect

Meaning of the statement elements:

EXPR Expression of any mode.

CONST_LIST List of constants (of the mode EXPR) that will select this case. Multiple
values are separated by commas.

The modes of EXPR and CONST must agree.

If EXPR is numeric (integer, real or double), the values used as
CONST must be numeric.

If EXPR is of mode alpha or text , then CONST must be a literal string
delimited by double quotes.

If EXPR is a subprogram variable, CONST must be a subprogram litera
delimited by single quotes.

STMT_GROUPGroup of statements to be executed in the selected case (0 or more
ments).

EXAMPLE:

‘‘ - - switch on entered CMD

select case CMD
case “ON” STATUS = 1
case “OFF” STATUS = 2
case “E” ‘‘ - - nothing happens here
default write as “*** illegal CMD ***”,/

endselect
195

SIMSCRIPT II.5 Reference Handbook

r cur-

er of

urrent
 be
lank.

 next
 end
 when
t

ry

 of their

er
2.94 SKIP Statement

The skip statement skips fields, records, and lines, and applies to the current input o
rent output unit.

fields 
   

skip quantity  input  line[s]  
 output  record[s]  

Note: A real quantity will be rounded to integer . Record[s] imply input ; line[s]
imply output.

EXAMPLES:

skip 4 fields

Skips four fields on the current input unit.

skip 1 line

Skips one line on the current output unit.

skip 2 * (n - m + 1) records

Skips the remainder of the current record on the input unit, as well as a numb
records equal to the value of the expression minus one.

The skip statement skips fields, records, and lines on either the current input or the c
output unit. The keyword fields specifies that some number of input data fields are to
skipped. Data fields are contiguous strings of characters delimited by at least one b

When the system reads a field, it waits at (i.e., points to) the end of the field for the
read (Formatted) statement. To skip a field means to position the input pointer at the
of the field without reading it. Skipped fields can be on several input cards. Note that
the system reads a field at the end of a data card, that card is retained until the nexread
or skip statement is executed.

Using the skip fields statement with formatted read statements requires keeping ve
careful track of where the input pointer is, and on which input record. A read (Free-form)
statement automatically reads data values as they occur on input cards regardless
exact position.

When skipping records on the current input unit, the skip statement can skip the remaind
of a current data record when written as skip 1 record . The statement:

skip QUANTITY records

skips the remainder of the current data record and the next QUANTITY-1 records.
196

SKIP Statement

is one

ing of
When skipping output lines, the following rules apply:

1. If the value of the expression is negative, the system sets that value to zero.

2. If the value of the expression is greater than the value of lines.v (number of lines
permitted per page), the value of the expression is set to the value of lines.v .
Thus, the maximum number of lines that can be skipped with this statement
page.

When skipping records, or lines, the input (output) pointer is positioned at the beginn
the next input (output) record.
197

SIMSCRIPT II.5 Reference Handbook

pplied

t unit.
2.95 START NEW Statement

The start new statement starts a new page, a new record, or a new line, and is a
to the current input or output unit.

page 
   

start new  input  line  
 output  record  

Note: Record implies input; line implies output.

EXAMPLES:

start new page

Ejects a page on the current output unit.

start new record

Starts a new record on the current input unit.

start new output record

Starts a new record on the current output unit.

The start new statement can be used to skip the remainder of a record on the current
input unit, to eject a page before printing, and to start a new line on the current outpu
This statement can appear in any routine, but it cannot be included in the preamble.
198

START SIMULATION Statement

ing
vent.

and

m, if
n each

em for
ecuted.

s no
nt that
 by

tement
ave

n

2.96 START SIMULATION Statement

The start simulation statement begins a simulation by passing control to the tim
routine, which removes the first event notice from the event set and executes that e

start simulation

Only one form of this statement exists.

The start simulation statement causes the timing routine to begin selecting
executing events and processes from the event set. When a start simulation statement
is executed, the timing routine first initializes the external event reading mechanis
there are any external events. It reads information regarding the first event named o
external event unit, schedules the first event from each unit, and initializes the syst
subsequent external events. The first event is selected from the event set and ex
While events are being executed, the timing routine, which is called by the start
simulation statement, controls program execution. When the timing routine find
more scheduled events in the event set, program control transfers to the stateme
follows the start simulation statement. Therefore, a simulation can be stopped
simply ceasing to schedule future events. Control will then eventually pass to the sta
after the start simulation statement when events that are currently scheduled h
been executed.

Every simulation model must have a start simulation statement. The statement ca
appear in any routine, but not in the preamble.
199

SIMSCRIPT II.5 Reference Handbook

a pro-

e, but
2.97 STOP Statement

The stop statement halts program execution and is used to signal the logical end of
gram and return control to the operating system.

stop

Only one form of this statement exists.

The stop statement, which terminates program execution, can appear in any routin
cannot be included in the preamble. A program can have any number of stop statements,
and this statement need not be placed at the physical end of the program deck.

To exit from the program and return status to the operating system, you can use exit.r
instead of the stop statement.
200

STORE Statement

mode

e

 with-

to
 or
e
luded

 iden-
2.98 STORE Statement

The store statement sets a variable equal to the value of an expression, without
conversion.

store value in variable

EXAMPLES:

store X in Y

Stores the value of X in variable Y.

store pi.c * R**2 in CONSTANT ''pi.c is a system variable

Stores πr2 as the value of CONSTANT. Commentary text follows the two apostroph
characters.

store "laff" in MOVIE(FLIGHT)

Stores the alphanumeric literal laff as the value of attribute MOVIE for entity class
FLIGHT.

The store statement permits the value of an expression to be assigned to a variable
out altering the mode of either the expression or the variable. It is similar to the let state-
ment, although when mixed modes appear, the let statement converts the expression
the mode of the variable. For example, the store statement can be used to store integer
real values in real variables when one does not know a priori whether the mode of the valu
will be real or integer. This statement can appear in any routine, but it cannot be inc
in the preamble.

An arithmetic expression specified in the store statement can be any of the following:

1. An integer expression, which can be a data value, an array pointer, or an entity
tification number

2. An integer constant

3. A real constant or expression

4. An alphanumeric variable or literal

5. A subprogram variable.
201

SIMSCRIPT II.5 Reference Handbook

eding

e, a
w the
rd, it

. This

an be
2.99 SUBSTITUTE Statement

The substitute statement permits a string to be substituted for a word in the succe
statements. The string can appear on one or more cards.

substitute this (integer) line for string
i

these integer lines 
 

EXAMPLES:

substitute this line for X
 matrix

Substitutes the word MATRIX for the character X.

substitute this line for FORMULA
A * X**2 + B * X + C

Substitutes the expression A * X**2 + B * X + C for the word FORMULA.

substitute these 2 lines for INPUT.FORMAT
B 5, I 10, S 3, D(7,2),/, B 25, 3 I 6

Substitutes the string B 5, I 10, S 3, D(7,2), /, B 25, 3 I 6 for the word
INPUT.FORMAT.

substitute these 3 lines for ANSWER

let X = A + B

call CALCULATE(X)

go to NEXT

Substitutes:

let X = A + B

call CALCULATE(X)

go to NEXT

for the word ANSWER.

The substitute statement replaces the designated word, which may be a nam
number, an alphanumeric literal, or a character, with the lines that immediately follo
statement. During compilation, whenever the compiler detects the specified wo
substitutes the string for the word and compiles the statement with the substitution
statement is similar to the define ... to mean statement, but substitute permits a
string to appear on several individual cards. The substitute statement offers extensive
capabilities for generating macro instructions; whole sequences of statements c
202

SUBSTITUTE Statement

When
e, the

 large

a sin-

num-
format

replace

 new
 com-

anks,

rs.
inserted directly into a program. Substitution can appear in strings for other substitute
or define ... to mean statements permitting several levels of substitution.

The substitute statement can appear anywhere in the preamble and in routines.
it appears in the preamble, the substitution affects the entire program. In a routin
substitution is local and affects only that routine until superseded. A suppress
substitution statement can override the effect of a substitute statement, while a
resume substitution statement can reinstate the effect.

2.99.1 Purposes of SUBSTITUTE

The substitute statement can be used for any of the following purposes:

1. To change a word in a routine to the same word used in other routines in a
program.

2. To change statement keywords to another vocabulary.

3. To define a macro instruction, that is, a compound instruction generated from
gle keyword.

4. To define format strings in order to call them by name, so as to minimize the
ber of characters that must be written when several statements have identical
lists.

