Programming Language

Copyright 1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACI.

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division

3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK

Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume
the responsibility for any consequences resulting from the use thereof. The information contained herein is
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMGRAPHICS |, SIMGRAPHICS Il and SIMSCRIPT IL.5 are registered trademarks of CACI Products Company.

Windows is a registered trademark of Microsoft Corporation.

Table of Contents

[(= = o a
1. SIMSCRIPT I1.5 BASIC CONCEPTS ..iitiiiiiittiiiee et ee et e reie e e s a s aeaaaas 1
I A 1V 1 2T T T i T N 1
I V1 o LY T =3 1
1.3 READING INPUT DAT A ittt et e e e et e e e et e reeeaas 2
I O N L 17 AV 5 T 3
1.5 ARITHMETIC EXPRESSIONSuuiiiuiiiutietieeieneeeteieneesstesessessensssanseessessensssnnsns 4
1.6 COMPUTING VARIABLE VALUESciutiiiiiitiit ittt ee et e re e e e s s renee e 5
1.7 SPECIALIZED COMPUTATION STATEMENTS ..uiiutiiitiiiiiiietiie e et eee s e e 6
1.8 DISPLAYING THE RESULTS OF COMPUTATION .. ouivtieiee e eeaeens 6
1.9 SKIPPING UNWANTED INPUT DATA Lottt et e ee e et e re e 9
1.10 LOGICAL EXPRESSIONSuciiutiiitiiiitietiiereneeeteiessessasssnnssraeesseesesesenesenns 10
1.11 CHANGING THE FLOW OF COMPUTATION USING LOGICAL EXPRESSIONS .. 12
1.12 MORE ON LOGICAL EXPRESSIONSutiiiuiitiiiiiiitieineetieeiieiteeeiesessnssnesens 16
1.13 REPETITION USING CONTROL PHRASES.......iiiiiieieee e 19
1.14 CONTROL PHRASES EXTENDED TO COVER MORE THAN ONE STATEMENT 21
1.15 LOGICAL CONTROL PHRASESciiiiiiiiiiii it ee e e ae e 22
1.16 ALTERING THE FLOW OF CONTROL WITHIN A LOOPcvvviiieiiieieean e 26
1.17 CHANGING THE FLOW OF CONTROL BY DIRECT ORDERcccevviiieinaannnns 27
1.18 THE LOGICAL END OF A PROGRAMiiuiiiiiiiiiiiiiiieeieeiee e e e e e ae e 29
1.19 THE PHYSICAL END OF A PROGRAM ...uiiiiiieiee ettt 29
1.20 A NOTE ON SIMSCRIPT I1.5 PROGRAM FORMcoiuiiiisiii e 29
1.21 CLARIFYING COMMENTS IN A PROGRAM ..ottt e 30
1.22 SOME SAMPLE SIMSCRIPT 1.5 LEVEL 1 PROGRAMSccceviiviiiiiiiiiennns 31
1.22.1 Roots of a Quadratic EXPreSSioncccccoieiieiiriinieeineineie e eee e e 31
1.22.2 Finding the Area of a Triangle .. e e 32
1.22.3 Finding the Maximum and Mlnlmum of a Set of Numbers 33
1.22.4 Computing Square Roots . TP PPPPPPRPRSC.
2. PROGRAMMING LANGUAGE CONCEPTS .tuiiuiitiiiiiitiiiieteeeiieitereneesee s insanesnaeeneesns 37
2.1 VARIABLE AND LABEL NAMES REVISITED ..i.oitiieiie i eeaeas 37
2.2 VARIABLE MODES ...uiiiiiitiiiiic e ee ettt ie et s e ba s ee e st s s s e s ee e e b seeneaes 37
2.2.1 REAL and INTEGER Variablesccooeeiiiiiiiiiiieec i1, 38
2.3 EXPRESSION IMODESiitiiiiiiitiiiiet ettt ee s es s ae st s e eeaee s en e e be s eenaesseeanens 40
2.4 SYSTEM-DEFINED CONSTANTS ..iiuiitiiiiiiitiieiiteet et seeeenes s esens e sense s ee e nes 42
2.5 SUBSCRIPTED VARIABLEScouiiiitiiieeiee e et e ie e et eses et se st s ae s sesanaseeanseenas 43
2.6 READING SUBSCRIPTED VARIABLES......c.utitiiitiiiiiieienieees e eereseeeeaeeennens 49
2.7 USING SUBSCRIPTED VARIABLES IN EXPRESSIONSc.vvviiriiieieiiieesieenenns 50
2.8 INESTED DO LOOPS ...oiiiiiiiit et ee ettt ee e ae e e erea e s e e s e eeaeas 51
2.9 THE STRUCTURE OF A SIMSCRIPT I1.5 PROGRAMccccovviiiiiiiiieeiieenn, 51
2.10 ROUTINE DEFINITION ..iitutiiitiiiitiietiesieeeeteeetee st sesassseneesaneeessessnsssnneneanns 54
2.11 GLOBAL AND LOCAL VARIABLESoiviiiii et ee et ee s a e e eeaeas 56
2.12 ROUTINE ARGUMENTS .iiiuiiitiiiniitiee ittt eseieseesinestesseenestenenersserneeseesnenns 60
2.13 ROUTINES USED AS FUNCTIONSuciviniiiitiiitieeiieeeiereee et e ees s e ansesneeeaens 62
2.14 GLOBAL AND LOCAL VARIABLES, ROUTINES, FUNCTIONS, AND SIDE
ol o O TP 64

SIMSCRIPT II.5 Programming Language

2.15 LIBRARY FUNCTIONS ..ottt et ee et e e e e e e e e e e eeees 64
2.16 USING NON-SIMSCRIPT ROUTINESttiitiiiiieee e e et eeee e eaeaaas 65
2.17 RETURNING RESERVED ARRAYS TO FREE STORAGEc..cvviiivieiininnnnen. 65
2.18 ARRAY POINTERS AS ROUTINE ARGUMENTS ...oiviieiiiiieee e e 66
2.19 TEXT MODE VARIABLES ... itiitiit ittt ettt et e e e e e e anaens 69
2.20 READING AND DISPLAYING TEXT VARIABLES......cccviiiiieeiiiieeeeieeaie e 70
2.21 OPERATIONS WITH TEXT VARIABLES ...cuoieiieiiie et 71
2.21.1 Concatenation: CONCAT.F(textl, text2..eXtN).....ccoocverieiiieiree e 72
2.21.2 Substring: SUBSTR.F(text, index, [ength)c.ccooiiiriiiii e 72
2.21.3 Pattern Matching: MATCH.F(text, pattern, skip)cccoceeeviereiniiininieieenns 13
2.21.4 Length Function: LENGTH.F(TEXE) ...ocovvuiiiiiiiiiie i 73
2.21.5 Case Conversion: UPPER.F(text) and LOWER.F(text)ccccceeevevvnvveinennnen. 13
2.21.6 String Repetition: REPEAT.F(StrNG,COUNL)uvviiiiiiie e e 73
2.21.7 Truncation and Expansion: FIXED.F(string,length)ccccccceiiiiiiininincie. 73
2.21.8 Blank Character Elimination: TRIM.F(string, flag)........cccccceevviiiiiiiincinnennn. 74
2.21.9 INTEGER to TEXT Conversion ITOT.F(integer).......ccccccvvvvreinniiieiineiniennne. 14
2.22 ALPHA VARIABLESuiitiiiiii it ie e ee e et ee et e et ee e ee e sen e e et e ee s eneaenaaens 74
2.22.1 TEXT to ALPHA Conversion: TTOA.F(tEXL) ..cociciiiiiiiieee e 75
2.22.2 ALPHAto TEXT Conversion: ATOT.F(alpha)c.cccococeveiieiiiiciviieiiieeeeeee . 15
2.23 RECURSIVE ROUTINES .iitiitiit ittt ettt ettt ettt ettt et et re e e e e reneeneee 75
2.24 PRE-PROCESSING PROGRAM TEXT ..uuiiiiiiitiiiitiiesieeeeeseieeessesssneeesiessnneeens 81
2.25 MORE ON CHANGING THE FLOW OF COMPUTATION.....cccuvtiiriierineeenieeennens 84
2.26 SOME DATA-RELATED LOGICAL VALUEScviiuiieie e eae e 86
2.27 MORE SAMPLE SIMSCRIPT I1.5 LEVEL 1 PROGRAMS.cc.civvieeieeenns 89
2.27.1 A Data Analysis Program: Lcccoiiiiiieiieieie e et e e e e e e e ee s 89
2.27.2 A Data Analysis Program: 2........ccccoiviiieeireeie e iensiiieseiree e e sesn s snnnnesneaeseaneeees. 90
2.27.3 A Matrix Multiplication Programcccceueeeieiii e e e e 91
2.27.4 A Matrix Multiplication ROULINEccccvuiiiiieieii e 92
2.28 MORE ON PROGRAM FORMAT ..ottt ittt et ettt et e e et e e e e naens 93
2.29 A USEFUL OUTPUT STATEMENT .uiiiiiiiiiieiit e et eee s ee e e ee e eeaeeeaeee s e e aenae e 94
2.30 SUBPROGRAM VARIABLESciiiitiiiiiiieeeietcee et e ee et eeeteaee e et e e ee st eeeana e 95
2.31 THE STORE STATEMENT uiitiitiit ittt ittt et ettt et ettt ettt reas 98
INPUL/OULPUL CONCEPLS ..ttt e e e e e e e e e e e e e e 99
3.1 INTRODUCTION ...ivitutuiieeeiietteseeesuet e e eseaesasn e e aesse st easeesaesneeesessen e eeeaesnnns 99
3.2 A SEARCH CAPABILITY .. utiitie e ee et ee et ee et e et e eet ee et e e e e e e e e ee e eaens 99
3.3 A STATEMENT FOR COMPUTING SOME STANDARD FUNCTIONS OF
VARIABLES ..ottt e e e e e e e e e s e e s s e e s e e e e eans 100
3.4 INPUT/OUTPUT STATEMENTS ...ciiiiiieiieiieeieiieese s e e ee e ee e ae e e e e e seannnen e ens 103
3.4.1 Physical Device SPeCIfiCationccccivueiiieeirii i ae e e ae e 104
3.4.2 The Formatted I/O Statements READ and Writeccccccecceevieeeeceviveviiennen.... 106
3.4.3 FOrMAt LIStS .uivieieiiiiciiieiiie e er e e s e seie e e e eees e s esstneesnn e e s e sssn s s snnnnesneaeseaneens 110
3.4.4 Controlled READ and WRITE Statementsccccvvivieeie e vis e e 116
3.4.5 Variable FOrMatS.......ccooiiioiiieiieie s ie e e e s es s srn e ve e eeen e ee e snennnnneseess D17
3.5 MISCELLANEOUS INPUT/QUTPUT STATEMENTS AND FACILITIEScove....... 119

3.5.1 Logical File Assignment: The OPEN Statementccccccovevveinviineinienne. 119
3.5.2 End-of-File ConditioNSccccceeviiiimiiiiniiiie e sieen e e siie e e esseie s eesneieeen. L20

Contents

3.5.3 Repositioning Files .. PP PPRPRUPRPRPRR! 2 |
3.5.4 Input/Output of NondeC|maI Informatlon OO UPRPRPRUPUPUPIP! 2 |

3.6 INTERNAL EDITING OF DATA oot 122

3.7 WRITING FORMATTED REPORTS ...ciuiitiiiiiitiiiee et ee s es e s er e e e eans 124
3.7.1 Page Heading CoNtrolcccccoveeiiiie i ie e svsrir e e s e e s e st snnn e e e e e 136

. MODELLING CONCEPT S ct it ittt ettt ettt s taeetesteeesaneasesensenen s eareseneesss s earsrenrerses 137

R [N1 L0] 10 T 1T 137
4.2 ENTITIES AND ATTRIBUTES ...iiuiiitiitietiiiiiertieineesieeiesterenresesenessesrseseeennss 137
G T S =i 1 U 139
4.4 TEMPORARY ENTITIES ...oiuiiitiiit it ettt e e ee e s e e e s e e aeas 144
4.5 PERMANENT ENTITIES .iiiiuiitiiiiiiitiiieet e tiie it see e ee e et e b e eeee b e e s et s aeae s eenanes 147
4.6 SYSTEM ATTRIBUTES ..uiiitiiiitiiitiieieee e et ee st e ee e e es st s ee b eesbansesnnsreneesaeas 149
4.7 ATTRIBUTE DEFINITIONS: MODE AND DIMENSIONALITY ...couiiiiiiieeeeeeannn. 150
4.8 SETS: THEIR DECLARATION AND USEcuivtiiiiitiiiiieit e et eee e e e 151
4.9 ENTITY CONTROL PHRASES ...citiiiiiiiiii ittt ettt e ee e e e e ee e e 164
4,10 COMMON ATTRIBUTES ..iuiiiutiitieeeeieeeieiiteeeiteeesiieseaeseateessesssensssnnssensesnnss 168
4,11 COMPOUND ENTITIES .iuiiuiitiiiiiitiiiteet e eiie it et ee s ee e et e eesetee e et eaeaaeseeeanes 170
4,12 IMPLIED SUBSCRIPTS .iuiiuiitiiiiiitiiiteitieieitirrasssiesaestesrasesessnestssnnssssenanss 172
4.13 DISPLAYING ATTRIBUTE VALUESoiiitiiitieiiteee e et e ee s e e e s e eeeaeas 174
4,14 SOME SAMPLE PROGRAMS ...uiiitiitiitiiiiieit et ieeiieiteseneetesensstssenseseeennss 176

4.14.1 An Inventory Control EXamplec.cooiiiiiie i seieaieaen. 176

4.14.2 A Data Analysis APPlICAtioNccccoeeviiviiiiiiie e sre e e 178

4.14.3 An Analysis of Prime NUMDbDEISc.cooiiiiiiiiiiie s seneaneaen. 181
4.14.4 Dynamic Definition and Use of Attributescccccccceviiviviveviee e cevieieenen. 181

. DISCRETE SIMULATION CONGCEPTS 1ttttttieiisiineesanenesessenessnearesensessssearsrenrennns 183

o N [N = 0] 01U ox N o) N R 183
5.2 DESCRIBING A SYSTEM MODEL ..iuiiiitiii i ieitteteireeeaeee s eaneeeneenensnenneeens 183

5.2.1 EVENt DECIAratiON.........cooiiiiiieieieie ettt et ee e st eseneses e e aese e sveve e e anenene 18T
5.2.2 Event Notices . R RPRPPPPUPPPTRRRRR I o o
5.2.3 Process Declaratron PRSPPI I o 1° |
5.2.4 Scheduling Events and Processes PR K [0
5.2.5 Processes and Events Scheduled for the Same Trme 191

5.3 THE SIMULATION MECHANISM ...ciiuiiiieiet i eiei e ee et eeeaeee e et e eean s eeennneeenens 193

5.3.1 The Simulation Clock . P UPUPUPS Ao Lo
5.3.2 Assigning Event and Process Attrrbutes P SPRPSRRRI A I 4
5.3.3 Process Interactions .. 22 0|
5.3.4 Interrupting and Resumrng a Process PP RRRPRRD 4 O X §
5.3.5 Processes and Resources . PP~ 0 24
5.3.6 Requesting and Relrnqurshrng Resources PP POPRPPU Y~ 0 <
5.3.7 Process Notice: Additional Attributes . 205
5.3.8 External Processes and Events.. PRSP 24 O I 4
5.3.9 Triggering Processes and Events Externally PP 24 0 |
5.3.10 Time and Date Expressions in External Datacccccoceiviveiniiineinsenenn.. 210

5.4 MODELLING STATISTICAL PHENOMENAoooee e e et ae e aaanaans 214

5.4.1 Random Step Variablesccccoviiiiiiiiiincii e, 220
5.4.2 Random Linear Variables .. rrerrrre e anene s 220
5.4.3 Programmer-Defined Random Varrables et 220

SIMSCRIPT II.5 Programming Language

5.5 SIMULATION ANALY SIS . ettt et ettt ettt e e e ee e e e ee e e en e e e e ean e 223
5.6 MODEL VERIFICATION AND DEBUGGINGcc.oteiieeeeie e e eeeeeeeeeaeeeeeaeeaeenees 232
5.7 SYNCHRONOUS VARIABLES ...uitiitiiit it ies et st tseasssesesansaresensensssneanesenees 236
5.8 SIMULATION EXAMPLEuinieie et et e ee e e e e e ee e e e e e ee e e e e e eneeneanae 238
5.8.1 A SAmMPIe MOCEL.......cooiiiiiiiiceiit et 208

ST AN DAY 7 Nl = T 0] 1T of TP 249
5.1 INTRODUGCTION Littuniuitiineeensaearsseneesansnetrseense s eassseneess s sarssensessearereneenes 249
6.2 PROGRAMMER-DEFINED ARRAY STRUCTURES: POINTER VARIABLES 249
6.3 STILL MORE ON CHANGING THE FLOW OF COMPUTATIONvvevvveeeeveneennns 257
6.4 ATTRIBUTE DEFINITIONS: PACKING AND EQUIVALENCEcovveieieieneennen 260
6.5 ATTRIBUTE DEFINITIONS: FUNCTIONS .. .iuiieieie et et ee e ee e ee e eeaeeaees 271
6.6 COMPOUND ENTITIES INVOLVING TEMPORARY ENTITIES.....ccovovvevveeeieen, 272
6.7 TWO ILLUSTRATIONS OF SET RANKING BY FUNCTION ATTRIBUTES 273
0.8 USING “OPTIONAL” ATTRIBUTESiuiinieie et ee et eee e ee e ee e e e e eeeeeeaeneeeaees 275
0.9 DELETION OF SET ROUTINES ...iuiiit ettt et ettt e ee e e e eeeeeeeeeeeeaeeeeeaeeneees 278
6.10 LEFT-HANDED FUNCTIONS ...uitiitiiieieieeteneessneneasssesessnsaresensessnsneanesenees 279
0.11 MONITORED VARIABLESiuiiieie et et et ee e ee e ee e ee e ee e e e e e e e e e eanaens 282
6.12 IMPLEMENTATION DETAILS FOR THE TALLY STATEMENT ..cocvvvveeveeennnn. 288
APPENDIX A. FORMAT CONVENTIONS USED IN PRINT STATMENTS ..ccvvviiiieieneens 291
APPENDIX B.FUNCTIONS AND ROUTINES . .ituutiinittiineneieeeetneeessneesnsnsnsneesnesessneeennes 295
Bl FUNCTIONS L.iiiniiiiite ettt ettt et e ee et et e ee e ee s e s e s en s e s e s en s en s e s en s en s e sensenenneens 295
B2, ROUTINES . .onienieie ettt e e et et e e e e e e e e e e e e e e e e e e en e e eens 305
APPENDIX C. SIMSCRIPT REFERENCE SYNTAX 1 evtuutite ittt eaaeaeeeeaeeeeneaaeeeneeneeans 307
C.1 BASIC CONSTRUCTS ..ttt ettt e e e e ettt e e et ee e ae e e e ae e ae e ae e ae e e e e e e e e eaeenn 307
OFNZ =1a10 011 LY/ I TR 308
C.3 MELAVATADIES ..cn e e e e e e 309
C.3 THE STATEMENT SYNTAX ottt ettt e et et e et et e ae e ae e ae e ae e aa e ae e an e e e aneaeeaaenn 312
C.5 Preamble Statement Precedence RUIES ...ttt e eee e 330
N0 B Xttt ettt ettt et e e e e e et ————— e . —————_— 333

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Figure 2-5a.
Figure 2-5b.

Figure 2-5c.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22.

Figures

Flow of Control After an if Statementc.ccooveiviiiiiiniiiieieiees 13
Flow of Control After Shortened if Statementccccccceveeeenen. 14
A List Structure: One-dimensional Arrayccccceeeeeereineennennees 43
Elements of a One-dimentional Array Called LIST 44
A Table Structure: A Two-dimensional Arraycccceeevereeeeeeenenn. 45
Elements of a Two-dimensional Array Called TABLE 45

Program Consisting of a Subprogram Called by a Main Routine . 53

Program Consisting of Two Subprograms Called by a
Main Routine

Program Consisting of Three Subprograms and a Main Routine 54

Tree CONSLIUCLION ..oivoieeeieeeec e e e e e e e e e e e 79
A BINAIY TrEE ..ottt e 80
A COMPIEX TIEE et a e e e e e 81
Report Using Row and Column Repetitionccccevvevevieeinnnns 125
Column Repetition, Page 1couiviiiiiiieiieneieeee e 130
Column Repetition, Page 2couvviiiiiiieiieieeeeeeeeeeee e 131
An Example of Column Repetitionccccvviiiiiiiiiiiiiniineieeeneennn 132
An Example of Format SUppressionccccoeceveveieeneiniineieeieenes 134
Storage of Attributes in a Two-dimensional Arrayc.c....... 138
Order of Storage of the Attributes of an Entityccoccevinnees 139
Automatically-defined Attributes of COMMUNITY Entities 140
Automatically-defined Attributes for Members of the Class MAN 140
Owner-member Set Relationships ... 141
Set RelationShips ... 142
Set RelationShipscoooo e 143
ENtity Creationcoceeeeieiiiiieiie et 145
Attribute Storage of Permanent EntitieSccooveeveiiiniiniiniinenes 148
Storage of Attributes of a Permanent Entityc.cccceeeen. 152
Storage of Attributes of a Temporary Entitycccccvvevveennennn. 152
Storage of System Attributes and Set Pointers 152
Entity Structures for FARM and DOGcccccviiiviicieeneeen, 154
ENtity RECOIAS ..ot 155
ENtity RECOIAS ..o e 155
ENtity RECOIAS ..o e 157
ENtity RECOIAS ..oviiiiiiiiiee e 158
A Set With TWO MEMDEISo.uveiiiii i 159
A Set with Three Memberscccocviviiiiiiinie s 160
FIFO and LIFO Set Organizationscccccceuieuieiniiniineineeneenn. 163
Entity Structures for TANKER and TUGccciiiiiiiinineen, 170
Display of Result Produced by Data Analysis Program 180

SIMSCRIPT II.5 Programming Language

Figure 5-1.
Figure 5-2.

Figure 5-3a.
Figure 5-3b.
Figure 5-3c.
Figure 5-4.
Figure 5-5.
Figure 5-6.

Figure 5-7.
Figure 5-8.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.

Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.

Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 6-13.

Vi

An Activity Delimited by TwWo EVENtScooooiiiiiiiiiiiiieiii e, 184
A Process May Be Considered to be Comprised of a Sequence of
Events Occurring in TIMEueiiieieie e 185
Two Overlapping ACHIVIEESiiveeiciiie e 186
TWO NeSted ACHVILIES ...oeueveeeiie i e 187
Two Activities with a Common Event Timeccccevvvvevnninnn. 187
Possible Layout of Event Notice Entitiescccevvvvveviinin. 189
The Future Events Set Organizationcccoeeiveeviiinevienienneenn. 194
Attributes of Process Notices Created by Process Declarations
ADOVE .. e a e 207
A Rectangular Coordinates SyStemccooveveirieriiniieiieineiienns 218
Storage of RANDVAR Sample Valuescccccccvivciiiicieen e, 223
One-dimensional Array X with Its Base Pointercccoeeeeen.. 250
Base Pointers in a Two-Dimensional Arraycccccvevevnennnnn. 250
Base Pointers in a Three-Dimensional Arrayccccccvvvvninnnnne 251
Memory Structure After Reserve Statementccccvvevennnnn. 252
Memory Structure After Assignment of Data Arrays to Row
0T (T PP 253
FamMIlY T . e 254
Family Tree Stored in a Rectangular Arraycccccevvevieennnn. 254
Family Tree Stored in a Ragged Table.............cccooviiiiiiiiiiien, 254
Memory Structure for Family Tree, N =4 ..., 256
11 S (o] = T = PRSP 264
AITAY STOTAQE .ieieieiieie et e e e e e e 268
ATTAY STOTAGE ...t e 268
RECOId STUCIUIEeieiiiiieieiie et 277

Preface

SIMSCRIPT 1.5 is a rich and versatile computer programming language enhanced with computer
graphics, designed to solve general programming problems. This book, which describes the
SIMSCRIPT I1.5 language, is divided into chapters describing non-graphical language "levels"
which provide an organized path through the language:

Level 1(Chaptersl and2): General purpose language statements.

Level 2 (Chapters3 and4): The entity-attribute-set features of SIMSCRIPT II.5. These fea-
tures have been updated and augmented to provide a more powerful list-processing capability.
This level also contains a number of new data types and programming features.

Level 3 (Chapters): The simulation-oriented part of SIMSCRIPT II.5, containing statements

for time advance, event-processing, generation of statistical variates, and accumulation and
analysis of simulation-generated data. The powerful new modeling constructs of processes and
resources are described in great detail.

Chapter6 is a collection of various topics which need not be understood for initial use of
SIMSCRIPT I1.5. This chapter also describes several features of the language which are obsolete,
but are being supported for compatibility.

A companion textBuilding Simulation Models with SIMSCRIPT |ltéaches the fundamentals of
simulation methodology through the use of SIMSCRIPT 1.5 case studies. The material in this book
relates closely to the short course given regularly by the CACI Products Company.

A third book,SIMSCRIPT II.5 Reference Handbggpkovides a description and examples of each
of the language elements in alphabetical order.

Interactive simulation graphics for SIMSCRIPT II.5 is described separately, 8iINM@RAPHICS
Il User's Guide for SIMSCRIPT Il.50ther features of SIMSCRIPT II.5 are covered in the user's
manual for each specific system.

SIMSCRIPT II.5 is available for PCs running WindowsNT and Windows95. It is also available for
VMS systems and most UNIX workstations.

Free Trial Offer

SIMSCRIPT I.5 is available on a free trial basis. We provide everything needed for a com-
plete evaluation on your computérhere is no risk to you

SIMSCRIPT I1.5 Programming Language

Training Courses

Training courses in SIMSCRIPT 1.5 are scheduled on a recurring basis in the following
locations:

La Jolla, California
Washington, DC.
London, United Kingdom

On-site instructia is available. Contact CACI for details.

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:
CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
(619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

1. SIMSCRIPT II.5 Basic Concepts

1.1 Introduction

A computer program is a list of instructions directing a computer to perform certain operations on
data. A programming language is used by a programmer to describe the data and the actions to be
performed. SIMSCRIPT 1.5 is one such programming language. Here is a simple example of a
SIMSCRIPT 1.5 program:

read X and Y

add XtoY

print 1 line with Y thus
The Sum is; *****
stop

This program consists of four SIMSCRIPT I1.5 statements. The statements are instructions to:
Read the values of two variables cakeandy from input data

Add these variables together
Print the sum of the variables along with the explanatory mesgagsum is: , and

P w N PR

Stop.

The example illustrates the basic computer operations of input (reading data), computation (in this
case, addition), and output (printing results).

In program examples throughout this book, SIMSCRIPT words and commands will be printed in
lower case characters. Variable names, routine names, and other user-supplied terms will be printed
in upper case characters. Thus, in the above exaraple and, add, to, print, line,

with, thus , andstop are all SIMSCRIPT wordsX, Y, and the phras@he Sum is: are ex-
pressions provided by the programmer. SIMSCRIPT words which appear in the text (apart from
those in program examples) will appeabotd characters. Again, variable names appear in upper
case characters. Finally, small segments of code are presenteddouttes * ' font as shown

above.

Although SIMSCRIPT does support string variables, the rest of this chapter focuses on integers and
reals. See paragragtlQ

1.2 Variables

As shown in the above example, programs use identifying names to refer to values of program vari-
ables. A variable is a data item that may take on different values as it is acted upon by operations.
A program statement such as:

add XtoY

SIMSCRIPT II.5 Programming Language

meansadd the current value <X to the current value (Y, givingY a new value.

A variable identifying name is any combination of letters, digits, and periods that contains at least
one letter, so that it may be distinguished from a number. For exaiX, COST,
ACCOUNTS.RECEIVABLE, SIZE, MAN3, PART1,5Y , andlA are all legal names, where27,

1,and4.6 are not. A slight restriction on variable naming is that any periods appearing as the last
characters of a name are completely ignored. Upper and lower case distinctions are also ignored.
Thus,Myvar, MyVar , andMYVA| all refer to the same quantity. It will be shown later in this
manual how this rule may be used as a notational aid.

Hereafter, whenever a variable name is used in a statement, it is understood to refer to the value of
the variable identified by that name, not to the name itself. The values given to numeric variables
may be whole numbers (integers) or numbers with a fractional part (decimal numbers). Thus, the
value associated with a variable narx may at various times 0 or 125 or16.72 or-0.00001 |,

or whatever number has most recently been assigrX. The range in magnitude of numbers that

can be internally represented in a computer and the accuracy with which numbers can be repre-
sented are, of course, subject to limits. These limits depend on the particular machine but, for the
present, may be taken to be sufficiently generous not to be the subject of concern.

At the start of program execution, the value of each numeric variable is set equal to zero. These
variables are said to be "initialized to zero."

1.3 Reading Input Data

One way in which specific numeric values can be assigned to program variables is by reading num-
bers as input data. An example ofread statement is:

read X, Y and QUANTITY

X, Y , andQUANTITY are variable names. They are used in this statement in a variable name list.

In general, a SIMSCRIPT 1.5 list consists of a string of quantities separated by either a comma, or
the wordand, or a comma followed by the woand. Some examples of variable name lists as they
might appear iread statements are:

read PRICE, QUANTITY, DISCOUNT
read PLACE and DISTANCE

read NAME, DATE, PLACE and TIME
read NAME, and DATE, PLACE and TIME

The general form of read statement is:
read variable name list

When aSIMSCRIPT program executes a read statemereads as many field from the input
data as there are variable names listed in the statement. Successive numeric values are read and

SIMSCRIPT I1.5 Basic Concepts

assigned to corresponding variables in the read list. The numbers can be entered in the input data
in integer or decimal form. For example, the numbers 5, 5.0, and 5.000 are equivalent.

Data items read into or printed by a computer are treated in physical groupings called records. Ex-
amples of a record are a single line typed on a computer terminal, a record, or a line printed on a
printer. Within a record, data items are considered to be separated into fields. A field is a contig-

uous string of symbols delimited at the beginning and the end by at least one blank. Numeric data
fields may also be delimited by the beginning or the end of a record. Each numeric value occupies
one data field.

Successive read statements do not necessarily read new input reecadseba SIMSCRIPT I1.5
program can treat input data as a continuous stream of data fields. The precise location, then, of a
number within a record is not considered. An example illustrates this "free-form" coReadt:

X,Y,Z setsX to the value3, Y to the value2.1 , andz to the value67.33 when each of the sets

of input data records in table 1-1 is read.

Table 1-1. Sample Data Records

Record Number Values
(1) record 1 3.0 2.1 67.33
(2) record 1 3.00
record 2 2.1 67.33
(3) record 1 3
record 2 2.1
record 3 67.33

1.4 Constants

Program statements may use numbers directly, such as theadd 2 to SUM , or the number
"3.14" inadd 3.14 to VOLUME . These numbers are called constants. When used, they refer to
their literal values. They are not names of variables and do not represent other values.

Constants may have the same range of numeric values as variables, and where appropriate, may be
used interchangeably in all computations. Constants differ from variables in that their values cannot
be changedAdd 5to X is a legal use of the variakX and the constalis. Add 5 to 4 is not

a legal use of the constant 4 because it is giving a new value of 9 to the constant 4.

Whole numbers and fractional numbers, signed or unsigned, are allowed as constants. When equiv-
alent representations of a number exist, they have the same value; 2.5 and 002.500 both represent
the same number. The statemeadd 1 to COUNTER andadd 1.00 to COUNTER have the

same effect.

SIMSCRIPT II.5 Programming Language

1.5 Arithmetic Expressions

Arithmetic expressions are formed by combining variables and constants with arithmetic operators.
The arithmetic operators a+ (add),- (subtract)* (multiply),/ (divide), anc* (exponentiate).

Two of these operators, plus and minus, can be used as unary operators, that is, with a single vari-
able or constant. The consta+1 and-1 are examples of the use of plus and minus as unary op-
erators on the constal. All of the operators can be used as binary operators, that is, with two
variables (or constants or a variable and constant). If vA andB represent either a variable or a
constant, the+ A and- A are examples of plus and minus as unary operatorA + B, A **

B are examples of arithmetic expressions that use binary operators.

The simplest expression consists of a single constant, or a single variable, perhaps preceded by a
unary plus or minus operator. An express+A , may be written aA, with the unary plus implied.
This is not possible, of course, with the unary minus operator.

All binary operators must be explicitly expressed, and no two operators can appear consecutively.
For example, multiplication of the variablA andB must be written aA * B , and no/AB. The

latter would be interpreted as the value of a variable cAB. Addition of the expressiorA and

-B can be written 8A+(-B) orA-B , butnolA+-B . This last example shows that parentheses

must be used to separate unary and binary operators. Parentheses may also be used (1) to clarify
the operations in an expression to make it more readable, or (2) to specify the order in which the
operations in an expression are to be performed.

Simple expressions can be connected by any of the arithmetic ope+, -, *, /, **) to

form compound expressions. The "parentheses rule" states that expressions are evaluated from left
to right, removing parentheses before applying operator hierarchy rules. Imbedded parentheses are
evaluated from the inside out. Thus:

a+ (b*c) +d
is evaluated by first computing the value b*c) and then adding this valuea andd.

When parentheses are omitted, the hierarchy of operations is:

1. Exponentiation o
2. Multiplication and division * and/
3. Addition and subtraction + and-

This hierarchy specifies the order in which the different operations are performed relative to one
another. Exponentiation is performed before multiplication or division, and either of these before
addition or subtraction. For example, the expresA+B/C +D*E*F -G is taken to mean

A+ (B/C) + (D E«F -G . If precedence is not completely specified by these rules, the
operation specified farthest to the left in the expression is performed firsiA * B/C , which is
computed a(A*B)/C

SIMSCRIPT I1.5 Basic Concepts

An expression is written as a string of variable names, constants, arithmetic operators, and paren-
theses. Any number of spaces from zero upward may be used to separate the parts of an expression.
Therefore A+B, A+ B, A+ B andA +B are treated identically. The exponentiation operator,

** is treated as a single unit and no spaces may appear between its two asterisks. Some example
expressions are given in table 1-2.

Table 1-2. Sample Mathematical Expressions

Expression Comment

PRICE A variable is itself an expression
53 A constant is also an expression
(PRICE) Parentheses are optional

DUEIN - DUEOUT
PRICE * QUANTITY

PRICE * (ORDER - SALES) Parentheses change precedence order
A+B+C+D

X ** 2 In mathematical notation, this x2

A+ X 24+ X 4 Equivalent to the following:

A+ (X = 2) + (X = 4)

X+Y/Z This means
X+ (Ylz)
not:
X +Y)/z
-A*B This mean«(A B), not(-A) B

1.6 Computing Variable Values

One way of assigning a value to a program variable is toread statement. Another way is to
use elet statement. The general form of this statement is:

let variable = expression
as in the statements:

let X=0

let X = (Y + 1)/15

let PRICE = QUANTITY * SALES.PRICE

let BALANCE = STOCK - PURCHASE

let UNIT.COST = TOTAL.COST / NUMBER.OF.UNITS
let AREA = 3.14 * RADIUS ** 2

SIMSCRIPT II.5 Programming Language

When glet statementis executed, the current values of the variables on the right of the equal sym-
bol (=) are used to compute the value of the arithmetic expression. This value is then assigned to
the variable on the left of the equal symbol.

Used in this way, in conjunction with the wdet , the equal symbol is an assignment operator.
In the statement:

letX=Y*2

the value of the expressiY *2 is computed and assigned to the variiX. The previous value
of X is replaced by the new value; and in:

let X=X+1

a new value oX is computed by addirl to the current value X and assigning this new value to
X. Use of the worlet is optional. That is, th= operator is enough for assigning an expression to
a variable.

1.7 Specialized Computation Statements

Because addition and subtraction are such frequently used operations, two special statements,
combining both expression evaluation and assignment operations, may be usecadd and

subtract statements are used to add or subtract the value of an arithmetic expression to or from a
program variable. The statement forms are:

add arithmetic expression to variable
subtract arithmetic expression from variable

The statements are equivalent tolet statements:

let variable = variable + arithmetic expression
let variable = variable - arithmetic expression

Theadd andsubtract statements have the virtues of being easy to write and being straightfor-
ward in meaning. Some examples of these statements are:

add 1 to COUNTER

add ITEM * COST to BILL
subtract 3* X +6*Y from Z
subtract COST from CASH

1.8 Displaying the Results of Computation

Theprint statement was used in the first example in para¢l to display the result of a compu-
tation. This statement may be used either to display some predefined text, or to display both pre-
defined text together with the current values of program variables or arithmetic expressions, as in:

print I lines as follows

SIMSCRIPT I1.5 Basic Concepts

or
print | lines with arithmetic expression list as follows

followed by! lines of descriptive text and format information. The line cl is a positive integer
constant. The worline can be used insteadlines to improve readabilityThus andlike
this may be used as alternatives to the phrase. Some <sprint statements are:

print 2 lines as follows

print 1 line thus

print 2 lines with X and Y like this

print 4 lines with X, X**2,Y, Y**2, X*Y, N as follows

Thel lines, called format lines, that follow tprint statement can contain as many as 80 columns

of textual information and formats for variables or arithmetic expressions whose values are to be
printed. There can be either text, or formats, or both in any format line. The length of a format line
is measured as the number of columns from column 1 to the last nonblank column in the line.

Textual information appearing in format lines is printed exactly as it appears. Thus, the statement:

print 1 line as follows
...... This is a Sample Format Line.....

prints a single line of output containing the above message. The statement:

print 2 lines thus
Summary Report
INCOME EXPENSE DATA

prints two lines of output as they appear in the format lines. Any character exc*) or a vertical
bar (|) can appear in a format line as a textual message. Blanks are "printed" as empty columns.

Whenprint statements are used to display the value of arithmetic expressions, the expressions are
listed in theprint statement, and descriptive formats are provided for their values. The expres-
sions are first evaluated, and then printed in the display formats in left-to-right order. The display
formats are described using aster*) characters to indicate the desired positioning of the printed
values.