5. To define names as synonyms, substitute one variable name for another, and
a name with complete statements.

Redefining statement keywords must be handled carefully to avoid substituting a
string for an optional keyword, or for any other characters that might cause incorrect
pilation because the statement syntax was not followed.

2.99.2 Rules

The following rules apply to the substitute statement:

1. A line to be substituted cannot contain comments, cannot consist entirely of bl
and cannot be the form line of a print statement.

2. Substitution will not take place if the word is embedded in nonblank characte
203

SIMSCRIPT II.5 Reference Handbook

lue of

 the

r
ode,

ng the

 sub-
2.100 SUBTRACT Statement

The subtract statement subtracts the value of an arithmetic expression from the va
a variable, and the difference becomes the new value of the variable.

subtract quantity from variable

EXAMPLES:

subtract 2.5 from X

Subtracts 2.5 from the value of variable X.

subtract COLUMN(I) from LIST(I) ''one-dimensional arrays

Subtracts the I
th

element in array COLUMN from the I th element in array LIST . Com-
mentary text follows the two apostrophe characters.

subtract CONSUMED.FUEL(FLIGHT) from TOTAL.FUEL(FLIGHT)

Subtracts the value of attribute CONSUMED.FUEL from the value of TOTAL.FUEL for
the entity whose identification number is contained in the variable FLIGHT.

The subtract statement, which subtracts the value of an arithmetic expression from
value of a variable, is similar to the let statement, although the subtract statement in-
cludes the subtraction operator in the statement itself. The subtract statement can appea
in any routine, but not in the preamble. If the expression and the variable differ in m
SIMSCRIPT II.5 converts the expression to the mode of the variable before assigni
difference to the variable (see the let statement for conversion rules).

2.100.1 Complex Subscripted Variables

Before compilation, the subtract statement is translated to:

let variable = variable - quantity

If the variable has complex subscript references, it is more efficient to compute the
scripts separately than to have the compiler compute them twice. For example:

subtract 1 from X(Y*(AB-2),DIFF**N)

translates to:

let X(Y*(AB-2),DIFF**N) = X(Y*(AB-2),DIFF**N) - 1
204

SUBTRACT Statement

e

ts can
s call-

wo dif-

s can
s.
which causes the subscripts Y*(AB-2) and DIFF**N to be evaluated twice. To conserv
storage space and computer time, this subtract statement could be written as:

let I = Y*(AB-2)

let J = DIFF**N

subtract 1 from X(I,J)

2.100.2 Subscripts Containing Functions

If the subscript of the variable is a function, or contains a function, unexpected resul
occur. This is especially true when a function is involved that has side effects, such a
ing the random number generator. For example:

subtract 1 from TABLE(uniform.f(A,B,1))

translates to:

let TABLE(uniform.f(A,B,1)) = TABLE(uniform.f(A,B,1)) - 1

before compilation. This causes two random numbers to be generated, and possibly t
ferent elements of table to be accessed. The intent may have been:

let I = uniform.f(A,B,1)

subtract 1 from TABLE(I)

2.100.3 Error Messages

A subtract statement having complex subscripted variables or function reference
cause duplicate error messages to be produced because of intermediate translation
205

SIMSCRIPT II.5 Reference Handbook

tself,
rpreted.

e

2.101 SUPPRESS SUBSTITUTION Statement

The suppress substitution statement nullifies all current substitutions.

suppress substitution

Only one form of this statement exists.

The effect of define ... to mean and substitute statements is nullified by a
suppress substitution statement. This statement should appear on a card by i
because a substitution takes place for a complete card before the contents are inte
If other statements appear on the same card with a suppress substitution statement,
substitutions are made for these statements before the suppress substitution
statement is recognized. The suppress substitution statement can appear in th
preamble or in any routine. All substitutions are reinstated with a resume
substitution statement.
206

SUSPEND Statement

 return

ppears)
ne.

rity of

 to
he pro-
tice and
xecution
2.102 SUSPEND Statement

The suspend statement is used to place the current process in the passive state and
control immediately to the timing routine without destroying the current process.

suspend [process]

EXAMPLES:

suspend

Places the current process (corresponding to the routine in which the statement a
in the passive (created) state, and returns control immediately to the timing routi

suspend process ''ship

The same as above, with an optional keyword and a comment adding to the cla
the statement.

When executed in a process routine, the suspend statement causes the current process
be placed in a suspended state and control to be relinquished to the timing routine. T
cess will not resume execution unless the model saves the pointer to the process no
another routine reactivates the process. Once reactivated, the process resumes e
after the suspend statement.

The suspend statement may only appear in a process routine.
207

SIMSCRIPT II.5 Reference Handbook
1.103 SYSTEM Statement

See the system statement.

1.104 TALLY Statement

See accumulate/tally statement.
208

TEMPORARY ENTITIES Statement

ates
ch

nd
1.105 TEMPORARY ENTITIES Statement

The temporary entities statement indicates that every statements which follow de-
clare temporary entities.

temporary entities [include entity
c
]

Only one form of this statement exists.

The temporary entities statement, which can appear only in the preamble, indic
that entity classes named in the following every statement are temporary. Storage for ea
entity of the entity class is allocated individually as the entity is created with a create
statement. Several temporary entities statements may appear in the preamble, a
each can be followed by a group of every , define ... variable , and define ...
set statements.
209

SIMSCRIPT II.5 Reference Handbook

ystem.
 func-

f

e

1.106 THE SYSTEM Statement

A the system statement specifies attributes of the system and sets owned by the s
It also specifies optional attribute packing, equivalencing, word assignments, and
tions.

has   function  c c

 a attribute [(packing code)]  in array integer   
the system    word    

       
  owns {a set} c 

 

Keywords Synonyms

has can have

may have

a an

the

some

EXAMPLES:

the system has a CONTROL.VALUE and a CODE

Declares that CONTROL.VALUE and CODE are system attributes.

the system has some RULES and owns a QUEUE

Declares that RULES is a system attribute and that QUEUE is a system-owned set.

the system owns a QUEUE and has an F.QUEUE in array 1 and an L.QUEUE
in array 2

Declares that QUEUE is a system-owned set, and that the first-in-set pointers, F. QUEUE,
are to be assigned to array one and the last-in-set pointers, L. QUEUE, to array two.

the system has some FAA.REGULATION.NO(*/4)

Declares that values of the system attribute FAA.REGULATION.NO are to be intra-
packed with four consecutive values per word.

the system has a (CONTROL.VALUE(L/2), CODE(3/4), NUMBER(17/24))

Declares that CONTROL.VALUE, CODE, and VALUE are system attributes. A value o
control.value is to be stored in the first half of a word, a value of CODE in the third
quarter of the same word, and a value of NUMBER in bits 17 through 24 of the sam
word.
210

THE SYSTEM Statement

. Sys-
 to own
ced, or
rmat,

be in
atement.
 factors
ues of
y loca-
ssign-

my at-

except
Mode

ity is

ed with

imen-

ses, sep-
cation

 equiv-
es.

acked
ribute
p-
the system has a DECISION function and a NEW.RULE

Declares that DECISION is a function attribute and NEW.RULE is an attribute.

A the system statement declares system attributes and sets owned by the system
tem attributes are particularly useful as pointers which enable the system as a whole
sets. Another advantage of system attributes is that they can be packed, equivalen
placed in specific array locations, while global variables cannot. In the statement fo
the keywords the system are followed by attribute phrases and set-owner phrases: has
denotes an attribute phrase while owns denotes a set-owner phrase. The phrases can
any desired order, and more than one of each phrase type can appear in a single st
In an attribute phrase, names can be made equivalent (synonymous), and packing
can be included to declare the word portions, or specific bits, to be occupied by val
an attribute. In addition, values of system attributes can be assigned to specific arra
tions, enabling the compiler to generate more efficient code than it can when array a
ments are omitted.

Other variations of an attribute phrase are used to name function attributes and dum
tributes.

The following general rules apply to a the system statement:

1. More than one of the system statements can appear in the preamble.

2. The current background mode is assigned to the declared system attributes,
for automatically generated set pointers, which always have integer values.
can be overridden with subsequent define ... variable statements.

3. System attributes are subscripted if the current background dimensional
greater than zero. Dimensionality can be overridden in subsequent define ...
variable statements.

4. Subscripted system attributes used as data, or as set pointers, must be reserv
a reserve statement before the attributes can be used.

5. Subscripted system-owned sets can be defined by setting the background d
sionality so that set pointers are arrays.

The same data value can be given several names by placing the names in parenthe
arated by commas, in an attribute phrase. A value will thereby occupy a memory lo
that is referenced by several names.

Equivalent attributes are assigned to the same computer word. Any attribute can be
alenced, except text attributes, which can only be equivalenced to other text attribut

1.106.1 Packing

Packing is defined as storing two or more values in a single word. Values can be p
into fractions of a word (e.g., a byte), or into specific bits, or several values of one att
can be packed into a single word. In a the system statement, packing is specified by a
pending a packing factor, enclosed in parentheses, to an attribute name.
211

SIMSCRIPT II.5 Reference Handbook

h —
r (1/2)

 factor
its are

 1.

g,
cking

, to an

ames

 and set

 and
ay.

.

d in a

 rou-
te, and
Field packing designates which fraction of a word — typically a half, quarter, or sixt
is to be occupied by values of the named attribute. For example, the packing facto
specifies the first half of a word, and (4/4) specifies the fourth quarter of a word.

A bit packing factor designates bits to be occupied by values. For example, a bit packing
of (7-10) specifies that values of an attribute are to occupy bits 7 through 10 of a word. B
numbered sequentially from left (most significant) to right (least significant) starting with

An intrapacking factor is specified by (*/integer) . The asterisk denotes intrapackin
and INTEGER is the number of values to be packed per word. For example, intrapa
notation (*/2) packs two consecutive values per word.

The following rules apply to packing:

1. Packing is specified by appending a packing factor, enclosed in parentheses
attribute name.

2. If values of more than one attribute are to occupy the same word, the attribute n
must be enclosed in parentheses, separated by commas, for example, (first
(1/2), second(4/4)) .

3. More than one group of attributes to be packed can be specified in a singlethe
system statement.

4. System attributes can be packed, but global variables cannot.

5. Integer and alpha values can be packed, but text values cannot. Real values
pointers may or may not be packed, depending on the implementation.

6. All integer and alpha subscripted system attributes can have field, bit,
intrapacking. Zero-dimensional system attributes cannot be packed in any w

7. Overlapping packing specification is allowed.

8. If two attributes have the same packing factors, their names are synonymous

9. Packing does not apply to function attributes or dummy variables.

10.The default for packed integers is unsigned. Signed integers can be specifie
define ... variable statement.

1.106.2 Function Attributes

A function attribute is defined as an attribute whose value is computed by a function
tine. Consequently, a routine must be written having the same name as the attribu
the system does not allocate storage in entity records for the values.

2.106.3 Dummy Variables

A dummy attribute, which does not have a storage location, must be declared in a define
statement. The attribute must also appear in either a the system statement or an every
statement. This declaration permits the dummy attribute to be used in tally and
accumulate statements without having its value stored.
212

[THEN] IF Statement
2.107 [THEN] IF Statement

See if ... else ... always construct.
213

SIMSCRIPT II.5 Reference Handbook

lls.

n

n
riable

at are
, where
cate the

. The
 itself

s-
t while

never
2.108 TRACE Statement

The trace statement provides a backtrack of the current function and subroutine ca

 
trace using tape  integer value 

 unit  

EXAMPLES:

trace

Beginning with the location of this trace statement, provides a backtrack of functio
or subroutine calls using the current output unit.

trace using unit CHECK.OUT

Beginning with the location of this trace statement, provides a backtrack of functio
or subroutine calls using the output unit whose device number is the value of va
CHECK.OUT.

The trace statement provides a dynamic map of the function and subroutine calls th
in effect when the statement is executed. It can be inserted in programs, for example
error tests are made. Subsequently, the programmer can reconstruct the flow and lo
source of the error. This statement displays the memory location from which the trace
statement was executed, as well as the names of all higher-level calling routines
trace statement can appear in any routine, but not in the preamble. SIMSCRIPT II.5
uses the trace statement whenever it detects an error.

2.108.1 USING Phrase

The trace statement normally displays output on the current output unit. A using
phrase, however, can locally override the current output unit declared in a use statement.
This phrase designates a device as the output unit for the duration of the trace statement
execution. After execution of the trace statement, SIMSCRIPT II.5 automatically rea
signs the previous unit as the current output unit. If a program includes an error tes
a tape, disk, or drum is the current unit, a printer should be specified before the trace state-
ment is used. SIMSCRIPT II.5 displays the output on the standard output device whe
it uses the trace statement.

2.108.2 Output

Output from the trace statement includes the following information:

at location...

called from...

called from...
214

TRACE Statement

t
ou-

t, see

er rep-
well as

nit.
 .

 .

 .

called from...

The at location line displays the memory location of the trace statement in the objec
program. The first called from line displays the name of the routine that called the r
tine that included the trace statement, and so on. A called from line does not appear
if the trace statement is executed in the main routine. (In order to interpret the outpu
the User's Manual for the particular implementation.)

In addition, for each routine in the backtrack sequence, the system prints the comput
resentation values (e.g., hexadecimal, octal) of all input and output arguments, as
the values of any recursive local variables.

Current values are also printed for the following system variables:

time.v Current simulated time.

event.v Zero for an internal event or the number of the external event u

read.v Number of the current input unit.

write.v Number of the current output unit.

For each active input/output device, the system displays values of:

record.v Number of the current input or output record or output record.

rcolumn.v Column number in the current input or output pointer.

or

wcolumn.v

eof.v End-of-file action code.
215

SIMSCRIPT II.5 Reference Handbook

ardless

sions

verse-
2.109 UNLESS Phrase

An unless phrase is used to control the iterations of a preceding for phrase. If the logical
expression is true, the controlled statement is not executed. Iteration continues reg
of the value of the logical expression. It may also be used with while or until phrases.

and 
or 
 

unless logical expression [,]

Keyword Synonym

unless except when

EXAMPLES:

for I = 1 to N, unless X(I)**2 / Y(I)**2 < MAX

Controlled statements will be executed with values generated by the for ... to
(index) phrase when the logical expression X(I)**2 / Y(I)**2 < MAX is false.

for each AIRPORT, unless NO.OF.RUNWAYS(AIRPORT) less than
MIN.NUMBER and AREA(AIRPORT) less than MIN.AREA

The controlled statements will be executed with values generated by the for ... to
(index) phrase when both logical expressions NO.OF.RUNWAYS(AIRPORT) less
than MIN.NUMBER and AREA(AIRPORT) less than MIN.AREA are false.

for every PATRON of RESERVATIONS except when FARE(PATRON)

ls LOW or DESTINATION(PATRON) = "sfo" is true

The controlled statements will be executed with values generated by the for ... of
(set) phrase only when both logical expressions FARE(PATRON) is LOW and
DESTINATION(PATRON) = " sfo " are false.

An unless phrase can be appended to any of the for phrases and to while and until
phrases when while and until are used as independent statements. Logical expres
in an unless phrase are tested for each new value of the index variable in the for phrases.
If the logical expression is true, the controlled program segment is not executed. Con
ly, the controlled statements are executed if the logical expression is false.
216

UNTIL Phrase

-

-

al ex-
 the
nt

e-

-

n
the log-

cified in
hrase,

 for
an in-
2.110 UNTIL Phrase

An until phrase is used to control iteration in a for phrase. As long as the logical ex
pression is false, the controlled statements are executed and iteration continues. An until
phrase may also be used independently of a for phrase.

and 
or 
 

[also] until logical expression [,]

EXAMPLES:

for I = 1 to N, until X(I) = Y(I)

Allows values to be transmitted from the for ... to (index) phrase to the con-
trolled statements as long as the logical expression X(I) = Y(I) is false. The loop
terminates when the logical expression is true or the loop is exhausted.

for each CITY, until COUNTRY(CITY) ne "us"

Values will be transmitted from the for each (class) phrase to the controlled state
ments as long as the logical expression COUNTRY(CITY) ne "US" is false. The loop
terminates when the logical expression is true or the loop is exhausted.

also until mode is alpha, do

Allows values to be transmitted to the controlled statements as long as the logic
pression mode is alpha is false. Program segment execution terminates when
logical expression is true. The keyword also is assumed to eliminate a redunda
loop statement.

An until phrase can be appended to any of the for phrases, or it can appear as an ind
pendent statement. This phrase allows values to be transmitted from preceding for each
(class) , for ... of (set) , and for ... to (index) phrases, to the controlled state
ments as long as the logical expression is false. Logical expressions in an until phrase
are tested for each new value of the index variable in for phrases. If the logical expressio
is false, the controlled program segment is executed, and selection terminates when
ical expression is true.