The general format description for a numeric value is of the form ***** where the asterisks indi-
cate the number of print positions before and after the decimal point. The decimal point and fol-
lowing asterisks may be omitted if no fractional part is to be printedeckssary, the value is
rounded before printing. Blank print positions to the left of the decimal point, although not filled
with asterisks, may be used if required by the magnitude of the number. A complete list of print
formats is given itAppendix A.

SIMSCRIPT II.5 Programming Language

The variablePRICE andITEMS appearing in the followinprint ~ statements are assumed to have
the value<100.899 and27, respectively:

1. print 1 line with PRICE/ITEMS thus
PRICE/ITEM = $* ***

is printed as:

PRICE/ITEM = $3.737

2. print 1 line with PRICE/ITEMS as follows
PRICE/ITEM = $*.**

is printed as:

PRICE/ITEM = $3.74

3. print 3 lines with PRICE, ITEMS, PRICE/ITEMS thus
PRICE = $****
ITEMS = *
PRICE/ITEM = $* ***
is printed as:
PRICE = $100.9
ITEMS = 27

PRICE/ITEM = $3.737

When several values are to be printed contiguously, the single p¢) is used in place of an as-
terisk to terminate a format on the left. If this is not done, two contiguous formats merge into one
another. Thus, two contiguous three-digit integer fields can be expres**|** | and six con-
tiguous one-digit integer fields ||||||

Blank lines can be included in tprint ~ format lines, or thiskip statement may be used E is
any arithmetic expression, the statement:

skip E output lines

skips a number of lines equal to the valuE rounded to an integer. The weoutput is optional.
The worddine anclines are synonymous. Some examples of the usage are:

skip 1 output line
skip N lines
skip X + 3 * Y output lines

If Eis negative, it is treated as zero. At most, one complete page will be skipped.

Pages can be ejected before printing, so that theprint statement starts at the top of a new
page, by using the statement:

SIMSCRIPT I1.5 Basic Concepts

start new page

Theprint, skip , andstart new page statements can be used together to produce attractively
labeled output reports.

As a final caution, note that whereaprint statement can appear on a line with previous state-
ments, each of its following format lines must appear on a separate line. Formaidines i
general, not be indented.

1.9 Skipping Unwanted Input Data

Input data records may contain more information than is required by a program. For example, data
collected from a laboratory experiment or a population survey may be analyzed in several different
ways by different programs.

A skip statement may also be used to allow unwanted input data fields or records to be bypassed.
A statement of the form:

skip E fields

passes ov E data fields. The arithmetic express E is rounded to an integer, if necessan E is
negative, it is treated as an error, causing the program to terminate. For example:

skip 2 fields
skips the next two data fields, and:
skip 1/J fields

skips no data fields 113 is equal tcO, skips 3 fields it/ = 2.7 , or skips 4 fields i1/J =
413 .

When a data field (value) is read, SIMSCRIPT 1.5 waits at the end of the data field in preparation
for the nexread statement. Hence, when a field at the end of a data record is read, the record is
retained until the nesread statement is executed.

Theskip statement can also be used to skip the remainder of a current data record when it is written
as:
skip 1 record

An equivalent statement:
start new record
or

start new input record

SIMSCRIPT II.5 Programming Language

is somewhat more descriptive. Note that the 'input is optional. Ifinput is not specified,
this usage of thskip statement is distinguished by context from that used to skip output print lines.
The wordrecords impliesinput , whilelines impliesoutput

Theskip record statement can be generalized to the form:
skip E records

in which case the current data record and the follc E-1 records are bypassed. If the expres-
sion (E) is zero, no records are skipped. If it is negative, the program terminates with an error mes-
sage. The statement:

skip 3 records

skips the remainder of the current data record and also the next two data recoriparagraph
3.5.Z for program termination on end-of-file.)

1.10 Logical Expressions

Normally, computation proceeds from statement to statement in the order in which statements phys-
ically appear in a program listing. For example, in the four-statement example in pal, theph
program first executes tiread statement, then ttadd statement, then ttprint statement, and

halts when it reaches tstop statement. A fundamentally important extension of the concepts de-
veloped so far is the ability to specify, in a program, conditions under which alternative actions
should be performed.

Arithmetic expressions may be combined, using relational operators, to form logical expressions,
which may be determined to be either true or false and then may be used to choose between alter-
native actions. A logical expression is formed by joining two arithmetic expressions with a binary
relational operator. The relational operators are:

equal

not equal

less than

less than or equal
greater than

greater than or equal

NN N

v Vv

When a logical expression is encountered during the execution of a program, the current values of
the variables or arithmetic expressions that make up the logical expression are used to determine its
truth or falsity. Thus, iX=1 andY =0 , the logical expression:

10

SIMSCRIPT I1.5 Basic Concepts

X=Y is false
xXzY is true

X<Y is false
X+Y=X*Y is false

For readability in different contexts, SIMSCRIPT II.5 provides alternative ways of writing logical
expressions. Table 1-3 relates the mathematical symbol of each relational operator with keyboard
symbols, English abbreviations, and "literary English" equivalents permitted in SIMSCRIPT II.5
comparisons.

Unless the keyboard symbols (column 2, table 1-3) are used, each relational operator must be sep-
arated from the arithmetic expressions on either side by a parenthesis, or at least one blank.

Typical logical expressions are:

Y>O0

AGE less than RETIREMENT

CODE not equal to ZIP

LEVEL < THRESHOLD

(FIXED + NUMBER * UNITS) greater than LOWBID

A>= (B*X*2+357/C)
(X ** 2 + Y ** 2) greater than Z ** 2
X** 2+ Y ** 2> 7 %%

© N o 0k wDNPE

Examples 5, 6, and 7 demonstrate that the arithmetic expressions may be enclosed in parentheses
for clarity without changing their meaning. Examples 7 and 8 illustrate the use of equivalent forms
of a relational operator.

11

SIMSCRIPT II.5 Programming Language

Table 1-3. Relational Operators

Permitted Permitted
Mathematical Keyboard English “Literary English"
Symbol Symbol Abbreviation Equivalent
= = eq Equal or Equals
<> ne Not Equal To
< < Is/It Less Than
> > gr/gt Greater Than

No Greater Than or
Not Greater Than

In
A
I

)

\Y)
Vv
1

ge No Less Than or
Not Less Than

1.11 Changing the Flow of Computation Using Logical Expressions

Theif statement is used to test the truth or falsity of a logical expression and to choose between
alternative sequences of instructions accordingly. The general formif statementis:

if logical expression

first group of statements
else

second group of statements
always

and may be flowcharted as shown in figure 1-1. In this figure, the first group of statements is exe-
cuted when the logical expression is true, and the second group of statements is executed when the
'logical expression' is false. The term "flow of control" is used to denote the sequence of instruc-
tions followed under specific conditions, chosen from among the possible such sequences. The
keywordselse andalways may be replaced by alternative synonyms to improve the readability

of theif statement:

Else may also be expressec otherwise

Always may also be expressecregardless or endif

An example of thif statement is:

12

SIMSCRIPT I1.5 Basic Concepts

if STATUS = BUSY

add 1 to NO.IN.QUEUE
else

let STATUS = BUSY
always

Here, eSTATUS variable is tested against a value dencBUS\ status. The variabNO.IN.QUEUE
is incremented if the status flag is busy and the flow of control pasalways . Otherwise, the
status flag is set to reflect the nBUS) status and control naturally passes tcalways statement.

logical
expression

True

flrstgfroup second group
of statements
statements
ALWAYS |

Figure 1-1. Flow of Control After an if Statement

Theelse statement and 'second group of statements' are optional. There are cases when the choice
is simply whether or not to perform an action. This shortened form if statementis:

if logical expression

group of statements
always

13

SIMSCRIPT II.5 Programming Language

and is flowcharted in figure 1-2. When the logical expression is true, the group of statements is ex-
ecuted and flow of control continues through dlveays statement. When the logical expression
is false, control transfers directly to thievays . For example:

If X less than A
letA=X+Y
letB=X-Y

always

logical
expression

True

v

group
of
statements

False

Figure 1-2. Flow of Control After Shortened if Statement

To improve program readability, the logical expression appearingifn astatement may be op-
tionally followed by a comma. The wokd may also be used before the "English" versions of the
relational operators in logical expressions. Examples are:

if STATUS is not equal to BUSY,
if X is less than A,

Also, because logical comparisons with the value zero occur frequently in programming, the words
zero, positive , andnegative may be combined with the woris andis not , replacing

14

SIMSCRIPT I1.5 Basic Concepts

both the conditional operator and the right hand arithmetic expression, to form more readable log-
ical expressions in these special cases. Examples are:

if X is zero equivalent to ifX=0
if X-Y is positive equivalent to if X-Y >0
if Z is not negative equivalent to ifZ>=0
Zero, positive, and negative may be thought of as properties associated with an arithmetic

expression. SIMSCRIPT 1.5 allows for the expression of a number of such logical tests against
predefined properties. These will be presented in later sections as the context demands.

If statements can be "nested" by puttingstatements within the statement group of dthestate-

ments, thus allowing complex conditions to be specified. The statement group instsitement

can contain any number of statements. The only qualification on this group is that it must be self-
contained with respect to othier statements appearing within it. Eathis matched by a corre-
spondingalways , as left parentheses are matched with right parentheses in an expression. For ex-
ample, the following program segment might be used to classify persons by age into one of the
groupsCHILD, TEEN , or ADULTdefined by the the age groups under 11 years, between 12 and 17
years, and over 18 years:

if AGE less than 12
add 1 to CHILD.COUNT
else
if AGE less than 18
add 1 to TEEN.COUNT
else
add 1 to ADULT.COUNT
always
always

To indicate program structure and flow of control, it is helpful to indent and aligrifeacha col-
umn with its correspondingse, always, otherwise, regardless, orendif . Obvious-

ly, an out-of-placeelse or always in a program can greatly alter the flow of control and thereby
the meaning.

A feature of one particular construct of nestedstatements is that a failure to satisfy any one of
the logical conditions specified by any of the negtedtatements effectively causes a transfer of
control out of the range of the entire nest. Such a structure is illustrated below:

if VALUE > 1000.00
let PRIORITY =2
if TIME.DUE < 3
add 1 to PRIORITY
if WORKTIME < 1
add 1 to PRIORITY
always
always
always

15

SIMSCRIPT II.5 Programming Language

The failure of any test causes a transfer to one of the casalways statements, and hence a
transfer out of the structure. Succesif statements add further logical tests to that of the first
if statement. This structure may be simplified for readability by prefixing the then to the
second and subsequif statements, and eliminating all but one of the consecalways state-
ments. The example shown above could be written as:

if VALUE > 100.00
let PRIORITY = 2
then if TIME.DUE < 3
add 1 to PRIORITY
then if WORKTIME < 1
add 1 to PRIORITY
always

Note that thehen if ~ construct is only applicable to nested logical tests in which the false condi-
tion for any of the tests is to have the same effect — a transfer of control out of the nest structure.
While the use othen if may reduce the number of statements required, the programmer must
judge whether such use obscures the logical intent of the structure.

1.12 More on Logical Expressions

The logical expressions described above have used relational operators to specify comparison be-
tween two arithmetic expressions, or between one such expression and defined properties such as
zero oOrnegative . This section elaborates on the structure of logical expressions.

A logical expression may be negated by following it with the ptis false , as in the expres-
sion:
value < LIMIT is false

The is false phrase may be used to improve readability by stating a desired condition without
forcing an unnatural transposition of logic. For example, a test may be written as:

if QUANTITY > INVENTORY
let ORDER = ORDER - 1
always

or:

if QUANTITY <= INVENTORY is false
let ORDER = ORDER - 1
always

with equal effect. For symmetry, the phristrue is permitted. The form selected depends on
how the programmer wants a logical expression to appear to a reader.

Simple logical expressions containing arithmetic expressions and relational operators may be com-
bined using logical operators to form compound logical expressions. The logical operzands are

16

SIMSCRIPT I1.5 Basic Concepts

andor . (In this context, a comma cannot be substituted for the worE1 anc E2 are logical
expressions, then:

Eland E2is true if botl E1 anc E2 are true
Elor E2is true if either or both {E1 anc E2 are true

Compound logical expressions may contain more than two simple logical expressions, as in the log-
ical expression:

El1 and E2 or E3 and E4

When more than two simple logical expressions appear in an unparenthesized compound logical ex-
pression with the operatcand oror , the operatcand is evaluated first. Parentheses can be used,
however, to indicate a specific order of evaluation. Inthe absence of parentheses, the above expres-
sion is, by convention, evaluated, as though it had been written:

(1) (E1and E2) or (E3 and E4)

If a program requires some other logic, the statement can be written as:
(2) Eland (E2or E3)and E4

which means something quite different. Version (1) is true either ifE1 andE2 are true or if
bothE3 andE4 are true. Version (2) is trueEl is true an E4is true, and eith¢E2 or E3is true.

Compound logical expressions can be usedis false ~ andistrue phrases. Ailis false
oristrue phrase always applies to the logical expression preceding it. If this logical expression
is compound, it must be enclosed in parentheses, as shown in the logical expression:

Elis false and (E2or E3)is true

A few simple rules that govern the writing and evaluation of logical expressions are given below.

1. Alogical expression enclosed in parentheses remains a logical expression.

2. In the absence of parenthesand is evaluated befolor . Successive logical expressions
are used as operands<and operators, and these evaluated expressions are then used as op-
erands oor operators. Parentheses can always be used to indicate specific operator hier-
archies.

3. Istrue andis false phrases apply to logical expressions preceding them. If such a
logical expression is compound, it must be enclosed in parentheses. Otherwise, the phrase
only applies to the expression adjacent to it.

Some examples that illustrate the writing and evaluation of complex logical expressions are given
below. Inthese examples, the variall, J, K, M , andN are positive numbers; the variahC,s
R, S , andT are negative numbers; and the variz is zero.

17

SIMSCRIPT II.5 Programming Language

1. I equals J is true or false depending on the val, J

2. I equals Q is always false

3. M + N is positive is always true

4, M + T is positive is true or false depending on the valM, T

5. I >0andJ >0 is always true

6. | >00rR >0 is always true

7. legJand Zeq O is true il equalsd, and false otherwise

8. leqgJorZeqO is always true

9. I =Jand K >NandR=S is true if all three conditions are true, and
false otherwise; itis evaluated al =
J)and (K>N)and R=S))

10. I=JorK >NorR=S is true if any one of the three conditions
is true; it is false only if all are false

11. I=Jand K >NorR=S is true if either of the two conditions
around theor is true; it is evaluated as
(I=Jand K >N)or (R=S)

12. Ziszeoand (I <0orS <C)adQ=T istrueirQ=T

13. Ziszeroand (I >0orS <0)andQ=T istrue ifQ=T

14, J<Kand (I=Q orS <0Q)andJ+K <I is true ifJ <KandJ+K <I

When a statement containing a compound logical expression is executed, it does not always follow
that all logical conditions in the statement are examined. For example, in the segment:

if X>Y**2 and COUNT >N
add ...
always

both logical expressions have to be true foradd statement to be executed. If the first logical
expressionX >Y**2) is false, there is no need to evaluate the se«COUN > N), as the compound
logical expressioX > Y**2 and COUNT > N can never be true regardless of the valuCOUNT

andN. In normal circumstances, the fact that all the parts of a compound logical expression may
not be evaluated eatime will cause no difficulty.

It should be noted that compound logical expressions formed using the logical cand may
be written in an alternative way. Usie to represent an arithmetic expression fto represent a
relational operator, such compound logical expressions may be written as:

Form Example
eRe 1<X
eReRe 1<X<N

18

SIMSCRIPT I1.5 Basic Concepts

eReReRe 1<X<N=SUM

eReReReRe 1< X <N=SUMis greater than 5

In each of these cases, all of the expressed logical relationships must be true in order for the com-
pound expression to be true. For example, in the second illustX must be greater thel and
less tharN. Thus, the expressicdd <X <N is equivalenttd <X and X <N

1.13 Repetition Using Control Phrases

Another important concept is that of repetition. Much of the power of the computer lies within its
ability to repeat a sequence of instructions. A SIMSCRIPT I1.5 statement can be executed more
than once by prefixing it with a control phrase. An example of a control phrase prefixed to a state-
ment is:

forl=1to3by1l
print 1 line with 1and |** 2 thus
THE SQUARE OF * IS *

The control phrasefor | =1 to 3 by 1 , controls the execution of tlprint statement to
which it is prefixed, causing this statement to be repeated three times, firl =1 , next with
I=2 ,thenwithi=3 . To demonstrate, the example uses the value of the vel within the
print statement, displaying the lines:

THE SQUAREOF 11S1
THE SQUARE OF 21S 4
THE SQUARE OF 31S 9

The general form of a control phrase is:

for V =E1to E2 by E3

whereEl, E2 , andE3 are arithmetic expressions, aV is a variable.E3 must be greater than
zero, or an error results.

The first time the control phrase prefixed to a statement is executed the control phraseV isriable
set equal to the value E1. If the value OE1is not greater than that E2, the controlled statement

is executed. After execution, the valu€3 is added to the control phrase variable, and if this new
value is again less thiE2, the controlled statement is repeated. This process continues, with the
control phrase variable taking on successively larger values untileeds the value E2.

If the phrasdby E3 is omitted from the control phrase, a value of 1.0 is assum E3. This form
is convenient when the control phrase is used simply to count the number of times a statement is
executed. A comma at the end of a control phrase is optional.

The following examples illustrate some control phrases and the successive values of their corre-
sponding control phrase variable:

19

SIMSCRIPT II.5 Programming Language

Examples of

Control Phrases Successive Values of v

forl=1to5, 1,2,3,4,5

for1=-5t0 5, -5,-4,-3,-2,-1,0,1,2,3,4,5,

for1=0.0t0 2.0 by 0.5 0.0,0.5,1.0,1.5,2.0

for 1 =10 to N by M, If Nis less than 10, the controlled statement will not

be executed.

If Nis at least equal to 10, the controlled statement
will be executed witli=10, 10+M, 10+2*M, ...,
10+n*M until I exceed:N.

As stated earlier, the value of the expresE3 is added to the control phrase variable each time
the statement is repeated. A variant of the control phrase format causes the E3 to be sub-
tracted, and thus allows the control phrase variable to step backward:

for V back from E1 to E2 by E3

Everything applicable to the forward stepping control phrase applies to this phrase. The only dif-
ference is in the direction in which the control phrase variable changes value. E3 must be
greater than zero.

Control phrases can be nested together, providing more complex control over the repetition of state-
ments:

for NUM =1to 12,
for MULT =1 to 10,
print 1 line with MULT, NUM, and MULT * NUM thus
** TIMES ** |S ***

This example computes and prints the multiplication tables for each of the numbers from 1 to 12
and for multipliers from 1 to 10. Both control variables are used within the controlled statement,
producing the displayed result:

ITIMES 11S 1
2TIMES 11S 2
3TIMES 11S 3

10 TIMES 11S 10
1TIMES 21S 2
2TIMES 21S 4
3TIMES 21S 6

10 TIMES 12 1S 120

20

SIMSCRIPT I1.5 Basic Concepts

Used in this way, the first control phrase is said to be an outer phrase, and the second phrase an inner
phrase. The controlled statement is repeated so that the inner phrase steps through the entire range
of values for the inner control phrase varieMUL1 for each new value of the outer control phrase
variableNUM.

An indefinite number of phrases can be nested together in this way. Each successive phrase is an
outer phrase of the following phrase and an inner phrase of the preceding phrase. Control variables
of outer phrases can be used in the exprestl, E2 , andE3 of inner phrases, as their values are
defined within these phrases. This usage will be explored in more d«Chapter ..

1.14 Control Phrases Extended To Cover More Than One Statement

The concept of a control phrase can be expanded to permit the phrase to control an arbitrary number
of statements. Statements to be controlled as a group are enclosed between do andioop .

A control phrase controls grouped statements in exactly the same way it controls a single statement.
As an example, consider a program, similar to the very first example, but extended to calculate the

sum of any 10 numbers supplied as input data. The vaTOTAL can be assumed to be initialized

to zero. However, it is explicitly assigned a zero value here to clarify the steps in this computation:

let TOTAL=0
for COUNT=1to10hby 1
do
read NUMBER
add NUMBER to TOTAL
loop
print 1 line with TOTAL as follows
THE SUM |S ; ****
stop

The two grouped statemetread a new value from the input data, assign its value to the variable
NUMBE, and then add this valueTOTAL. This group executes 10 times, after which the increment-

ed value of the control phrase varialCOUN, halts the repetition. The flow of control passes to

the following statement that displays the result. Note that in this exCOUN is not used any-

where within the controlled statements, but only to control the number of times the statements are
repeated.

A do loop (as we shall call this expanded structure hereafter) can also be constructed from a back-
ward iteratincfor phrase. Thus, we can write:

for | back from 10 to 1
do

loop

21

SIMSCRIPT II.5 Programming Language

It is common to indent in some regular way the statements that are to be repeated within the control
structure of «do loop (as for the statement groups irif statement) drawing attention to the de-
parture from normal sequential flow of control.

The following program uses a number of terms from an infinite series to estimate an approximate
value for the irrational number PI. The value of PI, approximately 3.14159..., can be represented
by the infinite series:

Pl/l4=1-1/3+1/5-1/7+1/9 ...

The accuracy of the approximation is controlled by a variable read from input data. This data value
sets a limiting value on the size of the divisor in the terms of the series. The summation is halted
when the values of subsequent terms become too small to affect the desired accuracy of the result.
For example:

read LIMIT
let VALUE =0
let SIGN = +1
for DIVISOR =1 to LIMIT by 2
do
add SIGN/DIVISOR to VALUE
let SIGN = -SIGN
loop
print 1 line with VALUE*4 as
The Approximate Value of Pi ig * ***xx*
stop

The variableDIVISOR takes the valuel,3,5,... until it exceeds the limiting value. Note the
use of the unary operators to control the sign of successive terms.

1.15 Logical Control Phrases

Normally, ado loop, controlled by for statement, is executed over the entire range of values of
the control variable generated. An alternative is to control the repetition of statements using some
logical condition that may be evaluated during the execution of the controlled statements.

A logical control phrase contains a logical control operator and a logical expression and may be
used to control do loop. The logical control phrases are:

while logical expression
and

until logical expression

The following example illustrates the use of a logical control phrase in a program:

22

SIMSCRIPT I1.5 Basic Concepts

while TOTAL.WEIGHT < LIMIT
do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
add FARE to TOTAL.REVENUE
loop
In this example, the value of the variaTOTAL.WEIGH1 is incremented for each set of passenger
dataread. Aslong TOTAL.WEIGH1does not equal or exceed the veLIMIT , the statements in
thedo loop are repeated. When the logical condition becomes untrue, tTOTAL.WEIGHT
equals or excee(IMIT , the repetition terminates and control transfers to the statement following

loop .

Anuntil phrase is similar to while phrase, but the terminating condition may be expressed as
the logical complement of that used in while phrase. The phrase:

until TOTAL.WEIGHT >= LIMIT

could be substituted for ttwhile phrase in the above example with an identical effect. In the ex-
ample in the previous section, the calculation of an approximate value for PI, the accuracy of the
computation was controlled by an input data value limiting the magnitude of the divisor in included
terms of the series. It might seem more straightforward to specify directly a lower bound on the
size of the terms to be included in the summation. The following example wntil phrase to

control thedo loop:

read LOW.BOUND

let VALUE =0
let SIGN = +1
let TERM =1

let DIVISOR = +1
until TERM less than LOW.BOUND
do
add (TERM * SIGN) to VALUE
let DIVISOR = DIVISOR + 2
let SIGN = -SIGN
let TERM = 1/DIVISOR
loop
print 1 line with VALUE*4 as
The Approximate Value of Pi ig *.*xx+#x
stop

Recalling thafor control phrases may control the repetition of single statements as \doll as
loops, note thewhile anduntil statements may be used in the same way. Because a single state-
ment may not, for the present, appear to offer much scope for altering the logical condition, the use-
fulness of this construction may not be immediately appreciated. It is mentioned here for
completeness and will be expanded on in later chapters.

23

SIMSCRIPT II.5 Programming Language

Because there is no automatic terminationdo loop controlled by while oruntil phrase, as
there is with gor phrase, care must be taken not to program a nonterminating loop, as in the fol-
lowing program segment:

while NUMBER.OF.SEATS is not zero
do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
loop
This loop is not terminal, as the valueNUMBER.OF.SEAT: is not affected by any statement with-
in thedo loop, and hence, if the logical expression is true when the loop is initiated, the condition
will never become false. One means of avoiding this problem is to use a combinafor con-
trol phrase modified by a logical control phrasewhile phrase, for example, may be used to al-
low afor phrase to direct the sequence of program control as long as a specified logical expression
is true. The logical expression is reevaluated each tinfor phrase changes the value of its con-
trol variable. Thus, the loop in the following example may be terminated either when all seats have
been allocated or when the total baggage weight exceeds the allowable limit:

for COUNT =1 to NUMBER.OF.SEATS,
while TOTAL.WEIGHT not greater than LIMIT

do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT

loop

This example could have been written equally well usinuntil phrase:

for COUNT =1 to NUMBER.OF.SEATS
until TOTAL.WEIGHT > LIMIT
do

Two additional logical control phrases, with a rather different effect, may be used to modify state-
ment repetition, as so far discussed. These are:

with logical expression
and
unless logical expression

Unlike while anduntil phrases that control the termination of repetitiowith phrase may be

used to selectively control whether or not the statements are executed at each repetition. For exam-
ple, ewith phrase modifies the sequence of values that pass ffor phrase to the statements

that it controls. The logical expression is tested ¢iaoh a new value of thfor phrase control

variable is generated, and if the expression is false, then execution for this value of the control vari-

24

SIMSCRIPT I1.5 Basic Concepts

able is skipped. This operation effectively passes control around the statements for a selected con-
trol variable value or set of values. The phrase is useful for screening values before they pass into
for -phrase-controlled statements. A store, for example, that does business every weekday, except
Wednesday, might, in accounting for the weeks' sales, use the program statements:

for DAY=1t0 6
with DAY not equal 3
do
read SALES.QUANTITY,...

loop
In this example, thwith phrase causes the statements within the loop to be skipped for the value

3, which is generated as a valueDAY in thefor sequence, and for which value the loop would
normally be executed.

The wordwhen can be used as a synonymwith . The word unless orexcept when can
be used equivalently to show that the items passing the indicated test are screened from the loop,
rather than accepted. Hence, the above example could be written:

for DAY =110 6
unless DAY =3
do

With, unless, while , anduntii phrases can be attached to nefor statements. When this
is done, eacwith orunless phrase applies to tlfor statement immediately preceding it, and
eachwhile oruntil phrase applies to all precedifor phrases. The example statement illus-
trates this:

for DELTA = 1 to 100 by 0.5,
for Q =L1to L2 by DELTA,
while (DELTA/Q) less than LIMIT
for V=-Qto Q by STEP,
with V ne 0
do
add ... to SUM

loop

The outefor phrases step the variabDELT£ andC through a sequence of values as long as the
logical expression in thwhile phrase is true. A false condition endsfor phrase control by
transferring to the next statement afterloop statement. Each time the variables are stepped and
the logical expression is true, the infor steps the variabV through a sequence of values. Only

25

SIMSCRIPT II.5 Programming Language

those values in the sequence, however, for which the logical expressiowith phrase is true
(i.e., all values but zero) are passed on to the statementsdo loop.

Sequences with, unless, while ,anduntil phrases can be attachedor phrases in any
combination. More than one of each type of phrase is permwhile anduntil control phrases

may also be modified | with andunless phrases, and may be nested with other independent
while anduntil phrases to control statement repetition. Again, the use of such combinations of
control phrases will become more apparent in later examples.

1.16 Altering the Flow of Control Within a Loop

There are occasions when it may be necessary to exercise more explicit direction on the flow of con-
trol than may readily be specified using the control structures discussed so far. Consider the previ-
ous example:

for COUNT = 1 to NUMBER.OF.SEATS,
while TOTAL.WEIGHT < LIMIT

do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT

loop

Examination of the statements within the loop shows that if the loop is terminatedwhile 2

phrase, the weight of the last passenger's baggage must have overfloLIMIT value. This

may not be quite what was intended. The problem arises because the tesbodititnas made

only at the beginning of the loop, and all the statements in the loop are executed at each iteration.
There are occasions when the test should logically be made within the loop. The following example
uses deave statement to transfer control out of the loop wherLIMIT is about to be exceeded:

for COUNT =1 to NUMBER.OF.SEATS
do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
if TOTAL.WEIGHT + BAGGAGE.WEIGHT > LIMIT
leave
otherwise
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
loop
let LOAD.FACTOR = (COUNT-1)/NUMBER.OF.SEATS

Theleave statement, which may only be used withdo loop, causes the flow of control to pass

to the statement immediately following loop statement that delimits tdo loop. This addition

to the construction of do loop proves useful in those cases where the terminating condition is de-
pendent on some of the actions performed within the loop. Note the otherwise in this ex-

ample. This usage is discussed in the next paragraph. Note also that the value of the control phrase

26

SIMSCRIPT I1.5 Basic Concepts

variableCOUN remains set to the value assigned at the last evaluation of the control phrase, and
may be used in subsequent computation.

Thecycle statement bypasses any further statements withdo loop, beginning the evaluation

of the control phrases determining the next repetition. Again, this statement can be useful where
the tested condition is dependent on some evaluation made within the loop. Although one or more
if statements could be used to achieve a similar effeccycle statement makes it clear that
there is to be no further computation within this iteration of the loop.

for COUNT =1 to NUMBER.OF.SEATS
do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
if FARE is not equal to FIRST.CLASS.FARE
cycle
otherwise
read MENU.CHOICE, SEAT.SELECTION
if MENU.CHOICE = VEGETARIAN

always
loop

1.17 Changing the Flow of Control By Direct Order

Theleave andcycle statements are two special cases of a generalized capability to directly con-
trol the order in which statements are executed. Any statementin a program may be prefixed with
a label. A label is a name enclosed in single quotation marks (apostrophes). The flow of control
may then be directed to continue from this statement by execLgo to statement referencing

the label. Thgoto statement is of the form:

Go to 'label'

or
Goto label

The quotation marks are mandatory when the label is defined (i.e., when it appears in front of a ref-
erenced statement), but optional when the label is referencego to statement. The wolto

is also optional. In Program 1-go to is used both to transfer out of the loop control if an error
condition is detected, and to transfer to a group of common statements after performing selective
processing for individual cases.

Note that the second group of statements and the termiralways is omitted when the first
statement group of &éf group ends with an unconditional transfer of control leave, cycle,

go to). In other words, aelse orotherwise immediately preceded tgo to is equivalent to
analways statement.

27

SIMSCRIPT II.5 Programming Language

Program 1-1.

for COUNT = 1 to NUMBER.OF.SEATS
do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
let CHECK.SUM = ...
if CHECK.SUM <> CHECK.VALUE
go to 'CHECK.ERROR'
otherwise
if FARE = FIRST.CLASS.FARE
add 1 to CHAMPAGNE.COUNT
go to 'TOTALS'
otherwise
if FARE = EXECUTIVE.CLASS.FARE

go to 'TOTALS'
otherwise
if FARE = ECONOMY.CLASS.FARE

go to 'TOTALS'
otherwise
if FARE = STANDBY.FARE

go to 'TOTALS'
otherwise
'TOTALS'
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
add 1 to MEALS.REQUIRED
loop
let LOAD.FACTOR = (COUNT-1)/NUMBER.OF.SEATS

'CHECK.ERROR'

print 1 line with PASSENGER.NO thus
ERROR IN TICKET NO, *#x*

Theotherwise (or the synonynelse) in this example could be replacec always, endif

or regardless with exactly the same meaning. This structure has been retained to provide
compatibility with earlier versions of the SIMSCRIPT language. To clearly identify this anomaly
in control structure, it is suggested thal otherwise synonym fotelse be reserved for this
usage.

28

SIMSCRIPT I1.5 Basic Concepts

Thego to statement provides great flexibility in directing the flow of control. However, it can
detract from the clarity of the logic and the readability of the program. Unwisely used, it can mul-
tiply the possible paths through the program, rendering comprehension and testing of the logic un-
necessarily difficult. Structured programming principles suggest that the logic of a program should
be expressed in restricted control flow structures. In particular, the concepts of conditional action
and iteration should be represented usindf anddo loop structures.

1.18 The Logical End of a Program

The stop statement is used to terminate a program. Because there may be more stop one
statement in a program, and control flow may be diverted arounstop statement, it does not
always appear as the last statement of a program listing. The following program segment illustrates
the use of thstop statement in conjunction with if statement:

if X is zero
print 1 line as follows
ZERO IS AN ILLEGAL VALUE FOR X
stop

otherwise

let Z=Y/X

Note: Thestop statement is considered to be an unconditional transfer of control.

1.19 The Physical End of a Program

The last statement in every SIMSCRIPT II.5 program muend. It signals that the entire source
program has been read. The example programs at the end of this chapter illustrate the use of the
end statement.

1.20 A Note on SIMSCRIPT II.5 Program Form

SIMSCRIPT I11.5 programs are composed of sequences of conventionally arranged symbols —
some are standardized key words suclet andread and others are programmer-constructed
variable names and numeric constants. The basic symbolic units recognized by the SIMSCRIPT
I1.5 compiler in scanning program statements are names and numbers, the special characters +, -, ’,
*1L** ()", > <, |, $, = the punctuation marks period, comma, and blank, and other special char-
acters.

Commas are required in some places in SIMSCRIPT 1.5 statements and are optional in others. In
particular, they are required to separate items in a list of any sort. To aid readability, they may be
used optionally after the logical condition ofif statement or the end of a control phrase. When-

ever a comma may or must be used in a particular statement, its use is made clear in the section of
the text that defines the statement.

Because SIMSCRIPT I1.5 statements are ndttevr in any specific format, but aped across and
between lines as a programmer wishes, blanks are needed to separate words (names, numbers, and

29

SIMSCRIPT II.5 Programming Language

key words) in statements. Two adjacent statement words must always be separated by at least one
blank unless one of them is a special character. Thus:

letX=Y
can be written as:
let X=Y
but not:
letX=Y,
and:
if (SIGN + 5) is greater than DELTA
can be written as:
if(SIGN+5) is greater than DELTA

but not as:
if(SIGN+5) isgreaterthanDELTA.

Merely looking at a statement usually makes it clear whether a blank is needed @aaniseBnul-
tiple blanks are treated as single blanks, blank characters can be freely used to improve the read-
ability of statements, as many of the illustrations in this book demonstrate.

Statements can be typed as desired in a program, with one slight restriction. A statement can be writ-
ten on more than one input line, or several statements can be written on the same line, but statement
words (names, numbers, and key words) cannot be split between lines. Consequently, names and
constants are restricted to the length of one record. (Remember that the exponentiatio** symbol

is a single unit and cannot be split.) Statement labels, where used, ecestepthe statement but

need not appear on the same line as the statement. More than one label may be prefixed to a single
statement.

The logical structure of a program should be reflected in the physical layout. The use of indenting
to draw attention to a departure from sequential execution of statements is one example. The use
of appropriate control structures, rather than ad hoc direction of control flow tfgo to , can
contribute greatly to this goal.

1.21 Clarifying Comments In a Program

Whenever it appears that a clarifying remark would be helpful to the reader, a comment should be
used. A comment is delimited on the left by two single apostrol). Comments can appear
anywhere in a program except within a word. They may appear on the same line as program state-
ments or on separate lines. Comments serve only as documentation, but they should be used wher-

30

SIMSCRIPT I1.5 Basic Concepts

ever thel ogical intent of a pogram is not imnediately evident from its SMSCRIPT 1.5 ingtruction
sequences. The use of comments will be llustrated in many of the example programs telow.

1.22 Some Sample SIMSCRIPT II.5 Level 1 Programs

Thefollowing programs illustrate the SIMSCRIPT 11.5 concepts and statements presented in this
chapter. The programs are printed as they might appear before being submitted for compilation.
Theflexibility of SIMSCRIPT I1.5 mekes many program statement formats possible. Those used
here ae examplesonly.

1.22.1 Roots of a Quadratic Expression

The following example, demorstrating the se of nested if statements, cdculatesthe roats of a
guadratic equation, which may beexpressed in the general form:

AX2 +BX+C=0

First, the wefficients, A, B , and C, areread from inpu data They are printed so that they may be
chedked for any inputerrors. Thecoefficientsarethen tested for the tivid zero, constant, or linear
cases. Otherwise, theroots, alphaand keta, may be calculated fromthe familiar formulae:

alpha= -B+ (B**2 - 4AAC)**(1/2)
2A

beta= -B - (B**2 - 4AC)**(1/2)
2A

Before obgining thesquareroot, the sign of thesub-expressionB2-4AC isevaluated. If this value
is less than zero, the rootshave complex values; otherwise, red values. Notice how theprint
statement, as used in theexample, can be sed to print bath the pogram title andthelabeled variable
names.

31

SIMSCRIPT I1.5 Programming Language

Program 1-2.

" Program To Compute The Roots of a Quadratic Equation
" of the Form AX*2 +BX+C=0
read A,B,C
print 2 lines with A,B,C as follows
ROOTS OF THE QUADRATIC EQUATION WITH COEFFICIENTS:
A:***'** B:***'** C:***'**
ifAeqO
ifBeqO
ifCeqO
print 1 line as follows
TRIVIAL CASE, COEFFICIENTS ALL ZERO
else
print 1 line with C as follows
EQUATION STATES ***** = 0
always
else
print 1 line with -C/B as follows
LINEAR, ONE ROOT ALPHA = *** **
always
else
let X = B**2 - 4*A*C
if XIs O
let IMAG = ((-X)**0.5)/(2*A)
let REAL = -B/(2*A)
print 2 lines with REAL,IMAG as follows
EQUATION HAS COMPLEX ROOTS
REAL PART = ***** IMAGINARY PART = *** **
else
let X=X**0.5
let ALPHA = (-B+X)/(2*A)
let BETA = (-B-X)/(2*A)
print 2 lines with ALPHA,BETA as follows
EQUATION HAS REAL ROOTS
ALPHA = *** %% BETA = *¥* **
always
always
stop
end

1.22.2 Finding the Area of a Triangle

This program demonstrates nesif statements, using more complex logical expressions. The
program calculates the area and perimeter of a triangle with the lengths of ttA, B , andC as
input data. The firsf statement verifies that none of the sides is of zero or negative length. The

32

SIMSCRIPT I11.5 Basic Concepts

secondf statement checks that the values read will form a triangle, based on the condition that the
sum of the lengths of any two sides is greater than the length of the remaining side. All three con-
ditions of theif statement must prove false before control is passed to the group of statements that
calculates the area and perimeter.

Program 1-3.

“Program to Compute the Area and Perimeter of a Triangle
“Given the Lengths of the Sides
read A,B,C
print 2 lines with A,B,C as follows
CALCULATE AREA OF A TRIANGLE WITH FOLLOWING SIDES:
A:**.** B:**.** C:**.**
ifA<=0 or B<=0 or C<=0
print 1 line as follows
TRIANGLE CONTAINS SIDE OF ZERO OR NEGATIVE LENGTH.
else
if A+tB<=C or B+C<=A or C+tA<=B
print 1 line thus
SIDES DO NOT FORM A TRIANGLE.
else
let S = (A+B+C)/2
let AREA = (S*(S-A)*(S-B)*(S-C))**0.5
print 1 line with AREA, 2*S as follows
THIS AREA IS *** ** PERIMETER = *** **
always
always
end

1.22.3 Finding the Maximum and Minimum of a Set of Numbers

This program demonstrates the simple usedo loop to repeat the same sequence of statements

with different data values. The program reN input numbers and records the maximum and min-

imum values encountered. When all the numbers have been processed, the average value and the
maximum and minimum values are printed.

Note that the first value is read outside the control ado loop and used to initialize the variables
MAX, MIN , andSUN. Subsequent values are compared with the valuMA> andMIN, replacing
either where appropriate.

33

SIMSCRIPT I1.5 Programming Language

Program 1-4.

"Program to Compute the Maximum, Minimum and Average
" of a Set of Numbers
read NUMBER "NUMBER OF DATA OBSERVATIONS
if NUMBER < 1

go to FINISH
otherwise
read VALUE
let MAX = VALUE
let MIN = VALUE
let SUM = VALUE
for COUNT = 2 to NUMBER by 1
do

read VALUE " DATA VALUE

add VALUE to SUM

if VALUE > MAX

let MAX = VALUE

always
if VALUE < MIN
let MIN = VALUE
always
loop

print 3 lines with SUM / NUMBER, MAX, MIN thus
THE AVERAGE VALUE |S #** #%**
THE MAXIMUM VALUE |S ##* #¥**
THE MINIMUM VALUE [S ##= xxxx

'FINISH'

stop

end

1.22.4 Computing Square Roots

The square root of a number is required in many calculations. In fact, in two of the preceding ex-
amples, square roots were obtained using exponentiation. The following is an implementation of
Newton's method to approximate square roots.

The example demonstrates the use of a logical control phrase to control an iterative computation.
The logical condition specifies a relative precision of the estimated square root as a stopping
criterion. Note that the first statement within the loop calculates a new estimate for the square root,
using the last estimated value. This technique is fundamental to such iterative procedures. Note
also the explanatory comment appearing beside the statement to invert theDELTA, should it

be negative.

34

SIMSCRIPT I1.5 Basic Concepts

Program 1-5.

"Program to Calculate Approximate Square Roots
read NUMBER
if NUMBER is not positive
print 1 line thus
CANNOT EVALUATE SQUARE ROOT: VALUE NOT POSITIVE
else
let SQRT = NUMBER/2.0
let DELTA = SQRT
until DELTA < (0.00001 * SQRT)
do
let SQRT = (SQRT + NUMBER/SQRT)/2.0
let DELTA = NUMBER/SQRT - SQRT
if DELTA is not positive
let DELTA = -DELTA " USE THE ABSOLUTE VALUE
always
loop
print 1 line with NUMBER, SQRT thus
THE SQUARE ROOT OF *******.**** |S ***—k'*****
always
stop
end

35

SIMSCRIPT II.5 Programming Language

36

2. Programming Language Concepts

2.1 Variable and Label Names Revisited

Chapterl defined variable and label names separately. A variable name is any combination of let-
ters and digits that contains at least one letter. A label is any combination of letters and digits with-
out the "at least one letter” constraint. These rules can be expanded easily to permit more readable
programs by incorporating periods into the definition of names and labels.

Let a name be any combination of letters, digits, and periods that contains at least one letter or two
or more nonterminal periods. A constant is any combination of digits, possibly containing one pe-
riod. A variable name must look like a name and a label can look like a name or a constant. Thus,
variables can be distinguished from numbers while maintaining the widest latitude in name forma-
tion. Some examples of variable and label names are shown in table 2-1.

Table 2-1. Variable and Label Names

Variable Names Label Names
PART.NUMBER LABEL
NUMBER.OF.PARTS SECTION.1
TOTAL PART.4
.PAGE ERROR

As mentioned previously, it must be stressed that terminal periods cannot be used in distinguishing
names. The namé&sX... ,andX... all represent the same variable value; the labedsitl 5. '
are identical.

Although SIMSCRIPT I1.5 does not prohibit the use of any particular words (the one exception is
the wordand, which should not be used as a name) or names, there are a number of special names
that are recognized in certain contexts. Guard against using any of these names incorrectly by
remembering the special naming conventions used for them. Some of these names are listed in
Appendix B under various headings. Each of these names either begins with a letter followed by
a period or ends with a period followed by a letter, so it is good practice to not name your own
variables the same way!

2.2 Variable Modes

In the previous discussion, it was assumed that variables in SIMSCRIPT II.5 take on numeric val-
ues. No explicit restrictions have been placed on the magnitude or precision of the numbers repre-
sented by variable names. Complete freedom from concern over the expression of numeric

37

SIMSCRIPT II.5 Programming Language

guantities is an attractive idea. However, both the range and number of real numbers are infinite,
while a computer has a finite range of representations.

The enumeration of items, or iterations, requires the exact representation of a sizable range of inte-
ger numbers. Many other calculations require the representation of a potentially greater range in
magnitude of the real numbers but are necessatrily limited in accuracy.

Most computer systems, therefore, provide two internal representations for numeric data — one
trading some exactness of representation for increased range. These representations may vary be-
tween different computer systems. The precise limitations pertaining to any SIMSCRIPT 1.5 im-
plementation may be found in the appropriate user's guide. A programming language is used to
describe both the actions and the data on which these actions are to be performed. In this chapter,
some of the ways in which data are described are discussed.

A variable definition statement serves to declare the properties of a variable. This information is
used to determine the way in which the variable may be manipulated.

2.2.1 REAL and INTEGER Variables

SIMSCRIPT I1.5 numeric variables may be declared tinteger orreal . Variables declared
asinteger represent only whole numbers. Variables declarreal represent numbers that can
have fractional values. Note that a whole number, lying within an established range of the integer
values, may be represented either Linteger orreal variable. It is the possibility of a frac-

tional value, and not any particular value, that makes a variable re real definition. The
numbers 56, -6745, 91, -1, and O integer -valued. The numbers 56.0, 35.7846, 0.999876, -
27.45, and 0.0. areal -valued.

Every SIMSCRIPT II.5 program haspreamble that contains variable definition information. In
some cases, as in the previous examplespreamble is implied but need not be written as all
variables are treated real . Whenever a variable has a property that differs from one that
SIMSCRIPT 1.5 assumes, a variable definition statement must be used. Programs containing an
explicit preamble begin with the one-word statenpreamble . This section, containing variable
definition statements, is separated from succeeding program action statements by end . »rd

As stated, the mode of a numeric variable is assireal unless otherwise specified. The "normal
form" of SIMSCRIPT II.5 variables is real numbers. The assureal condition can be changed
by using the statement:

mode is integer

This statement resets the compiler's "background conditions” so that all following program vari-
ables are assuminteger unless otherwise specified. Mode is but one of several properties that
can be used to describe variables. Hence, the general formrnormally statement is:

normally, specification phrase list

38

Programming Language Concepts

Specification phrases may appear in the list in any order, separated, as usual, by ccand.as or

The comma after the wonormally is optional. The equals symb=) may replace the woiis .

As additional specification phrases are added in later sections, phrase choices will be increased but
these rules will not change.

Another possibility is to force explicit definition of all variables by use of the form:
normally, mode is undefined

This will produce a diagnostic for every undefined variable. This form is strongly recommended in
order to guard against inadvertent background definition of misspelled variables.

Individual variables that differ from the impliednormally ~ defined mode can have their mode
specified in edefine statement. This statement lists one or more variable names and defines their
common mode. The statement:

define X, Y, Z as integer variables

illustrates the way in which thdefine statement is used to declare that the varieX, Y, Z
represent onlinteger values. If the background conditions were declaredinteger , a sim-
ilar define statement using the woreal might be used to define some variablereal .

Thedefine statement has a number of alternative forms. The only words that must appear are
define ,the variable names being definas, and the worwvariable orvariables . The words

a, an, integer ,andreal are included when needed. Some examples define statement

are:

define X as a real variable

define X and Y as integer variables
define X, Y, Z as variables

define X as a variable

The description of thdefine statement, like thnormally statement, will be expanded in later
paragraphs to include more than variable mode definition.

Some computer systems provide an internal numeric representafreal numbers with an
increased precision, usually achieved by doubling the size of the internal binary representation.
SIMSCRIPT I1.5 allows variables to be declared with this representation, by the use of the variable
modedouble . On these systems, the normal background conditidouble to allow the
maximum precision for decimal values. The appropriate SIMSCRIPT I1.5 user's manual should be
consulted to determine whether this variable mode is implemented. In general, on those systems
that do not support this mocdouble is interpreted areal .

Throughout this book, the behavior ascribeceal variables may be assumed to extend to
double variables. Examples of declarations are:

define AMOUNT, INTEREST as double variables

39

SIMSCRIPT II.5 Programming Language

and

normally, mode is double

2.3 Expression Modes

Although statements that combinteger andreal variables are allowed, a programmer should
be aware of the way in which computations are carried out whenever using "mixed mode" expres-
sions. When A and B represent two variables, constants, or sub-expressions, then:

1. Arithmetic expressions of the formop B, where A and B represent variables of specified
mode, or constants of that mode, iop is any of the arithmetic operations +, -, and *, are
integer if both A and B arinteger , andreal if either A or B isreal .

2. Expressions of the form A/B are alwereal (Two integer expressions can be divided to

yield a truncateinteger result by a library function callediv.f . Library functions are
described in paragraj2.1%).

3. Expressions of the form A**B are alwareal .

Compound expressions are evaluated from left to right as a sequence of simple expressions that are
evaluated according to the above rules. In the following examples, if A, B, ancinteger
then:

AB+C is real
A+B+C is integer
A*B + C is real

When an expression appears on the right-hand sidlet statement or in aadd or subtract

statement, and its mode differs from the mode of the variable on the left-hand side, the expression
is converted to the mode of the variable before the value of the variable is changed. When the arith-
metic expression constituents of logical expressions differ in mocinteger expressions are
converted toreal before evaluating the logical expression as true or false.

Conversions froninteger toreal are straightforward. Ainteger toreal conversion takes
the whole number that is the value ofinteger variable and converts it tcreal number with
the same value; 25 becomes 25.0, -11 becomes -11.0, and so forth.

Real tointeger conversions are more complex. Obviously, any fractional part cannot be repre-
sented by thinteger . Real values are rounded to whole numbers by adding +0.5 to the variable
if its value is positive or -0.5 if it is negative, and truncating the resuX isinteger ande is
somereal -valued expression (formed according to the above rules), then:

let X = esetsX=0 ife=0.2 since0.2+0.5=0.7 -0
let X = esetsX=1 if e =1.4999 sincel.4999 + 0.5 =1.9999 -1
letX= esetsXx=2 if e=1.50000 since1.50000 + 0.5 = 2.0000 52

40

Programming Language Concepts

Wheredouble variables are supported, conversions bet\double andinteger modes follow
the same procedures as conversions betinteger andreal . Hence, expressions mixing
integer anddouble arithmetic operations follow the procedure outlined above for mixed
integer ancreal expressions.

Expressions containing mix«double andreal variables are evaluated to yieldouble preci-
sion result, which may be automatically converted tareal mode, if necessary. When required
by context, as in mixereal anddouble mode expressionreal values are automatically con-
verted todouble before evaluation.

If, in the following example<R has been defined aseal variable anD as ¢ double variable,
then in executing the statement:

letD=D+R
Ris converted tdouble before the addition, which producedouble precision result, while:
letR=R*D

convertsR todouble before the multiplication, but the result is truncatereal before reassign-
ment.

As may be seen, the provision of different modes of variable representation brings with it some ad-
ditional complexity. A variable defined with a certain mode can only be used in ways consistent
with its definition. In some cases, automatic conversion between modes is performed as indicated
above, although information may be lost as inthe careal tointeger conversion, where the
fractional value may no longer be represented. Be aware of such implied conversions and their ef-
fect on program behavior.

One particular potential source of error, however, is the attempted assignment of variable values
read from input data to variables defined with conflicting internal representation. Specifically, a
data field containing a noninteger format number should not be assigneinteger variable

in aread statement. This will result in loss of information and is therefore treated as an error con-
dition.

Table 2-2 specifies the actions taken when different combinations of data and variable definitions
occur.

41

SIMSCRIPT II.5 Programming Language

Table 2-2. Real-Integer Input Data Conversions

Input Data Variable

Format Defined as Action

integer integer Data value stored in variable

integer real Data value converted to decimal representa-
tion and then stored in variable; e.g., 55
stored as 55.0

real real Data value stored in variable

real integer Program terminates with error message; not
possible to store fractional value in integer
representation.

2.4 System-Defined Constants

Scientific and engineering calculations often involve standard scientific constants. Mathematical
computations frequently require values of numeric constants. Numbers such as Pl = 3.14159..., and
e = 2.718... are examples of well-known and often-used constants.SIMSCRIPT I1.5 maintains a li-
brary of standard values. When the name of a library constant is used in a SIMSCRIPT 1.5 pro-
gram, the correct numeric value of the constant is inserted in its place. These constants may be used
wherever a numeric literal constant could be used.

Library constants have names that look like variable names except that they end in the characters
.c (a naming convention used by the SIMSCRIPT II.5 system). The library constants and their val-
ues are listed in table 2-3.

42

Programming Language Concepts

Table 2-3. System-Defined Constants

Standard
Name Symbol Value Units Mode
pi.c p 3.141159265 - Rea’
Exp.c e 2.718281823 - Rea”
inf.c 00 Largest valu 2 -- Integer

computer can store

. *
Rinf.c 0 Largest valu 2 - Rea.
computer can store

Radian.c - 57.2957 Degrees/radian Rea”

* On systems that support additional precision, these constantsdouble mode.

2.5 Subscripted Variables

Variables as described above may represent single, numeric data items in SIMSCRIPT 11.5. A fea-
ture of many programming languages is the facility to represent and manipulate data in a way that
reflects the natural structure of the data. Data occurring in the form of lists or tables, for example,

have a regular structure. SIMSCRIPT I1.5 provides a structure by which a number of similar data

items, the array elements, may be collectively referenced by a single name, while each individual
element may be referenced by subscripting the array hame with an index value.

A simply ordered collection of data items, such as a list (figure 2-1), is represented by a one-dimen-
sional array. The elements of this array can be referenced by an identifyincLIST , for exam-

ple, and an index number, called the array subscript, which can assume integer values from 1 up to
the total number of elements in the list. The array name is used to identify the collection of ele-
ments. The subscript, enclosed in parentheses after the array name, is used to denote particular el-
ements. Thus, the name of the variable that is the first element in theLIST isLIST(1) , the

fifth element is calleLIST(5) , and tha " element iLIST() . Figure 2-2 shows the list of figure
2-1 with the individual element names inserted.

Figure 2-1. A List Structure: One-dimensional Array

43

SIMSCRIPT II.5 Programming Language

|LIST(1) |LIST(2) |LIST(3) |LIST(4) |LIST(5) LIST®) |LsT(7) JusT®) [LisT(9)

Figure 2-2. Elements of a One-dimentional Array Called LIST

To demonstrate the use of such a structure, consider the problem of determining the date as the day
of the month, given the day number within the year. Clearly, the number of days within each month
are 12 items of data that might be used in some orderly, repetitive computation. These values could
be represented as the elements of a one-dimensmoegdr array,DAYS indexed by month.
Thus,DAYS(1) would have a value of 3DAYS(2) a value of 28 (ighoring the complication of

leap years for the present), and so forth. The program segment:

read DAYNUM
for MONTH=1t0 12 by 1
while DAYNUM gt DAYS(MONTH)
do
subtract DAYS(MONTH) from DAYNUM
loop
print 1 line with DAYNUM, MONTH thus...
The **th day of the **th month

successively subtracts the value®aivS(1), DAYS(2) , and so on from the input valueAYNUM

until it comes within the range of the number of days in some month. In this case, the use of the
array provides representation of the data in a way that matches the repetitive processing capability
of thedo... loop .

The array elements need not, of course, be accessed in order. The array structure provides
immediate acess to any individual element, selected by subscript. Consider a computer program
to maintain an inventory of goods. Each item in the inventory is allocated a code number. An
integer array,STOCK holds in each element, indexed by the item code, account of the number of
such items currently in stock. This information might be updated, during the processing of an order,
by the program statements:

read ITEM.CODE and QUANTITY
subtract QUANTITY from STOCK(ITEM.CODE)

Although all elements of a one-dimensional array must be similar, these elements may themselves
be arrays. A table of data items (figure 2-3), for example, may be represented by a one-dimensional
array where each element represents a row of the table as a one-dimensional array of data items or-
dered by column number. Such a structure is termed a two-dimensional array.

44

Programming Language Concepts

Column 1 Column 2 Column 3 Column 4 Column 5

Row 1

Row 2

Row 3

Figure 2-3. A Table Structure: A Two-dimensional Array

Variables with a two-dimensional array structure are referenced by an identifier and a pair of sub-
scripts. The first subscript identifies a selected one-dimensional array. The second identifies a par-
ticular element within this array. Figure 2-4 shows the two-dimensional array of figure 2-3, here
calledTABLE, with the individual element names inserted. Note how the subscript values indicate
each element's position in the structure of the table. The identifier (as before) is the name of the
complete array structure. The subscripts are enclosed in parentheses and separated by a comma.
Each subscript is associated with an element location in one coordinate dimension. In figure 2-4,
the first subscript is used as the element location in the row direction, and the second as the element
location in the column direction.

This data structuring is not limited to two dimensions. In general, a data collection thaehas

erence indices can be represented as an n-dimensional array structure. A three-dimensional array
called CUBEmight have elemenBUBE(I,J,K) . A seven-dimensional array call8s&VEN.DIM

might have elemenSEVEN.DIM(A,B,C,D,E,F,G)

Subscripted variables (the elements of arrays) share the same range of possible modes as unsub-
scripted variables. All elements of any one array, however, must be of the same mode. If their
mode differs from that of the background conditions set within a program, it can be declared in a
define statement in the same way as with unsubscripted variables. For instance, if the assumed
mode of all as yet undeclared variables has been s&tltq write the statement:

define LIST and TABLE as integer arrays

Column 1 Column 2 Column 3 Column 4 Column 5
Row 1 TABLE(1,1) | TABLE(1,2) |TABLE(1,3) |TABLE(1,4) |TABLE(1,5)
Row 2 TABLE(2,1) | TABLE(2,2) |TABLE(2,3) |TABLE(2,4) |TABLE(2,5)
Row 3 TABLE(3,1) | TABLE(3,2) |TABLE(3,3) |TABLE(3,4) | TABLE(3,5)

Figure 2-4. Elements of a Two-dimensional Array Called TABLE

The dimensionality of an array, whether it has 0, 1, 2, 3 or more subscripts, should also be declared
in the preamble. A dimensionality specification phrase can be included in rthely

or

45

SIMSCRIPT II.5 Programming Language

define statements, depending on whether it is to apply as a background condition or to specifically
named arrays. The phrase is written somewhat differently in each case.

An n-dimensional array background condition may be declared withrally — statement using
the phrase:

dimension is n
as in the statements:

normally dimension is 1
normally, mode is integer, dimension is 2

In adefine statement, a dimensionality specification can be made for a list of subscripted variables
with the dimensionality phrasedimensional as in the statements:

define LIST as an integer, 1-dimensional array
define LIST and VECTOR as real, 1-dimensional arrays
define CUBE as a 3-dimensional, integer array

In general, if a majority of program variables share some definable property, this may be declared
as a background condition, usingamally statementDefine statements may then be used to
override this specification for specific variables, as in the example:

preamble
normally, mode is integer, dimension is 2
define X, Y, Z and Q as real variables
define VECTOR as a 1-dimensional array
end

A variable must not, however, be used in more thandefiee statement. It is permissible to

write:

normally, mode is real, dimension is 1
define X as an integer, 0-dimensional variable

It is not permissible to write:

normally, mode is real, dimension is 1
define X as an integer variable

define X as a 0-dimensional variable

Each unsubscripted (zero-dimensional) variable requires a location in computer memory in which

to record its current value at any time. Similarly, each element of each array requires a distinct

memory location where its value can be stored. A one-dimensional array with 10 elements uses 10
such memory locations, a two-dimensional array with 3 rows and 5 columns uses (3*5) = 15 mem-

ory locations, and so forth.

46

Programming Language Concepts

The allocation of space within computer memory to unsubscripted variables is done automatically.
This automatic allocation cannot be made for subscripted variables. An array may have any number
of elements, and spacentet be allocated until this number is known.

Thereserve statement is used to explicitly allocate computer memory space for arrays. The di-
mensionality of each array is indicated by asterisks in subscript positions. Subscript size expres-
sions declare the largest value that each subscript position index can assume. The maximum
subscript values may also be referred to as the array dimensions or bounds. The product of these
expressions is used to determine the total space requirement of the array. Thus, the statement:

reserve LIST(*) as 9

allocates memory space for the 9 elem LIST(1),LIST(2),...,LIST(9) of the one-dimen-
sional array calleLIST , and the statement:

reserve TABLE(*,*) as 3 by 5

allocates space for the elements of the two-dimensional TABLE.

A reserve statement is an executable statement, rather than a declaration, and thus can not appear
in thepreamble of a SIMSCRIPT I1.5 program. Untilreserve statement for an array has been
executed, storage is not allocated for that array, and its element values are not defined. Each sub-
scripted variable must, therefore, be reserved before it can be used. Any attempt to reference a sub-
scripted variable before space for it has been allocated will cause an error in program execution.
All the element values of an array are initialized to zero at the time memory space is allocated.

If areserve statement specifying an array to which space is already allocated is encountered, no
action is taken and no further space is allocated. Even if tbadreserve statement specifies
a different size, the amount ofeae allocated is as given by the freserve

More than one array allocation may be made by a ‘reserve statement. The effect of the two
statements shown could be achieved by executing the statement:

reserve LIST(*) as 9, TABLE(*,*) as3by 5

If an array name appears irreserve statement without asterisks to indicate its subscript posi-
tions, the dimensionality previously declared idefine statement is understood. If no dimen-
sionality declaration has been made, the number of subscript size expressions is used to determine
the dimensionality. Thus, if an array has been declared as two-dimensional by the statement:

define MATRIX as a 2-dimensional, integer array
or, if no dimensionality declaration has been made for the array, the statement:
reserve MATRIX as 5 by 7

is understood to mean:

47

SIMSCRIPT II.5 Programming Language

reserve MATRIX(*,*) as 5 by 7

The dimensionality of an array, then, is frozen either by explicit declaraticdefine statement,

or when it is first referenced in an executable statement — which, of course, shoreserve

statement. Although the dimensionality of an array may be apparent from the context, the explicit
declaration is recommended as an aid to program documentation. Once the array dimensionality
has been frozen, the array must be referenced consistently. Any inconsistent reference is detected
as an error during program compilation.

Subscript size expressions may be arithmetic expressions containing variables, including other sub-
scripted variables. If such expressionsreal , they are rounded integer before they are used
as array dimension specifiers. Thus, the statement:

reserve LIST(*) as N, TABLE (*,*) as N by 2*M

allocates space for the arriIST andTABLE where the space requirement is dependent on the val-
ues of the variableN and.

A subscript size expression should not evaluate to zero or a negative value. An attempt to reserve
space using a zero- or negative-valued size expression will cause a program to terminate with an
error message. If any subscript expressiorreserve statement evaluates to 1, there is only one
element allocated to that dimension of the array. The statement:

reserve X(*) as 1, Y(*,*) as 1 by 3

allocates space to an arnX with one elemenX(1) , and a two-dimensional arrY with three el-
ementsY(1,1) ,Y(1,2) ,andY(1,3) . For all practical purposes, these one- and two-dimensional
arrays are equivalent to the unsubscripted vai X and a one-dimensional arrY./

When two or more arrays are to be allocated with the same dimensions, they may be combined in
a list of array names. Thus, the following is acceptable:

reserve A (*,*), B(*,*), C(*,*) as 5 by 10
Any reserve statement can contain a sublist of this form among its list of arrays, as in:
reserve VECTOR(*) as 5,
A(*), B(*) and C(*) as 15,

LIST1(*) and LIST2(*) as N+M,
TABLE(*,*)as 3 by Y,

48

Programming Language Concepts

2.6 Reading Subscripted Variables

Subscripted variable values can be assigned from input data by including each element of an array
in the variable name list ofread statement. In the following examples,LIST be a singly sub-
scripted variable allocated by the statenreserve LIST(*) as 10

Individual elements of the array are read by listing their names (the array identifier followed by the
appropriate subscript expression(s) enclosed in parentheses) intheread statement. Values
of LIST(1), LIST(5) , andLIST(9) are read by the statement:

read LIST(1), LIST(5), LIST(9)

A variable name list can contain array elements whose subscript designators are expressions, such
asLIST(N*M+2/J) orLIST(l) , as long as the variables appearing in these expressions have had
values assigned to them. Note that, as the variables namread statement are processed from

left to right, variables to be used as subscripts may be assigned if they apfread statement

before their subsequent use in the same statement as subscripts, as in:

read N, M, LIST(N), LIST(LIST(N) + M)

This example shows that both unsubscripted and subscripted variables can appear inread same
statement list.

This procedure is obviously tedious for large arrays, and so provision is also made for reading all
the values of a subscripted array, in order, by including the unsubscripted array name in the list.
Read LIST reads the 10 elementsLIST, as defined by tf reserve statement. Numbers are

read and assigned to the elementLIST in increasing subscript order: the first data item is
assigned tLIST(1) ,the nexttLIST(2) ,and soon. ILIST were a multidimensional array, the

data would be assigned to successive elements whose subscripts change in increasing order, with
the last subscript position varying most rapidly. A two-dimensional array is read in row-by-row, as

in TABLE(1,1), TABLE(1,2), TABLE(1,3), ..., TABLE(1,N), TABLE (2,1),

TABLE(2,2), ..., TABLE(2,N) , etc.

Mixtures of unsubscripted variables, elements of arrays, and entire arrays can be reiread one
statement. In the following exampleLIST andVECTOI are one-dimensional arrays éX andy
unsubscripted variables, the statement:

read X, LIST(Y), VECTOR

reads a data item and assigns its valuX, reads another data item and assigns its value to
LIST(Y) , and then reads as many values as there are elements res VECTOF.

Clearly, the repetition provided by the use of a control phrase is useful when processing the ele-
ments of subscripted variables. Such a control phrase may be used to govern the reading of array
values. The following statement re«N data values, assigning them to the IN elements of the
arrayLIST :

49

SIMSCRIPT II.5 Programming Language

forlI=1toN
read LIST(l)

If N were the reserved dimension of the array, this statement has the same effect as the statement
read LIST

A more complex example demonstrates the use of nested control phrases to govern the repetition of
ado loop. The loop reads and assigns data values to only the lower triangular elements (i.e., those
that lie below the diagonal) of a square two-dimensional array or matrix. For example:

reserve MATRIX(*,*) as N by N

foril=1toN
forJ=1toN
do
if 1 gtJ
read MATRIX(1,J)
always
loop

While the subscripts, in turn, take on the values to address each elemread statement is
executed only when ttif condition is satisfied. The data values supplied would be the values for
MATRIX(2,1), MATRIX(3,1), MATRIX(3,2), MATRIX(4,1), MATRIX(4,2),

MATRIX(4,3) , etc.

2.7 Using Subscripted Variables In Expressions

Recall that parentheses are also used to clarify the desired evaluation order in complex arithmetic
expressions. Subscripted variables may appear in such expressions. In these cases, the evaluation
of subscripts and the selection of the array elements may be considered to take precedence over oth-
er arithmetic evaluations. Note that subscripts may themselves involve expression evaluations.
Thus, in the statement:

let Z=X(I + 1) * Y(J + 1)

the subscript expressiol + 1 andJ +1 are evaluated first, thus selecting the two elements of
arraysX andY that are to be multiplied. The subscript expressions may even involve subscripted
variables. The same procedure, applied to these expressions, ensures that these are evaluated first:

let Z=X(Y(1+ 1) + 1) * 2

The subscripl+1 is evaluated to select an elementfiY; 1 is added to the value of this element

to form the indexing value for the arrX; and the selected elementX is then multiplied before
assignmenttz. After conversion tinteger mode (if necessary), the subscript expression should
always evaluate in the range of 1 to the size given ireserve statement. Out-of-range sub-
scripts will produce execution errors that either terminate the program or introduce undesirable
side-effects, depending on the implementation.

50

Programming Language Concepts

2.8 Nested DO Loops

As shown above, a numberfor statements, for instance, may be nested to provide complex con-
trol over the repetition of do...loop . Do...loops may also be nested within one another.
This proves convenient when processing variables with multiple subscripts. Consider a program
fragment that computes the row and column sums of a two-dimensional matrix. The sums are ac-
cumulated in the appropriate elements of two one-dimensional arrays:

for 1 =1 to NROWS

do
forJ=1to NCOLS
do
add MATRIX(I,J) to ROWSUM(I)
add MATRIX(I,J) to COLSUM(J)
loop
loop

Thedo...loop controlled by the phrasfor | = 1 to NROWS is termed the outer loop.eRall

that all the statements between the bounds do and the matchinloop statements are repeated

for each value of the control variable. Thus, the ido loop is repeated as each row of the matrix

is indexed. Clearly, the inner loop indexes, for any one row, each matrix element within that row.

Whendo...loops are nested, eado should be paired with a matchloop as shown. Adopt-

ing a convention of indenting the controlled statements makes this clear. Where nested loops ter-
minate on successiMloop statements, however, a special construct, similar tthen if

construct, may be used. Whalso is prefixed to &or phrase, SIMSCRIPT 1.5 automatically

pairs thedo that follows with theoop that matches thdo of the precedinfor statement. Using

this statement, the above example can be written as:

for 1 =1 to NROWS

do
also for J =1 to NCOLS
do
add MATRIX(I,J) to ROWSUM(l)
add MATRIX(I,J) to COLSUM(J)
loop

Thedo statements themselves need not be immediatedg e, but they must terminate on adja-
cenloop statements. Statements to be repeated only under the control of the outer loop must ap-
pear after the firdo and preceding ttalso . Care should be taken, when usingalso for

construct, not to obscure the logical intent of the repetition. To this end, the example above retains
the indenting of the earlier example.

2.9 The Structure of a SIMSCRIPT II.5 Program

In the previous discussion, a program has been understood to contain a number of instruction state-
ments, possibly preceded by some variable declaration statementpreamble section of the

51

SIMSCRIPT II.5 Programming Language

program. Program control structures have been described by which logical groups of statements
may be executed conditionally, or repeated under some control.

There are two good reasons for developing a more elaborate program structure. First, problem so-
lutions can require sequences of similar or identical statements to be executed at different places
within a program. Although these statements can be rewritten in place each time they are needed,
it is convenient to be able to combine them into groups and refer to them by symbolic names when-
ever required. Second, this grouping enables the separation of program elements that are logically
distinct. Large programs can become too big to comprehend at a single level of complexity. Com-
plex systems are better understood if treated in a hierarchical fashion. Dividing programs into log-
ically related functional groups of statements allows these sections to be developed separately, and
then combined at a conceptually higher level to form a whole program.

These program sections are commonly termed routines. Labeled routines that are referenced by a
symbolic name are called subprograms. They are distinguished as programs because they perform
some specific task. They are called subprogragnause they are not executed independently, but
rather perform functions within the execution of a program. When execution of a subprogram is
requested by another routine, control passes from this calling routine to the subprogram, along with
instructions for returning control, at completion of the subprogram, to the calling routine. This hi-
erarchical structure is not limited to one level. A subprogram may itself call upon other subpro-
grams.

Subprograms are not executed directly but are subordinate to a higher level routine. The routine at
the highest level in the hierarchy is called the main routine. Every SIMSCRIPT I.5 program must
have one main routine, and may contain one or more subprograms. When a program is submitted
for execution, the control flow is directed to the first instruction in the main routine and proceeds
from there, as the logic of the main routine-subprogram package directs. All of the example pro-
grams used thus far have contained only a main routine. In succeeding paragraphs, the structure
and use of subprograms will be described.

Figure 2-5 shows three examples of main routine-subprogram routine organizations. The examples
in this figure consist of a main routine and one or more subprograms, with arrows indicating the
direction of program flow. An arrow pointing to a subprogram indicates a call on that subprogram,
and an arrow pointing in the opposite direction means a return to a calling routine.

52

Programming Language Concepts

MAIN PROGRAM

SUBPROGRAM

‘l

SUBPROGRAM

‘l

5§ 000000000

m

Figure 2-5a. Program Consisting of a Subprogram Called by a Main Routine

In Figure 2-5a, the main routine calls on the subprogram in two places. In each instance, after ex-
ecuting its statements, the subprogram returns controlmain routine at the statement following
the one that called it.

Figure 2-5b shows a slightly more complicated program composemain routine and two sub-
programs. Thmain routine calls on each of the subprograms. They are indepen@aahadther.

MAIN PROGRAM

|

SUBPROGRAM;

A

|

SUBPROGRAM,

SUBPROGRAM;

|

2000000000000

W)

Figure 2-5b. Program Consisting of Two Subprograms Called by a
Main Routine

53

SIMSCRIPT II.5 Programming Language

Figure 2-5c illustrates a more complex situation in whimain routine and three subprograms
interact. Subprograms 1 and 2 are both called and calling routines: They are callemain the
routine and, in turn, they call on subprogram 3. The call of subprogram 1 or 2main routine

is the first level of calling. The call of subprogram 3 by subprograms 1 and 2 while under the control
of themain routine is a second level. In general, there can be any level of calling in effect within
a program at any time. The calling rules do not change from level to level. Control always passes
from a calling to a called program and back again. Whether there are many intermediate calls and
returns between an original call on a subprogram and a return to its calling program is insignificant.
If A calls B and B calls C, then C must return control to B before B can return to A. A subprogram
cannot return control to any routine other than the one that called it. For example, C cannot return
control directly to A.

MAIN PROGRAM

O

o SUBPROGRAM SUBPROGRAM;4
o = — <

O

O

O

g - > [SUBPROGRAM, - » [SUBPROGRAM,
O

END

Figure 2-5c. Program Consisting of Three Subprograms and a Main Routine

2.10 Routine Definition

A SIMSCRIPT II.5 program may be composed of several program sectpreamble (data dec-

laration) section, main routine, and a number of subprograms. Statements are needed to delimit
these program components. As already noted, the variable declaration section is headed by the
wordpreamble and terminated by the woend.

The statements that make up main routine should be preceded by the one-word statement:
main

This is not strictly necessary. Since all other sections of a program must have a heading, it is pos-
sible to omit themain statement and assume that statements belongmain routine if not oth-
erwise labeled. Nevertheless, itis good programming practice to label program sections fully. Each

54

Programming Language Concepts

complete program may have only tmain routine. Th main routine, like all other program sec-
tions, should be terminated by the wend.

A subprogram definition statement precedes the statements belonging to each subprogram and:

1. Declares that the statements following are part of a subprogram
2. Names to the subprogram

3. Sets up a communication mechanism for passing data to and from the subprogram.

Each subprogram has a name, which is declared in the subprogram definition statement that pre-
cedes the statements composing the body of the subprogram. Subprogram names follow the same
naming conventions as variables (see parac2.1). Each variable and subprogram name must be
unique. A subprogram definition of the simplest form is:

routine name

The optional wordto andfor are allowed after the wcroutine . Thus, a program to calculate
square roots might be nan SQUARE.ROO and could be defined by the statements:

routine SQUARE.ROOT

or
routine for SQUARE.ROOT

or it might be nameTAKE.SQUARE.ROO and be defined by the statement:
routine to TAKE.SQUARE.ROOT

As the word¢o andfor are optional, there are obvious ambiguities in using the vto andfor
as subprogram names.

Execution of the statements within a subprogram may be requested from another routine by refer-
encing the subprogram name. Such reference is known as calling the subprogram and commonly
takes the form:

call name

This is the simplest form of ticall statement. Additions to this statement and alternative routine
references will be discussed in following paragraphs.

Each subprogram is defined wittroutine statement. As for other program sectionsendi
statement indicates the physical end of the routine. The statements in between constitute the body
of the subprogram. The logical end of a routine, rather than the physical end, is normally indicated
by the special statement:

return

55

SIMSCRIPT II.5 Programming Language

While thestop statement is used to terminate processingmain routine, thereturn statement

is used when processing in a subprogram is complete, indicating that the flow of control should re-
turn to the calling routine (note that there is no restriction to the usestop statement in a sub-
program for abruptly halting all further execution within the program). Some of the examples may
show a comment that includes the routine name followinend statement, which is done to
make clear the separation between routines.

Routines used within a program are generally required to interact with program variables or data.
The requirement to obtain the square root of a number, for example, may occur more than once in
a program, and is also a logical subdivision of the program activity. If the statements to evaluate
the square root of a number are to be grouped as a subprogram, the value of the number must some-
how be transmitted to the subprogram, and the value of the square root must be communicated back
to the calling routine. Values are passed from calling to called routines and back again in two ways:
implicitly, as values of global variables, and explicitly, through arguments in an argument list.