Until phrases can appear as independent statements. In this case, variables spe
the logical expressions are set by computations performed within the range of the p
and not from for phrase iterations. The range of an independent until phrase must be
delimited by a do ... loop construct. The programmer must be careful to provide
the termination of a loop because SIMSCRIPT II.5 does not automatically terminate
dependent until phrase. Until phrases can be modified by with and unless phrases,
and can be nested with other independent until and while phrases and with for phrases.
If nested until phrases end on the same loop statement, the keyword also can precede
until to eliminate redundant loop statements.
217

SIMSCRIPT II.5 Reference Handbook
2.111 UPON Statement

See event statement.
218

USE Statement

put or
vices

ternal

d with

 input
the
inter.
etecting
ver be
2.112 USE Statement

The use statement establishes the indicated input or output device as the current in
output unit. All subsequent input/output statements that do not specify their own de
in using phrases use these current units. Specifying the buffer causes reading or writ-
ing to an internal file.

the buffer 
 use  tape  quantity for input 
  unit   output 
    

Note: A real quantity will be rounded to integer.

EXAMPLES:

use 5 for input

Declares that unit 5 is the current input unit.

use tape WRITE for output

Declares that the unit whose number is the value of variable WRITE is to be the current
output unit.

use the buffer for output

Declares that the buffer is to be used for output; that is, data are written on an in
file.

Use statements designate the current input and output units. Thereafter, all read
(Freeform) , read (Formatted) , and write statements that do not include using
phrases read from and write to these units. Input/output statements can be use
devices other than the standard card reader and printer. Executing a use statement causes
the designated device to become the current input or output unit.

A device cannot be used simultaneously for both input and output. If a use statement
names the current input unit as the current output unit, SIMSCRIPT II.5 changes the
unit to the standard card reader. If a use statement names the current output unit as
current input unit, SIMSCRIPT II.5 changes the output unit to the standard line pr
These conventions ensure that error messages are correctly displayed, and aid in d
errors in device assignments. Of course, the standard output unit (printer) can ne
used for input, and the standard input unit can never be used for output.

The use statement can appear in any routine, but not in the preamble.
219

SIMSCRIPT II.5 Reference Handbook

 a spe-

 of the

wing
m

xe-
e pro-

ld re-
 eligible

e. The
of sim-
2.113 WAIT/WORK Statement

The wait/work statement causes a process to remain in the passive/active state for
cific period of time.

day[s] 
wait  hour[s] 
work  quantity minute[s] 
   

Keywords Synonyms

day[s] unit[s]

EXAMPLES:

wait 7 days

Halts execution of the current process for 7 days with sta.a set to 0 (passive state).

work JOB.TIME minutes

Halts execution of the current process for a quantity of minutes equal to the value
variable JOB.TIME ; is set to 1 (active state).

work exponential.f(MEAN.TIME, 3) hours

Halts execution of the current process for a quantity of hours determined by dra
from an exponential distribution with MEAN.TIME as its mean, using the third rando
number stream; sta.a is set to 1 (active state).

Within a process routine, a wait or work statement may be used to halt the process e
cution for a given lapse of simulated time. The effect of these statements is to file th
cess notice associated with the process back in the event set, after adjusting the time.a
attribute to indicate the future time at which execution of the process routine shou
sume. When simulated time has advanced so that the process notice again becomes
for execution, this execution is resumed at the statement following the wait or work state-
ment. Other events and activities may, of course, be executed during the time laps
two statements differ only in the status attributed to the process during the passage
ulated time. This status is recorded in a special attribute of the process notice, sta.a ,
where it may be interrogated by any other executing routine. Sta.a is useful for gathering
statistics about the states of processes. Values for possible states are shown in table 4 (Part
I of this publication).

The wait/work statement may only appear in a process routine.

2.114 WHEN Phrase

See with phrase.
220

WHILE Phrase

-

en-

n
s when

cified in
hrase,

 for
n in-
2.115 WHILE Phrase

A while phrase is used to control iterations in a for phrase. As long as the logical ex
pression is true, the controlled statements are executed and iteration continues. A while
phrase may also be used independently of a for phrase.

and 
or 
 

[also] while logical expression [,]

EXAMPLES:

for I = 1 to N, while X(I) is positive

Allows values to be transmitted from the for ... to (index) phrase to the con-
trolled statements as long as the logical expression X(I) is positive is true.

for each FLIGHT of ARRIVALS while ORIGIN(FLIGHT) ne "lax"

Allows values to be transmitted from the for ... of (set) phrase to the controlled
statements as long as the logical expression ORIGIN(FLIGHT) ne "lax" is true.

while VALUE ls MAX, unless VALUE = X, do

Controlled statements will be executed as long as the logical expression VALUE ls
MAX is true except when the logical expression VALUE = X is also true.

A while phrase can be appended to any of the for phrases or it can appear as an indep
dent statement. This phrase allows values to be transmitted from preceding for each
(class) , for ... of (set) , and for ... to (index) phrases to the controlled
statements, as long as the logical expression is true. Logical expressions in a while phrase
are tested for each new value of the index variable in for phrases. If the logical expressio
is true, the controlled program segment is executed. Segment execution terminate
the logical expression is false or when the loop is exhausted.

While phrases can appear as independent statements. In this case, variables spe
the logical expressions are set by computations performed within the range of the p
and not from for phrase iterations. The range of an independent while phrase must be
delimited by a do ... loop construct. The programmer must be careful to provide
the termination of a loop because SIMSCRIPT II.5 cannot automatically terminate a
dependent phrase. While phrases can be modified by with and unless phrases and may
be nested with other independent while and until phrases and with for phrases. If nest-
ed while phrases end on the same loop statement, the keyword also can precede while
to eliminate redundant loop statements.
221

SIMSCRIPT II.5 Reference Handbook

e,
 log-

s

h

values

 Log-

ed, but
pres-
2.116 WITH Phrase

A with phrase is used to control iteration in a for phrase. If the logical expression is tru
the controlled statement is executed. Iteration continues regardless of the value of the
ical expression. A with phrase may also be used with while or until phrases.

and 
or 
 

with logical expression [,]

Keyword Synonym

with when

EXAMPLES:

for I = 1 to N, with X(I) * Y(I) > Z(I)

Controlled statements are executed with values generated by the for ... to (index)
phrase when the logical expression X(I) * Y(I) > Z(I) is true. Controlled statement
are not executed when the expression X(I) * Y(I) > Z(I) is false.

for each CITY with POPULATION(CITY) gr 500000 and AREA(CITY) less
than SQ.MILES/2

The statement controlled by the for each (class) phrase will be executed when bot
logical expressions POPULATION(CITY) GR 500000 and AREA(CITY) less than
SQ.MILES/2 are true.

for every FLIGHT of DEPARTURES when NO.PASSENGERS(FLIGHT) ls

MINIMUM or DESTINATION(FLIGHT) ne "lax" is true

The statements controlled by the for ... of (set) phrase will be executed when
either (or both) of the logical expressions NO.PASSENGERS (FLIGHT) ls MINIMUM
and DESTINATION(FLIGHT) ne "LAX" is true.

A with phrase can be appended to any of the for phrases and to while and until phras-
es when while and until are used as independent statements. This phrase selects
to be transmitted from preceding for each (class) , for ... of (set) , and for ...
to (index) phrases to the controlled statements when the logical expression is true.
ical expressions in a with phrase are tested for each new value of the index variable infor
phrases. If the logical expression is true, the controlled program segment is execut
program control in effect transfers around the controlled statements if the logical ex
sion is false.
222

WORK Statement

d out-

 one

ter,
ites

ter,
 of
 the

ith

ter,
ar-

f
frac-

 char-
2.117 WORK Statement

See wait/work statement.

2.118 WRITE Statement

The write statement writes data to the specified device or the previously establishe
put device according to the specified format.

    the buffer 
write variable c as [(integer)] format c   using  tape  integer value 

[double] binary    unit  

Note: Double optional on implementations where full precision requires more than
computer word.