2.11 Global and Local Variables

A global variable is a variable whose name has a common meaning throughout a program. Every
use of the name of a global variable references the same data value, regardless of the routine in
which the reference is made. A local variable, on the other hand, has a value defined only within a
particular routine. A variable local to one routine cannot be directly referenced in any other routine.
Consequently, if the same name is used for a local variable in more than one routine, the name used
refers to a different value in each routine, as if a different variable name were being used in each
place. Thus, local variable names that are not intended to reference the same variables may, for
mnemonic reasons or even inadvertently, appear the same in different routines. In general, local
variables do not maintain a permanent existence in computer memory, but rather pass in and out of
existence as control passes to or from the routine to which they have been declared as local.

The preamble is used to define global variables. A variable is only defined as global when it appears
in a statement of the preamble. Therefore, variable names that are desired to be globally known
must appear idefine statements, even though their properties may be fully described by the exist-
ing background conditions. Conversely, any variable not named in a program's preamble is local
to those routines where it is used. A variable may be explicitly defined as local to a routine by spec-
ifying the name in define statement within the routine. If it is not defined as a global name, nor
explicitly defined within the routine, it is implicitly defined as local by its use within a rotitine.

It is commonly considered good practice, however, to explicitly define all local variables used by
every routine. When a name is locally defined within a routine, it is unique to that routine and does
not conflict with any other uses of the same name. Thus, it is possible to have many different uses
of the same name — both variables and labels — in an entire program. Names declared as global
can be temporarily redefined as local within a particular routine by declaring their names in local
define statements within the routines. Local variables have the properties of the background

56

Programming Language Concepts

(normally) conditions in effect at the time they are first encountered, unless these properties are
redefined in thdefine statements.

All variables that do not appear in a program preamble are local. Local variables can be used both
in subprograms and main routines. Normally statements can be used in routines to set back-
ground conditions for local variables, but these conditions do not carry over from one routine to an-
other. Only the last definenormally conditions in the preamble carry over from routine to
routine. Program 2-1 illustrates hinormally anddefine statements are used to specify prop-
erties of local and global variables.

57

SIMSCRIPT II.5 Programming Language

Program 2-1.

preamble
normally, mode is integer
define V1 and V2 as real, 1-dimensional arrays
define V3, V4 and V5 as 2-dimensional arrays
normally, mode is real

end

main
read N
reserve V1,V2 as N, V3,V4,V5as N by N
read V1 and V2
let V3(1,1) = V1(V2(1))

and other statements that make up a main routine,
including calling references to the subprograms
call PROCESS.DATA

call PRINTOUT
end " of Main Routine

routine PROCESS.DATA
normally dimension is 1, mode is real
define Z as an integer array
normally dimension is 0
define L, M and N as integer variables
reserve Z as 10
'START'
for X =110 10
do...
other statements that make up a routine

return
end " of Routine PROCESS.DATA

routine PRINTOUT
define Z as a 2-dimensional variable
reserve Zas 10 by 5

'START'
letX=1
return
end " of Routine PRINTOUT

58

Programming Language Concepts

Some points to observe from this example are:

1.

A preamble can have more than onormally statement. Each successnormally
statement sets background conditions that hold until they are overridden. The last
normally conditions hold for all undefined local variables in routines. Local variables in
routines can have their properties define normally anddefine statements in the
routines.

The order ofnormally anddefine statements is important. In the above routine
PROCESS.DAT, the variablez is defined a<l-dimensional because thnormally
statement has set this background dimensionality. define statement declares only

that it is to be a integer array. If the order of these statements is reversed, the
normally conditions of the program preamble will applyz, and it will be defined as an
unsubscripted variable, a definition that subsequently will be contradicted reserve
statement. The possibility of error may be reduced by placing less reliance on background
conditions and fully defining the mode and dimensionality of variables.

The namex appears in both subprograms, implicitly definX as a local variable in both
routines. The mode and dimensionalityX are derived from the background conditions
in effect. In this case, the modereal in both routines, as explicitly declared in the first
normally statement irPROCESS.DAT. It is taken from thepreamble -defined back-
ground condition for routinPRINTOU1, which does not set any background mode. For
similar reasons, the dimensionality is also zero.

Unsubscripted local variableL, M , andN in PROCESS.DATA, X in both routines) are
automatically assigned storage locations and initialized to zero when control enters a
routine. They are returned to "free storage" when control passes back to the calling routine.
Subscripted local variables are not automatically assigned storage locations and must be
reserved before they can be used. Recall that when an arreserved , its elements

are automatically initialized to zero.

The fact that two locally defined arrays share the same name is purely coinciz is al.
1-dimensional, integer local array in routinePROCESS.DAT and a 2-
dimensional, real array in routinePRINTOU. If the namez were used in the main
routine, it would be local to it, defined as unsubscriptedreal . Confusion, however,
may be reduced by avoiding duplicate names.

Unlike some block-structured languages, local variables used in inner (lower level) routines
are not available to outer routines. Variables that are not global are accessible only in the
routine in which they are declared.

Labels are always local. When a name is used as a label, it references a program statement
in the routine containing the label. Label names can be duplicated in different routines
without conflict. Labels appearing in one routine are not defined within other routines, and
transfers cannot be made between routines by meigoto statements.

59

SIMSCRIPT II.5 Programming Language

8. A subscripted local variable that does not appeardefine statement within a routine
has its dimensionality defined by its first use. Thatis, evenif a ronormally con-
dition is zero-dimensional, the statemlet X(1) = 0 implicitly definesX as one-di-
mensional. However, the array must stillreserved before its first use.

9. Definition statements for local variables placed at the head of a routine are not preceded by
preamble and followed byend, as are similar statements in a program preamble. In fact,
normally anddefine statements can be used anywhere within a routine, although it is
good practice to place them before any instruction statements.

2.12 Routine Arguments

Global variables provide one mechanism by which values may be communicated between program
routines. A preferred way is through routine arguments. Arguments are values that are explicitly
transmitted between calling and called routines. By making the transmission of values between rou-
tines explicit, rather than using global variables, the logical interaction between these routines may
be emphasized, reducing the risk of inadvertent interaction. Arguments represent variables that be-
have as local variables of a called routine, but which may either reciigievialueseachtime the

routine is called, termegiven argumen, or may be used ielded argumen to transmit result

values back to the calling routine. In the casgiven arguments, the initial values are supplied

by the calling routine. Numeryielded arguments are initialized to zero, as for normal local
variables.

When a routine definition is written, those local variables that are to be arguments of the routine
are listed in the routine definition statement. This definition list is termeformal argument li<.t

When a routine with arguments is called, the values that are to be used to initialize or receive values
from the argument variables are listed in order corresponding to the formal argument list in the rou-
tine definition. The called routine may return values to a calling routine by assigning the values to
those of its argument variables defined tyielded arguments. Thoyyielded arguments not
assigned a value in the routine retain the initialized values of zero. The general form of a routine
definition is:

routine name given given argument list yielding yield argument list

Consider, for example, the common square-root calculation discussed above. A routine to evaluate
the square root of a number might be written:

60

Programming Language Concepts

routine SQUARE.ROOT given NUMBER yielding SQRT
let SQRT = NUMBER/2.0
let DELTA = SQRT
until DELTA < (0.00001 * SQRT)
do
let SQRT = (SQRT + NUMBER/SQRT)/2.0
let DELTA = NUMBER/SQRT - SQRT
if DELTA is not positive
let DELTA = -DELTA
always
loop
return
end
For simplicity, the problem of zero or negative given values is ignored. This routine may be refer-

enced by any other routine in the program using the state:ment:
call SQUARE.ROOT given QUANTITY yielding RESULT

whereQUANTITY andRESUL are variables, commonly local to the calling routine. When control
enters the routine, the value assigneQUANTITY in the calling routine is assighed NUMBE R
When control is returned to the calling routine, the value assignSQR™ in SQUARE.ROC is
assigned to the varial RESULT.

Not all routines have both given and yielded arguments. Global variables may be used for commu-
nication, or perhaps only one-way communication of data is required. Either or botlgiven e
andyielding clauses may be omitted from the routine definition and froncall statement.

The wordgiven may be replaced tgiving, the , orthis to improve readability. Alternatively,

the given argument list may be enclosed in parentheses, using only the ¢, " as a separator.
Hence, routine definition alternatives might be:

routine SQUARE.ROOT(NUMBER) yielding SQRT
routine to SQUARE.ROOT this NUMBER yielding RESULT

In a routine definition, the arguments are restricted to unsubscripted variable names. These argu-
ments behave as defined local variables within the routine. This restriction does not apply to argu-
ment references incall statement, which may be subscripted variables or even expressions.
Synonyms focall areperform andnow. Thus subprograms might be referenced by statements
such as:

perform SQUARE.ROOT(QUANTITY(I)) yielding RESULT
call SQUARE.ROOT giving (B**2 - 4*A*C) yielding X

now SQUARE.ROQOT this X yielding X

call SQUARE.ROOT given NUMBER yielding SQRT

now PRINTOUT

The same variable name may appear both as a given argument and as a yielded argument within a
call statement, as in the third example above. There is no ambiguity, as the order in which the

61

SIMSCRIPT II.5 Programming Language

arguments are transmitted aedeived is clear: at entry to the routine, the given valX is used

to initialize the local argumeINUMBE; at return from the subprogram, the named variable, in this
caseX, is replaced by the resulting yielded argumSQR™. Note that the same names may be used

in both thecall statement and the routine definition, as in the fourth example above.call 1e
statement, the given and yielding arguments refer either to variables local to the routine or to global
variables. In the routine, however, these arguments are always taken as definitions of variables lo-
cal to the routine, and thus, within the routine, do not directly reference the variables appearing in
thecall statement.

It is important to note that the variables listed as given or yielded arguments in a routine reference
must match exactly, in number and mode, the arguments listed in the formal argument list in the
routine definition. No automatic mode conversions, betvinteger andreal , for example,

may be assumed. Obviously, all references to a subprogram in different places in a program should
include the same numbers of both given and yielding arguments. In order that any incorrect refer-
ences may be diagnosed at program compilation, it is possible to define, in the jpreamble ,

the "correct" numbers of arguments, using a statement of the form:

define name as a routine given i arguments yielding j arguments

More than one routine may be defined in the same statea is optional, and the woiroutines

may be used. The wovalues is synonymous witlarguments , andwith andgiving with

given . Either or both of thgiven oryielding phrases may be omitted. If either is omitted the
routine is assumed to have no such arguments. If n given nol yielding phrases are in-

cluded, compilation checks on argument numbers at each routine reference are omitted. Otherwise,
inconsistent argument numbers will result in error messages. Some implementations provide for
additional checks during program execution. Consult the relevant user's guide for options on such
checking.

2.13 Routines Used as Functions

A function is a procedure that yields a single result value when applied to some given value. The
value yielded is termed the result of the function, or the function value. Calculation of the square

root of a given number could be considered to be a function evaluation, and a routine may be written
to provide this service. Tlcall statement, however, is a cumbersome way of incing routines,

which return only a single result value.

When a function is used in a mathematical expression, it indicates that the value that results from
applying the function to the appropriate given values should be used in evaluating the expression.
In programming, a function notation provides a convenient way to reference a subprogram that re-
turns only a single result value. A subprogram that is to be referenced as a function is written in
much the same way as subprograms discussed previously, requiring only minor changes in defini-
tion. The function symbol is the name of the function routine. If the rt SQUARE.ROO" were

defined as a function, it could be referenced with a direct use of the name; as follows:

62

Programming Language Concepts

let X = SQUARE.ROOT(NUMBER)

The given argument or arguments, in this (NUMBE, are specified as before with the restriction

that only the format of an argument list enclosed in parentheses be allowed. Instead of specifying
ayielded argument, the function name is used. As a function reference is not apparently different
from a reference to a subscripted variable, all functions must be defined in the gpreamble .

This may be done by a statement of the form:

define nameas mode function

Recall that the modes of arguments are not automatically converted. As the function value replaces
the singleyielded argument, its mode must somehow be specified. If the mode word is omitted
from the definition, the background mode in effect is assumed. The function value may be any of
the modes associated with a variable. More than one function may be specified by including a list
of function names. As ttyielded argument can no longer be specified in the formal argument

list of the routine definition, threturn statement in the function routine is modified to indicate

the value to be returned. This statement is written, within a function routine, as:

return with arithmetic expression

or
return (arithmetic expression)

More than onreturn statement may appear in any routine, including a function routine. A func-
tion may have several exit points, each returning different values. Consider providing a function
routine to return the absolute value of a given argument:

function ABSOLUTE(NUMBER)
if NUMBER is negative
return with -NUMBER
otherwise
return with NUMBER
end

As the function mode has been declared, all returned values must be of the same mode.

To demonstrate the convenience of the function notation, the following example shows the square-
root subprogram rewritten as a function routine, using, in turlABSOLUTI function just defined:

63

SIMSCRIPT II.5 Programming Language

function SQUARE.ROOT given NUMBER
let SQRT = NUMBER/2.0
let DELTA = SQRT
until DELTA < 0.00001 * SQRT)
do
let SQRT = (SQRT + NUMBER/SQRT)/2.0
let DELTA = ABSOLUTE(NUMBER/SQRT - SQRT)
loop
return with SQRT
end

By incorporating the function reference directly in the logical control phrase and eliminating the
evaluation of the intermediate resDELTA, this example reduces to:

function SQUARE.ROOT given NUMBER
let SQRT = NUMBER/2.0
until ABSOLUTE(NUMBER/SQRT - SQRT) < (0.00001 * SQRT)
let SQRT = (SQRT + NUMBER/SQRT)/2.0
return WITH SQRT
end

Function evaluation takes the same precedence as subscripted variable evaluation. The function is
evaluated prior to evaluation of the expression in which the function appears. Obviously, expres-
sions appearing as arguments to the function are independently evaluated before the function eval-
uation.

2.14 Global and Local Variables, Routines, Functions, and Side Effects

It has been suggested that communication of values between routines is best done through an ex-
plicit argument list. The interactions between a number of routines using many global variables can
be hard to follow, and a single error may have widespread repercussions. The use of explicit argu-
ments helps to logically separate the task of a single routine within the entire program. When global
variables are used in routines that interact, care must be exercised to prevent unwanted side effects.
Most rigorously, any change in the value of any nonlocal variable may be termed a side effect.
More commonly, the term refers to an unexpected or unforeseen consequence of any statement,
usually involving a routine or function call. The practice of explicitly declaring all local variables

to a routine helps avoid the inadvertent modification of any global variables.

2.15 Library Functions

Some functions, such as the square root and absolute value, are used so frequently that they are in-
corporated in the SIMSCRIPT I1.5 language. A list of these functions app¢Appendix E. To

help distinguish the use of these functions, the names are formed from mnemonic abbreviations suf-
fixed with the two characte.f . For exampleabs.f returns the absolute value of the given ar-
gumentsqrt.f returns the square root, alog.e.f returns the natural logarithm. Recall that

64

Programming Language Concepts

names defined by the SIMSCRIPT I1.5 software are generally of the form letter-period-name or
name-period-letter. Examples of the way these functions may be used are:

if abs.f(X-Y) > 1

let Z = log.e.f(Y)

let D = sqrt.f(A**2 + B**2)

for I = 1 to min.f(max.f(A,B), max.f(X,Y,Z2))

Following from the earlier discussion of routine arguments, it might be expected that each library
function would have a defined number of given arguments. This is true with the exception of two
functions,max.f andmin.f , which return the maximum or minimum value, respectively, from
any number of given arguments. For uniformity, the function notation is used as described. How-
ever, not all of the library functions are implemented as routines. Depending on the implementa-
tion, they may be directly evaluated within the program statements.

Many of the library functions are implementations of widely used mathematical functions. Some
others, however, have meanings specific to SIMSCRIPT 11.5. These will be described further as
the context requires.

The library functions can be used freely in all computations. Function arguments can be arithmetic
expressions of any complexity (including function names) as long as they are of the correct mode
and their values conform with the restrictions listed with the function descriptions.

2.16 Using Non-SIMSCRIPT Routines

With some restrictions, routines written in programming languages other than SIMSCRIPT I1.5
may be used in a SIMSCRIPT I1.5 routine. To do so, the routine must be specially defined within
the program preamble as:

as a nonsimscript routine
as a fortran routine

By default, agruments to non-simscript routine are passed by value, while arguments to a
fortran routine are passed by reference. The appropriate SIMSCRIPT 1.5 user manual should
be consulted.Yielded arguments may not be specified for any non-SIMSCRIPT routine.
Function values may be returned providing the function mode is correctly defined. In general, the
interpretation of error conditions is not well defined when these occur within non-SIMSCRIPT
routines called from SIMSCRIPT I11.5.

2.17 Returning Reserved Arrays To Free Storage

When areserve statement is executed, an amount of storage space determined from the
dimensions is allocated to the array pointers named in the statement. If at any time the space
associated with an array is no longer required, it may be returned to the free memory pool by
executing @elease statement naming the array. The total space requirement of a program may

65

SIMSCRIPT II.5 Programming Language

often be reduced by structuring it so that not all arrays need be reserved concurrerrelease
statement has the general form:

release array-pointer list

Examples are:

release A(*)
release COEFF (*,*), WIDTH (*), DIMENSIONS (J,%)

No access should be attempted to any element of areleased array. Thenao@lyecdistinguished
from one that has not been reserved, and an error will result. The array may, of course, be re-re-
served with the same dimensionality.

2.18 Array Pointers as Routine Arguments

Thus far, routine arguments have represented the values of variables, or, in thigiven argu-

ments, the values of arithmetic expressions. These values are copied between the calling and called
routine, as indicated by the ordering in the argument lists. Such arguments are said to be passed
between routines by value. The value of a subscripted variable may be used in the same way as an
unsubscripted variable. The transmission of an array of values is handled differently. To reserve
and copy entire arrays of values would involve significant inefficiencies. For this reason, when ar-
rays appear as routine arguments they are passed by reference, that is, a pointer value is passed.

When an array name appears in an argument list, the value of the array base pointer is transmitted,
rather than the array element values. By using this pointer, the receiving routine can access the el-
ement values within the array structure. For an array pointer transmitted as an argument to be rec-
ognized as such, and to enable the correct accessing of its element values, both the mode and
dimensionality of the array represented must be defined to the receiving routine. The following
function routine illustrates the use of an array hame as an argument. The function computes the
trace of a square matrix, defined as the sum of the diagonal elements. As the matrix must be square,
it is sufficient to pass one value indicating the number of rows and columns. For example:

function TRACE(MATRIX, SIZE)
define MATRIX as a real, 1-dimensional array
define SIZE as an integer variable
define SUM as a real variable
define | as an integer variable
for1=1to SIZE
add MATRIX(l,l) to SUM
return with SUM
end

In this function routine, the argumeMATRIX is locally defined as an array. A pointer value is as-
signed to it, not by reserve statement, but by copying the transmitted value of the array base
pointers passed from the calling routine. In this way, the function works with the actual element

66

Programming Language Concepts

values of the array passed to it. The function routine may be called as shown in the following state-
ments:

define TABLE as a 2-dimensional array

reserve TABLE(*,*) as N by N
read TABLE
let VALUE = TRACE(TABLE(*),N)

It is possible to define an array as a local subscripted variable within a routine, allocating space to
it with areserve statement. However, local variables only have an existence while the routine is
the subject of a call from a higher level routine, and that the local variables of a routine are
reinitialized to zero values at every new call. If itis desired to subsequently access the elements of
an array reserved within a called routine, the array pointer should be included in ttyielded

arguments, or returned as a function value. If subsequent access is not requgeddipisactice

to free the space occupied by the array elements urelease statement, before returning from

the routine. Incidentally, although it might be thought desirable that SIMSCRIPT II.5 arrange to
automatically release all such local arrays befaeturn |, the facility to freely manipulate array
pointers in programmer-defined structures precludes making general assumptions about the values
of locally defined array pointers.

The SIMSCRIPT IL.5 system functidim.f returns the dimension of an array pointer. In the case

of a multidimensional array, given the array base poidim.f returns the dimension of the array

of row pointers at the first level. These row pointers may, in turn, be given to obtain the dimensions
of lower levels of the structure. This function is useful in programs that work with arrays having
varying dimensions by making it unnecessary to save array dimension values for later use, or to ex-
plicitly transmit the array bounds as arguments. For example, the follfor loop uses the

dim.f function to determine the current dimensions or bounds of the rectanguleTABLE:

for I =1 to dim.f(TABLE(*,%)),
for J = 1 to dim.f(TABLE(l,*)),
let TABLE(],J) = I**2 + J**2

Using thedim.f function rather than constants or expressions permits the above statement to pro-
cess ragged tables as well as rectangular arrays. The firsidim.f returns the number of array
rows. The second reference returns the number of coluneasiofof these rows.

Two important features to remember about arrays used as arguments are (1) the pointer to an array
is transmitted, rather than the individual element values, and (2) the mode and dimensionality of the
array must be declared in the routine. Some examples illustrate these points.

1. Aroutine adds two two-dimensional arrays together and stores their sum in a third array.
Note that the result array appears in the list of given arguments because only the array
pointer value is passed. The called routine uses this pointer value to directly access the el-

67

SIMSCRIPT II.5 Programming Language

ements in the prereserved array space. Responsibility for reserving this space rests with the
calling routine.

Routine definition:

routine ADD.MATRICES given A, B, and C
define A, B, and C as real 2-dimensional arrays
normally mode is integer
for I =1 to dim.f(A(*,*))
for J = 1 to dim.f(A(1,*))
let C(1,J) = A(1,J) + B(1,J)
return
end

Routine called within a program:

define COST1, COST2, TOTAL.COST as 2-dimensional real arrays
reserve A(*,*), B(*,*) and C(*,*) as Nby M

call ADD.MATRICES given COST1(**), COST2(*,*)
and TOTAL.COST(*,)

2. As an alternative to the above example, the result array could have been reserved by the
called routine and its pointer value returned as a yielded argument. This yielded argument
must be defined at the calling program level to be an array. Note that each call to the routine
reserves space for a new copy of the array. The calling program, therefore, is responsible
for managing the release of these multiple space allocations.

Routine definition:

routine ADD.MATRICES given A and B yielding C
define A, B, and C as 2-dimensional real arrays
normally mode is integer
let NROWS = dim.f(A(*,*))
let NCOLS = dim.f(A(1,*))
reserve C as NROWS by NCOLS
for 1 = 1to NROWS
for J=1to NCOLS
let C(1,J) = A(1,J) + B(1,J)
return
end

Routine called within a program:

define COST1, COST2, TOTAL.COST
as 2-dimensional real arrays
reserve COST1, COST2 as N by M

68

Programming Language Concepts

call ADD.MATRICES given COST1(*,*), COST2(*,*)
yielding TOTAL.COST(*,*)

release TOTAL.COST(*,*)

2.19 Text Mode Variables

To this point, variables have been used to reprdnteger andreal numeric data. The need

can arise to work with text characters. SIMSCRIPT II.5 allows variables to be decltext as

mode. Variables so defined may be used to represent strings of alphanumeric characters up to a
maximum of 32,000 characters.

Text variables may be read from input data, be printed on an output device, or have their value
assigned internally in a program. A varietytext manipulations are supported. Declaration of
text mode is made in the same way as for other variable modes:

normally mode is text
or
define variable list as text variables

A text mode constant, or text literal, may appear in a program statement, and bears the same re-
lation totext variables as do numeric constaniinteger ancreal variables. A text literal

is a character string enclosed between quotation marks (*). (Note that the single character " used to
bracket a literal is different from the two characters " used to bracket a comment.) Thus a particular
string of characters may be assignedtext variable as follows:

let text variable = "character string"

Any character included in the complete character set representation supported on a particular ma-
chine, including the blank character, may be includectext string. The relevant SIMSCRIPT

I1.5 user manual may be consulted for a list of character representations. If the quotation mark is to
appear within a string, it must be specified as two successive quotation marks.

The character strinLEWIS CARROLI may be assigned to 1text variableAUTHO by the state-
ment:

let AUTHOR = "LEWIS CARROLL"
This string may be copied to ttext variableNAMI by the statement:

let NAME = AUTHOR

69

SIMSCRIPT II.5 Programming Language

This second assignment creates a second copy of the of the characte LEWIS CARROLLI",
assigning it to the variabNAMI. Eacttext variable represents a unique copy of a character string.
Thus, subsequent assignment of another string to the veAUTHO! does not affect the value of
NAMI.:

A character string that contains no characters is termed a null string and is represented by the literal
"in text assignments. Character strings may be erased usierase statement:

erase variable list

where each variable in the list itext variable. Alternatively, text variable may be directly
assigned a null value. Thus, the statements:

erase AUTHOR
let AUTHOR ="

have the same effect. Note that the valuNAMI is still "LEWIS CARROLI".

Onlytext variables or literals may be assigned to anctext variable. No automatic conver-
sions takes place betwetext and any other variable mode .

2.20 Reading and Displaying Text Variables
Text variable names may appear in the variable name list read statement:
read variable list

The variables are assigned values from fields in the input data, delimited on either side by blank
characters or by the beginning of a new input record. Such strings cannot contain blanks, as these
would delimit new data fields. This restriction will be discussed more fully later. For example, if
TVARIandTVAR: aretext variables, the statement:

read TVAR1, TVAR2

will assign the characteANTIDISESTABLISHMENTARIANISh to TVAR1 and the charactelS to
TVAR2 after reading the following data record:

column number
0 1 2 3 ..
12345678901234567890123456789012...
ANTIDISESTABLISHMENTARIANISM IS

Both numeric antext variables may appear in the variable name list of theread statement.

Astext data may not always be delimited by blank characters, a second more text vari-
ableread statement is supported. The statement takes the form:

read text variable asT*

70

Programming Language Concepts

which reads a variable length text string enclosed by matched delimiters. This fornread he
statement skips to the next nonblank character in the input data, treating this character as a leading
delimiter, and then reads until the next occurrence of this same character. The character string may
begin in any record column position and extend over any number of input records. Any nonblank
character may serve as a delimiter for any indiviread . For example, the statement:

read TVARL, TVAR2as 2 T *
when reading the following data record:

column number

0 1 2 3 4...
1234567890123456789012345678901234567890...
/A simple phrase/ 'Two words'

is equivalent to:

let TVAR1 = "A simple phrase"
and

let TVAR2 ="Two words"

A text variable may be included in the variable list qprint ~ statement. The print format in-
formation should contain a field of asterisks denoting the positions to be occupied in the printed
line. If the text string to be printed contains more characters than there are allocated print positions,
only the indicated number of characters will appear in the output. Conversely, if more positions are
allocated than there are characters, the unfilled positions will appear as blanks. Thus, the statement:

print 1 line with TVAR1, TVAR2 thus

kkkkkkkkkkkkkkkk *kkkkkkk

produces the result:
ANTIDISESTABLISH IS

A technique for producing variable-length string output is described in Cl3.pter

2.21 Operations With Text Variables

Although arithmetic operators cannot operate on text mode variables, certain logical expressions
can ustext variables. The most usual of these is comparison for equality; thus:

if NAME = "LEWIS CARROLL"

Such comparisons betwetext variables or literals are treated on a character-by-character basis,
starting from the first character position and proceeding left to right. If two text strings differ in

71

SIMSCRIPT II.5 Programming Language

length, the shorter string is considered to be extended with blanks for comparison purposes. Com-
parisons are not limited to equality or inequality. However, the result of "less than" or "greater than"
comparisons depends on the collating sequence of the internal character sequence used. This is
based on the implementation and SIMSCRIPT I1.5 User Guitshould be consulted. On all im-
plementations, however, the null string compares less than all other strings.

2.21.1 Concatenation: CONCAT.F(textl, text2...textn)

Theconcat.f function returns text variable by concatenating ttext variables otext ex-
pressions given as arguments. To illustrate the effect, letext variablesSTRING1 and
STRING2Z be assigned the charactePIANC" and 'FORTF', respectively. The effect of the state-
ment:

let LONGNAME = concat.f(STRING1, STRING2)
is to assign the charactePIANOFORT!" to LONGNAN. Similarly,
let LUNCH = concat.f("HAM", "AND", "EGGS")

assignsHAMANDEG(" to LUNCE. The concatenation is in the order of the given arguments. If any
argument has a null value, the remaining strings are concatenated normally.

2.21.2 Substring: SUBSTR.F(text, index, length')

The substr.f function provides access to a substring withtext variable. The substring is
specified by twdnteger values, a start position within the source string, and the substring length.
The first character of the string is referenced by an index olA andB are text variables, then the
statement:

let B = substr.f(A,1,J)

copiesJ characters, starting from tI ' character position iA to the character strirB. A remains
unchanged. For example A = "SIMSCRIPT II.5" , then:

let B = substr.f(A,4,6)
assigns the characte'SCRIPT" to B.

Unlike most functionssubstr.f may be used on the left-hand side of an assignment statement
to replace a substring withir text variable. If stringA has the valu"FOOTBALL", then the
effect of the statement:

let substr.f(A,1,4) = "GOLF"

is to replace the first four character<A, giving it the value'GOLFBALL". For either use, the start
position specified must be 1 or greater. ‘substr.f function may not be used to extract or re-
place characters beyond the length of the stA. If the substring is so specified, only the remain-

72

Programming Language Concepts

ing characters in the string are used. Tisubstr.f(A,I,INF.C) refers to all remaining
characters in the string starting from 1 & position.

2.21.3 Pattern Matching: MATCH.F(text, pattern , skip)

The functionmatch.f(A,B,) searches from left to right for the character pattern defined by
text variableB, within thetext variableA, after skipping the firsl characters cA. If the pattern

is matched, the location of the pattern string wiA is returned. If no matching string is found,
zero is returned. BoiA andB are unchanged. If eithA or B is the null string, zero is returned.
For example, iINAMEIs the strin¢'JOHN JOHNSON'":

let | = match.f(NAME, "JOHN", 1)

will return 6, as the first character position is skipped in the search.

2.21.4 Length Function: LENGTH.F(text)

Atext variable may represent a character string of any length, from zero to a maximum of 32,000
characters. THLENGTH.L function returns the length of ttext variable oitext expression giv-
en as an argument. The length of a null or unassigned string is zero.

2.21.5 Case Conversion: UPPER.F(text) and LOWER.F(text)

These functions convert the alphabetic characters of thetext argument to upper case or low-
er case, respectively. Other characters are not changed.

2.21.6 String Repetition: REPEAT.F(string ,count)

This REPEAT.F function repeatstring (atext variable)count times (wherecount is an in-
teger), returning a text variable. For example:

repeat.f ("CAMEL", 2)

returns the strin"CAMELCAMEL.

2.21.7 Truncation and Expansion: FIXED.F(string ,length)

This FIXED.F function expands text string tolength , whert length is an integer, by trun-
cating or space-padding on the right. The text string is returned. For example:

fixed.f("CAMEL", 3)
returns the strin"CAM", while:
fixed.f("DOG", 5)

returns the strir "DOG "

73

SIMSCRIPT II.5 Programming Language

2.21.8 Blank Character Elimination: TRIM.F(string , flag)

This function trims leading and/or trailing blanks from string , according to the value flag
(an integer variable). Thus:
Flag Action
-1 Remove leading blanks only
0 Remove leading and trailing blanks
+1 Remove trailing blanks only

Thus, for example:

trim.f (* CAT ", 1) yields the strin" CAT"
trim.f (" DOG ", -1) yields the strin "DOG "
trim.f (" CAT AND DOG ",0) yields the strin "CAT AND DOG"

2.21.9 INTEGER to TEXT Conversion ITOT.F(integer)

This function returnstext string representation of its single integer argument. The length of the
returned string is determined by the number of digits required to represent the integer value. Strings
representing negative integers are prefixed wit- ". Thus, for example, INT=26 andTVAR

is atext variable:

let TVAR = itot.f(INT)

assign<'26" to TVAF.

2.22 Alpha Variables

Astext variables may not be used in arithmetic expressions, SIMSCRIPT II.5 provides for an
alpha mode. An example of such a requirement might be the indexing of an array using a character
subscript. Aralpha variable provides for the representation of alphanumeric data which may be
manipulated in a way similar to numeric data.

Earlier implementations of SIMSCRIPT did not suppctext mode, and hence did all character
processing i alpha mode. The number of characters represented byalpha variable was
machine dependent. Although this interpretation ofalpha mode may still be supported for
compatibility reasonsalpha variables should now be assumed to be restricted to a single character.
Usage that requires multiple-character representation is providedtext mode, and itis rec-
ommended thétext mode be used for character processing where possible. Variables are defined
to bealpha in the usual ways:

normally, mode is alpha
or

74

Programming Language Concepts

define variable list as alpha variables

Analpha variable may contain any character from the character set, including the blank character.
A character value is assigned toalpha variable by delimiting the character literal with quotes

(). If the literal comprises more than one character, the first character is assigned. (When an
alpha variable contains more than one character, the number of characters equivalent to the alpha
variable size will be extracted.) For example:

let ALPHAVAR ="A"

The quotation mark is assigned by writing four successive quotation marksAlpha variables

may be assigned and compared. They may also be used in arithmetic operations, but care must be
taken that such use is meaningful. It must also be noted that the effect of such use may differ with
various implementations, as various internal character representations have different numeric val-
ues. An example of the use ofalpha variable might be the use of alphabetic item codes in the
inventory program mentioned earlier:

define ITEM.CODE as an alpha variable
define STOCK as a 1-dimensional integer array

read ITEM.CODE and QUANTITY
if ITEM.CODE <> "X"

subtract QUANTITY from STOCK(ITEM.CODE)
always

However, a similar effect may be achived without resorting to such implementation-depere .ent cod

2.22.1 TEXT to ALPHA Conversion: TTOA.F(text)

The system functicttoa.f returns the first character(s) of the gitext variable as aalpha
variable. Although typically only one character is returned, more may be given depending on the implementation
and computer option selected. If the null string is given, a blank character(s) is.returned

2.22.2 ALPHA to TEXT Conversion: ATOT.F(alpha)

A complementary functioratot.f , generatestext representation ofthe givalpha variable.
In general, this is a single character string,alpha representation may vary on some systems.
Consult the user's manual.

2.23 Recursive Routines

All SIMSCRIPT I1.5 routines are recursive, meaning that they can call upon themselves. The con-
cept of recursion is commonly exemplified using a procedure evaluating the factorial of a number.
The factorial of a number is defined by:

75

SIMSCRIPT II.5 Programming Language

Factorial(n) = n * (n-1) * (n-2) * ... * (2) * (1)
This recursive function routine may be used to compute the factorial of its given argument:

routine FACTORIAL(N)
ifNeqgl
return with 1
otherwise
return with N * FACTORIAL(N-1)
end

The routine calls on itself repeatedly until it has reduced its argument to 1. If this function were
called withN = 4 , the factorial would be evaluated in the following steps:

FACTORIAL(4) = 4 * FACTORIAL(3)
4*(3*FACTORIAL(2))
4*(3*(2*FACTORIAL(1)))
4*(3*(2*(1)))

24

This may not be an efficient way to compute a factorial, but it does illustrate the concept of a recur-
sive call.

An important consequence of recursion is that local variables are unique to each routine call. Each
call has a separate "memory" that shares nothing with previous calls except their common routine
structure. Recall that local variables are reinitialized at every entry to a routine. Global variables
are defined across all levels of recursion, as their names represent the same values at all points in a
program. Using global variables and passing values in argument lists are two ways that separate
invocations of a recursive routine can communicate across different levels of recursion.

Program efficiency and inter-routine communication are two reasons why it might be desired to
have some routines behave nonrecursively. The mechanism for isolating variables and making
them local, not just to a routine but to each call of a routine, involves some computational overhead.
Isolating local variables of routines between routine calls also makes it impossible for a routine to
transmit information from one call to another through a local variable, or to "remember" values
across successive calls. In recursive routines, this can only be accomplished by using global vari-
ables or explicitly passing values as arguments.

All the local variables of a program, or selected local variables in individual routines, can be defined
assaved orrecursive . If avariable issaved , it is stored in a memory location associated with

a routine it is local to, but accessible by all references to it from any invocation of this routine. Un-
like arecursive variable, esaved variable is not released when control returns to a calling pro-
gram, and is not reinitialized at each new call, but retains any value assigned to it when the routine
was last executedSaved variables are initialized to zero before their first use.

76

Programming Language Concepts

There are three different kinds of routine variables: argurrsaved variables, anrecursive
variables. Arguments are implicitly treatedrecursive variables initialized from transmitted
values. They may not be definedsaved .

All local variables in a program, except for routine arguments, may be declared asaved or
recursive , by using the phrases:

type is saved

or
type is recursive

in the lasinormally ~ statement of a program preamble, as in:
normally, mode is real, type is saved

Because the lanormally statement in the program preamble applies to all local variables unless
they are otherwise qualified, this statement sets a background condition that is binding on all un-
gualified variables. If type phrase is not used, all local variables are treatrecursive

Within routines, local variables can be declaresaved orrecursive inanormally statement
orindefine statements. ldefine statements, use of the wosaved orrecursive is similar
to use of the property words that define the mode. Examples are:

define VALUE as a real, recursive variable
define QUANTITY as a saved variable
define X,Y and Z as recursive, integer variables

Local arrays may be treated saved orrecursive by making their base pointesaved or
recursive . Thus, write:

define TABLE as a real, saved, 2-dimensional array

Recursion can best be understood with an example. The program below uses Horner's method for
evaluation of polynomials. This method has the computational advantage of requiring only 2(K-1)
arithmetic operations to evaluate a polynomial of order (K-1), which is fewer than are required by
straight-forward evaluation. A polynomial of the form:

A(K) + AK-1)*X ... + A(1)*X**(K-1)
may be expressed in the recursive form:

AK) + XH(A(K-1) + ... + AL)X**(K-2))
The following brief SIMSCRIPT I11.5 routine demonstrates a program for evaluating this form.
In the program preamble:

define POLYN as a real function

77

SIMSCRIPT II.5 Programming Language

Routine definition:

function POLYN given A, XVAL and K

define A as a 1-dimensional real array
define XVAL as a real variable
define K as an integer variable
ifKeqO
return with 0
otherwise
return with A(K) + XVAL * POLYN(A(*), X, K-1)
end

Notice that the interior call tPOLY! usesk-1 as an argument insteadK. To illustrate how the
routine works, the evaluation of the polynomial is described:

3.3x 2+21x+9.2.