EXAMPLES:

write A, B, and X as 2 i 3 and i 4

Beginning with the column that follows the current position of the output poin
writes the values of A and B as two integer fields of three characters each, then wr
the value of X as an integer field of four characters.

write INTEGER, DECIMAL, X**2 - Y**2 as i 4, d(8,2), e(9,1)

Beginning with the column that follows the current position of the output poin
writes the value of INTEGER as an integer field of four characters, writes the value
DECIMAL as a decimal field of eight characters with two fractional digits, and writes

value of X2 - Y 2 as a scientific notation field having a total of nine characters w
one fractional digit.

write A, B, and X, Y, Z as a 4, s 62, a 2, /,/,/,/, 3 d(10,2)

Beginning with the column that follows the current position of the output poin
writes the values of A and B as two alphanumeric fields of four characters and two ch
acters, spaced 62 columns apart; then skips three lines and writes the values oX, Y,
and Z on the fourth line as three decimal fields of ten characters each with two
tional digits in each field.

write CODE as *, /,/,/,/, b 56, "statistical table", a 3

Starts a new output page, skips four lines, and, beginning in column 56, writes the
acter string statistical table followed by the value of CODE as an alphanumeric
field of three characters.
223

SIMSCRIPT II.5 Reference Handbook

ele-

l-

es, or
s eval-
rmats

 Each
cimal)
rs that
 spac-
 addi-
atted

current

nd
rmats
tation
s and
e printed

ritten
odes,
r gov-

d as in
atically
nd skips
cord.
uffer

t out-

it

e writ-
for I = 1 to N, write LIST(I) and HEX(I) as (4) I 3 and C 4

Beginning with column 1 of a new line, writes four groups of data (four integer
ments from array LIST and four computer representation elements from array HEX) on
each line until N pairs of values have been printed.

for I = 1 to N, for J = 1 to N, write MATRIX(I,J) as binary using
the buffer

Writes the two-dimensional array MATRIX in binary into the internal buffer.

for each CITY, write NAME, AREA, POPULATION as a 3, i 5, i 8

For each entity of entity class CITY , writes the value of attribute NAME as a three-char-
acter alphanumeric field, the value of AREA as a five-character integer field, and the va
ue of POPULATION as an eight-character integer field.

The write statement transfers values of expressions to line printers, magnetic tap
other output devices according to a format list. In this statement, each expression i
uated, and the value is printed in the form described by its corresponding format. Fo
in a format list must correspond, in order, to the values of expressions to be output.
format includes a descriptor that is a code defining the type of data (e.g., integer, de
to be written on the output device. There are ten descriptors: five are data descripto
apply to numeric and alphanumeric values, and five are control descriptors used for
ing, skipping columns and records, ejecting pages, and printing character strings. In
tion to writing formatted data, this statement can also write binary data. Either form
or binary data can be written on an output device (perhaps to a unit other than the
output unit) or data can be written to an internal buffer.

During execution of a write statement, the format list is scanned from left to right, a
individual formats are used to write values. The data descriptors included in the fo
apply to integer, decimal, scientific notation, alphanumeric, and computer represen
values, while control descriptors designate beginning columns, how many column
records are to be skipped, where pages are to be ejected, and character strings to b
exactly as they appear. Descriptors are further defined in table 24. Values being w
must agree in mode with their descriptors, except for integer and alphanumeric m
which can be interchanged. When interchanged, the mode implied by the descripto
erns.

A write statement does not necessarily start at the beginning of a new output recor
FORTRAN, because records are changed under programmer control, and not autom
after each statement. This statement processes a continuous string of characters a
to a new record when directed or when a complete field will not fit on the current re
A buffer, whose length is one record, is provided for each output unit. The current b
is called out.f , and characters in it may be examined or replaced at will. The curren
put pointer, which is the system variable wcolumn.v , points to the column last written in
the output buffer. For each new record, wcolumn.v starts at zero. (Before an output un
is used for the first time, some implementations set wcolumn.v to - 1.) As output is pro-
cessed, the pointer moves along the buffer according to the format list. For each valu
224

WRITE Statement

sent

ne in a
ten, wcolumn.v is positioned to the last column written. The buffer of output data is
to the output device when a new output record is started. The value of wcolumn.v can be
advanced by the Beginning Column (b), Skip Column (s), Skip to New Record (/), and
Skip to New Page (*) descriptors, and the start new statement. The b, s, / , and *
descriptors can be combined with other format descriptors, or they can appear alo
write statement.
225

SIMSCRIPT II.5 Reference Handbook

,

.

Table 24. Descriptors for Write Statement

I: INTEGER

Format Rules

n i w

where:

n is the optional number of con-
secutive fields

i is the descriptor

w is the field width

1. Parameter n must be an integer, but w can be
an expression.

2. At least one blank must appear between n and
i and between i and w.

3. On the output, integers are right-adjusted in
fields of the specified width.

4. Leading zeros are suppressed, but the right-
most zero in a zero-valued integer is printed.

5. Numbers that exceed the field width are con-
verted to scientific notation.

6. Positive numbers are unsigned; negative
numbers are signed.

D: DECIMAL

Format Rules

n d(a,b)

where:

n is the optional number of con-
secutive fields

d is the descriptor

a is the total field width including
the sign, integer digits, decimal
point, and fractional digits

b is the number of fractional dig-
its

1. Parameter n must be an integer, but a and b
can be expressions.

2. At least one blank must appear between n
and d.

3. On the output, positive numbers are unsigned
but negative numbers are signed. A minus
sign immediately precedes the highest-order
digit.

4. Leading zeros are suppressed. Trailing zeros
are printed unless the number is exactly zero

5. Numbers more precise than their allotted out-
put format are rounded.

6. Numbers that exceed the field width are print-
ed in scientific notation.
226

WRITE Statement

E: SCIENTIFIC NOTATION

Format Rules

n e(a,b)

where:

n is the optional number of con-
secutive fields

e is the descriptor

a is the total field width including
the sign, integer digits, decimal
points, fractional digits, the let-
ter e, sign of the exponent, and
the exponent

b is the number of fractional dig-
its

1. Parameter n must be an integer, but a and b
can be expressions.

2. At least one blank must appear between n and
e.

3. On the output, numbers have b decimal plac-
es, and a scale factor is printed indicating the
true value of the number.

4. Positive scale factors are printed without the
plus sign.

5. A minus sign is printed after the e for nega-
tive scale factors.

6. The width of the output, in positions, is equal
to a; the last four positions contain the scale
factor.

7. Table 25 lists the action taken if the field
width is insufficient to display the value.

Table 24. Descriptors for Write Statement

A: ALPHANUMERIC

Format Rules

n a w

where:

n is the optional number of con-
secutive fields

a is the descriptor

w is the field width

1. Parameter n must be an integer, but w can be
an expression.

2. At least one blank must appear between n and
a and between a and w.

3. The first w characters are printed from the
leftmost part of the associated expression.

Table 24. Descriptors for Write Statement (Continued)
227

SIMSCRIPT II.5 Reference Handbook

d

-

r

C: COMPUTER REPRESENTATION

Format Rules

n c e

where:

n is the optional number of con-
secutive fields

c is the descriptor

e is the number of characters in
the internal representation of
the computer

1. Parameter n must be an integer, but e can be
an expression.

2. At least one blank must appear between n an
c and between c and e.

3. The c descriptor is computer-dependent. For
example, on the IBM 360, the format C 4
writes four hexadecimal characters; on the
Honeywell 600/6000, 2 C 5 writes two fields
of five octal characters each.

B: BEGINNING COLUMN

Format Rules

b n

where:

b is the descriptor

n is the column number

1. Parameter n can be an expression.

2. At least one blank must appear between b and
n.

3. Parameter n specifies the position in which
the first character of an output value is locat-
ed, and the system positions the current out
put pointer to that location.

4. B descriptors need not be in ascending orde
in a format list.

S: SKIP COLUMN

Format Rules

s n

where:

s is the descriptor

n is the number of columns to
skip

1. Parameter n can be an expression.

2. At least one blank must appear between s and
n.

3. Parameter n specifies the number of posi-
tions.

4. On the output, skipped positions remain un-
touched.

Table 24. Descriptors for Write Statement (Continued)
228

WRITE Statement

t

-

f

s
a

-

/: SKIP TO NEW RECORD

Format Rules

/ Each slash skips to a new record on the curren
output unit, e.g., the next print line.

*: SKIP TO NEW PAGE

Format Rules

* 1. The * descriptor ejects one page on a line
printer.

2. This descriptor is disregarded if used in other
circumstances.

" ": CHARACTER STRING

Format Rules

" " 1. All characters to be printed exactly as they ap
pear are enclosed in quotation marks.