Assume that the coefficier3.3,2.1 , and9.2 are stored in an arriCOEI, in the ordeCOEF(1),
COEF(2), andCOEF(3), respectively. The polynomial is to be evaluated for the «x = 0.5
The function is called by the statement:

let VALUE=POLYN(COEF(*), 0.5, 3)
The polynomial is evaluated as:

POLYN(COEF(*), 0.5, 3)
= 9.2+ 0.5 * POLYN(COEF(*), 0.5, 2)
=9.2+0.5*(2.1+0.5* POLYN(COEF(*), 0.5, 1))
=9.2+0.5*%(2.1+0.5*(3.3+0.5* POLYN(COEF(*), 0.5, 0)))
=92+05%(21+05%(3.3+0.5*0.0))

which evaluates t11.075 .

A commonly used data structure in computing is the "tree" structure. One form of such a structure
is a "binary tree," where each node within the tree may have a "left branch" and a "right branch"
that represents links to other nodes in the tree. One node is chosen to represent the root. No node
is directly linked to/from more than one other node. Any node may be reached by starting from the
root and taking successive links at eaode encountered. At the end of each possible path are
"leaf" nodes that have no successor links. Binary trees are well suited to processing with recursive
routines, since each node in such a tree may be considered as a "root" for a tree at a lower level with-
in the hierarchy of nodes.

An example of a recursive routine for destroying all the nodes of binary tree is shown below. The
tree is constructed of two-element, one-dimensional arrays that point to each other. Data storage at
the nodes may be disregarded for this example. To illustrate the tree-building process, the following
program segment forms the root of a binary tree neTREE:

78

Programming Language Concepts

normally mode is integer
define NOD and NODE as 1-dimensional arrays
reserve NODE(*) as 2
let TREE = NODE(*)

let NODE(*) =0

reserve NODE(*) as 2
let NOD(*) = TREE

let NOD(1) = NODE(*)
let NODE(*) =0

reserve NODE(*) as 2
let NOD(2) = NODE(*)
let NODE(*) =0

end
NOIL is used as a dummy array name to which a preNODI pointer is assigned to allow nodes to

connect to the nodes above them in the tree. This is not the most efficient way to process such trees.
The tree constructed by the program above is illustrated in figure 2-6.

TREE

;

NODE(1) NODE(?2)

— T

| |
NODE(1) ~NODE(2) NODE(1) =~ NODE(2)
et cetera et cetera et cetera et cetera

Figure 2-6. Tree Construction

A recursive routine to destroy such atree is shown below. Given the pointer to the root of the tree,
the routine follows all paths in the tree and destroys the nodes on them:

routine DESTROY(NODE)
normally mode is integer
define NODE as a 1-dimensional array
if NODE(*) is not zero,
for BRANCH =110 2
call DESTROY(NODE(BRANCH))
release NODE(*)
always
return
end

79

SIMSCRIPT II.5 Programming Language

This routine, when called by a statement succall DESTROY(TREE) , calls upon itself asach

node destroys the nodes below it. Because each node either points to a successor node or is zero,
the routine can tell whether it has to follow a downward path to destroy successor nodes, or whether

it can destroy the node it is working on by releasing it. Perhaps the easiest way to understand this
routine is to construct a typical tree, such as that shown in figure 2-7, and follow the logic through.

¢

g

i

1]
v

Figure 2-7. A Binary Tree

By changing one statement, as shown below, the routine can easily be expanded to destroy not only
binary trees, but those containing limitless branches as well:

routine DESTROY(NODE)
normally mode is integer
define NODE as a 1-dimensional array
if NODE(*) is not zero,
for BRANCH =1 to dim.f(NODE(*))
call DESTROY(NODE(BRANCH))
release NODE(*)
always
return
end

80

Programming Language Concepts

AN

Sy PR

Figure 2-8. A Complex Tree
The ability to use thdim.f function makes it easy to allow each node to have several branches,
rather than only two. Such a tree might look like figure 2-8.

2.24 Pre-Processing Program Text

In the interests of readability, SIMSCRIPT I1.5 provides two program text substitution facilities.
The first allows a defined sequence of words to be substituted for a single word. Thent:ateme

word to mean sequence of words

means that each occurrence of word in the program text is replaced, before interpretation, by a se-
guence of characters. The word to be replaced may be any name, single character, or sequence of
characters not containing a blank. However, only clearly identifiable occurrences are replaced.
Embedded occurrences in other strings are not extracted for replacement. The string to be substi-
tuted may be any sequence of characters or words, delimited by the end of a statement line. It may
contain embedded blanks. Comment text is not affected. This feature provides, for instance, the
ability to represent the constants that frequently appear in programs as meaningful names. Includ-
ing such definitions, for example, as:

define .IDLE.STATUS to mean O
define .BUSY.STATUS to mean 1
define . DOWNSTREAM to mean 2

allows statements to be written as:

if STATUS.CODE = .BUSY.STATUS
or DIRECTION = .DOWNSTREAM
let STATUS = .IDLE.STATUS

while being interpreted as:

81

SIMSCRIPT II.5 Programming Language

if STATUS.CODE =1
or DIRECTION =2
let STATUS =0

Defining constants in this symbolic way greatly eases the task of program modification, should
some of these constant values have to be adjusted. Of course, variables could be assigned to these
constant values with similar effect. However, it is possible for variables to be inadvertently modi-
fied with consequent effect on the meaning. In order to clearly distinguish constants defined in this
manner from program variables, it is suggested that a unique name construction be reserved for
those names that are to be substituted. The form used above, which does not detract from readabil-
ity, is to prefix all such names with a period.

Another potential use is in the redefinition of keywords in a program. For instance, thero- ds
cedure, execute , andfinish may be preferred to the SIMSCRIPT II.5 terroutine,
call ,andend. Preceding a program with the statements:

define PROCEDURE to mean routine
define EXECUTE to mean call
define FINISH to mean end

allows the program to be written with this redefined vocabulary and then be translated into
SIMSCRIPT 1.5 vocabulary before compilation.

The scope of thdefine to mean statement is similar to that of tnormally statement. When
used in a program preamble, it extends throughout an entire program unless overridden. When used
in a routine, it holds (until overridden) for that routine only.

Entire sequences of statements can be generated directly into a program by an extended form of the
define to mean statement. The extended form allows more than one line of statements to be
substituted for a particular word, and it offers greater possibilities for macro-instruction generation.
The statement can be written in two ways:

substitute this line for word
and
substitute these i lines for word

In the first statement, the contents of the line following the statement are substituted for the word
wherever it appears. In the second statement, the contents of the foli lines are substituted.
As with thedefineto mean statement, totally blank cards and comments cannot be subs ituted.

Define to mean andsubstitute statements can be used freely in a program with few restric-
tions. They can "call on" one another at different levels of substitution. The following statements
show how a series define to mean andsubstitute statements can be applied to a program
statement and used to translate the words of the statement into legal SIMSCRIPT 11.5 code.

82

Programming Language Concepts

substitute these 2 lines for ZZ
set VALUE = B
go to START
define SET to mean let
define B to mean X(1)*Y(1)+1

Program statement:
if VALUE is greater than 0 ZZ

Translation:

ZZ is translated to:

set VALUE =B
go to START

set VALUE = B is translated to

let VALUE = B and then to

let VALUE = X(1)*Y(1)+1
Compiled as:

if VALUE is greater than O
let VALUE=X(1)*Y(1)+1
go to START

Certain words, such as statement key words, should be redefined with extreme caution. If, for ex-
ample, the word A is defined, as in the statement:

define A to mean X

and adefine statement such iefine LIST as a real array is processecX will be sub-
stituted forA, and will create the incorrect statemdefine LIST as X real array

The effect oidefine to mean statements can be withdrawn by the statement:
suppress substitution

and reinstated by the statement:
resume substitution

These statements should bagad alone on program statement lines, because substitution takes
place for an entire line as it is read, and before the contents are interpreted. If other statements ap-
pear on the same record asuppress substitution statement, substitutions are made for

such statements (if called for) before suppress command is recognized. To suppress sub-
stitution for a particular word, the word itself is defined, as in the following example:

83

SIMSCRIPT II.5 Programming Language

suppress substitution
define X to mean X
resume substitution

If the suppress statement is not used, the current substitution will be madx before the
define statement is recognized, ax will never be redefine .

Thoughtfully used, these substitution capabilities can add to the readability of a program and sim-
plify the modification of program constants or parameters. Conversely, careless or excessive use
can render a program almost unreadable, greatly obscuring the logical intent and adding to the
difficulties of program maintenance.

2.25 More On Changing The Flow of Computation

Although the control structures described in Chel are sufficient to express any desired direction
of the flow of control, they do not readily suit the case where there are many possible paths from
which to choose.

An additional control structure which is very useful in these more complex situationselect
...endselect control block, commonly referred to as case statement. This construct allows
transfer of control to any one of an arbitrary number of alternatives.select statement
transfers control to the fircase statement with a value corresponding to the value of the
expression. If a matching value is not found, execution begins followi default ~ statement,

if specified. A run-time error occurs if there is no matchdefault is omitted. The general form

of the select structure is:

select case expression

case constant list
statement group

case constant list
statement group
default
statement group
endselect

where:

expression is a valid expression of any mode.

constant list is a list of the form:
valuel[, value 2, ..., valuen]
in which eaclvalue i is of the form:

84

Programming Language Concepts

constant
or
constant to constant

the mode oexpression and eaclconstant must agree, in accordance with the following rules:

1. If expression is numeric (integer, real or double), then econstant must be numeric.

2. If expression is alpha or text, theconstant must be a literal string delimited by quo-
tation marks,

e.g. "string"

3. If expression is a subprogram variablconstant must be a subprogram literal (see
paragrap 2.3() delimited by single apostrophes, e'sin.f'

Each statement group is a sequence of 0 or more SIMSCRIPT statements.

The following example emulates a simple calculator:

define OPERATION as a text variable
define OPERAND1, OPERAND2 and RESULT as real variables
until OPERATION = "halt"
do
read OPERATION, OPERAND1 AND OPERAND2
select case OPERATION
case "+"
let RESULT = OPERAND1 + OPERAND2
case "-"
let RESULT = OPERAND1 - OPERAND2
case "*"
let RESULT = OPERAND1 * OPERAND2
case "/
let RESULT = OPERAND1 / OPERAND?2
case "halt"
default
print 1 line with OPERATION thus
*rrkkkkk i not a valid operation.
endselect
loop

The cases may be overlapping, in which case the first matching case will be selected for execution.
For example:

85

SIMSCRIPT II.5 Programming Language

define LETTER as an alpha variable

select case LETTER

case "A", "E", "I", "O", "U"
print 1 line with LETTER thus
*is a vowel.

case "Y"
print 1 line with LETTER thus
* is strange.

case "A"to "Z"
print 1 line with LETTER thus
* s a consonant.
endselect

Unlike comparable constructs in other languages, it is not necessary to explicitly exit a
select...endselect block. Where icase statement begins a group of statements, the group
is automatically terminated by the ne¢case, default , Orendselect statement. Control is
transferred to the statements following endselect statement. Thus:

case 1l
case 2
print 1 line thus
this is a small number

would cause absolutely nothing to happen if the value of the expresl. The programmer prob-
ably intended to write:

case 1,2
print 1 line thus
this is a small number

which will print the message for values of both one and two.

The use of thdefault ~ statement is optional. If included, it must come after all of the correspond-
ing case statements. If omitted, a run-time error will resuexpression does not match one
of the specified cases.

Select...endselect blocks may be nested within each other, or if...else...always
anddo...loop structures. Care must be taken to ensure that the blocks do not overlap.

2.26 Some Data-Related Logical Values

Two of the system-defined functions supplied in SIMSCRIPT lefield.f andsfield.f
have no given arguments. These functions together with some system defined logical values are
provided in SIMSCRIPT 1.5 to allow a number of properties of input data to be examined or tested

86

Programming Language Concepts

during program execution, before the data are read using a freread statement. These func-
tions and logical values, sometimes called "look-ahead functions," are shown in table 2-4.

Table 2-4. Look-Ahead Functions

Name Value

data End of data indicatoended or not ended

sfield.f Starting column number of the next data field
efield.f Ending column number of the next data field
mode Mode of the next data fielinteger ,real , oralpha
card First data field on card indicatiew or not new

Some examples illustrate the use of these system variables:

1. Frequently, the logical condition for terminating processing is reaching the end of the input

data. This condition may be tested for with logical comparisons of the form:

if data is ended
until data is ended
while data is not ended

2. Sfield.f can be used to distinguish input data records that appear in two formats. Some
of the records contain data beginning in column 1, while in others the data fields start in

column 25. These two record types are to be processed differently. A vesfield.f
is determined before each new value is read, but the data item itself is not rearead il a
statement is executed.

if sfield.feq 1
read DATA1
else
if sfield.f eq 25
read DATA25
else
skip 1 record
always
always

3. Efield.f may be used in the same way to determine the last column position of the next
data field. Using both functions, the number of characters in a data field may be determined

before the field is read and processed.
4. The mode property of a data field may be tested to discriminate betinteger and
real numeric data, or any non-numeric data, identifiealpha . A succession of name

87

SIMSCRIPT II.5 Programming Language

88

fields, each followed by a varying number of numeric values, might be processed by state-
ments such as:

while data is not ended
until mode is alpha
do

read NUMBER

loop
stop

The propertydouble is treated as synonymous wreal , whiletext may be used as a
synonym fo alpha

Although free-form input in SIMSCRIPT 1.5 ignores record columns or record boundaries,

it is possible to test whether the next data field is positioned at the beginning of a data
record. Perhaps this condition might indicate the start of a new batch of data items. The
condition may be tested for by such logical comparisons as:

if card is not new
until card is new

When there are no further data fields (either none exists or all data have been read and look-
ahead is impossible), the system variables have the values shown in table 2-5.

Note: The termcard is used for historical reasons . It stands for record.

Programming Language Concepts

Table 2-5. Values for System Variables When Data Are Ended

_Name Value
data ENDED
sfield.f 0
efield.f 0

mode ALPHA
card NEW

2.27 More Sample SIMSCRIPT II.5 Level 1 Programs
2.27.1 A Data Analysis Program: 1

This example illustrates a use of subscripted variablesreserve andread statements, and the
use offor loops to control the indexing of subscripted variables.

The program reads a list N data items into an array. It then goes through the list, computing for
each index value the averages of successive overlapping sequences of values, with sequence lengths
varying from 2 to a maximum (N-1. These moving averages are compared with an arbitrary tol-
erance value. If they are less than this value, the values of the index, the sequence length, and the
average are printed.

Program 2-2.

main
define LIST as a 1-dimensional array
define I, J, SEQ.LEN and N as integer variables
define TOLERANCE.VALUE, SUM and AVERAGE as real variables
read N
reserve LIST(*) as N
read LIST, TOLERANCE.VALUE
for SEQ.LEN =1 to N-1

for I =1 to N-SEQ.LEN
do
let SUM =0

for J=0to SEQ.LEN

add LIST(I+J) to SUM

let AVERAGE = SUM/(SEQ.LEN+1)
if AVERAGE is less than TOLERANCE.VALUE

print 1 line with I, I + SEQ.LEN and AVERAGE thus
ITEMS *** THROUGH *** HAVE AN AVERAGE OF ** ***
always
loop
release LIST(*)
stop
end

89

SIMSCRIPT II.5 Programming Language

2.27.2 A Data Analysis Program: 2

To illustrate the way in which the logical elements of a program may be separated into routines, this
example repeats the computations of the previous problem, but instead of computing the averages
of the data values, computes the average of a function of the values. As the function to be used may
conceivably vary for different sets of data, or under different circumstances, the function evaluation
is logically partitioned from the main body of the program, and written as a function routine. It may
then be both separately tested and altered without having to modify the main routine. Note that the
function routine must now be declared within the program preamble.

Program 2-3.
preamble
define VALUE as a real function
end
main

define LIST as a 1-dimensional array
define 1,J, SEQ.LEN and N as integer variables
define TOLERANCE.VALUE, SUM and AVERAGE as real variables
read N
reserve LIST(*) as N
read LIST
read TOLERANCE.VALUE
for SEQ.LEN = 1 to N-1,
for 1 =1 to N-SEQ.LEN
do
let SUM =0
for J =0 to SEQ.LEN
add VALUE(LIST(I1+J)) to SUM
let AVERAGE = SUM/(SEQ.LEN+1)
if AVERAGE is less than TOLERANCE.VALUE
print 1 line with I, | + SEQ.LEN and AVERAGE thus
ITEMS *** THROUGH *** HAVE AN AVERAGE OF ** ***
always
loop
release LIST(*)
stop
end
routine VALUE given VARIABLE
if VARIABLE is less than -1000
return with -1
otherwise
if VARIABLE is greater than 1000
return with 1
otherwise
return with VARIABLE/1000
end

90

Programming Language Concepts

2.27.3 A Matrix Multiplication Program

Two matrices (double-subscripted variables) are to be read from data records.Ais input row
by row. That is, the values appear in the 0A(1,1), A(1,2), ..., A(1,M), A(2,1),

e A(2,M), A(3,1), ..., A(N,M) . Matrix B appears column by column in the order
B(1,1), B(2,1) ..., B(S,1), B(1,2), ..., B(S,2), B(1,3), ..., B(R,S)

The values of the matrix dimensicN, M,R , andS precede the element data. This program reads
the data, checks that multiplication is possible and, if so, multiplies the miA andB together
placing the values in matrcC.

For matrix multiplication to be possiblv must equaR. The rules for computation are:

if A has dimensions N, M and
B has dimensions M, S then
C has dimensions N, S and the elements of C are computed as:

M
C(K)= 2 A(1,J)*B(J,K)
j=1

The program below illustrates the use ofreserve statement with variable dimensions executed
in the body of a program, two formsread statement formats for inputting subscripted variables,
nestecfor loops, and the use of tlist statement.

91

SIMSCRIPT II.5 Programming Language

Program 2-4.

main
define A,B and C as real 1-dimensional arrays
define 1,J,K,M,N,R and S as integer variables
read N, M, R and S
if M is not equal to R,
print 2 lines thus
MATRIX DIMENSIONS ARE NOT EQUAL,
MULTIPLICATION IMPOSSIBLE
stop
otherwise
reserve A(**YasNby M, B(**)asRby S, C(**) asNby S
read A
fordJ=1to S,
forl=1toR,
read B(l,J)
forl=1to N,
forK=1t0 S,
ford=1toM
add A(1,J) * B(J,K) to C(I,K)
list A,Band C
stop
end

2.27.4 A Matrix Multiplication Routine

This program presents the previous program written as a routine. It returns a coded value if multi-
plication is not possible. Unlike the foregoing program, this routine does not assume that the matrix
Cis initialized to zero by the calling routine, and an initialization statement is included in the rou-
tine.

92

Programming Language Concepts

Program 2-5.

routine MATRIX.MULTIPLY given A,B and C
yielding CODE

define A, B and C as 2-dimensional real arrays
define CODE as an integer variable
define N, M, R, S, |, J, K as integer variables
let N = dim.f(A(*,*))
let M = dim.f(A(1,*))
if M is not equal to dim.f(B(*,*))

let CODE =1

return
otherwise
let S = dim.f(B(1,%))
forl=1to N,

forK=1to S
do

let C(1,LK)=0

forJ=1toM
add A(1,J) * B(J,K) to C(I,K)
loop
return
end

This routine might be used in a program by calling on it as:

call MATRIX.MULTIPLY(TABLE1(*,*), TABLE2(*,*), TABLE3(*,*))
yielding FLAG

if FLAG ne O
print 1 line thus

MATRIX DIMENSIONS INCOMPATIBLE

else

2.28 More on Program Format

In general, SIMSCRIPT II.5 program statements may occupy up to 80 character posidanh on

of the source input records. By convention, some systems use a number of positions at the end of
each program source record for sequence numbering. These sequence numbers do not constitute
valid SIMSCRIPT II.5 program content, and, should they appear within the first 80 positions, would
give rise to syntax errors during compilation. The compiler may be instructed to ignore such se-
guence numbering using a statement of the form:

last column is integer constant

93

SIMSCRIPT II.5 Programming Language

This specifies that columns to the right of the indicated column do not contain program statements.
These columns appear on all program listings produced during compilation, but are not treated as
part of the program text. Each timdast column card is used in a preamble, the number of
program statement columns may change. Thdastcolumn statement used in a preamble ap-

plies to all subprograms that follow. This statement may not appear in individual routines within a
program. The simplest preamble, used to specify sequence number columns, is:

preamble
last column is 72
end

This specifies that in all succeeding cards only columns 1 through 72 contain program statements.
Columns 73 through 80 are listed but ignored during compilation.

2.29 A Useful Output Statement

There are occasions when it is useful to generate clearly labeled values of selected variables with
no attempt at explicit formatting. This is particularly helpful when checking for programming er-
rors, for example.

Thelist statement prints labeled values of expressions and variable form of the stateme is:
list variable name or expression list

Explicitly subscripted variables and entire array names may be included in the list. Expression and
array values are printed in standard formats. These formats vary somewhat on different implemen-
tations.

In general, expression values are printed in rows across a page with the "name" of each expression
beside its value. Thus a request to:

list A, B(1), A*B(1)
might produce the output:
A =2.000000 B(1) = 3.500000 A*B(1) = 7.000000

If unsubscripted array names appear in the list, all elements of the array are listed in the output with
each element value labeled with its corresponding subscripted array name. As many values are
placed on each line as will fldccording to spacingooventions. Such conventions usually allow

the name of the variable justified on the left in a field aligned to a column multiple of 16, followed
by the value of the variable. A minimum of two character positions is allowed between successive
variable fields across a lineText andalpha variables values are enclosed in double gquotation
marks.

94

Programming Language Concepts

Multiple-subscripted variables, both rectangular and ragged, may be printed udist state-
ment. Any row in an array that has not yet been reservecreserve statement, produces an
output of the form:

array name(i,j,...*) = **unreserved***

If more than one array is mentioned list ~ statement, they are printed successively in the order
in which they appear in the list.

As the spacing conventions must constrain the number of character positions allocated to a nonin-
teger number, those having very large or very small values are output in exponent or scaled scien-
tific notation. In this format, the value is represented as a normalized value between 1.0 and 0.1
scaled by a power of 10, which may be positive or negative. This exponent is usually indicated as
E+xx OrE-xx, wherexx represents the power of 10, immediately suffixed to the normalized value.

As a word of caution, thlist statement can be misleading in respect of numeric precision. The
number of significant figures printed bylist statement cannot be chosen, asprint state-

ment, to limit the apparemiccuracy and thus reflect the true significance, but rather is selected to
allow a wide range of values to be output. Thus, some interpretation of the printed values may be
required.

2.30 Subprogram Variables

Thus far, all references to subprograms have used the defined subprogram name to identify the sub-
program to be executed. Itis possible, however, to reference a subprogram indirectly, through the
use of esubprogram mode variable. Such a variable, like any other variable type, may be assigned
various values during execution of a program. The values that may be assigned are the referencing
values of routines within the program. As the only valid usesubprogram variable is as a ref-

erence within an indirect call, the only operations permitted are assignment and comparison opera-
tions, and the only values that may be assigned or compared arsubprogram variables or
subprogram literal values, or a zero, indicating a null value. A variable is declare subpro-

gram mode in the usual way:

define variable list as a subprogram variable

A subprogram literal is formed by enclosing in single quotes the name of any routine used within
the program, or any defined library routine, with some exceptions mentioned later. A
subprogram variable, which has been assigned a value, may then be used in place of a routine
name in a normecall statement. The example below demonstrates the assignment and use of a
subprogram variable:

define RVAR as a subprogram variable
let RVAR = 'DATA.TRANSFORM'

call RVAR giving DATA(*) yielding VALUE

95

SIMSCRIPT II.5 Programming Language

As seen in this examplesubprogram variable can be used instead of an actual routine name in
acall statement. When subprogram variable appears incall statement, the effect is the
same as a direcall on the routine named in the assignment tcsubprogram variable. This
provides a powerful mechanism for directing the selection of routines to be called during program
execution.

Subprogram variables can be global or locsaved orrecursive , and subscripted or unsub-
scripted. They are initialized to zero in the normal way, and should not be uscall until a

value has been assigned. Obviously, the numbers of arguments passed ttsubprogram

variable cannot be checked against any one routine definition in the preamble. Execution time
checking, however, may still be carried out.

While subprogram arrays can be defined and values assigned to the subscripted elements, sub-
scripted elements cannot be used directly to reference a routine. This is because of the ambiguity
in the notation used for both subscripts and routine arguments. Any parenthesized variables or
expressions following thsubprogram variable are interpreted given arguments to the routine

being referenced.

Subprogram variables can also be used to call functions. The mode subprogram variable
must be declared in a statement of the form:

define variable list as a mode subprogram variable

All functions called indirectly through this variable must be of the declared mode. If no mode is
declared, the current background mode is assumed.

An indirect function call must be indicated by putting a dollar sign ($) befosubprogram vari-
able name. This is required to distinguish between assignment of values tsubprogram
variables and actual function reference. FVAR1 ancFVAR2 are declared esubprogram vari-
ables, the statement:

let FVAR2 = FVAR1
assigns t FVAR2 a copy of the value iFVAR], while:
let VAR = $FVAR1
assigns t(vVAF a value computed by the function reference FVAR1.

Program 2-6 illustrates several of the permissible usages of variables de'subprogram . The

first example shows a number of routine name literals passed as arguments to a subprogram, which
in turn calls the selected routine indirectly. The second example is similar, but illustrates the use of
a subprogram variable array, comparison operations, and the function notation used with
subprogram variables.

96

Programming Language Concepts

Program 2-6.

main
normally mode is integer
define DATA as a 1-dimensional real array
read N
reserve DATA(*) as N
read DATA
call PROCESS.DATA given 'EXP.F' and DATA(*)
call PROCESS.DATA given 'SQRT.F' and DATA(*)
call PROCESS.DATA given 'LOG.10.F' and DATA(*)
stop

end

routine PROCESS.DATA given FVAR and ARR
define FVAR as a real subprogram variable
define ARR as a 1-dimensional real array
forl=1to N,
compute S as the sum, M as the mean and V as the variance
of SFVAR(ARR(I))
print 1 line with S, M and V thus
SUM=*** MEAN= ** VARIANCE= **
return
end

define FVARR as a 1-dimensional real subprogram array

define FUNCYV as a real subprogram variable

let FVARR(1) = 'DATA.READ.FN'
let FVARR(2) = 'DATA.TRANSFORM.FN'
let FVARR(3) = 'DATA.INVERT.FN'

forl=1to N

with FVARR(I) ne O
do

let FUNCV = FVARR(l)

let DATA(*) = $FUNCV(DATA(*))
loop

call PROGVAR giving 'DATA.PLOT' yielding NULL

end

97

SIMSCRIPT II.5 Programming Language

routine PROGVAR given RVAR yielding VALUE
define RVAR as a subprogram variable
define VALUE as an integer variable
if RVAR ne 'DATA.PLOT'
and RVAR ne 'DATA.PRINT'
call RVAR giving DATA(*) yielding VALUE

else
call RVAR giving DATA(*)
let VALUE =0

always

return

end

2.31 The Store Statement

Previous implementations of SIMSCRIPT II.5 offerestore statement which provided for as-
signment of variables without any attempt at variable mode conversion. This proved to be a com-
mon source of error. Tlstore statement is still provided, but it is restricted to use only with
variables of compatible mode. Its effect is identical with that dlet statement, which is rec-
ommended as preferred usage. store statement is not intended for use with values irtext

mode. All other nonconversion assignments may be achieved by variable equivalencing, described
in Chaptel6.

98

3. Input/Output Concepts

3.1 Introduction

This chapter introduces some additional control structures provided by SIMSCRIPT I1.5, and then
describes in detail the full input and output formatting facilities available in the language.

3.2 A Search Capability

It is often necessary to search among a number of variable values for one satisfying some stated
condition. Thdind statement provides a means of specifying some such condition and is used, in
conjunction with gor control phrase, to search a group of values for the first value meeting the
specification. The statement:

forl=1to N,
with X(I) * Y(I) greater than LIMIT,
find BIG = the first |

is a compound statement composed of a qualified phrase and find statement. Théor

phrase steps the variabléhrough the sequence of valueg, ..., N ,; thewith phrase spec-

ifies that only those values bffor whichX(1) * Y (1) is greater thanIMIT are eligible for con-
sideration; thdind statement specifies that the repetition is to terminate as soon as such a value
is found, assigning this value to the designated varigite, The wordghe andfirst are op-

tional after the equal sign. The statements:

find BIG = the first |
find BIG = first |
find BIG = |

are equivalent, and illustrate alternate forms of the lhiagic statement:
find variable = arithmetic expression

Any variable, subscripted or otherwise, may be designated. When the first index value is found for
which the logical expression in tifi@ phrase is true, the arithmetic expression is evaluated and
assigned to the variable. Thus, in the above example the value of the expréssissigned to the
variableBIG when a value of is found for whichx(l) * Y(I) is greater thanIMIT . As the

search is always terminated at the first suitable value encountered, a backward-ftar giimgse

may be used to find the last such value in a group.

A special form of thef statement may be used in conjunction withftheé statement. This
provides for alternative actions to be selected based on the outcome of the seéfrchstai@ment
appended to ind statement may test for success or otherwise using the logical conditions:

if found

99

or
if none

These logical conditions obviously have no meaning outside the immediate contfind state-
ment. The following statements search a number of elements oA for one that matches the
valueB, assigning a new element value if no match is found:

forl=1to N
with A(l) = B
find the first case
if none
let N = N+1
let A(N) =B
always
More than onfor phrase can be usedto contrfind statement. Also more than cfind vari-
able may be assigned in cfind statement. This is done by including a list of variable assignment

phrases. The following example illustrates both features:

forl=1to N,
forJ=1to M,
with FN(I) less than FN(J)
find FS(1) = the first | and FS(2) = the first J

In cases where there is no expression to compute, a special fornfind statement can be used.

The wordsthe first case replace the variable assignment phrase. The search terminates, as
before, with the first matching value. The terminating value cfor index variable is available

for subsequent use. Both of the following statements terminate with the same 1 :ue of

for 1 = 1 to MAX,
with V(1) less than QQ(I),
find the first case

for 1 = 1 to MAX,
with V(1) less than QQ(I),
find | = the first |

3.3 A Statement for Computing Some Standard Functions of Variables

Rather than selecting a single value satisfying some criterion, it may be desirable to summarize
some statistics of a group of values. When these values are stored in arrays, or can be computed by
some regular iteration, tlcompute statement facilitates compilation of descriptive statistics. An
example of the use ofcompute statement is:

100

Programming Language Concepts

forl=1to N,
compute
MEANX as the mean,
MAXIMUMX as the maximum of X(I)

Like thefind statement, thcompute statement contains a list of variables that are set to a com-
puted value after iteration. In this case, the values are specified by statistical namesmeanh as
ancmaximum. Acompute statement has the general form:

compute compute list of arithmetic expression

wherecompute list is a list of variable and statistical names of the fvariable =

statistic name. The optional worthe may be omitted before each statistic name, and the word

as may be replaced by the equal signcompute statement can be controlled by more than one

for phrase, and these may use logical control phrases to qualify the iteration sequence or the
selection of individual variables. For example:

forl=1to N,
forJ=1to M,
with LIST(J) greater than zero
compute
MN as the mean of TABLE(I,J) * LIST(J)

When acompute statement appears withirdo loop with other statements, calculation of comput-

ed statistics, such mean, takes place at tlloop statement. If, for some reason, control is trans-
ferred out of the loop, the statistics are undefined. In the following example, computation of the
indicated statistics is executed at termination of the ido loop. Within this loop, the values

X(J) are summed, and a count accumulated of the number of elements that form this sum. Before
statement 4 is executed, these two values are used to compute the mean.

forl=1to N,

do
Statementl1
forJ=1to M,
do
statement2
compute

MEANX as the mean of X(J)

statement3
loop
statement4

loop

Within the inner loop, the value MEAN: is undefined.

To have ecompute statement controlled by several control phrases, a program is written with
also phrases, as:

101

SIMSCRIPT II.5 Programming Language

forl=1to N,
do
statement1
also
ford=1to M,
do
statement2
compute
SUMX as the sum and
MAXX as the maximum of X(l,J)
loop

The names that may appear in the statistical list, and their computations, are shown in table 3-1.

Table 3-1. Statistical Names Used In The Compute Statement

Alternative or

Statistic Abbreviation Computation

NUMBER NUM Number of items selected in the iteration.

SUM Sum of the selected values of the expression.

MEAN AVERAGE,AVG SUM/NUMBER

SUM.OF.SQUARES SQ Sum of squares of the selected values of the
expression.

MEAN.SQUARE MSQ SUM.OF.SQUARES/NUMBER

VARIANCE VAR MEAN.SQUARE - MEAN**2

STD.DEV STD SQRT.F(VARIANCE)

MAXIMUM MAX Largest of the selected values of the expres-
sion.

MINIMUM MIN Smallest of the selected values of the expres-
sion.

MAXIMUM(e) MAX(e) Value of the index variable (e) where the
maximum was found.

MINIMUM(e) MIN(e) Same as MAX(e) but for minimum.

The following example illustrates the use of each of these statistics. Assume that X in aay
program has element values as shown:

X(1)=4.0 X(2)=7.3 X(@3)=12.8
X(4)=05 X(5)=2.2 X(6)=7.3

and thaN has the valu5. Letthe program contain the statement:

102

Programming Language Concepts

forl=1to 6,
with (I <N and X(I) < X(I+1)) or I =N,
compute
NX as the number, SUMX as the sum, NM as the mean,
SSQX as the sum.of.squares, MSQX as the mean.square,
VARX as the variance, SDVX as the std.dev,
MINX as the minimum,

MAXX as the maximum, MINI as the min(l) of X(I)

The above statement iterates the control varil over the valuel, 2, 3, 4, 5

, ande, and

selects only those values for inclusion in compute statement computations for whil <5
andX(l) <X(+1) , or for whichl equalss. Thus, it selec X(2) , andX(4) under conditiorl
andX(5) under conditior2. For these index numbers, the statistical quantities are computed for

the expressic X(1)

. The computed statistics are:

Computed

Variable Statistic Computation

NX NUMBER 4

SUMX SUM 40+73+05+22=14.0

NM MEAN 14.0/4=35

SSQX SUM.OF.SQUARES (4.02 + (7.3)2 + (0.5)2 + (2.2)2 =
74.38

MSQX MEAN. SQUARE 74.38 / 4 =18.595

VARX VARIANCE 18.595 - 3.52 = 6.345

SDVX STD.DEV SQRT.F(6.345) = 2.52

MINX MINIMUM 0.5

MAXX MAXIMUM 7.3

MINI MIN(I) 4

3.4 Input/Output Statements

Theread, write

statements as described so far provide facilities to:

1. Read data in free form from an input data stream

2. Display messages and computational results in picture like formats

3. Generate labeled output data in a standard predefined format. No mention has been made
of any selection capability for the source of input data or the destination of output data.

In practice, you may desire to associate an input or output data stream with any one of the variety
of input and output devices, such as terminals, tape drives, or line printers, which may be connected

103

SIMSCRIPT II.5 Programming Language

to a computer. A mechanism is also required to specify in detail the formats in which data should
be read and written, and a facility to transmit data in internal machine representation.

Although the input/output programming statements provided are similar from one SIMSCRIPT II.5
compiler implementation to another, the exact interpretation and additional parameters required by
these statements may vary from machine to machine. This variation is due to the differences in op-
erating system requirements and device characteristics of different computer systems. Individual
SIMSCRIPT II.5 user manuals describe the nature of these differences.

In general, three pieces of information must be specified when an input/output operation takes
place:

1. A physical device
2. A data or information list

3. The desired data format.

In the statementread, print , andlist , a physical device is implied (some default input and
output device), the data list is stated explicitly, and the format is, in the first instance, "free," in the
second, a "picture," and in the third, standardized. The statements described here provide a more
flexible means of specifying this information.

3.4.1 Physical Device Specification

SIMSCRIPT II.5 programs may reference specific data streams using a logical unit number in cer-
tain input and output (I/O) statements. Each SIMSCRIPT I1.5 logical unit number may then be as-
sociated with a specific device or data file through the computer system job control or command
language. This allows each SIMSCRIPT II.5 program to refer to a file or I/O device in a common
logical manner, postponing the detailed specification of individual file or data characteristics for
definition in the appropriate system command language. Each logical unit number, therefore, is
linked to an individual file or specific /0O device through the operating system.

Each file or I/O device that is to be referenced within a program is assigned a logical unit number.
Logical unit numbers in SIMSCRIPT 1.5 are integer numbers within the range 1 to 99 inclusive,
units 98 and 99 being reserved for SIMSCRIPT 1.5 system use. Some implementations may not
support 99 distinct units. Consult the appropriate user's manual for details. A specific I/0O device
or file may be selected as the current input or output unit by executing a statement of the form:

device for input or use unit device for input
and
use device for output or use unit device for output

The wordunit may be omitted. The validevice may be any arithmetic expression that
evaluates to a logical unit number. The SIMSCRIPT IL.5 logical unit number referenced will be

104

Programming Language Concepts

associated with a particular 1/0 device through a logical filename, on operating systems that support
such names. This logical filename will take the fsimunn , wherenn is the logical unit number.

This logical filename may be used to associate the logical unit with some physical file or device,
using the execution control commands specific to the operating system used.

By convention, most implementations desigunit5 as the default input device, usually the ter-
minal or a card reader, aunit6 as the default output device, usually the terminal or a system
printer. If a program does not contuse statements as in level 1 and 2 programs, SIMSCRIPT
II.5 assumes the default input and output units are to be usec read, print , andlist op-
erations. Note that the assignment of devices to these default logical unit numbers is installation-
dependent, and may be altered through system control commands.