2. The underscore within quotation marks is
printed as ".

3. A character string cannot exceed the length o
a printed line.

4. A longer character string can be specified a
more than one string, each separated by
slash.

5. The spacing of the character string can be in
dicated by B, S, and / descriptors.

Table 24. Descriptors for Write Statement (Continued)
229

SIMSCRIPT II.5 Reference Handbook

t
.

d

T: text

Format Rules

n t w

where:

n is the optional number of con-
secutive fields

t is the descriptor

w is the field width

1. Parameter n must be an integer, but w can be
an expression.

2. At least one blank must appear between n
and t and between t and w.

3. The first w characters are printed from the
leftmost part of the associated text value.

4. If w is greater than the length of the text string,
the string is followed by trailing blanks.

3. The length of the string is used as the field
width. All the characters of the string are
used; when the string is longer than the outpu
record, it is split between successive records

Format Rules

n t *

where:

n is the optional number of con-
secutive fields

t * is the descriptor

1. Parameter n must be an integer.

2. At least one blank must appear between n an
t and between t and *. * may optionally
be enclosed in parentheses.

Table 24. Descriptors for Write Statement (Continued)
230

WRITE Statement

 the

e unit.
e data
ata.

rd
f the
utput.

than
r

2.118.1 AS BINARY Phrase

The as binary phrase writes binary information. The binary data can be written on
current output unit, or a using phrase can be appended to the write statement to designate
another output unit. Binary and formatted data cannot be written together on the sam
Binary information avoids output conversion and hence is a more efficient way to stor
temporarily, to be later read in by the same or a different program, as with scratch d

For integer, real, or alpha values, the as binary statement outputs a single computer wo
of information. For text values, it outputs an integer computer word with the length o
string, followed by successive words of the string until all the characters have been o

2.118.2 AS DOUBLE BINARY Phrase

On those implementations for which the maximum floating-point precision is more
one computer word, the write as double binary statement outputs two compute
words for a floating-point (real) number.

Table 25. Order of Character Printing in the " e" Format

Field Width Characters Printed Example:

-.0234567

1 e e

2 Sign of number; e -e

3 Sign of number; e; sign of exponent -e-

4 Sign of number; e; sign of exponent; d

d = digit if 0 ≤ exponent ≤ 9

 = * if exponent ≥ 10

-e-2

5 Sign of number; e; exponent -e-02

6 Sign of number; digit; e; exponent -2e-02

7 Sign of number; digit; .; e; exponent -2.e-02

8 Sign of number; digit; .; digit; e; exponent -2.3 e-02

≥9 Sign of number; digit; . ; additional digits; e;
exponent

-2.35e-02

-2.346e-02

-2.3457e-02

-2.34567e-02
231

SIMSCRIPT II.5 Reference Handbook

 unit
 as

n
urrent

that

 con-
nve-

ssion
 record.

,
-
idual
 of a
2.118.3 USING Phrase

A using phrase can locally override the current output unit, which is the printer or the
declared in the most recently executed use statement. This phrase designates a device
the current output unit for the duration of the write statement execution. After executio
of this statement, SIMSCRIPT II.5 automatically reassigns the previous unit as the c
output unit. Data can be written into an internal file by including the keywords the
buffer in a using phrase, or to any output unit by specifying the device number of
unit.

2.118.4 Controlled WRITE Statements

A write statement cannot write an entire array by listing only the array name, but a
trolled write statement that includes a repetition factor can write array elements co
niently (see the fifth example above). A repetition factor, consisting of an expre
enclosed in parentheses, must precede a format list that is to be repeated for each
When a repetition factor is used, the write statement must be controlled by a for phrase,
and the output must start with a new line (record). (A start new statement, for example
can position the output pointer to a new line.) With the write statement, the system auto
matically skips to a new line after writing data as prescribed by the format on an indiv
line. This statement can terminate with the output pointer positioned in the middle
record.
232