Any of theread, print ,anclist statements may be directed to use units other than the default
input/output units, by executincuse statement before their execution. Each tiruse statement

is executed, a global variable nanread.v orwrite.v is assigned the logical unit number of the
designated unit. These two global variables can be used freely in all SIMSCRIPT II.5 statements:

ifread.v=>5
call SWITCH.UNIT
always

When ause statement is executed, the unit specified becomes the current input or output unit, as
appropriate. This condition remains in effect until altered by a subseuse statement, speci-

fying that some other unit is now to become the current unit. Itis possible to specify that a particular
unit be treated as the current unit for the duration of a single input or output statement by appending
to the statementusing device phrase. This phrase sets the current input or output unit to the
indicated unit during the statement's execution, and returns it to its previous value on completion.
Such a facility may be used to direct the flow of exception messages. For example:

use 5 for input
use 6 for output
while data is not ended
do
read A,B,C
call action A,B,C yielding FLAG, RESULT
if FLAG ne O
print 1 line with A,B,C thus using unit 1
ERROR WITH VALUES ** ** **
else
print 1 line with A,B,C, RESULT thus
RESULT FOR VALUES ** ** xx |G #ix
always
loop

Here data are accepted frunit5 , and results of some processing are printeunité . Any
error conditions, signified by a nonzero flag value returned from the processing routine, produce an
exception message wunit 1

105

SIMSCRIPT II.5 Programming Language

3.4.2 The Formatted I/O Statements READ and Write

As described in Chaptd, input and output data streams consist of a sequence of records, corre-
sponding to lines of printed output or lines of data accepted from a terminal. Each record, in turn,
is composed of a sequence of fields. A field is a logically defined group of consecutive symbols.
In free-form data, a field is delimited by blank charactersprint output statements, an output

field position within a printed line may be defined by asterisks. This latter facility may be extended
to provide greater program-directed control over the structuring of both input and output records.
Aread statement that accepts formatted data has the form:

read variable list as format list

in which each variable value to be read has its input data format field described by a corresponding
field descriptor character in a format list. These formats, which are codes describing how the fields
in the input data stream are composed, are described in the next subsection.

Thewrite statement transfers values from within the computer to specified external media. Every
write statement is formatted. With the sole exception olist statement, the programmer is
always required to indicate the arrangement of output data.write statement looks like the

read statement. Its formis:

write expression list as format list

The indicated expressions, which may simply be variables, are evaluated and printed in the form
described by their matching format descriptors. Before illustrating read andwrite state-
ments with examples, the format descriptors are defined.

3.4.2.1 1 (Integer) Descriptor

A descriptor of the forrn 1 w is used for converting numbers from their internal integer computer
storage representation to an external format, and vice versa. The c | is always followed by

an expressiorw), specifying the maximum number of digits in the integer field, including the sign.
Thel can be preceded by a numkn), declaring that the descriptor defiin consecutive identical
data fields. Such formats 21 6 and14 | 3 define2 fields of 6 positions an4 fields of3
positions, respectively. There must be at least one blank between th n, I, w;

When arl format is used for input, it specifies that the full contents of au digits wide are to

be stored as the value of a corresponding variableread statement. Blank field positions —
leading, embedded, or trailing — are treated as zeros. If a field is unsigned, it is interpreted as pos-
itive, although a plus sign can be typed. Except for the sign character, only numbers can be typed
in al data field. Ifwis larger than the maximum number of digits that can be stored in a computer
word, only the rightmost, storable digits are used.

On output, all format places a right-justified integer value in a field of specified width. Numbers
larger than the field width are converted to scientific notation (see paragraph 3.4.2.3). Positive

106

Programming Language Concepts

numbers are printed unsigned, while negative numbers have the sign printed to the left of the high-
est-order digit. Leading zeros are suppressed.

3.4.2.2 D (Decimal) Descriptor

A descriptor of the forrn B(a,b) is used for converting numbers from internal to external decimal
representation, and vice versa. “a field specifies the number of characters in the data field, in-
cluding the sign and decimal points. b field specifies the number of digits to the right of the
decimal point; and the optionn field specifies the number of consecutive values of the format.

When used for input, ttC format accepts numbers typed with orheiit decimal points. If a dec-
imal point is omitted, one is implied before the first digit inb field. When a decimal point is
present, it overrides the location specifie b. Very large and very small numbers can be input in
scientific notation, for when used for input 1L andE formats are equivalent.

Used in output statemenD formats describe the precision in which decimal numbers are dis-
played. Numbers that cannot be printed exactly in the specified format are rounded. Every number
output by ¢D format is printed in a field ca columns: the first column is used for the sign, the next
a-b-2 columns are for digits, the next column is for the decimal point, and the renb columns

are for digits. The sign is printed if a number is negative; otherwise it remains blank. If the integer
part of a negative decimal number does not require sa-b-2 positions allotted to it, the sign is
shifted to the right, next to the high-order digit. Leading zeros are suppressed. If a number has trail-
ing zeros, as in the number 10.0, the trailing zeros are printed. Trailing zeros are not printed for a
value of exactly zero.

3.4.2.3 E (Scientific) Descriptor

Extremely large and extremely small numbers, and numbers that vary widely in scale, can be read
and written in a constant field width by usingE format. This format is similar to ttD format

in that it specifies a field width and a decimal point position by the nura andb in the formn

E(a,b), but it differs from th¢D format in having a scale factor field. The scale factor field appears

to the right of a decimal number and indicates the necessary humber of places right or left that the
decimal point must be moved to convert the scaled number to its proper form.

TheE format is thus equivalent to tID format, plus a scale factor. Numbers read uE format
control are of the general form:

EXXXXXXEEXX

although some latitude is allowed in writing the scale factor. A positive scale factor, E+02 as
or E 7, raises the value of a printed numt24.795E-04 represents an internally stored value of
.0024795 .

The E format can be used for both input and output. When used for output, it aligns numbers ac-
cording to the format specification and prints a scale factor indicating the true value of the printed
number. AIIE formatted numbers aa print positions wide, with the fir a-4 positions used for

107

SIMSCRIPT II.5 Programming Language

the number, including its sign and decimal point, and the last four positions used for the scale factor
E+xx.

E-formatted input data can be written in a variety of ways, as the scale factor may or may not contain
a sign or the lett E. The number1.00E+05, 1.0E05, +1.0E 5 , and1.0E+5 are equivalent

input data representations of the number 100,000 under the inputg(7,1) . As shown below,

either a sign or the lettE must be present to separate the number and scale factor fields.

It must be emphasized again that when values are too large to be printed in their indicated formats,
data should be displayed in scientific notation, as governed by the following rules:

Field

Width Characters Printed Example: Number=247.538

1 {"E"} E

2 {sign of number} {"E"} +E

3 {sign of number} {"E"} {sign of exponent} +E+

4 {sign of number} {"E"} {sign of exponent} {d} +E+2
d = digit if 0< exponen< 9, or = * if exponent > =10

5 {sign of number} {"E"} {sign of exponent} +E+02
{exponent}

6 {sign of number} {digit} {"E"} +2E+02
{sign of exponent} {exponent}

7 {sign of number} {digit} {"."} {"E"} +2.E+02
{sign of exponent} {exponent}

8 {sign of number} {digit} {"."} {digit} +2.4E+02
{"E"} {sign of exponent} {exponent}

9 {sign of number} {digit} {"."} +2.47E+02
or {additional digits} {"E"} +2.475E+02
more {sign of exponent} {exponent} +2.47538E+02

Numbers can be written in scientific notation for free form as well as for format-directed input. A
field of the form: {number} {exponent} is interpreted as a scientific notation input field in free-form
input statements. No blanks are allowed between the number and exponent parts of the field. The
forms of these parts are:

{number}: areal orinteger constant

{exponent}; Exxx E is optional
+ is not needed if exponent is positive

108

Programming Language Concepts

Examples:
1.0067E+10 1.0067+10
9.46755+04 9.46755E4
4.0E1 4.0+1
9.999-6 9.999E-06
5E6 5+6

3.4.2.4 T (Text) Descriptor

A descriptor of the fornn T wis used to read and write formattext from and to an external
medium. The descriptor is similar in form and action tal descriptor. The variable to be read
or printed must have been declared text variable. Text literals appearing in write list
must be output usin¢ T format descriptor.

When used for input, the statement reads as a text string thu characters from the current input
record. Any printable character that can be typed on a terminal or input record, including blanks,
will be accepted as part of the string. Theut record column position indicator is advanced by
the field width.

When used in output statements, T format displays successive characters, starting from the left-
most position of a string, and displaying from the leftmost column position within the field. Each
character of the string is printed until either the string is exhausted or the end of field is reached. In
either case, the output record column position indicator is advanced to the end of the field.

In cases where the length otext variable is not known, or may vary, the entext variable
may be simply output using the format:

write text variable as t *

which begins writing at the current output column and continues writing until thetext string

is printed. If the output string will not fit on the remainingsp on the output record, the string

may overflow to one or more subsequent records. The output record column is positioned after the
last character written.

3.4.2.5 A (Alphanumeric) Descriptor

Any printable character that can be typed on a terminal or input record, including a blank character,
may be read under ialpha format. The alphanumeric descripn Aw is similar to thel descrip-

tor in form and action. On input, the content of a specific field is assigned as the value of a corre-
sponding variable in thread list. This variable must have been declarealpha . The manner

in which characters read are placed withinalpha variable may vary, depending on machine and
alpha implementation. In general, where only one character is represented alpha vari-

109

SIMSCRIPT II.5 Programming Language

able, the first character of the input field will be read. In some earlier implementations, and where

analpha variable may represent more than one character, a number of characters up to the maxi-
mum representation size will be read. The column position pointer is advanced by the specified
field width.

When used in output statements, A format will normally print the single character represented

by the alpha variable in the first column of the output field, padding any further positions with
blank spaces. When more than one charalpha representation is supported, a number of char-

acters, up to either the maximum representation, or the field width, may be printed.

3.4.2.6 C (Computer Representation) Descriptor

Few computers use decimal notation internally. Most use binary coding schemes that represent dec-
imal numbers as sequences of zeros and ones. Generally, a group of binary bits constituting a char-
acter in a number system other than binary or decimal is used as an input/output character. Because
strings of such numbers are short, they are easy to interpret. Commonly used representations are
octal and hexadecimal, for groups of 3 and 4 binary bits, respectively.

The formain C e interprets characters read or written in the unit of the computer on which a patrtic-
ular SIMSCRIPT II.5 system is implemented. The field wi e, specifies the number of character
positions occupied. Each position corresponds to a single octal or hexadecimal symbol, depending
on the particular machine implementation.

3.4.3 Format Lists

Format lists are composed of sequences of format descriptors separated by commas. During the
execution oread andwrite statements, format lists are scanned from left to right and individual
format descriptors are used as needed to match the variables named in the variable list. With few
exceptions, variables being read or expressions being written must agree in mode with their format
descriptors. The exceptions idnteger andalpha modes that can be used interchangeably.
When they are interchanged, the mode of the format descriptor governs. When a format descriptor
is preceded by a repetition charan,n consecutiviread andwrite statements that use format-

ted data follow. Some examples of format lists are given below.

1. read X, ANSWERandYas!3,12,12

If one assumes they have data in an input data file, and the above statement — the first in
a program — starts reading at column 1 of the first input record, the value appearing in col-
umns 1-3 is assigned X, that in columns 4-5 is assignecANSWE, and the value in col-

umns 6-7 is assigned Y. The data might appear as:

coumn O 1 ..
number 12345678901234

16038

110

Programming Language Concepts

in which caseX = 160, ANSWER =3 , andY =8 ; should it appear as:

column 0 1 ..
number 12345678901234

-336-9

the result will beX =-3, ANSWER =36 , andY =-9 . The data are read sequentially.
The information needed to locate a number and determine its form is contained in the for-
mat descriptor .

read X, ANSWERandYas|3,212

Here, the format list is the same as example 1 except that the second and third format de-
scriptors have been combined.

write X, ANSWER andYas13,212

In this example, the values of the expressX, ANSWEF, andY, are output in the indicated
format. It will be assumed that the output has been specified to appear on the standard line
printer and that this statement is the first to be executed. If the valX, ANSWEF, and

Y are9, -3 , ando, respectively, the printed line appears as:

coumn O 1
number 12345678901234

9-30

Notice that leading zeros are left blank, but that the rightmost zero in a zero-valued integer
is printed.

read X,Y,Z as 3 D(10,3)

Three decimal fields are specified, the first in columns 1-10, the second in columns 11-20,
and the third in columns 21-30. Assume that the data are written as:

column O 1 2 3
number 12345678901234567890123456789012...

126.345 -18.62 768954346

The first data field is assignedX and the decimal point is, as expected, in column 7. The
second data field is assignecy. Here the decimal point is not where expected, in column

17. Instead, the written number overrides the stated format, and so the value -18.62 is as-
signed tcy. A characteristic of thD format is that it may be so overridden if a decimal
point appears explicitly within a field. If no decimal point is written, as occurs in the third
data field, its location is assumed from the format. In the above example, the value
768954.346 is assigned tzZ.

111

SIMSCRIPT II.5 Programming Language

112

5.

read X as D(8,2)
Such a data item might be written as:

column 0 1
number 12345678901234

16.5E 2

The written decimal point overrides the format. The scale factor multiplies the resulting
number by10**2 so that the valu1650 is assigned tX. The flexibility of the decimal
format is shown in the following statement that defines a data record so that a large range
of numbers can be accommodated:

read X(1), X(2), X(3), X(4), X(5) as 5 D(10,2)
A data record may appear as:

column 0 1 2 3 4 5...
number 12345678901234567890123456789012345678901234567890...

41.25 19.22E-03 4537992 -167.1

in which cas X(1) = 41.25, X(2) = 0.01922, X(3) = 45379.92, X(4) =
0.00 , andX(5)=- 167.1 .

write A,B,C,D,E as 2 | 4, D(10,3), E(9,1), 1 6

This statement defines output formats for five expressA to E. Assume theA anc B
areinteger variables, both having the val9, C is areal variable having the value
19.2 ,Disereal variable with the current vali8.25 , andE is aninteger variable with
the value-1863976 . The output will be:

column 0 1 2 3 4
number 1234567890123456789012345678901234567890123456789

9 9 19.200 8.3E+00-2E+06
The output oFE illustrates the action taken when a value is too large for its field. In this
instance, a seven-digit integer could not be printed in a six-digit field, and was converted
to a six-character scientific representation. The actual -1.86397x10 6 was rounded

to a value that could be printe-2x10 6) and would retain the most significance.

read NAMES(1), NAMES(2), NAMES(3) as 3 T 10

Assuming that the arreNAME: has been declaredtext , the above statement will read
three successive 10-character fields assigning 10-chatext strings to the variables
NAMES(1), NAMES(2) , andNAMES(3). Thus:

Programming Language Concepts

column 0 1 2 3
number 1234567890123456789012345678901234567

JOHNSON EDWARD JOE
9. These character strings may now be printed under different formats:
write NAMES(3), NAMES(1), NAMES(2) as T *, T 10, T 2
will produce the output:

column 0 1 2 3
number 123456789012345678901234567390

JOEJOHNSON ED

10. AssumingMACHINE andTCODI have been defined itext variables an(TEMF and
TOLERANCEasinteger variables:

read MACHINE, TEMP, TCODE, TOLERANCE as T 10,15, T 1,19

will read:
column 0 1 2 3
number 123456789012345678901234567890

FORGE 3K 05
and assignFORG!" to MACHINE, 3 to TEMEF, "K" to TCODI, and5 to TOLERANC.Z

11. LetALPHA.VAR1,ALPHA.VAR2 andALPHA.VAR:Zbealpha variables. The statement:
read ALPHA.VAR1, ALPHA.VAR2, ALPHAVAR3as3 A1

after reading the following input data, will assign the vaa, b, ¢ to the three vari-
ables, respectively:

coumn O 1
number 1234567890123456

abc
The output statement:
write ALPHA.VAR1, ALPHA.VAR2, ALPHA.VAR3 asB 1,3 A4
will now produce:

column O 1 2
number 12345678901234567890

a b c

113

SIMSCRIPT II.5 Programming Language

The above examples have assumeddhaah nevread orwrite Statement starts at the beginning

of a new data record or line. This need not always occurread andwrite statements operate

on a continuous string of characters and only skip to a new data record or output line when so in-
structed. Thus, the two statements:

read Xas |5
and
read Y as D(10,2)

read successive fields from the same data record. Often, of course, datéd betvepen data
records, or must be read from noncontiguous parts of the same data record. The current input point-
er and current output pointer are variables that point to the last referenced columns in the input and
output data streams. They can be advanced by the statements:

input record
or

start new output record
and

start new page

as previously described, and also by five non-numeric formats. These formats can be interspersed
among data formats, or they can appear aloread andwrite statements. Examples of the use
of these formats are given following their description.

3.4.3.1 B (Beginning Column) Descriptor

This format is used to specify the position in which the first character of an item of input or output
data is found or displayed. The fornB n positions the current input/output device at column n.
When severeB format descriptors are used within a format list, they do not have to appear in as-
cending numeric order. For instance, the format:

B 47,110, B 5, D(6,3), B 57, D(7,3), B 20, | 4

prints a line of the following form:

col 5 col 20 col 47 col 57
D(6,3) 14 110 D(7,3)
XX XXX ... XXXX o XXX o XXXXXX

114

Programming Language Concepts

3.4.3.2 S (Skip Column) Descriptor

Spaces may be skipped between output items, or columns may be skipped on input data records by
specifying, through thS n format, that n spaces are to be skipped before reading or printing the
next item of data. Skipped positions are left blank on output, while data in skipped positions are
ignored on input.

3.4.3.3 / (Skip to New Record) Descriptor

Format descriptors described above have presented conventions for locating and laying out data
within input/output records. There is an implicit understandingethelt format list refers to a sin-

gle input data record or printed line of output. Input/output records change only start

new input record or start new output line statement is executed. Unless this occurs,
statements continue to read from the same record or to print on the same line. A record can be
changed within a format list, however, by usir/_format descriptor. This descriptor may be used
repeatedly within a format list. Each time it is encountered, it skips a record on the current input/
output unit.

3.4.3.4 + (Transmit Buffer) Descriptor

This format descriptor is analogous to/ format, with the exception that the record is transmitted

to the device without being followed by a hardware new line or end of record indicator. For devices
that support it, this allows construction of same-line interactive dialogues and use of hardware es-
cape sequences. When used with devices that do not have necessary capab+ descriptor

is handled a/ .

3.4.3.5 * (Skip to a New Page) Descriptor

This format descriptor is analogous to/ format. It ejects a page on a line printer.

3.4.3.6 "" (Character String) Descriptor

Literal alphanumeric dacan be included in output formats using a character string format descrip-
tor. All characters included between quotation marks are printed as they appear, with one excep-
tion. Each pair of quotation marks inside the quotation marks is mapped to a single quotation, as is
the case with other string constants. The spacing of the character string can be specified by other
format descriptors such B, S , anc/, as well as by blanks within the character string. The char-
acter string, however, cannot exceed the length of a program text line. If a long string is required,
it must be split into two strings.

3.4.3.7 Examples

Some examples of formattread andwrite statements are shown below.

115

SIMSCRIPT II.5 Programming Language

1. read IVAR and JVAR as |5,/,15

A value forIVAR is read from the first five columns following the present location of the
current input pointer for the current input unit. A value JVAR is read from columns 1-
5 of the record following.

2. read IVAR and JVARasB 1,15,/,15

The current input pointer is returned to the first column of the current record. If the pointer
is greater than 1, a new record is not selected; instead, the pointer is moved back. Values
for IVAR ancJVAR are then read from the first five columns of this record and the one fol-
lowing.

3. read IVAR, JVAR, KVAR, as 3 D(10,2), /

The above statement establishes a "record-oriented" input format. Each group of 3 variable
values is contained on a different record. After one group is read, a new record is read in
preparation for the next group.

4. write AB,C,D,E,Fas|5,S50,15,////, 4 D(10,4)

This statement writes two integer variables spaced 50 columns apart in an integer format,
concludes this record, bringing the current output pointer to the head of the output buffer,
skips three records, and writes four decimal values on a second record.

5. write Nand AVERAGE as "Of", | 3, " To Date, The Average Is ",D(6,2)

Two values embedded in character strings are written from the above statement. If writing
occurs on a line printer and the current output pointer is at the beginning of a line, the output
looks as follows foN=97 andAVERAGE = 53.287 :

Of 97 To Date, The Average Is 53.29
6. read A(1),B(2),A(3),A(4),A(5)as B 5,110, D(7,3),/,B20,315

This statement begins in column 5 of the current input unit, reads two values in integer and
decimal formats, respectively, and then starts a new record and reads three integer values
starting in column 20.

7. write as *,/,/,1,/
The statement starts a new output page and skips four lines. No output values are written.
3.4.4 Controlled READ and WRITE Statements

It is commonly required to read a number of subscripted variable values under the corfor of a
statement, as in:

116

Programming Language Concepts

for I =1to N, read A(l)

Here, a free-forrread reads a sequence of values across the current input record. If the values are
packed, however, with no blanks between them, the individual data fields cannot be identified by
the free-fornread . An alternative might be to write:

forl=1toN,read A(l) as | 4

This form may be used if the valuesA(l) are spaced across entire records. If, however, the data

are arranged so that values are contained only in columns 1 through 60 of successive 80-byte data
records, the above statement will read through column 60 and attempt to take values from columns
61 through 80. Thread must be directed to skip to a new input record upon reaching column 61.

An expression enclosed in parentheses, placed before a format list, repeats that format list the indi-
cated number of times and then skips to a new record. The statement above should be written as:

forI=1to N, read A(l) as (15)I 4

If N=12 and four numbers are to be read per record from columns 1 through 24, the following
statements read 12 values from 3 records:

start new record
forl=1to N, read A(l) as (4)I 6

This form may also be used if groups of variables with different formats are in a record. The fol-
lowing statement reads four pairs of data fields in the fol 6,D(6,2) from each data record
until 2*N values have been read:

for I =1to N, read A(l), B(l) as (4) | 6, D(6,2)

Such a repetition facility can be used with bread andwrite statements, but it can only be

used in statements controlledfor phrases. This particular form of tread statement assumes

that input starts at the beginning of a data (record), which expla start new record state-

ment in the foregoing example. The statement can terminate, of course, with the current input point-
er positioned in the middle of a record, depending on the format used.

Similar rules apply to thprint andlist statements, as well as to all input/output operations per-
formed by the SIMSCRIPT II.5 system. Output is printed wherever the current pointer points, as-
suming it is at the head of a record. After output, the system positions the pointer at the head of the
next record.

3.4.5 Variable Formats

The use of format descriptors containing expressions as well as constants is one feature available in
read andwrite statements that has not been discussed. Arithmetic expressions can be used to
control field widths in formats for data-layout purposes. For instance, a curve of the natural log
function, using * as a graphical character, is generated by the statement:

117

SIMSCRIPT II.5 Programming Language

for 1 = I to 100, write as B LOG.E.F(I),"*",/

Table 3-2 indicates where expressions can be used in format descriptors and states their form — a
feature that allows formats to be constructed during program execution, freeing programs from par-
ticular data forms. Constants defining a format can be read in, perhaps in free form, before a file of
data records to specify the form in which the data appear. If a program reads in sets of data records
that are grouped three items to a record with the first item linteger and the balancreal |,

the initialization routine of the program could contain the free-read statement:

read C1, C2, C3, C4, C5

and the program could contain the formaread statement:

read ALPHA, BETA,

GAMMA as B C1, | C2, S C3, 2 D(C4,C5)

and the input data stream might look like:

column O 1 2 3 .
number 12345678901234567890123456789012345678...

6410 52
342 16.25 1.5
-10 0.5 73.4

Table 3-2. Format Descriptor Forms

Eormat Descriptor
Integer field
Decimal field
Scientific field
Starting column
Space skip

Text field

Alpha field

Be
Se
iTe oriT*

iAe

Computer representation field iCe

NOTE: i is aninteger

constant which defaults to 1 if omittee is an arithmetic expression.

118

Programming Language Concepts

3.5 Miscellaneous Input/Output Statements and Facilities

3.5.1 Logical File Assignment: The OPEN Statement

Physical device or data characteristics, specified by execution control commands to the operating
system, are associated with SIMSCRIPT 1.5 logical unit numbers through a logical file name. As
mentioned previously, this is usually constructed from the logical unit number to give a name of the
form SIMUnNN.

To allow the specification of device or file characteristics within a program, the SIMSCRIPT II.5
language supports open statement. Thopen statement provides a means of explicitly specify-

ing a logical filename and some of the associated data characteristics at program level rather than
at execution command level. Consult the SIMSCRIPT II.5 user manual for specific details of the
parameters.

The general form of the statement is:

open unit device for input (or output), data characteristics

where device is an arithmetic expression evaluating to the logical unit number. The for se

input orfor output designates whetherthe device is to be used as an input or output device. The
word for is optional. The data characteristics may describe required characteristics of the data
stream. An example of the use is:

open unit 2 for output, file name is "OUTFILE"
use 2 for output

which will open a file, referred to in the futureunit2 , using the logical namQUTFILE". This
logical file name must betext variable. If the file name is not specified, the default logical file
namesimu02 , is created as described above.

Many file and 1/O device data characteristics may be specified at program leveopen state-

ment. Some of these are common across machines, while some are particular to one machine or
language implementation. In general, however, the characteristics consist of logical flename as-
signment and file format and file-type description.

File format parameters contain information on how the file is structured internally. The basic phys-
ical unit of the data file is the record, which usually corresponds to a line of input or output. File
format parameters that may usually be specified airecordsize , or length of each record, and
whether this size ifixed or indicates the maximum of variable length records. For example:

open unit 2 for output,
file name is "OUTFILE", recordsize = 80, fixed

assignenit 2, in theoutput mode, to a file or device whose logical flenameOUTFILE",
which is composed of 80-character fixed length records.

119

SIMSCRIPT II.5 Programming Language

After all input or output to a unit has been completed and the unit is no longer required, the link
between the SIMSCRIPT I11.5 logical unit and the physical device, as controlled by the operating
system, may be removed by closing the unit. This is achieved by a statement of the form:

close unit device

If the device is the current input or output unit, then that read.v orwrite.v) is resetto its
default value. Note that at the completion of a SIMSCRIPT I1.5 program, all files used or opened
during the course of the program run will be closed automatically by SIMSCRIPT I1.5.

3.5.2 End-of-File Conditions

Whenever aead statement is executethere is the possibility of reading data from an "empty"
file or reaching the end of the data file, which is referred to as an end-of-file condition. The free-
formread statement, as previously noted, provides a check for an end-of-file condition through the
statemenif data is ended . A similar check is needed for formatted 1/O.

A SIMSCRIPT 1.5 system-defined variabeof.v , is maintained for each logicalgut unit. A
reference teof.v applies always to the value of the current logical unit, suse . This variable

is initialized to zero when a unit is first referenced. When an end-of-file condition is encountered
by aread statement, the SIMSCRIPT I1.5 system refers toeof.v variable for direction. If

eof.v is still equal to zero, encountering the end-of-file condition is considered an error, and the
program terminates with an error message. If, however, under program cor eof.v vari-

able has previously been assigned the value 1, the variablesread list are assigned values of
zero, theeof.v variable is set to 2, and control returns to the statement followirread . In

other words, setting the valueeof.v to 1is considered a message to the SIMSCRIPT I1.5 system
to the effect, "Do not terminate the program; return zero values and indicate that the end-of-file
marker has been encountered.” By teseof.v after iread statement, the program logic can
determine whether the statement read true data or encountered an end-of-file marker. This facility
can be used in the following ways:

1. As an end of data signal:

use unit 1 for input
let eof.v=1

while eof.v ne 2,
do
read Zas |2
add Z to SUM
add 1 to COUNTER
loop
write COUNTER, SUM/COUNTER as "The Average of", | 4,
"ltems Processed Is", D(6,2)
stop
end

120

Programming Language Concepts

2. To transfer control to an error-diagnostic routine rather than terminate:

use unit 1 for input
let eofv=1

read X,Y,Z
if eofv=2

call ERROR.PRINTOUT
else

always
3.5.3 Repositioning Files
A disk or tape file may be repositioned to its starting position by the statement:

rewind d

The word<unit is optional afterewind . After a unit has been rewound, it must be mentioned in
ause statement before it can be read from or written on again, as is the case close state-
ment. Arewind command before a unit has been "used" is ignored.

3.5.4 Input/Output of Nondecimal Information

When an external file or I/O device is used with normal SIMSCRIPTread andwrite free-
form or formatted 1/O statements, the file will usually be a "character"-type file.

All data written or read from the file are converted from their internal computer representation,
calledbinary , to an external media form, usually one of the character representations, ASCII or
EBCDIC. The normaread free-form,print , andlist statements perform this conversion
automatically on all /0O operations. When data are used only for transmission between computers
or are saved for subsequent reuse in a program, they may be saved directly in their internal
representation to improve efficiency. Variables are transferred in this binary format by the
statements:

read variable list
and
write variable list
where a current unit is implied, or through the statements:

read variable list as binary using d

121

SIMSCRIPT II.5 Programming Language

and

write variable list as binary using d

where a unid is specified.

Any variable name may be included in the variable list. Onlreal equivalent odouble pre-
cision variables, however, will be transmitteDouble variables may be transferred with full pre-
cision using the statements:

read variable list as double binary
and
write variable list as double binary

Binary input and output statements may not be mixed with, or used on the same input/output unit,
as any free-form and formatted-type statements, with the exception of record boundary formatting.
Thestartnew statements and the formwrite orreadas/ are permitted witbinary 1/O

on most implementations. In all other cases, a SIMSCRIPT II.5 file usage error rebinary

is mixed with other I/O types.

If the language implementation supportsopen statement, it may be indicated, that the file is to
be used only fobinary data by appending the wcbinary to the list of file characteristics. For
example:

open unit 20 for output, binary, name is "BINDATA"

Correspondingly, declaring the parameformatted indicates norbinary mode data transfer.
If the I/0 mode is not defined while being opened, the mode is defined by the first usage.

3.6 Internal Editing of Data

The SIMSCRIPT II.5 system maintains separate data buffers for each logical unit. The size of each
buffer depends on the associated 1/O device characteristics, and is usually set by job control com-
mands or by default, but may also be determineopen statement parameters. All data, read or
written, are transferred through these buffers. Both an input porcolumn.v) and an output
pointer wecolumn.v) associated with the current input and output units, point, within these buffers,

to the last accessed character, being reset w/ format is encountered or when a physical data
transfer is forced by reaching the end of the buffer.

Individual character positions in the current output buffer may be accessed usalpha func-
tionoutf . Outf(1) refers to the first character ¢ out.f(10) to the tenth character. The
out.f function normally returns a single characlpha variable.

It is possible to edit output data by inserting alphanumeric or numeric data directly into the buffer.
When a new record is begun, by eithstart new statement or/ format descriptor, the buffer
is emptied and filled as the ensuing formats dictate. Thus, the statement:

122

Programming Language Concepts

write X as /, "The Buffer Contains", | 3, " Characters"

empties the buffer and inserts the characiThe Buffer Contains "in character positions 1
through 19, the value X in positions 20 through 22, and the characiCharacters " in positions

23 through 33. Assuming a buffer length of 132, the buffer could be edited, for example, so that
blank positions in the text, indicated here by underscores, are replaced by periods, by the state-
ments:

for | =1to 131,
until out.f(I)="_" and out.f(I+1)="_"
do
if out.f(l) ="_"
let out.f(l) ="."
always
loop

Wecolumn.v points to the last character written into the buffer, so the loop condition could be writ-
ten:

for I = 1 to wecolumn.v,
do

If numbers representing dollar amounts are written, dollar signs ($) can be put before the first digit
of each number in a similar way:

for | = 1 to wcolumn.v,

do
if out.f() =" _" and out.f(I+1) ne" "
let out.f(l) = "$"
always
loop

A special internal buffer callethe buffer may be used for data editing usread andwrite
statements. The length of this special buffer is specified by setting a system global variable,
bufferv , before its first use. buffer.v is not set, it is assigned a default value of 132. Input

or output operations are directed to the buffer in the usual way:

use the buffer for input

and

use the buffer for output
or the statements:

write variable list as format list using the buffer
and

read variable list as format list using the buffer

123

SIMSCRIPT II.5 Programming Language

The examples below illustrate hche buffer may be used for variable mode conversion.

1. In this example, text string containing numeric character fields is writterthe
buffer and then read in free form to assign values a linteger variables.

write as /, "11 12 13 14 15" using the buffer

read V1,V2,V3,V4,V5 using the buffer
Note tha clear:the buffer and sets the current output column pointer to its first po-
sition.
The buffer column pointer is arranged to be dynamically reset on read/write transitions. On
the transition from write to aread using the buffer, the column pointer is reset before
the variables are read so the first free-form read starts at the beginning of the buffer. A sim-
ilar transition from @&read to awrite using the buffer blanks the entire buffer and resets
the column pointer.

2. Alpha variablesACODE(1), ACODE(2),ACODE(3) , for example, might be written and
then reread astext variable as below:

write ACODE(1), ACODE(2), ACODE(1), ACODE(3) as 4 A 1

using the buffer

read NEW.TEXT as T 4 using the buffer
If ACODE(1)="C", ACODE(2)="A" , andACODE(3)="1" , thenNEW.TEXT will be
assigned the text strir'CACI" .

3.7 Writing Formatted Reports

Theprint andwrite statements may be used to display messages and variable values as desired.
Using these statements to produce lengthy reports, however, can involve much tedious program-
ming. This section adds two phrases taprint statement and introduces two control statements
that provide a report-generator capability.

These features permit a programmer to specify the layout of printed results, to control the printing
of headings and titles, to eject pages between various report sections, and to arrange "wide reports"
on standard-width paper. Figure 3-1 below illustrates the kind of complex reports that can be gen-
erated.

The statemerbegin report marks the start of a report section, within which various kinds of
control can be exercised. A report section, like a routine, is terminatedend statement. The
statements:

begin report

forI=1to N,
print 1 line with I, X(1) as follows

*% *%k kkk

end

124

Programming Language Concepts

illustrate a simple report section that merely marks off a controlled output statement. That report
section printN lines containing two values each. If the output report is to be labeled, the program
can be written as:

begin report
print 1 line as follows
| X(1)
forI=1to N,
print 1 line with I, X(I) as follows

** *k kkk

end

~NO O RhWN -
~Nooabhwpn R

1234 o 50 5152 i 100

=
o0}

~NouohwN

Figure 3-1. Report Using Row and Column Repetition

A heading is printed above tN lines of output that identify the displayed valuesN is large and
the output continues on more than one page, only the results on the first page are labeled. All other
pages are untitled.

A heading section may be defined within a report section so that titles are printed aadessary
computation performed whenever a page is ejected. A heading section is started by the statement
beginheading and ended by the statemend. All statements betweerbeginheading and

its matchingend are executed whenever a page is ejected by an output statement within an
enclosing report section, but after the heading section itself.

125

SIMSCRIPT II.5 Programming Language

To title all pages of output on the foregoing example, the program can be written as:
begin report
begin heading
print 1 line as follows
| X(I)
end " HEADING SECTION

forI=1TON,
print 1 line with I, X(1) as follows

% *%k kkk

end " REPORT SECTION

The statements in a heading section are executed the first time they are encountered and thereafter
every time a page is changed. Pages are changed whenever the current line count exceeds the num-
ber of printed lines a page can contain. Two system-defined valine.v andiines.v , main-

tained for each logical output unit, hold the values of the current line count and the permitted
number of lines per page, respectivelLine.v is initialized to 1 when an output device is first

used. It is stepped from 1 to the current maximum value, specifilines.v , each time a new

line is printed. You may chanilines.v at any time to vary the number of lines that may appear

on each output page. The SIMSCRIPT II.5 system usuall lines.v = 55 for the default

output unit, and for units selected for print output, at the start of program execution. This may vary

on different SIMSCRIPT I1.5 implementations.

Pages are numbered sequentially, starting from 1, with the number of the page currently being writ-
ten contained in a system variapage.v . As withline.v , a separate count page.v is kept

for each output deviciPage.v may be reset at any time. When this is done, numbering continues
in sequence from the new valiPage.v andline.v always refer to the current output unit. A

unit should be selected wittuse statement before any explicit reference to these variables.

Page changing can be disabled at any time by sdines.v =0
Within a heading section, the statement:
if page is first

may be used to select statements to be executed only on the first page of a report section's output.
The following program illustrates one way of using the report facilities described thus far.

126

Programming Language Concepts

Program 3-1.

" Generate a Table of Mat hematical Functions on a Separate Output Unit.
" Program Reads Number of Lines per Page, Number of Table
" Entries and Output Unit on which Results to be Displayed.
preamble
normally mode is integer
end

main
read PAGE.SIZE, TABLE.SIZE, REPORT.UNIT
call DISPLAY(PAGE.SIZE, TABLE.SIZE, REPORT.UNIT)
stop

end

routine DISPLAY(NO.LINES, TSIZE, UNIT.NO)
use UNIT.NO for output
let page.v=1
let lines.v = NO.LINES
begin report
begin heading
if page is first
print 1 line as follows
Tabulation of Mathematical Functions
skip 3 output lines
always
print 1 line with page.v as follows
Page No. **
skip 2 output lines
print 1 line as follows
I SQRT() 1SQ LOG(I)
skip 1 output line
end "HEADING SECTION
for J =1 to TSIZE,
print 1 line with J, SQRT.F(REAL.F(J)), J**2, LOG.10.F(RE AL.F())
as follows
** **.** *kk%k *.***
end "REPORT SECTION
return
end " ROUTINE DISPLAY

In its MAIN routine, this program reads in control data and passes these daiDISPLAY routine

that uses them in iIREPOR section.PAGE.SIZE is used to indicate the number of lines per page,

TABLE.SIZE the number of entries in the Mathematical Table,REPORT.UNIT the output unit
on which the report is to be produced.

127

SIMSCRIPT II.5 Programming Language

Within the routineDISPLAY, an output unit is selected, the first page of the report is setto 1 by set-
ting page.v tol, and itslines.v are set to the number of lines per page required. Within the
report sectionskip statements are used to separate heading information.

If the sequence of values read by this progra50 100 7 , a report will be printed ounit 7

which will display the valuej , Vi, j 2, anclog(j) forj=1,2,...,100 on three pages.
Assuming that printing starts at the top of the first page, this page will start with the heading
"Tabulation of Mathematical Functions, " the page number, the heacl SQRT(I) |

SQLOG(l) ,andvalues f¢j=1,2,...,41 . The second page will contain the page number,
the headin | SQRT(l) I SQ LOG(!) , and values foj =42, 43, ..., 86 . The third page

will resemble the second, except that it will include valuej = 87, 88, ... 100

The sequence of input valu20 40 8 will produce a report similar to the first, except that it will
display the values fcj = 1, 2, ..., 40 on pages that contain or20 lines. The heading
"Tabulation of Mathematical Functions " will be printed on the current page, renumbered
1, of outputunit 8

Whenever it is necessary to begin each report section on a new page, as might be done in this ex-
ample, thebegin report statement can be written as:

begin report on a new page

which ejects a page on the current output device unless the current page hadinev=1
wcolumn.v =0). This prevents blank pages from being ejected between report sections.

The structure of a "typical" report-generating program, using the statements described thus far, is
illustrated below. Thend statements are inserted for clarity.

begin report on a new page
brogram Statements
iaegin heading
i.f page is first
;allways
skip.N lines
end K HEADING
moré program statements

end " REPORT

128

Programming Language Concepts

Print statements appear in heading and report sections, and usually are contrfor ony
while statements in the part of the report section labeled "program statements.” The flow of con-
trol in a report section like the one which appears on this page is as follows:

1. Execute statements betwebegin report andbegin heading , ifany
2. Execute statements in the heading section, if any

3. Execute statements betweend "HEADING andend "REPORT if any, executing state-
ments in the heading section every time a page is changed.

These statements are adequate for many reports. A report for which they are not suited is one that
must print more than 80 columns of information per line. Adding the 'double to aprint
statement in the following way:

print | double lines with expression list as follows

specifies thaz2i , rather thaii , format lines follow that are to be read in pairs and interpreted as one
format line 160 columns long. To fill an entire line on a printer 132 columns wide, write a statement
such as:

print 1 double line as follows
AAAAAAAAAAAAA. ... AAAAAA
AAAAAAAAA..........c..... AAAAAAAAA

The first format record has ‘A typed in each of its 80 columns. The second format record has an
Atyped in its first 52 columns. "Double widtprint ~ statements are not restricted to report sec-
tions. Anyprint statement can be expanded to double width. llast column statement is
used, the first format record is scanned up to the specified column, instead of column 80.

The inclusion of an optional clause in tbegin report andprint statements adds one more
important report-generation feature. Figure 3-1 shows the kind of report the clauses handle—re-
ports that have rows of data with more items in each row than a single page can contain.

In preparing this type of report, a series of pages is printed with different column indices. In Figure
3-1, pages 1 and 2 are printed with column indices ranging from 1 to 50, and pages 3 and 4 are print-
ed with column indices ranging from 51 to 100. This feature, specifying an iteration sequence for
column indices and having pages printed on a wide page, is known as column repetition, and is
specified by an optional clause in begin report statement:

begin report printing for, in groups of e per page

The wordfor represents for, while, oruntil statement, perhaps qualified, that generates
column indices. The arithmetic expresse specifies the number of indices in this iteration se-
guence to be used on each page. Thus, the statement:

begin report printing
for I = 1 to 50, in groups of 10 per page

129

SIMSCRIPT II.5 Programming Language

specifies that five sets of column indices will be used for five executions of a report section. The
report section will be executed firstwl =1, 2, 3,4,5,6,7,8,9 ,and10; second
with I =11, 12, ..., 20; ... ; and fifth withl = 41, 42, ..., 50

The groups of iteration values are usedprint statement by a clause specifying that a group of
values are to be printed using the indices generated by a prebegin report statement. The
following example illustrates one such use:

begin report printing
for J =1 to 25, in groups of 5 per page
begin heading
print 1 line with a group of J fields as follows
skip 1 output line
end " OF HEADING
for1 =1to 6,
print 1 line with a group of X(1,J) fields as follows

k*k kk kk kk Kk

end " OF REPORT

This program generates five pages of output. Page 1 uses the first five viJ. A heading dis-
plays the values J, and a row repetition statement prints the valuex(1,J) for those values
ofJandi=1,2,3,4,5,6 . Figure 3-2 illustrates how such a page might appear.

1 2 3 45
*k k% k% k% k%
*k kk k% k% k%
k*k kk kk k% k%
k*k kk kk k% k%
*k k% k% k% k%

Figure 3-2. Column Repetition, Page 1

Figure 3-3, page 2 looks exactly like page 1 in form, but uses the second five vid to select
values for display.

130

Programming Language Concepts

%
**

*k k%
*k k%

P %

*%
**

*k kk k%

PII o~

Figure 3-3. Column Repetition, Page 2

Pages 3, 4, and 5 are similar, with page 3 uJ =11, ..., 15 , and page 4 usilJ = 16,
.., 20 , etc.

The index values are computed entirely within this version cprint statement. They are not
individually accessible in any other statement drau&l not be referenced outside this context.

The phrasa group of .. fields in aprint statement notifies the compiler that a sequence

of index values generated for the enclosing column repetition block is to be used in computing the
output fields. As shown above, one format must be provideelfcn of the fields in the column
repetition group. If thbegin report statement specifies groups of six, then six formats must be
provided in eaclprint statement containinga group of ... fields clause. For example,

the previous displays can be better labeled by using the statement:

for I =1to 6,
print 1 line with I,
and a group of X(1,J) fields as follows

* kk kk Kk kk k%

Several values can be alternated witha group of ... fields clause, each using the index
values. For example, the previous program might wantto displax(l,J) andy(l,J) asfol-
lows:

for1=1to 6,
print 1 line with I,
and a group of X(1,J), Y(l,J) fields as follows

* kk kk kk kk Kk kk *kk kK *kk k%

A format must be given for each output value, of course. All repeated formats must agree in mode.
It is not possible to write:

print 1 line with a group of | fields thus

131

SIMSCRIPT II.5 Programming Language

anc have the format line be:

* kK% * k%%

All repeated formats need not be identical (¢« and**), but they must be of the same mode.

If a controllingfor phrase in dbegin report statement is empty (produces no values), for ex-
ample:

for I = 1 to 4, with X(I) > 0,
when ncX(l) is greater thao, the entire report section headed by this statement is skipped.

If it is not necessary that each set of column repetition groups start on a hew pper page
clause may be omitted from tbegin report statement. The following report section uses this
feature to display a matrix containing more columns than can be put on one line:

forl=1to N,
do
print 1 line with | as follows
ROW **
begin report printing
for J =1 to M, in groups of 24
print 1 line with a group of X(1,J) fields as follows
EE I R B I I I
end " OF REPORT
skip 2 lines
loop

Such a program produces a report thatM = 50 , looks like figure 3-4.

ROW 1

* LR I R I I B B b b
kkhkkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkhkhkkkkk*k*k
* %

ROW 2

EE R I R R kI
LR I S S I S
* %

Figure 3-4. An Example of Column Repetition

Note: The total number of column indices generated need not be an even multiple of the group size
(e.g., 50 and 24 above).

132

Programming Language Concepts

A final feature makes it possible to include row, as well as column, summarizations, in reports using
the column repetition feature. This is done by adding a clauseprint statement that suppress-

es a part of the output for each linetiluall column repetition data have been printed. A typical
use of this feature is illustrated as follows:

begin report printing
for J=1to M, in groups of 10 per page
print 1 line with a group of X(1,J) fields, SUMX(I)
suppressing from column 70 as follows

* % % % * * *x *x * % Kkkk

end " OF REPORT T

Column 70

If M = 30 , three sets of column indices will be generated; the above format line will be repeated
three times, on three separate pages. Only on the last page, however, will the last format be used,
and the valusSUMX(l) printed. Thesuppressing clause specifies that the printing of any data
formatted to appear from column 70 onward is to be inhibited until all the column index values have
been used. This applies both to data and and to any text literals appearing in the format specifica-
tion. The three pages printed by the above statements are shown in figure 3-5.

The following program segment illustrates the skeleton of the report section of a program that gen-
erates the report shown in figure 3-5. The report produces a table of shipment amou120 from
BASE<Sto 60 DEPOTS, together with totals for eaBASE andDEPO™ and a grand total of all ship-
ments, to produce an output report on double-width paper.

133

SIMSCRIPT II.5 Programming Language

134

* * % % * % % *x % %

Page 1
* % % % k% % k% % * *
Page 2
* * * % % % % % * * *kkk
Page 3

Figure 3-5. An Example of Format Suppression

Programming Language Concepts

Program 3-2.

preamble
normally mode is integer
define SHIPMENT as a 2-dimensional array
define BTOTAL, DTOTAL as 1-dimensional arrays

end

main

reserve SHIPMENT(*,*) as 120 by 60
reserve BTOTAL(*) as 120
reserve DTOTAL(*) as 60

use 6 for output
let page.v=1
begin report on a new page
printing for DEPOT = 1 to 60
in groups of 24 per page
begin heading
print 1 double line with page.v as follows
Page *
print 1 line as follows
Depot to Base Shipments
skip 1 output line
print 1 double line
with a group of DEPOT fields
suppressing from column 91 thus
DEPOT k% kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk kk k%
*k kkkk TOTAL
print 1 line as follows
BASE
end " HEADING SECTION
for BASE=1 to 120
print 1 double line
with BASE, a groupof SHIPMENT(BASE , DEPOT) fields, BTOTAL(BASE)

suppressing from column 92 as follows
*k k kkkkk Kk kkkkkhkkkhkkk Kk kKK k%

* *kk

skip 1 output line
print 1 double line
with a group of DTOTAL(DEPOT) fields, GRAND.TOTAL
suppressing from column 92 as follows

135

SIMSCRIPT II.5 Programming Language

T()TV\L Kk ok kk kk kk kk dk kk kk Fok kk kk Kk dok kk Kk kok kok Kok kok kk Kk ok

** *%k%

end " REPORT SECTION
stop
end

3.7.1 Page Heading Control

Two further variables, maintained for each output unit, allow page heading control to be exercised
throughout a program, rather than just within report sections. One of these veheading.v ,

is an example of the use osubprogram variable. If the name of a user-written page titling rou-
tine is assigned to t heading.v variable for any unit, control will be automatically passed to this
routine as every new page is begun. This is done by statements such as:

use 2 for output
let heading.v = 'TITLE.ROUTINE'

A routine of the namTITLE.ROUTINE must, of course, be included in the program. This routine
may contain any desireprint or write statements. Routine names may be assigned to
heading.v at any time. Different units may each have their own titling routines. Titling may be
suppressed by assigning a value of zero to the apprc heading.v variable. A second
variable, also maintained for each output unipagecol.v . If this has a nonzero value, for any

unit, it is taken to specify the starting column on the first line of each page where the value of the
current page counpage.v , is to be printed in the formPAGE **** .

136

4. Modelling Concepts

4.1 Introduction

In Chapted, a programming language was presented as a means of describing both instructions and
the data on which they operate. The description of data items has been limited to naming the data
items, specifying modes, and, in the case of arrays, describing some simple data structuring. This
chapter describes the additional data-structuring facilities and commands provided by SIMSCRIPT
II.5 and illustrates their potential use. These data structures are designed to aid in problem defini-
tion, particularly in the areas of simulation and modelling.

The provision of enhanced data-structuring facilities is necessary for two reasons: (1) the need for
more organizational structure than simple arrays afford, and (2) the lack of clarity of programs
written within the descriptive limits of variable name and subscript expression conventions.
SIMSCRIPT I1.5 provides needed structure and narrative clarity through statements that define and
manipulate entities, attributes, and sets.

This chapter is organized into three parts: definition, organization, and manipulation. First, defi-
nitions are provided for the three constituents of the SIMSCRIPT I1.5 world view: entities, at-
tributes, and sets. Next the relationships between these constituents are discussed, with special
attention to how they are organized. Finally, statements that use these constituents to perform use-
ful functions are presented.

4.2 Entities and Attributes

An entity is a structured data item that represents some element of a modelled system. Similar to a
subscripted variable. It may have more than a single value to define a particular configuration or
state of the entity. Unlike subscripted variables, the attributes of entities are referenced by name
rather than by a subscript number, enhancing readability and model description. Using subscripted
variables, a collection of ten workers having the attributes of age, number of dependents, and social
security number might be represented in SIMSCRIPT II.5 by a two-dimensional array reserved as
follows:

reserve WORKER as 3 by 10

with the understanding thatORKER(1,4) represents the age of the fourth workE@QRKER(3,6)
the social security number of the sixth worker, etc., according to the layout shown in figure 4-1.

137

AGE 1
DEPENDENTS 2
SOC.SEC.NO. 3

Figure 4-1. Storage of Attributes in a Two-dimensional Array

The entity and attribute structuring permits an entity tWORKE, to be defined by the statement:

every WORKER has an AGE, a NUMBER.OF.DEPENDENTS
and a SOCIAL.SECURITY.NUMBER

A particular entity of this type may be specified by the value of an implicitly declared global vari-
able callecWORKE, associated with this entity type, and the attribute values associated with this
particular instance of WORKE may be accessed by references such as:

AGE(WORKER)
and

SOCIAL.SECURITY.NUMBER(WORKER)

Thus, theevery statement may define a class of entities, each having similar properties. Every
WORKE entity, of which there may be many, has the same attributes; the actual values of these at-
tributes may differ for each.

Entities and their attributes are declared in a program preamble by statements of the general form:
every entityname hasan attribute name list

Entity and attribute names follow the same naming convention as variables and routieeshand
variable, entity, attribute, and routine name must be unique. To assist in the creation of readable
programs, the worca, the , andsome can be used in place an, as in:

every WORKER has an AGE, some DEPENDENTS and a
SOCIAL.SECURITY.NUMBER

In general, these entity declarations implicitly state the ordering of the attributes within the entity
structure. The data structure associated with each instaniWORKE entity may be pictured as
shown in figure 4-2.

138

Modelling Concepts

WORKER

value of AGE

value of DEPENDENTS

value of SOCIAL.SECURITY.NUMBER

Figure 4-2. Order of Storage of the Attributes of an Entity

4.3 Sets

Entities and their attributes allow some structuring of related data. Sets, in turn, provide a higher
level of structuring of these data. Sets are organized collections of entities. Sets are like arrays in
that each of the ¢ity elements of which they are composed may be identified and manipulated, but

in contrast with the static structuring imposed on array elements, the organization of entities in sets
may be dynamic and changeable. The set concept and the underlying mechanism are introduced
here by way of an example.

Consider the following situation: Over the years, residents of a community join various clubs and
societies. As residents are born, grow up, remain in or move out of the community, and die, the
club memberships change. To model the relationships that exist between the members of the com-
munity, both over time and at particular instants of time, requires some way of grouping the indi-
vidual society and club members together. Such groupings might be defined by the statements:

every COMMUNITY owns a MASONS,
and a BOY.SCOUTS

every MAN may belong to the MASONS,
and the BOY.SCOUTS

The first statement declares that each entity of the Clas®MUNIT®wns a set calledASONSand

a set calle®8OY.SCOUTS Each of these sets corresponds to a logical grouping of residents in the
community. This statement does not specify which residents belong to the particular sets; rather, it
establishes a system of set pointers and set attributes for the owner entities that enable set member-
ships to be constructed. For ea®MMUNITentity, the attributes shown in figure 4-3 are auto-
matically defined to exist.

139

SIMSCRIPT II.5 Programming Language

COMMUNITY

F.MASONS

L.MASONS

N.MASONS

F.BOY.SCOUTS

L.BOY.SCOUTS

N.BOY.SCOUTS

Figure 4-3. Automatically-defined Attributes of COMMUNITY Entities

The attributes starting with are set pointers that point to the first member of the respective sets.
The attributes starting with are set pointers that point to the last member of the respective sets.
The set members, as we shall see, point to one another, defining their interrelationships and making
the connection between the set owner and the set members complete. The attributes starting with
N. maintain the number of entities in each set.

The second statement declares #daath etity of the classvAN may belong to sets call@dASONS
andBOY.SCOUTS It is important to note that membership is declared as possible in this statement,
but not mandatory. This statement automatically defines the set attributes shown in figure 4-4 for
member entities.

MAN

P.MASONS

S.MASONS

M.MASONS

P.BOY.SCOUTS

S.BOY.SCOUTS

M.BOY.SCOUTS

Figure 4-4. Automatically-defined Attributes for Members of the Class MAN

The attributes starting with. are set pointers pointing to the predecessor entity in the indicated set.
Those starting witl$. are set pointers pointing to the successor entity in the indicated set, and those
starting withM. indicate whether an entity is currently a member of the set. The concepts of pre-
decessor and successor, as well as first and last, can be best explained by an illustration. In figure
4-5 the entityCOMMUNITYWNS one set calledASONS The members of the set are entities of the
classMAN The entity-set relationships are defined by the statements:

140

Modelling Concepts

every COMMUNITY owns some MASONS
every MAN may belong to the MASONS

The entity structures shown contain the automatically-generated ownership and membership point-
ersF.MASONS, L.MASONS, N.MASONS, P.MASONS, S.MASONS , andM.MASONS

COMMUNITY
F.MASONS | g MAN1 4\
L.MASONS P.MASONS
N.MASONS S.MASONS T% MAN,
P.MASONS -
M.MASONS
SMASONS = MANs

M.MASONS

S.MASONS 7
M.MASONS

S.MASONS
M.MASONS

Figure 4-5. Owner-member Set Relationships

The set owner, the entity nameé®dMMUNITYhas two attributes that point to the member entities
that are logically first and last in the $#ASONS It also has aN.MASONSattribute, which in this
case is 4. The member entities, here calladil, MAN2, MAN3, andMAN4 have two attributes
that point to the members of the set that logically precede and succeed thent.MASENSIN
COMMUNITYoInts to the entity structure BIAN] indicating that it is the first entity (logically) in
the setMASONS The pointeiP.MASONSof MAN1 points nowhere (has a zero value)vasNlhas

no predecessor iIMASONS Its S.MASONSpointer, however, points tdAN2 which logically
follows it in MASONS As shownP.MASONSof MAN2points back to its predecessBiAN1 The
same is true dIAN3 MAN4 as the last member BIASONS differs somewhat. It has no successor
(S.MASON = 0), and is pointed to directly by MASONS the last-in-set pointer @OMMUNITY
EachMAN also has amM.MASONSttribute which is non-zero since ea¢ANis a member of the
SetMASONS

The items to note from this example are:

1. Asetis made up of entities that point to one another, thereby expressing their member re-
lationships.

2. First-in-set and last-in-set pointers connect a set's owner to its member entities.

3. A specific entity can own or belong to any number of sets as long as it has the required
pointer attributes. For example, the enigkNmight own the seCHILDRENwhose mem-
bers are also entities of the typaN. These relationships might be defined by the statement:

every MAN may belong to the MASONS,
own some CHILDREN, and belong to the CHILDREN

141

SIMSCRIPT II.5 Programming Language

Figure 4-6 illustrates a collection MA! entities having one possible relationship to each other. The
relationships expressed in figure 4-6 are:

1. COMMUNIT owns the seMASON whose members aMAN1, MAN3, MAN4, andMANL

2. MAN1 owns a seCHILDREN whose members ¢ MAN2, MAN6 , andMANL,

3. MAN:owns a seCHILDREM whose single member MAN..

These relationships are depicted in figure 4-7.

MASONS
MAN; CHILDREN
------ MAN, CHILDREN

COMMUNITY

—F.MASONS

L.MASONS ~

~~

~
|

.
MAN, N\MANs ~MAN; MAN; MANs

. \J 1
P.MASONS o |\e ~o | [[e o | |
S.MASONS ol ! el . o | o
F.CHILDREN | e . 4 0) ol | o /
L.CHILDREN | e o o o ol | |o /
P.CHILDREN | o o o o . o
S.CHILDREN | o . o o o .

Figure 4-6. Set Relationships

An entity's attributes and set relationships can be declared in one cevery statements using
attribute name clauses, set ownership clauses, and set-membership clauses. The clauses have the

form:

attribute clause has attribute name list
or have attribute name list

142

Modelling Concepts

set-ownership clause owns set name list
or own set name list

set-membership clause belongs to set name list
or belong to set name list

MASONS

Figure 4-7. Set Relationships

When more than one clause is used ievery statement, adjacent clauses are separated by com-
mas. If desired, a clause can be preceded by the 'may orcan. Some examples are:

every PERSON has list, owns list and may belong to list
every CITY owns list and has list
every CAR has list, and may own list

The items in an attribute name or set name list must be separated by both a comma and one of the
wordsa, an, the , orsome. For example:

143

SIMSCRIPT II.5 Programming Language

every PERSON has a NAME, and an ADDRESS,

owns some CHILDREN

and may belong to the MASONS, a CHURCH, and a FAMILY
every XhasaP,aQ,aRandan A

Set names should follow the same naming conventions as entities and attributes and must be unique.
Recall the guidelines on variable naming given in Chel. It may now be apparent why care
should be taken in assigning names of the form letter-dot-name, as the declaration of set names im-
plicitly defines a number of attribute names, made up from the set name by just this form of prefix-
ing.

Anevery statement defines a data structure. The next several paragraphs explain how these data
structures are created and used, and the items within them are given further definition.

4.4 Temporary Entities

Anevery statement defines the structure of a class of entities. Entity classes can be temporary or
permanent. This paragraph describes temporary entities. Paragraph 4.5 discusses permanent enti-
ties.

When the statement:
temporary entities

appears before a collectionevery statements in a preamble, it declares that all following entities

are temporary. This means that storage is allocated to entities individually as they are created dur-
ing the course of program execution. Individual entity records are provideadiotemporary en-

tity when icreate statement is encountered. The formis:

create entity name called variable

A create statement allocates space in memory for the entity representation and assigns a pointer
to this space to the indicated variable. Each entity is a unique and distinct individual that is iden-
tified by its pointer . As long as the variables into which these pointer valueaeed ple distinct,

the identity of individual entities is preserved. For example:

Entity definition in a preamble:

temporary entities
every SHIP has a NAME and a TONNAGE

Create statements in a program:

create SHIP called VESSEL
create SHIP called V()

These twccreate statements assign pointers to distinct copies ¢SHIP entity structure to the
variablesVESSEL andV(l) . Figure 4-8 provides an illustration.

144

Modelling Concepts

VESSEL
» NAME
TONNAGE
V()
— NAME
TONNAGE

Figure 4-8. Entity Creation

If desired, the worda oran can be used aftcreate to improve readability, as in:

create a SHIP called QUEEN.MARY
create an EVENT called BIRTH

If no variable is specified in called clause, the entity identification number is assigned to the
global variable with the same name as the entity class. Recall tevery statement implicitly
declares a global pointer variable with the same name as the entity class. The statement:

create a SHIP

allocates space forSHIP entity, and assigns the pointer value to the automatically defined global
variable name SHIP . Itis interpreted as if written:

create a SHIP called SHIP
The attributes of a particular instance of a temporary entity are referenced using the notation:
attribute name(identification number)
asin:
NAME(VESSEL)
and:
TONNAGE(QUEEN.MARY)

Because attribute references refer to locations in memory, like variable names, they can be used in
the same way that variables are used — in input/output lists and in logical and arithmetic expres-
sions. For example:

145

SIMSCRIPT II.5 Programming Language

preamble
normally,mode is integer
temporary entities
every SHIP has an AGE and a TONNAGE
define V as 1-dimensional array
end

main
read N
reserve Vas N
forl=1toN
do
create a SHIP called V(I)
read AGE (V(1)), TONNAGE (V(1))
loop
read YEARS
forl=1toN
with AGE(V(l)) less than YEARS
add TONNAGE(V(l)) to SUM.TONS
print 1 line with YEARS, SUM.TONS thus
Total tonnage of ships less than ** years old is ******
end

In this programN temporary entities of the classiIP are created and their identifying pointers
stored in the subscripted variablgg), V(2), ..., V(N) . The attributes of these entities are
then accessed iread , with , andadd statements.

The assignment of memory space to entity structures is much like the assignment of pointer and data
words to arrays as they are reserved. Similarly, entities can be released when they are no longer
needed. The statement:

destroy entity name called variable

uses the value of the identifying pointer stored in the indicated variable to indicate the space that is
to be released. When destroyed, the space is returned to the pool of unused memory for possible
reuse. The wordse orthis can be used before the entity name, if desired, as in:

destroy the SHIP called VESSEL

and
destroy this SHIP called V(1)

If the pointer variable name is omitted as in:
destroy entity name

the statement uses the pointer value in the global variable that has the name of the entity class. The
statement is interpreted as if written:

146

Modelling Concepts

destroy entity name called entity name

4.5 Permanent Entities

Permanent entities are defined in much the same way as temporary entities, but these declarations
must be preceded by the statement:

permanent entities

Entities declared as permanent are stored collectively rather than in individually identifiable
records. The entire group of permanent entities of a given class is created by a single statement.
The attributes of the entities in the group are stored as indexed arrays. The attributes for a particular
entity are accessed by effectively selecting a common index for all the associated attribute arrays.
The number of entities in a particular entity group is maintained in an implicitly declared global
variable calleN. entity . The attribute arrays are allocated create statement of a different

form than that used for temporary entities. Given the preamble declaration:

permanent entities
every HOME has an ADDRESS and an AREA

the number o0HOM entities to exist may be set by assigning a val N.HOME by aread or let
statement. The statement:

create each HOME

allocates arrays for all the attributes of N.HOME entities of the class by executing the statement
reserve ADDRESS and AREA as N.HOME . The wordsevery ancall can be used in place of
each . Several permanent entities can be created together by naming a list of entity narr es, as in:

create every HOME, HOTEL and RESTAURANT
which is of the general form:

create permanent entity name list

As an alternative to assigning a valuN. entity before permanent entity creation, an arithmetic
expression can be used in icreate statement to indicate the size of the attribute arrays. For
example, the following statements are equivalent:

let N.HOME =5
create every HOME

create every HOME(5)
When the second form is usiN. entity is thereafter set to the 'ue of the parenthesized expression.

Permanent entities are not referred to by a pointer value, but by an index value that varies between
1 andN.entity . Thus we speak of the attributes of eHOM asADDRESS(1), ADDRESS(2),

..., ADDRESS(5), AREA(1), AREA(2), ..., AREA(5) . The layout of these attributes is
shown in figure 4-2

147

SIMSCRIPT II.5 Programming Language

ADDRESS AREA

1 1

2 2
3 3
4 4
5 5

Figure 4-9. Attribute Storage of Permanent Entities

The program of paragraph 4.4 is repeated here, using permanent rather than temporary entities, to
illustrate the difference in how they are defined and used:

preamble
normally, mode is integer
permanent entities
every SHIP has an AGE and a TONNAGE
end

main

read N.SHIP

create every SHIP

for | =1 to N.SHIP

read AGE(l), TONNAGE(l)
read YEARS
for1=1to N.SHIP
with AGE(l) less than YEARS
add TONNAGE(l) to SUM.TONS

print 1 line with YEARS, SUM.TONS thus

Total tonnage of ships less than ** years old is ******
end

Unlike temporary entities, permanent entities cannot be destroyed individually. They can be de-
stroyed collectively, as in:

destroy each SHIP

or
destroy every HOME

All attributes of permanent entities are thus released at the same time.

Like temporary entities, permanent entities have global variables defined for them. Each statement
of the form:

every entity name has...

implicitly includes the effect of a statement:

148

Modelling Concepts

define entity name as an integer variable

4.6 System Attributes

To provide consistency in usage, itis convenient to be able to declare attributes as beldrging to
system , rather than to a particular entity. These attributes appear much like global variables, but
with some differences. Attributes tiie system are declared by statements of the form:

the system has attribute name list
For most purposes, the statements:

the system hasan X anda Y
and:
define X and Y as variables

are equivalent. Because there is only one "system," references to system attributes are not indexed
or subscripted, as are references to attributes of permanent and temporary entities. A value of 1 is
assigned to the variab¥eby the statememdtX=1 , whetheiXis defined as in the first or second
example above. System attributes will be subscripted if the background dimensionality condition
at the time of their declaration is greater than zétes declared to be a two-dimensional system
attribute by the statements:

normally, dimension is 2
the system has an X

The convenience of system attributes derives mainly from their use as pointers that enable a pro-
gram as a whole to own sets. The statement:

the system owns a QUEUE

specifies that a program contains two system attributes nex@e&UEandL.QUEUEthat point to
the first and last entities belonging to a set na@EHUE Several system-owned sets can be de-
fined at one time by the statement:

the system owns set name list

If a background dimensionality, other than zero, is declared, the effect is to define any system-de-
fined attributes, including any set pointers, as arrays rather than as unsubscripted variables, as in:

normally dimension is 2
the system owns a TABLE and has a MATRIX

Subscripted system attributes, both explicitly declared and any implicitly defined set pointers, must
bereserved before they can be used. To use the systemAgE and the system arrdyATRIX,
defined above, a statement such as:

149

SIMSCRIPT II.5 Programming Language

reserve F.TABLE, L. TABLE, N.TABLE and MATRIX as N by M

must be executed.

4.7 Attribute Definitions: Mode and Dimensionality

Attributes of the system, and of permanent and temporary entities, may be declared to have any of
the modes associated with variables. As with any global or local variables, modes can be declared
by default, usinnormally ~ statements, and explicitly, usidefine statements. Set pointers are
automatically declared to beinteger mode.

Permanent and temporary entity declarations define the dimensionality of their attributes implicitly,
making additional definitions unnecessary. The statement:

every PERSON has an AGE

declares theAGE has a single subscript, a pointer valuPERSONIs declared as temporary, or an

index value ifPERSO! is permanent. The notatitAGE(PERSON, meaningAGE of PERSO

provides for this subscript. System attributes, on the other hand, must be declared and reserved as
explained in paragraph 4.6.

The rules for assigning modes and dimensionalities to attributes are straight forward

Mode:

1. The current "background mode" is assigned to all attributes specifevery andthe
system statements except for automatically-generated set pointers.

2. Define statements followinevery andthe system statements can redefine attribute
modes.

Dimensionality:

1. The current "background dimensionality" is assigned to all attributes and sets specified in
the system statements.

2. Every statements specify the dimensionality of the attributes and sets listed in them.

The following preamble illustrates each of these rules.

150

Modelling Concepts

preamble
normally dimension is 2
the system has an EXCESS
define EXCESS as an integer array
normally dimension is 0, mode is real
the system has a VALUE and owns a COLLECTION
permanent entities
every SAMPLE belongs to the COLLECTION
and has a PRICE and a NAME
temporary entities
every POINT has an IDENTITY and a
COLLECT.TIME
define NAME and IDENTITY as text variables

This preamble defines five system attributes, one of whireal -valued(VALUE) , one of which

is a base pointer for a two-dimensional a(EXCESS) whose elements ainteger -valued, one

of which is aninteger counter for set membe(N.COLLECTION) , and two of which are set
pointers F.COLLECTION andL.COLLECTION). The preamble also defines a class of permanent
entities SAMPLI) and a class of temporary entitiPOINT). Each entity of typSAMPLI has two

set pointer attributesP.COLLECTION andS.COLLECTION), an integer set membership flag
(M.COLLECTION), areal attribute PRICE), and etext attribute NAMI). These attributes are stored
as one-dimensional arrays, of dimen: N.SAMPLE. Each entity of typPOINT has itext at-
tribute IDENTITY) and éreal attribute COLLECT.TIME). These attributes are stored in individ-
ual locations within the temporary entity structures.

Figure 4-10 illustrates the storage of the attributes cN.SAMPLE permanent entities of the class
SAMPLL Figure 4-11 illustrates the layout of an entity record for a temporary entity of the class
POINT. Figure 4-12 shows the arrangement in memory of the system attVALUE, EXCES,
F.COLLECTION, L.COLLECTION , andN.COLLECTION.

4.8 Sets: Their Declaration and Use

Sets are declared every statements when their owner emember entities are defined. Every
set must have an owner, either an entitthe system , and can have either permanent or tempo-
rary entities as members, but not b th.

Sets named ievery statements have the following properties:

1. Owner entities have first and last-in-set pointers neF. set andL. set .

2. Member entities have predecessor and successor pointersP. set ands. set .
3. Set members are ranked on a first-in, first-out basis when they are put in a set.
4

Each member entity has a membership neh. set that is a non-zero value if an entity is
in the set, and zero if it is not. Note tiM.set is non-zero if an entity is iany set with
the given name. A non-zero value does not guarantee the entity is in one specific set.

151

SIMSCRIPT II.5 Programming Language

5. Each owner entity has a counter attribute naN.set whose value is the number of

member entities currently in the set.

N.SAMPLE

SAMPLE
base pointers
P.COLLECTION —
S.COLLECTION —
M.COLLECTION —
PRICE 3
NAME —>

Figure 4-10. Storage of Attributes of a Permanent Entity

IDENTITY

COLLECT.TIME

Figure 4-11. Storage of Attributes of a Temporary Entity

Row pointers

INTEGER data values

VALUE

et L

EXCESS (base pointer)

Hi—

— | [][]

F.COLLECTION

L.COLLECTION

N T[]

\IIIIIII

Figure 4-12. Storage of System Attributes and Set Pointers

152

Modelling Concepts

In general, all set owner and member attributes are treaiinteger -valued and have names
formed by prefixing a letter and a period to the set name. The declarations:

permanent entities
every CITY owns a CLUB
temporary entities
every RESIDENT may belong to the CLUB

define three attributes for the owner entity'CLUE and three attributes for its member entities. Be-
causeCITY is a permanent entity, its owner attributes are stored as three arrays, with base pointers
F.CLUB(*), L.CLUB(*) , andN.CLUB(*). RESIDENT , being a temporary entity, has its mem-

ber attributesP.CLUB, S.CLUB , andM.CLUE, stored in locations within each individual entity.

Every program commences execution with empty sets. As a program proceeds, statements are ex-
ecuted that file entities in sets, examine sets, and remove entities from sets. Set memberships
change dynamically whefile andremove statements alter set pointers, changing relationships

that affect set membership and set ranking. file statement has two basic forms:

la. file arithmetic expression first in set
1b. file arithmetic expression last in set

2a. file arithmetic expression
before arithmetic expression in set

2b. file arithmetic expression
after arithmetic expression in set

The wordsdirst orlast are optional. When both are omitifile last is implied; the state-
ments:

file arithmetic expression last in set

and

file arithmetic expression in set
are equivalent.

In each of the forms, the worthe orthis are optional before the expression or the set name, as
in:

file the BIRD in the NEST
file this JOB first in this QUEUE
file MYDOG after YOURDOG in the KENNEL

Used in this context, each arithmetic expression must evaluate to an entity identifying value. It must
be either the pointer value addressing a temporary entity, obtained from a pcreate state-
ment, or an integer number indexing one ofN.entity =~ permanent entities of a specific type.

153

SIMSCRIPT II.5 Programming Language

In case 1 above, the indicated item is filed at the head (tail) of the set. In 2, the position of filing is
specified relative to some entity already in the set. The actions that take plackfile first

statement is executed are illustrated by two examples. The examples use a set whose owner and
member entities are both temporary, but they can as well be both permanent, or one permanent and
one temporary. The set and the entities are defined by the statements:

temporary entities
every FARM owns a KENNEL
every DOG has a LICENSE

and belongs to some KENNEL

The two illustrations are included in the program segment shown below. We first consider the sit-
uation before and after the first dog is filed in a kennel. Later we examine a subsequent situation.
Assume ¢FARN has been created whose identifying value is stored in the global v FARM.

This could have been done by the statercreate a FARM

Program segment:

read NUMBER.OF.DOGS
for | =1 to NUMBER.OF.DOGS
do
create a DOG
read LICENSE(DOG)
file DOG first in KENNEL(FARM)
loop

The entityFARN is shown in figure 4-13a. After the first dog is created, its entity will appear as in
figure 4-13b.

A B:

FARM DOG
F.KENNEL LICENSE
L.KENNEL P.KENNEL
N.KENNEL S.KENNEL

M.KENNEL

Figure 4-13. Entity Structures for FARM and DOG

At this point the variableF.KENNEL, L.KENNEL, N.KENNEL, P.KENNEL, S.KENNEL , and
M.KENNEIL are all zero, indicating thKENNEL(FARM is empty andOC is not in SOMKENNE!..
A M.KENNEIL is equal tc0.

After thefile statement is executed, the entity records are as shown in figure 4-14. The owner
entity FARN points to the member entiDOG, which, being the only entity iKENNEL(FARM, is

154

Modelling Concepts

both first and last. Becaug®Gds alone irKENNEL(FARM) it has no predecessor or successor en-
tities.

DOG
FARM
LICENSE 123
F.KENNEL o |
—— P.KENNEL 0
L.KENNEL
S.KENNEL 0
. 1
N-KENNEL M.KENNEL <>0

Figure 4-14. Entity Records

After the secondOG is created and filed, the entity records take the form shown in figure 4-15.
With two members in the set, the first and last pointers lead to different entity records. The first
entity, pointed to bi. KENNEL(FARM) , points ahead to the second entity with its successor point-

er. The second entity points back at the first entity with its predecessor pointer. Both the predeces-

sor pointer of the first entity and the successor pointer of the last entity are zero, indicating their
respective roles.

FARM
LICENSE 123
F.KENNEL >\ P.KENNEL o
L.KENNEL S.KENNEL 0
N.KENNEL 2 M.KENNEL <>0
DOG
LICENSE 248
P.KENNEL 0
S.KENNEL o——
M.KENNEL <>0

Figure 4-15. Entity Records

An important point to note is that the global variab{@Gnow points to the secorOGcreated.
The entity record of the fir@OGcreated can only be accesseatigh the pointers to it,.KEN-

NEL(FARM) andS.KENNEL(DOG). These pointers illustrate the general form of an attribute refer-
ence:

attribute (entity identification)

155

SIMSCRIPT II.5 Programming Language

Because an ¢ity identification can itself be an attribute, as in the case of a pointer, nested entity
references can be made, as in:

S.KENNEL(F.KENNEL(FARM))

which reads as "the successor of the firskENNEI of FARN' and has the same value as
S.KENNEL(DOG) becausé#.KENNEL(FARM) = DOG. Any level of entity nesting is possible as
long as all nested expressions evaluate to entity identifiers.

When a thirdDOC is created and filed, the entity records are as shown in figure 4-16. Additional
creations and filings are analogous.

A file last statement has an effect similafile first , but operates on the opposite end of

a set. If our example program segment were written with the sta file DOG last in
KENNEL(FARM, after executing three creates and files the entity records would appear as in figure
4-17.