Index
A

A format for read (Formatted) statement........ 160

A format for write statement......................... 223

A.set routine - See T.set routine.................... 71

abs.f library function....................................... 21

accumulate statement39, 42

accumulate/tally

 statement37-41, 100, 181, 208

activate (process) statement.......................... 43

activate statement ...154

add statement ...46

after phrase.. 106

after statement... 48

also for phrase.. 86

also phrase ..48

Alternative forms ..109

always statement ...48

arccos.f library function................................. 21

arcsin.f library function................................. 21

arctan.f library function................................. 21

Argument ..92

Argument Definitions ...58

Argument modes... 57, 190

Arguments... 79, 154

arithmetic expressions.............................. 107, 149

arrays ...79, 169, 178

as binary phrase164, 231

as double binary phrase231

as phrase... 178

at phrase... 44, 193

atot.f library function..................................... 21

Attributes.. 79

B

before phrase... 106

before/after statement............................ 48, 49

begin heading statement................................ 51

begin report statement.................................. 53

beta.f library function..................................... 22

binomial.f library function............................. 22

break ... ties Statement55

break ties statement152

by * phrase ..178

C

call statement... 57, 190

called phrase...................................... 44, 64, 192

cancel statement..59

card library function ..170

cause statement ...59

Common attributes... 98

complex subscripted variables.................... 46, 204

Compound entities ..97

compute statement... 61

concat.f library function................................ 22

Controlled read (Free-Form) statement.......... 169

cos.f library function22

create each statement65

create statement ...63

cycle statement... 137

D

data cards ..168

data element.. 178

data library function ..170

date.f library function22

date.f time conversion function.................... 142

day.f library function22

day.f time conversion function142

define ... (global) variable statement 75

define ... (local) variable statement.. 76

define ... routine statement58, 67, 189

define ... set statement69

define ... to mean statement73

define ... variable statement77, 157

define statement ...100

destroy each statement83

destroy statement ...81

dim.f library function....................................... 22

dimensionality.. 178

dimensionality of arrays................................... 139

div.f library function....................................... 23

do ... loop construct84, 174

double keyword...147
233

SIMSCRIPT II.5 Reference Handbook
dummy attribute100, 212

dummy variable .. 80

E

ef i eld.f library function 170

el se statement... 87, 122

end statement .. 88

end-of-file... 165

ef i eld.f library function 23

ent er with statement...................................... 89

Equivalencing ... 98

er ase statement ... 90

er l ang.f library function............................... 23

error condition.. 118

Error Messages ... 47

eunit.a attribute .. 94

event notices ... 97, 193

ev ent notices statement............................... 93

ev ent statement... 91

ev ery statement 95, 100, 152

ex cept when phrase 100

ex p.f library function 23

ex ponential.f library function 23

ex t ernal ... units statement.................. 105

ex t ernal events/pro cesses

 statement... 101

F

F. set attribute ... 70

fi f o sets... 70

fi l e statement .. 106

fi nd search ... 108

fi nd statement .. 108

fi r st phrase ... 106

fo r ... of (set) phrase112, 113

fo r ... to (index) phrase............................ 114

fo r each (class) phrase................................ 110

Format lines .. 146

format list ... 160

fr ac.f library function 23

function attributes....................... 99, 132, 134, 212

G

gamma.f library function 24

give n phrase 44, 68, 189, 193

Global variables... 78

go t o ... per statement 119

go t o statement ... 117

group phrase ... 149

H

Heading Section... 52

here statement ... 121

Histograms ... 42

hour . f library function 24

I

If ... else ... a l ways construct ...122-124

if f ound phrase108-109

if n one phrase108-109

if statement .. 213

in phrase .. 45, 194

incl ude phrase .. 143

int. f l ibrary function...................................... 24

internal buffer ... 165

inte r rupt statement 126

iste p.f library function................................... 24

itoa . f library function 24

itot . f library function 24

J

jump statement ... 127

L

L.set attribute ... 70

last column statement 128

last phrase .. 106

leave statement... 129

leng t h.f library function 24

let statement ... 130

lifo sets ... 71

Line System Variable... 52

lis t attributes of e ach statement 133

list attributes statement 132

list statement ... 131

Local variables ... 79
234

Index
log.10.f library function................................ 25

log.e.f library function24

log.normal.f library function....................... 24

logical expressions.................................... 154, 174

Logical expressions for event routines............... 92

loop statement... 134

lower.f library function................................... 25

M

m.ev.s attribute... 94

m.set attribute.. 70

main statement... 135

match.f library function25

max.f library function....................................... 25

maximum (index) statistical keyword................ 62

maximum statistical keyword62

MEAN statistical keyword62

mean.square statistical keyword62

mimimum statisitcal keyword62

min.f library function.......................................25

minimum (index) statistical keyword................ 62

minute.f library function25

mod.f library function25

mode library function170

monitored variable ..80

month.f library function................................... 25

month.f time conversion function.................. 142

move statement ...136

N

N.Q.resource attribute182

N.resource attribute182

N.set attribute ..70

N.set routine ...70

N.X.resource attribute182

NDAY.F library function25

Nested do ... loop construct........................ 85

Nested for ... of (set) phrase..................... 113

Nested for ... to (index) phrase............... 116

Nested for each (class) phrase111

next statement... 137

normal.f function ...26

normally and define ... variable

 statement78, 138

normally statement....................................... 138

now phrase ..45, 194

now statement... 140

number statistical keyword................................ 62

O

on a new page phrase..................................... 53

open statement.. 141

Order of Executing Events................................. 56

origin.r system routine141

otherwise statement..................................... 142

out.f library function....................................... 26

P

p.ev.s attribute ..94

p.set attribute..70

p.set routine ...70

Packing ...98, 211

Page System Variables....................................... 52

per page phrase ..54

perform statement ...142

permanent entities statement143

Pointers..178

poissson.f library function26

preamble statement... 144

print statement... 145

printing phrase ..54

priority statement ...152

probabilities ..157

process notice ...98

process statement ...153

processes statement................................ 98, 155

Q

Q.resource attribute ..182

R

randi.f library function26

random ... variable statement................. 156

random variable ..157

random.f library function26, 157

Ranked sets... 71

reactivate statement158
235

SIMSCRIPT II.5 Reference Handbook
re ad (Formatted) statement 159

re ad (Free-Form) statement 167

re ad as binary statement 164

re ad as double bina r y statement............ 164

re ad statement ... 165

re al.f library function..................................... 26

re cord statement .. 170

recursive variables 79, 139

re gardless statement.................................... 170

re l ease statement171, 180

re l inquish statement 172

re move first statement................................. 50

re move statement ... 173

re peat statement .. 174

repetition factor.. 165

re quest statement .. 175

re schedule statement 176

re serve statement ... 177

re set statement... 181

resource class ... 183

Resource units.. 183

re sources statement 182

re store statement.. 183

re sume statement.. 184

re sume substitution statement 185

re t urn statement .. 186

re wind statement.. 187

ro utine statement188, 190

Routines Named to and for 189

rs t ep.f library function 27

S

s. ev.s attribute .. 94

S. set attribute ... 70

S. set routine... 70

Saved variables.. 79, 139

sa ving phrase ... 92

sc hedule (event) statement........................... 191

sc hedule statement 176

sf i eld.f library function........................ 27, 170

si gn.f library function 27

sin.f library function 27

skip statement .. 196

sqrt . f library function..................................... 27

star t new statement...................................... 198

star t simulation statement 199

Statistical keywords for Compute statement 62

std. dev statistical keyword............................. 62

stop statement... 200

store statement... 201

subprogram variable ... 79

Subscripted labels .. 117

Subscripts... 47

subs t itute statement 202, 206

subs t r.f library function 27

subt r act statement .. 204

SUM statistical keyword.................................... 62

SUM.OF.SQUARES statistical keyword 62

supp r ess substitutio n statement 206

supp r essing phrase 150

susp end statement .. 207

syst em statement .. 208

system variables ... 51, 169

T

T.set routine... 71

tally statement ... 208

tan. f l ibrary function 27

temp orary entities statement.................. 209

the system statement208-213

then by phrases .. 56

then if statement .. 125

Time conversion functions 142

time . a attribute ... 94

trac e statement ... 214

trun c.f library function................................. 28

ttoa . f library function.................................... 28

U

U.re source attribute 182

U.set routine... 71

unif orm.f library function 28

unle ss phrase 113, 116, 216
236

Index
until phrase.................................... 113, 116, 217

upon statement... 218

upper.f library function................................... 28

use statement ...219

use the buffer statement............................ 165

using phrase............................ 165, 169, 214, 232

V

V.set routine ...71

values.. 157

variance statistical keyword........................... 62

W

W.set routine... 71

WAIT/WORK statement220

WEEKDAY.F library function28

WEIBULL.F library function29

WHEN phrase ..220

WHILE phrase113, 116, 221

WITH phrase113, 116, 220, 222

WITH, UNLESS, WHILE , and UNTIL phrase.. 111

WITHOUT ... ATTRIBUTES phrase................. 71

WITHOUT ... ROUTINES phrase72

WORK statement ...223

WRITE statement....................................... 165, 223

X

X.resource attribute...................................... 182

X.set routine... 71

Y

Y.set routine... 71

YEAR.F library function..................................... 29

YEAR.F time conversion function.................... 142

YIELDING phrase.. 68, 189

Z

Z.set routine ...71
237

SIMSCRIPT II.5 Reference Handbook
238

	Table of Contents
	List of Figures
	Preface
	PART I. GENERAL REFERENCE
	1. General Reference
	1.1 Attributes
	1.1.1 Function Attributes

	1.2 Constants
	1.2.1 Numeric Constants
	1.2.2 Subprogram Literals
	1.2.3 Text Literals
	1.2.4 Alpha Literals

	1.3 Arithmetic Expressions
	1.3.1 Arithmetic Operators
	1.3.2 Hierarchy of Operations
	1.3.3 Parentheses
	1.3.4 Mixed Mode Expressions

	1.4 Logical Expressions
	1.4.1 Property Comparisons
	1.4.2 Arithmetic Relational Conditions
	1.4.3 Compound Relational Expressions
	1.4.4 Mixed Mode Comparisons
	1.4.5 IS TRUE and IS FALSE Phrases
	1.4.6 AND and OR Logical Operators

	1.5 Labels
	1.5.1 Subscripted Labels

	1.6 Modes
	1.6.1 Text Mode
	1.6.2 Alpha Mode
	1.6.3 Mixed Numeric Modes
	1.6.4 Functions for Conversion

	1.7 Names
	1.8 System
	1.9 Variables
	1.9.1 Dummy Variables
	1.9.2 Global Variables
	1.9.3 Local Variables
	1.9.4 Monitored Variables
	1.9.5 Subprogram Variables

	PART II. LANGUAGE REFERENCE
	2. Language Reference
	2.1 ACCUMULATE/TALLY Statement
	2.1.1 Histograms
	2.1.2 Dummy Variables

	2.2 ACTIVATE (process) Statement
	2.2.1 CALLED Phrase
	2.2.2 GIVEN Phrase
	2.2.3 AT Phrase
	2.2.4 IN Phrase
	2.2.5 NOW Phrase

	2.3 ADD Statement
	2.3.1 Complex Subscripted Variables
	2.3.2 Subscripts Containing Functions
	2.3.3 Error Messages

	2.4 AFTER Statement
	2.5 ALSO Phrase
	2.6 ALWAYS Statement
	2.7 BEFORE/AFTER Statement
	2.8 BEGIN HEADING Statement
	2.8.1 System Variables
	Figure 1. Heading Section Within a Report Section

	2.9 BEGIN REPORT Statement
	2.9.1 ON A NEW PAGE Phrase
	2.9.2 PRINTING Phrase
	2.9.3 PER PAGE Phrase
	2.9.4 System Variables

	2.10 BREAK ... TIES Statement
	2.10.1 THEN BY Phrases
	2.10.2 Order of Executing Events at the Same Simul...

	2.11 CALL Statement
	2.11.1 Argument Modes
	2.11.2 Argument Definitions

	2.12 CANCEL Statement
	2.13 CAUSE Statement
	2.14 CLOSE Statement
	2.15 COMPUTE Statement
	2.16 CREATE Statement
	2.17 CREATE EACH Statement
	2.18 CYCLE Statement
	2.19 DEFINE ... ROUTINE Statement
	2.19.1 GIVEN and YIELDING Phrases

	2.20 DEFINE ... SET Statement
	2.20.1 FIFO Sets
	2.20.2 LIFO Sets
	2.20.3 Ranked Sets
	2.20.4 WITHOUT ... ATTRIBUTES Phrase
	2.20.5 WITHOUT ... ROUTINES Phrase

	2.21 DEFINE ... TO MEAN Statement
	2.21.1 Purposes of DEFINE ... TO MEAN

	2.22 DEFINE ... (Global) VARIABLE Statement
	2.23 DEFINE ... (Local) VARIABLE Statement
	2.24 DEFINE ... VARIABLE Statement
	2.24.1 NORMALLY and DEFINE ... VARIABLE Statements...
	2.24.2 Global Variables
	2.24.3 Attributes
	2.24.4 Local Variables
	2.24.5 Arrays
	2.24.6 Arguments, Recursive Variables, and Saved V...
	2.24.7 Subprogram Variables
	2.24.8 Dummy Variables
	2.24.9 Monitored Variables

	2.25 DESTROY Statement
	2.26 DESTROY EACH Statement
	2.27 DO ... LOOP Construct
	2.27.1 Nested DO ... LOOP Constructs
	Figure 2. Nested do ... loop Constructs and do

	2.28 ELSE Statement
	2.29 END Statement
	2.30 ENTER WITH Statement
	2.31 ERASE Statement
	2.32 EVENT Statement
	2.32.1 Arguments
	2.32.2 SAVING Phrase
	2.32.3 Logical Expression for Event Routines

	2.33 EVENT NOTICES Statement
	2.34 EVERY Statement
	2.34.1 General Rules
	2.34.2 Compound Entities
	2.34.3 Event Notices
	2.34.4 Process Notices
	2.34.5 Equivalencing
	2.34.6 Common Attributes
	2.34.7 Packing
	2.34.8 Function Attributes
	2.34.9 Dummy Attributes
	2.34.10 Sets Named in EVERY Statements

	2.35 EXCEPT WHEN Phrase
	2.36 EXTERNAL EVENTS/PROCESSES Statement
	2.37 EXTERNAL ... UNITS Statement
	2.38 FILE Statement
	2.38.1 FIRST, LAST, BEFORE, and AFTER Phrases
	2.38.2 Arithmetic Expressions

	2.39 FIND Statement
	2.39.1 Alternative Forms
	2.39.2 IF FOUND and IF NONE Phrases

	2.40 FOR EACH (class) Phrase
	2.40.1 Nested FOR EACH (class) Phrases
	2.40.2 WITH, UNLESS, WHILE, and UNTIL Phrases

	2.41 FOR ... OF (set) Phrase
	2.41.1 Nested FOR ... OF (set) Phrases
	2.41.2 WITH, UNLESS, WHILE, and UNTIL Phrases
	2.41.3 Mechanism of FOR ... OF (set)

	2.42 FOR ... TO (index) Phrase
	Figure 3. For ... to (index) Phrase Execution
	2.42.1 Nested FOR ... TO (index) Phrases
	2.42.2 WITH, UNLESS, WHILE, and UNTIL Phrases

	2.43 GO TO Statement
	2.43.1 Subscripted Labels
	2.43.2 Error Conditions

	2.44 GO TO ... PER Statement
	2.44.1 Error Conditions

	2.45 HERE Statement
	2.46 IF ... ELSE ... ALWAYS Construct
	Figure 4. Structured if ... else ... always Constr...
	Figure 5. Structured if ... else ... always Constr...
	2.46.1 Nested IF ... ELSE ... ALWAYS Constructs
	Figure 6. Then if Statements

	2.47 INTERRUPT Statement
	2.48 JUMP Statement
	2.49 LAST COLUMN Statement
	2.50 LEAVE Statement
	2.51 LET Statement
	2.52 LIST Statement
	2.53 LIST ATTRIBUTES Statement
	2.53.1 Function Attributes

	2.54 LIST ATTRIBUTES OF EACH Statement
	2.54.1 Output for LIST ATTRIBUTES OF EACH Statemen...
	2.54.2 Function Attributes

	2.55 LOOP Statement
	2.56 MAIN Statement
	2.57 MOVE Statement
	Figure 7. MOVE Statements

	2.58 NEXT Statement
	2.59 NORMALLY Statement
	2.59.1 NORMALLY and DEFINE ... VARIABLE Statements...
	2.59.2 Mode
	2.59.3 Saved and Recursive Variables
	2.59.4 Dimensionality

	2.60 NOW Statement
	2.61 OPEN Statement
	2.62 Routine ORIGIN.R
	2.63 OTHERWISE Statement
	2.64 PERFORM Statement
	2.65 PERMANENT ENTITIES Statement
	2.65.1 INCLUDE Phrase

	2.66 PREAMBLE Statement
	2.67 PRINT Statement
	2.67.1 Format Lines
	2.67.2 DOUBLE Keyword
	2.67.3 Expressions
	2.67.4 GROUP Phrase
	2.67.5 SUPPRESSING Phrase
	Figure 8. Sample Row and Column Repetition

	2.68 PRIORITY Statement
	2.69 PROCESS Statement
	2.69.1 Arguments
	2.69.2 Logical Expression for Process Routines

	2.70 PROCESSES Statement
	2.71 ... RANDOM ... VARIABLE Statement
	2.71.1 Function RANDOM.F
	2.71.2 Mode and Stream Numbers
	2.71.3 Using Random Variables
	2.71.4 Reading Values and Probabilities

	2.72 REACTIVATE Statement
	2.73 READ (Formatted) Statement
	2.73.1 Format Lists
	2.73.2 Skipping to Next Card
	2.73.3 Input Buffer
	2.73.4 AS BINARY Phrase
	2.73.5 AS DOUBLE BINARY Phrase
	2.73.6 USING Phrase
	2.73.7 The Buffer
	2.73.8 Controlled Statements
	2.73.9 End-of-File

	2.74 READ (Free-Form) Statement
	2.74.1 Data Records
	2.74.2 ARRAYS
	2.74.3 USING Phrase
	2.74.4 Controlled READ (Free-Form) Statements
	2.74.5 System Variables

	2.75 RECORD Statement
	2.76 REGARDLESS Statement
	2.77 RELEASE Statement
	2.78 RELINQUISH Statement
	2.79 REMOVE Statement
	2.79.1 Logical Expressions

	2.80 REPEAT Statement
	2.81 REQUEST Statement
	2.82 RESCHEDULE Statement
	2.83 RESERVE Statement
	2.83.1 Dimensionality
	2.83.2 AS Phrase
	2.83.3 BY * Phrase
	2.83.4 Pointers and Array Structures
	Figure 9. Sample One- and Two-Dimensional Arrays
	2.83.5 Function dim.f
	2.83.6 Multiple RESERVE Statements

	2.84 RESET Statement
	2.85 RESOURCES Statement
	2.85.1 Resource Classes
	2.85.2 Resource Units

	2.86 RESTORE Statement
	2.87 RESUME Statement
	2.88 RESUME SUBSTITUTION Statement
	2.89 RETURN Statement
	2.90 REWIND Statement
	2.91 ROUTINE Statement
	2.91.1 Routines Named TO and FOR
	2.91.2 GIVEN Phrase
	2.91.3 YIELDING Phrase
	2.91.4 Argument Definitions
	2.91.5 Argument Modes

	2.92 SCHEDULE (event) Statement
	2.92.1 CALLED Phrase
	2.92.2 GIVEN Phrase
	Figure 10. Sample Event Notices
	2.92.3 AT Phrase
	2.92.4 IN Phrase
	2.92.5 NOW Phrase

	2.93 SELECT CASE Statement
	2.94 SKIP Statement
	2.95 START NEW Statement
	2.96 START SIMULATION Statement
	2.97 STOP Statement
	2.98 STORE Statement
	2.99 SUBSTITUTE Statement
	2.99.1 Purposes of SUBSTITUTE
	2.99.2 Rules

	2.100 SUBTRACT Statement
	2.100.1 Complex Subscripted Variables
	2.100.2 Subscripts Containing Functions
	2.100.3 Error Messages

	2.101 SUPPRESS SUBSTITUTION Statement
	2.102 SUSPEND Statement
	1.103 SYSTEM Statement
	1.104 TALLY Statement
	1.105 TEMPORARY ENTITIES Statement
	1.106 THE SYSTEM Statement
	1.106.1 Packing
	1.106.2 Function Attributes
	2.106.3 Dummy Variables

	2.107 [THEN] IF Statement
	2.108 TRACE Statement
	2.108.1 USING Phrase
	2.108.2 Output

	2.109 UNLESS Phrase
	2.110 UNTIL Phrase
	2.111 UPON Statement
	2.112 USE Statement
	2.113 WAIT/WORK Statement
	2.114 WHEN Phrase
	2.115 WHILE Phrase
	2.116 WITH Phrase
	2.117 WORK Statement
	2.118 WRITE Statement
	2.118.1 AS BINARY Phrase
	2.118.2 AS DOUBLE BINARY Phrase
	2.118.3 USING Phrase
	2.118.4 Controlled WRITE Statements

	Index