Thefile before anc file after statements are described with a different example. Assume
the entity record organization shown in figure 4-18 was created by the following program state-
ments:

create a DOG called MYDOG

file MYDOG first in KENNEL(FARM)
create a DOG called YOURDOG

file YOURDOG first in KENNEL(FARM)

The statements:

create a DOG
file the DOG after YOURDOG in KENNEL(FARM)

insert the entity record for the newly cre: DOC after the entity record pointed to by the variable
FIDO. The resulting entity record organization is shown in figure 4-19.

156

Modelling Concepts

—

LICENSE
F.KENNEL - — |

P.KENNEL
L.KENNEL *

S.KENNEL
N.KENNEL \ 3
M.KENNEL

LICENSE

P.KENNEL
S.KENNEL o

M.KENNEL

LICENSE

P.KENNEL

S.KENNEL 0
M.KENNEL <>0

Figure 4-16. Entity Records

Entities are removed from setsremove statements. Two basic forms of removal are possible.

1la. remove first variable from set
1b. remove last variable from set

2. remove arithmetic expression from set

The worcthe is optional afteremove , as is either of the worthe andthis before the set name.
In addition, either of the worcthis orabove can be used before the expression in form (2).

A remove first orremove last statement removes from a set the entity pointed to by the first
or last pointer attribute of the set owner. The identification number of the removed entity is as-
signed to the variable in themove statement. For instance, in the situation shown in figure 4-19,
the statement:

remove the first HOUND from KENNEL(FARM)

removes the first entittMYDOG from KENNEL(FARM), makes the second entity first, and puts a
pointer toMYDO in HOUN. The attribute values (MYDO, which now can also be callHOUN))

157

SIMSCRIPT II.5 Programming Language

are unchanged except fM.KENNEL which is now (. AlthoughMYDO is no longer in
KENNEL(FARM, its attributeS.KENNEL still points toDOC In set membership, pointer values are
meaningless once an entity is removed from a set. If the variableMYDOGwere replaced by

DOC in figure 4-18, this figure would show the organizatiorKkENNEL(FARM afterMYDO had
been removed from figure 4-19.

FARM
LICENSE
F.KENNEL

P.KENNEL
\ 3 S.KENNEL
M.KENNEL

L.KENNEL
N.KENNEL

LICENSE

P.KENNEL

S.KENNEL e

M.KENNEL

LICENSE

P.KENNEL
S.KENNEL

M.KENNEL

158

Modelling Concepts

MY DOG
FARM
LICENSE 123
F.KENNEL e P.KENNEL J—
L.KENNEL e
- S.KENNEL 0
N.KENNEL
M.KENNEL <>0
YOUR DOG
LICENSE 248
P.KENNEL * 0
S.KENNEL «—
M.KENNEL <>0

Figure 4-18. A Set with Two Members

If an attempt is made to remove the first or last member from an empty set, the program terminates
with an error message.

A remove specific entity statement extracts a particular entity from a set. The entity iden-
tification number is given by the arithmetic expression. Referring again to figure 4-19, the state-
ment:

remove this DOG from KENNEL(FARM)

converts the set shown in that figure to the set shown in figure 4-18. If the arithmetic expression is
not an identification number of an entity currently in the set (signaled by a non-zero value in its
membership attribute), the program terminates with an error message.

The presence of a membership attribute in an entity permits both error checking (cay aftele

X becausiX is not in the set; cannot remcX becausiX is not in the set; cannot destiX if it is a
member of some sets; cannot X in a set if it is already in it) and questioning about set member-
ship. The logical expressions:

arithmetic expression is in set
and
arithmetic expression is not in set

can be used iif statements arwith clauses to take actions conditional on set membership. As
options, the wordthe andthis can precede the arithmetic expression, and the va, an,
the , orsome the set name. Examples are:

if MYDOG is not in some KENNEL,

159

SIMSCRIPT II.5 Programming Language

or

with this DOG in a KENNEL,

In these statements, the set neKENNEI cannot be subscripted. It is impossible for an entity to
belong to more than one set of a given class at a timDO(can belong tKENNEL(FARM or
KENNEL(HOUSE, but not to both simultaneously. A membership attribute signals only member-
ship of a named set, not specific owner-membership details.

MY DOG
FARM
LICENSE
F.KENNEL ::><\ P.KENNEL .
L.KENNEL
S.KENNEL 0
_ 3
N.KENNEL M.KENNEL <>0
YOUR DOG
LICENSE
P.KENNEL 0
S.KENNEL —
M.KENNEL <>0
DOG
LICENSE
P.KENNEL e —
S.KENNEL .
M.KENNEL <>0

Figure 4-19. A Set with Three Members
Each set's first pointer is used to determine whether or not a specific set has members. The logical
expressions:
set is empty
and
set is not empty

are available. As with the preceding expressions, the the andthis are allowed before the
set name to improve readability. Using is not empty andis empty logical expressions,
one can write statements such as:

160

Modelling Concepts

if KENNEL(FARM) is not empty,
remove the first DOG from KENNEL(FARM)
else

and

if SEX(PERSON) = "MALE"
and FAMILY(PERSON) is empty,
call BACHELOR.ACTION given PERSON
else

The sets pictured in all preceding illustrations rank on a first-in, first-out, priority scheme. That is,
file last is the default condition. Other rankings are possible. For example, in a set defined
by the declarations:

every COUNTRY owns an ARMY
every PRIVATE has a HEIGHT and a WEIGHT
and belongs to an ARMY

it might be desirable to rank the various privates in the army sets by weight or height, rather than
by the order in which they entered the set. Furthermore, this ranking may be desired in ascending
or descending order. This can be done by including a set definition statement ievery state-

ments that first mention a set and after any attribute definition statements that might be associated
with theevery statement. A set definition statement, like an attribute definition statement, begins
with define . The following statements define the ARM" as being, respectively, ranked in de-
scending order by trHEIGHT attribute of the entities in it; ranked in ascending order by the same
attribute; ranked in descending order by WEIGHT attribute of the entities in it; ranked in de-
scending order by ttHEIGHT attributes, and, for those entities whHEIGHT attributes have equal

value, ranked in ascending order by t WEIGHT attributes.

1. ARMY as aset by high HEIGHT

2. define ARMY as a set by low HEIGHT

3. define ARMY as a set ranked by WEIGHT

4. define ARMY as a set ranked by high HEIGHT then by low WEIGHT.

Example 3 shows that omission of the wchigh orlow implieshigh . Example 4 shows how
rankings can be cascaded, one after anothethen by clauses to resolve ties when ranking at-
tributes are equal. As methenby clauses can be used as are needed in any given application.
A comma must precede eithen by clause.

Because ranked sets are defined with respect to ranking values of their members, it is not permissi-
ble to usefile before or file after in such sets since doing so would destroy the ranking
concept.

161

SIMSCRIPT II.5 Programming Language

If a set is to be ranked only by entry time of entities into it, a short form can be used. Depending
on whether the ranking gives highest priority to the earliest or latest arrivdefine statement
is written as:

define ARMY as a fifo set
or
define ARMY as a lifo set

If the first form is used, entities are stored on a first-in, first-out basis. If the second form is used,
entities are stored on a last-in, first-out basis.

All the statements described thus far assume that every set has a full complement of ownership and
membership attributes, that is, that both first and last, predecessor and successor pointers, and
counter and membership attributes are defined. To perform all of the available set manipulations,
they must all be present. When set needs are more modest, sets with fewer pointers can be designed
with a gain in efficiency.

In some cases, not all of the automatically defined set pointers are needed. This FIFO- and

LIFO -defined sets, where entities are never inserted in the middle of a set, but only at the beginning
or end. AFIFO set need have only first, last, and successor pointeLIFO set need have only

first and successor pointerFIFO andLIFO set organizations are shown in figure 4-20.

A clause can be appended to a set declaration statement to delete unused set attributes. Any or all
of the three owner-entity and three member-entity attributes may be deleted. If the first-in-set at-
tribute is deleted, this empty logical expression cannot be used. If the membership attribute is
deleted, thisin set logical expression cannot be used. Table 4-2 below defines the statements
that cannot be used when certain set attributes are deleted.

The deletion clause is of the form:

without attribute list attributes

The attribute list consists of one or more of the leF, L, P, S, N , anch. The presence of a
letter indicates that the attribute formed by prefixing it and a period to the set name is not automat-
ically generated. For example, the following statement defilLIFO set:

define ARRIVALS as a LIFO set without L,P,N
and M attributes

Note that although it is possible to delete all attributes, doing so completely destroys the concept of
a set. The programmer is cautioned against deleting set attributes without carefully considering the
consequences.

When required, two or more sets having the same properties can be declared in idefine 1e
statement. A list of set names can appear after thedefine , and the worisets used instead
of set .

162

Modelling Concepts

FIFO set LIFO set
Owner Entity Owner Entity
F. F.
: /
4 Member Entities‘\ ember Entities
FILE adds FILE adds
to this end.

to this end.

REMOVE takes
from this end.

Figure 4-20. FIFO and LIFO Set Organizations

REMOVE takes s

from this end.

163

SIMSCRIPT II.5 Programming Language

4.9 Entity Control Phrases

Two forms of thefor statement make it possible to step through collections of entities, just as the
for v=E1 to E2by E3 statement makes it possible to step through successive elements of ar-
rays. One form deals exclusively with permanent entities and the other deals with sets.

Permanent entities, having their attributes stored as arrays, are indexed sequentially. The first entity

of the permanent entity claAUTC has index1, the secone, ..., and the ") N.AUTC. To step
through a sequence of index numbers f1 to N.entity ~ for a particular permanent entity class,
use the control phrases:

for each entity

or

for each entity called variable

The first form is equivalent to the staten for entity =1 to N. entity , whereentity is
the global variable with the same name as the entity class. Thus, the stfor each AUTO
is interpreted ¢ for AUTO =1 to N.AUTO . The wordsevery andall may be used in place

of each , if desired.

The second form above is interprete for variable =1 to N.entity , Where the variable
named in thcalled phrase, instead of the global variable with the same name as the entity, takes
on the sequential index values. This variable can be global or local, and cannot be subscripted.

These control phrases may be combined as desired wittfor, with, unless, while ,and
until control phrases.

The following statements illustrate a typical permanent efor phrase application.

Program preamble:

permanent entities
every MALE has an AGE and a SALARY

Main program:

read N.MALE
create every MALE
for every MALE, read AGE(MALE), SALARY(MALE)

for every MALE with AGE(MALE) ge 21
do

add SALARY(MALE) to SUM

add 1to N
loop

164

Modelling Concepts

Experience has shown that some programmers prefer t¢ for each JOB , rather thaifor |

=1toN.JOB even ifJOE has not been defined as a permanent entity. That is, they prefer not to
make up a local variable nanl in this instance) just to step through a sequence of value<from

to N (N.JOB in this instance), but would rather use a name that is easy to remember and has some
meaning. To facilitate this, the phrase:

include entity name list
can be appended tcpermanent entities statement, as in:
permanent entities include ADULT, COUNTRY and FISH

This phrase defines the listed names as permanent entities, without attributes, but with the associ-
ated global variableentity andN.entity . The above statement defines the global variables
ADULT, N.ADULT, COUNTRY, N.COUNTRY, FISH , andN.FISH and permits such phrases as:

for every ADULT
for each COUNTRY

and
for all FISH
to be used. The following short example illustrates why this might be a useful shorthand.
Program preamble:
permanent entities include ELEMENT
Main program:

read N.ELEMENT
reserve LIST(*) as N.ELEMENT
for each ELEMENT, let LIST(ELEMENT) =1

It should be clear that such a statement is impossible for temporary entities. Scattered throughout
memory, rather than stored sequentially, temporary entities cannot be indexed by ordinal numbers;
they can only be pointed to by set pointers. To process all the temporary entities of a given class,
the entities must be stored in a set as they are created, and must be processed by a statement that
deals with the set. This statement, which by its nature deals with both permanent and temporary
entities, has two basic forms:

1. for each variable of set

2a. for each variable from arithmetic expression of set
2b. for each variable after arithmetic expression of set

Form 1 selects entities that are members of an indicated set, in order of their ranking, assigning the
entity pointer values to the named variable. If the set is empty, all of the statements controlled by

165

SIMSCRIPT II.5 Programming Language

thefor statement are bypassed. The control variable can be either local or global, and cannot be
subscripted. Form 2a does the same task as form 1, except that it starts with the set member
identified by the indicated expression. Form 2b is similar to 2a, but starts with the set member that
follows the identified member. If the identified member is not in the set (denote in its
membership attribute), the program terminates with an error message. In both 1 and 2, the words
every andall can be used insteadeach, and the worc in , on, andat used as synonyms for

of .

To step backward through a set, the phrase:
in reverse order

is placed after the set name. Set control can range from simple statements such as:
for every JOB in QUEUE

to complicated statements such as:
for all FISH after MINNOW(I) in POND in reverse order

Many variations offor statements are possible. In the following illustrations, we assume that
permanent entities with identification numb1, 2, 3,4, 5 , andé are filed in a set in the order
0f1,3,2,4,6,5 . They may have arrived in this order and been storFIFO, or they may

have been ranked on some attribute value. The method of ranking is not important in this example.
Table 4-1 shows different control statements and indicates the sequence of entities that are passed
onto the controlled statements by each. Thidepare filed in a set namFILE . The local variable

J is used within the control loop for the selected entity index numbers.

Table 4-2 lists the set attributes that are required for the different set operations described.

166

Modelling Concepts

Table 4-1. lllustrative Set Control Statements

Control Statement Identification Number Sequence
for each j in file 1 3 2 4 6 5
for each j from 4 in file 4 6 5
for each j after 4 in file 6 5
for each j in file in reverse 5 6 4 2 3 1
order
for each j infile after 4in file 4 2 3 1
in reverse order
for each j in file until j=3 2 3 1
for each j in file in reverse 5 6 4 2
order until j=3
for each j from 2 in file until 2 4
j=6
for each j in file with j z5 1 3 2 4 6

167

SIMSCRIPT II.5 Programming Language

Table 4-2. Required Set Attributes

Attributes Required
Statement
F L P S M N
file inaranked set X X
file first X X
file last X X X
file before X X X
file after X X
remove first X X
remove last X X X X
remove specific X X X
is empty X
isin set X
Automatic checking’ X
foreach Vin set X X
for each Vin setin rev. X X
for each v from W in set X
for each V from W in setin rev. X
for each V after W in set X
for each V after W in setin rev. X
T Following sections describe automatic set diagnostics performed only when a
membership attribute is included.

4-10. Common Attributes

An entity is characterized by its attributes. The attributes with which it is declared determine the
values it can hold and the relationships it can have with other entities. Sometimes it is desirable that
more than one entity type be able to have some characteristics in common, although the entity types
may be different in other ways. By declaring that a number of different entity types have certain
common attributes, it becomes possible to treat them all in the same way for some "generic" oper-
ations. An example of such a common attribute declaration is:

every TANKER has a SPEED, a CARGO,
and belongs to the HARBOR.SET

every TUG has a SPEED

and belongs to the HARBOR.SET

168

Modelling Concepts

BecauseSPEEI is an attribute common to bcTANKEF andTUG, it is possible to use a statement
such as:

if SPEED(SHIP) is not zero
without regard to wheth¢SHIP is a pointer to an instance TANKEF or aTUC.

When temporary entities belong to common sets or own common sets, their set pointers are, of
course, common attributes. It becomes possible to write:

for each SHIP in HARBOR.SET
with SPEED(SHIP) not zero
do

—so the harbor master can track all the ships steaming around in the harbor.

Under certain SIMSCRIPT 1.5 implementations, it is sufficient to name common attributes and sets
in every statements, as shown. Other implementations require the use of "word numbers" as de-
scribed in the relevant user's manuals. The above declarations could be rewritten as:

every TANKER has a SPEED in word 1,
a CARGO, and belongs to the HARBOR.SET
and has a P.HARBOR.SET in word 2,
and a S.HARBOR.SET in word 3,
and a M.HARBOR.SET in word 4

every TUG has a SPEED in word 1,
and belongs to the HARBOR.SET
and has a P.HARBOR.SET in word 2,
and a S.HARBOR.SET in word 3,
and a M.HARBOR.SET in word 4

The entity structures (TANKEF andTUC would look like figure 4-21.

169

SIMSCRIPT II.5 Programming Language

TANKER TUG
word 1 | SPEED SPEED
word 2 | P.HARBOR.SET P.HARBOR.SET
word 3 | S.HARBOR.SET S.HARBOR.SET
word 4 | M.HARBOR.SET M.HARBOR.SET
word 5 | CARGO

Figure 4-21. Entity Structures for TANKER and TUG

Word numbers are described in detail in Chab.;er

Care should be taken not to refereCARG! with a pointer which could be identifying an instance
of aTucC entity. Thus:

for each SHIP in HARBOR.SET
with CARGO(SHIP) greater than 100

would be incorrect if there were, in fact, eTUC entities in th HARBOR.SET. ClearlyTUC entities
do not have anCARG!)

In general, where common sets are used, it is good practice to declare a common attribute which
can serve to discriminate between the different entity types sharing membership of a common set.
Recall that in the context of permanent entities, attribute references are actually references to at-
tribute arrays. Multiple definition of such an array is not permitted. Hence, permanent attributes
cannot be declared as common.

4.11 Compound Entities

At times it is convenient for several entities jointly to have attributes and own sets. Such entities
are called compound entities. Statements such as:

permanent entities
every MAN and WOMAN owns a FAMILY and has
a BANK.ACCOUNT
every CITY, COUNTY, STATE has a CENSUS
every MODEL, COLOR, YEAR, MFG has a SALES.VOLUME

define compound entities composed of 2, 3, and 4 permanent entities, respectively. The first defines
four two-dimensional arrayF.FAMILY, L.FAMILY, N.FAMILY , andBANK.ACCOUN, each di-
mensioned aN.MAN BY N.WOMALI. The second defines a three-dimensional :CENSU: dimen-

170

Modelling Concepts

sioned as\N.CITY BY N.COUNTY BY N.STATE . The third defines a four-dimensional array
dimensioned in a similar way. Compound entities are defined by statements of the form:

every compound entity name list has attribute name list
and owns set name list.

As in the case of individual entity definitiorss andowns clauses can appear in the same or dif-
ferent statements. The wdtdve can be used fdras andown for owns. By definition, the indi-
vidual entities of which compound entities are composed must exist. If a compountiaNt&XD
WOMANS declared, there must be an entity ti#eN and an entity typ@& OMAN

A compound entity name list consists of entity names that have either been declared previously in
every orinclude statements, or, by their presence in a compound entity declaration, are declared
as entities of the type specified in the current background condition, that is, by tleentastent

entities ortemporary entities statement. Three kinds of compound entities are possible:
those composed exclusively of permanent entities; those composed exclusively of temporary
entities; and those composed of both permanent and temporary entities.

Members of sets owned by compound entities can be either permanent or temporary entities. Set
membership is declared as usual. Moreover, "compound sets" can have any of their six set attributes
deleted and be defined BE-O, LIFO , orranked . The following statements might appear in a
program in conjunction with the first declaration above:

temporary entities

every CHILD belongs to a FAMILY and has an AGE
define FAMILY as a set ranked by AGE

without N and M attributes

Attributes of compound entities and sets owned by compound entities are subscripted. Subscripting
takes place in the order in which cpound entities are defined. Thus, in the statements:

let BANK.ACCOUNT(I,J) = 1000
file this CHILD in FAMILY(MAN,WOMAN)

the variables andMAN can range from to N.MAN and the variables andWwOMARNan range from

1 to NNWOMAN Compound entities cannot belong to sets. In fact, compound entities have no in-
dependent existence, but rather define the existence of compound attributes, subscripted by the
named component entities.

Arrays are allocated to "permanent” compound entities when their individual entities are created.
They need not be created together, although they usually are. Given the declarations:

permanent entities
every MAN has a JOB and a SALARY
every WOMAN owns some INVESTMENTS

171

SIMSCRIPT II.5 Programming Language

every MAN and WOMAN owns a FAMILY and has a
BANK.ACCOUNT

the statement:
create each MAN and WOMAN

reserves arrays for the attributesMAN andwOMA and the compound entiMAN, WOMA. The
create Statement is in fact interpreted as sevreserve statements:

reserve JOB(*) and SALARY (*) as N.MAN

reserve F.INVESTMENTS(*),L.INVESTMENTS(*) and
N.INVESTMENTS(*) as N.\WOMAN

reserve F.FAMILY (*,*),L.FAMILY(*,*), N.FAMILY(*,*) and
BANK.ACCOUNT(*,*) as N.MAN by N.WOMAN

Attributes of permanent compound entities can be released in the normal waydestroy
each statement such as:

destroy each MAN and WOMAN

4.12 Implied Subscripts

Preceding sections described how attributes are defingtitetichted their use. Examples showed
that attributes resemble subscripted variables when they appear in programs. Every attribute refer-
ence is of the form:

attribute name(entity identification)

For attributes of individual entities, the entity identification is either an index or a pointer value. For
attributes of compound entities, the entity identification is a list of index or pointer values.

The automatic definition of global variables with the same names as declared entities was also men-
tioned. It was seen that in the conte) create, destroy, andfor each , where no variable
was explicitly named, the name of the appropriate global variable was understood.

Because all attributes of permanent or temporatifienare declared in the program preamble, ei-

ther explicitly, or implicitly by declaring set membership or ownership, it is possible to assume a
default or implied subscript if one is omitted from an attribute or set reference. The implied sub-
script used is the variable having the same name as the entity associated with the attribute or set-
referenced. In the case of compound entities, subscripts are implied in the order they appear in the
definingevery statement. For obvious reasons, common attributes, shared by more than one enti-
ty, cannot have implied subscripts. Some examples of entity definitions and implied subscripts fol-
low.

172

Modelling Concepts

1. Declaration:

permanent entities
every PERSON has an AGE

Use:
let AGE =1

is interpreted as:
let AGE(PERSON) = 1

Whenever the attribuAGE appears without an entity reference, the variPERSOI is used as the

index value. There is always a global variable associated with each entitPERSOI in this

case. ltis possible, within a routine, to define a of the same name, in which case the current value
of this local variable is used as the implicit subscript. That is, any unsubscripted use is interpreted
as shown above. If a local variable exists, then, consistently, it takes precedence over the global
name. The practice of declaring such local variables allows implicit subscripting to be used while
minimizing the danger of side effects.

2. Declaration:

temporary entities
every SHIP owns some CARGO
every CONSIGNMENT belongs to a CARGO

Use:

create a SHIP

create a CONSIGNMENT
file CONSIGNMENT in CARGO

which is interpreted as:

create a CONSIGNMENT called CONSIGNMENT
file CONSIGNMENT in CARGO(SHIP)

3. Declaration:

permanent entities
every CITY,STATE has a POPULATION

Use:
let POPULATION = 400000

interpreted as:

173

SIMSCRIPT II.5 Programming Language

let POPULATION(CITY,STATE) = 400000

let POPULATION(NEW.YORK) = 8000000

interpreted as:
let POPULATION(NEW.YORK,STATE) = 8000000

Note that because attributes are stored as arrays, and the use of the unsubscripted name in a free-
formread implies input of the entire attribute array, when implied subscripts are used in free-form
read statements to reference attributes of permanent entities, the entire attribute array is input.

Although implicit subscripting may be convenient, the absence of subscripting renders it difficult

to distinguish attributes from simple variables. Recalling that periods following a name are ignored
by the SIMSCRIPT II.5 compiler, a commonly-used notation is to append two periods to a name to
indicate an implied subscript. This is purely a programming convention, used to distinguish attri-
butes. It has no effect on the interpretation of the statements. It will be used in subsequent examples
to make clear when implicit subscripting is being used.

4-13 Displaying Attribute Values

Specific attribute values can be output by conventiprint andwrite statements. An attribute
reference appearing in an output list calls for the retrieval and display of a single value, just as does
a subscripted variable or function reference. Some examples of attributes print and

write statements are:

print 1 line with POPULATION(STATE) as follows
POPULATION |[S ###kkaax

write 1, INDEX(I), NAME(INDEX(l)) as /, 2 1 5, T *

for each CARROT in BUNCH,
write LENGTH(CARROT) as | 4

Implied subscripts can be usedprint and formattewrite statements, as well as in computa-
tional statements. Attributes declared by the statement:

permanent entities
every BOOK has a PAGE.COUNT, a SUBJECT and an
AUTHOR

can be displayed by the statement:

for every BOOK,
write PAGE.COUNT.., SUBJECT.. and AUTHOR..
asl4,2T12

Thelist statement can be used to display all the attributes of an entity without writing all their
names. Three forms are available:

174

Modelling Concepts

1. list attributes of entity called expression

displays the attributes of the particular entity referenced. The statement can be used for
both permanent and temporary entities. The format used is that employed for displaying
values of expressions or unsubscripted variables. A short form:

list attributes of entity

displays the attributes of the entity whose index or identification number is contained in the
global variable with the same name as the entity.

2. list attributes of each entity

displays the attributes of all the entities in a permanent entity class. The format used is that
employed in listing one-dimensional arrays. If only one attribute of a permanent entity
class is to be printed, it must be done by referencing the pointer to the array containing the
attribute values, for example, by a statement of the form:

list attribute
3. list attributes of each entity in set

displays the attributes of all the entities, permanent or temporary, filed in an indicated set.
Because the attribute labeling is generated only for ttiy efass named, the labeled out-

put is only meaningful for sets containing one class of entity. Attributes other than common
attributes, of entities of other classes filed in the set, may be displayed incorrectly, and in
some cases, suchtext mode attributes, may cause conversion errors.

List statements of type 2. and 3. can be modifiewith , unless , while ,anduntii phrases.

The use of each of these statement forms is illustrated in the following examples.
Entity and set declaration:

permanent entities

every COUNTRY owns a FLEET

every SHIP has a NAME, belongs to a FLEET
and owns a CREW

temporary entities

every SAILOR has a SERIAL.NO, a RATING, a SKILL
and belongs to a CREW

Use oflist statements:

1. remove the first SAILOR from CREW(VESSEL)
list attributes of SAILOR

2. for each SAILOR in CREW(SHIP) with RATING.. greater than 4,

find PERSON = THE FIRST SAILOR
list attributes of SAILOR called PERSON

175

SIMSCRIPT II.5 Programming Language

3. read N.COUNTRY and N.SHIP
create each COUNTRY and SHIP
list attributes of each COUNTRY

4. list attributes of each SAILOR in CREW(QUEEN.MARY)
list attributes of SHIP called 4

4.14 Some Sample Programs

The programs in this paragraph illustrate the concepts and statements described above. You can
follow them closely and identify the features used in each one. As a useful exercise you can refor-
mulate and reprogram the examples using different concepts and statements.

4.14.1 An Inventory Control Example

This simple model processes two transaction types — orders for goodsaptian of new stock.

The data associated with each are transaction type, an item code number, anitya ésatinis
business deals with a fixed range of items, these may be modelled using permanent entities. Note
the extensive reliance on implicit subscripting throughout.

Program 4-1.

preamble
normally mode is integer
permanent entities
every ITEM has an ITEM.NAME
a REORDER.POINT,
a CONTROL.LEVEL,
a STOCK.LEVEL,
a DUE.IN,
a DUE.OUT
define ITEM.NAME as a text variable
end

main

define TRANSACTION as a text variable

read N.ITEM

create each ITEM

for each ITEM
read ITEM.NAME(ITEM), REORDER.POINT(ITEM),
CONTROL.LEVEL(ITEM), STOCK.LEVEL(ITEM),
DUE.IN(ITEM), DUE.OUT(ITEM)

until data is ended

do
read TRANSACTION, ITEM, QUANTITY
if TRANSACTION = "ORDER"

176

Modelling Concepts

if STOCK.LEVEL.. > QUANTITY
subtract QUANTITY from STOCK.LEVEL..
else
add (QUANTITY - STOCK.LEVEL..) to DUE.OUT..
always
if (STOCK.LEVEL.. + DUE.IN..) < REORDER.POINT..
let ORDER=CONTROL.LEVEL..+DUE.OUT..-DUE.IN..-
STOCK.LEVEL..
add ORDER to DUE.IN..
print 1 line with ORDER, ITEM, ITEM.NAME.. thus
ORDER **** UNITS OF STOCK NO. ** DESCR. #***¥**xxtikik
always
else " RECEPTION
subtract QUANTITY from DUE.IN..
if DUE.OUT.. > QUANTITY
subtract QUANTITY from DUE.OUT..
else
add (QUANTITY - DUE.OUT..) to STOCK.LEVEL..
let DUE.OUT..=0
always
loop
list attributes of each ITEM
end

As an exercise, this model may be elaborated on to identify each customer by amendingt the i
data and generating a shipment notice for each order, keeping track of backorders for customers,
and shipping backorders according to some rational policy.

177

SIMSCRIPT II.5 Programming Language

4.14.2 A Data Analysis Application

Program 4-2.

preamble
permanent entities
every COUNTY has a NAME and a STATE
every YEAR has a NATIONAL.GNP, and a RC.PRICE.RC
every COUNTY,YEAR has a POPULATION, a LOCAL.GNP,
and a LOCAL.GNP.PERCAPITA
every YEAR,CAR has a NATIONAL.SALES, a PRICE,
and a SALES.GNP.RC
every COUNTY,YEAR,CAR has a LOCAL.SALES,
and a LOCAL.SALES.PERCAPITA
define LOCAL.GNP.PERCAPITA, LOCAL.SALES.PERCAPITA
as real variables
define NAME, STATE as text variables
end

main
read N.COUNTY, N.YEAR, N.CAR
create every COUNTY, YEAR and CAR
for every COUNTY,
do
read NAME(COUNTY) and STATE(COUNTY)
for every YEAR,
read POPULATION(COUNTY,YEAR), LOCAL.GNP(COUNTY,YEAR)
loop
for every YEAR,
do
read NATIONAL.GNP(YEAR)
for every CAR,
read NATIONAL.SALES(YEAR,CAR) and PRICE(YEAR,CAR)
loop
for every COUNTY, for every YEAR, for every CAR
read LOCAL.SALES(COUNTY,YEAR,CAR)
for every COUNTY, for every YEAR,
do
let LOCAL.GNP.PERCAPITA = LOCAL.GNP/POPULATION
for every CAR,
let LOCAL.SALES.PERCAPITA = LOCAL.SALES/POPULATION
loop
for every CAR, for every YEAR,
do
for every COUNTY,
do
compute A = sum, B = sum.of.squares of
LOCAL.GNP.PERCAPITA
compute C = sum of LOCAL.SALES.PERCAPITA

178

Modelling Concepts

compute D = sum of LOCAL.GNP.PERCAPITA *
LOCAL.SALES.PERCAPITA
loop
let SALES.GNP.RC = (N.COUNTY*D - A*C)/ (N.COUNTY*B - A**2)
loop
for every YEAR,
do
for every CAR
do
compute A = sum, B = ssq of PRICE
compute C = sum of SALES.GNP.RC
compute D = sum of PRICE*SALES.GNP.RC
loop
let RC.PRICE.RC= (N.CAR*D - A*C)/(N.CAR*B - A**2)
loop
list SALES.GNP.RC, RC.PRICE.RC and NATIONAL.GNP
stop
end

This program reads data on auto sales and prices for different population units, and computes re-
gression coefficients that allow the following graphs to be drawn (figure 4-22).

179

SIMSCRIPT II.5 Programming Language

= |

0O for a given year and car

<

O

o4

L

o

(/5 [

L s .

-

5 =

_ . .
< . NOTE: Each point
8 . represents a county.
-

LOCAL.GNP.PERCAPITA

for a given year

NOTE: Each point
represents a car.

SALES.GNP.RC

PRICE

Figure 4-22. Display of Result Produced by Data Analysis Program

Ensure that you understand the computations the program performs and the reason why the individ-
ual loops are written as they are. Rewrite the program to make it more efficient.

180

Modelling Concepts

4.14.3 An Analysis of Prime Numbers

Program 4-3.

preamble
normally mode is integer
the system owns the PRIMESET
temporary entities
every PRIME has a VALUE and belongs to the PRIMESET

end
main
read N
forI=2to N,
do "CREATE PRIME NUMBERS
for each PRIME in PRIMESET
with MOD.F(l, VALUE) eq O
find the first case
if none
create a PRIME
let VALUE.. = |
file PRIME in PRIMESET
always
loop

for each | of PRIMESET
with S.PRIMESET(I) ne 0
compute MAX = the max(l) of VALUE(S.PRIMESET(I)) - VALUE(I)
print 2 lines with N.PRIMES, VALUE(MAX),
VALUE(S.PRIMESET(MAX)) thus
MAXIMUM GAP AMONG THE FIRST **** PRIMES
OCCURS BETWEEN **** AND ****
stop
end

4.14.4 Dynamic Definition and Use of Attributes

Because the notation for subscripting array elements is the same as that uskty fdtrédrutes,

there are obvious difficulties in attempting to directly reference elements of an array that is an at-
tribute of atemporary entity. In fact, this cannot be done. It is possible, however, to associate array
attributes with entities, through some explicit programming. The following statements illustrate
how to create, use, and destroy array attributes.

181

SIMSCRIPT II.5 Programming Language

Declaration:

preamble
temporary entities
every ENTITY has an ARRAY
define ARRAY as an integer variable
define DUMMY as a 2-dimensional array
end

Creation:

create an ENTITY
reserve DUMMY (*,*) as 3 by N
let ARRAY(ENTITY) = DUMMY (*,*)
let DUMMY(**) =0
Use:

file ENTITY in SET

remove the last ENTITY from the SET
let DUMMY (*,*) = ARRAY(ENTITY)
for J = 1 to DIM.F(DUMMY (1,%)),

read DUMMY (1,J)

Destruction:

remove ENTITY from SET

let DUMMY (*,*) = ARRAY(ENTITY)
release DUMMY

destroy ENTITY

182

5. Discrete Simulation Concepts

5.1 Introduction

Chapters 1 through 4 of this book described the features of a general-purpose programming lan-
guage which provides for the high-level description of data structures and their manipulation. Level
5 of SIMSCRIPT I1.5 provides concepts and language features for application in the simulation of
discrete systems. This chapter assumes familiarity with the aims and techniques of discrete-event
simulation. It describes the features by which SIMSCRIPT I1.5 provides a uniquely powerful tool
for aiding such systems study. The topic is described in a number of current texts. The principal
text, which develops the principles of simulation using SIMSCRIPT 11.5 as the modelling language,

is Building Simulation Models with SIMSCRIPT]Iy E. C. Russell, published by CACI Products
Company.

Simulation, as described here, is the use of a numeric model of a system to study its behavior as it
operates over time. Discrete-event simulation deals specifically with modelling of those systems in
which the system state is deemed to change instantaneously at discrete points in time, rather than
continuously. This chapter presents language concepts and features designed to aid in conceptual-
izing such systems and in modelling them in a computer program.

5.2 Describing a System Model

The basic components of a dynamic system are activities. The analysis of a supermarket operation,
for example, might yield such activities as the selection of merchandise by a customer, or the check-
ing out of goods for a customer, among others that deal with different aspects of supermarket opera-
tions. Two important characteristics of activities are: (1) that they take time, and (2) that they
(potentially) change the state of a system.

When constructing a simulation model, the activities must be identified and represented in a way
that enables the model, when operating, to reproduce the time-dependent behavior of the system be-
ing simulated. That is, the activities must be modelled in such a way that, when each occurs, the
system state changes in the proper way. This imposes requirements for (1) correctly modelling the
characteristics of activities, and for (2) sequencing the simulated execution of activities, so that the
order of performance of activities within a model corresponds to the order in which the same activ-
ities occur in the real system.

The concepts embodied in Levels 1 through 4 are the essence of activity descriptions. Systems are
described (modelled) in SIMSCRIPT IL.5 in the language of entities, attributes, and sets. Keeping
track of simulated time and organizing the execution of subprograms through which system activ-
ities are represented are the essential functions provided by Level 5.

An activity within a system is bounded by two instantaneous events: when the activity starts, and
when it stops. Thus, the event is the simplest component of an activity description. The important

183

properties of an event are: (1) it occurs at some instant of time, and (2) the occurrence is instanta-
neous. Figure 5-1 illustrates an activity delimited by two events.

activity start . o activity end
machining activity
A A
start machining. stop machining.
'start event' at time t1 'stop event' at time t2

Figure 5-1. An Activity Delimited by Two Events

To model an activity, using events, those events that delimit the activity must be identified. Any
necessary tests and conditional or unconditional state changes associated with the beginning or end
of the activity may be specified for each of these events. The duration of the activity may be spec-
ified by scheduling the start event for a certain instant in simulated time, followed by the stop event
scheduled for some later time. When the initial event is called into activation, it alters the system
state in the specified manner. It may indeed be responsible for scheduling the activity terminating
event. After these state changes are performed, control is passed back to the SIMSCRIPT 1.5
scheduling mechanism. After the apparent passage of the appropriate simulation time, the second
event, the stop event, is executed, performing the state-changes associated with the termination of
the activity. Either of these events may involve the scheduling of further events, perhaps of differ-
ent types, at suitable intervals in simulation time.

The changes in a system that occur when an activity starts or stops, i.e., in the instant of time an
activity begins or ends, are associated with events rather than activities. As these events comprise
all significant system state-changes, the passage of time between events need not be accurately fol-
lowed. Rather the passage of simulation time is driven by the sequence of events, advancing al-
ways to the time of the next significant event. This is the crucial difference between discrete-event
and continuous-time simulation. In discrete-event simulation, state-changesatzketdpecified

points in time at which interactions between system components occur. In continuous-time simu-
lation, interactions and state-changes take place continuously. To model continuous changes, tech-
niques such as numeric integration must be employed. The choice of simulation methodology
depends on the characteristics of the system under study, and the way in which it must be under-
stood.

184

Discrete Simulation Concepts

Some activities have no apparent duration and may be modelled as single events. Such activities
might represent, for example, the preparation of a report, issued periodically. Activities may be
thought of as occupying zero simulation time if no interactions with other system components oc-
cur, and the activity duration is short enough not to affect the timing of other activities or events.

Frequently, however, it is found that an activity comprises events other than those that delimit its
duration. It may interact with other activities, causing or suffering interruptions or delays. Such an
activity may be better represented by a collection of related events with some logical ordering of
their sequencing. Even a simple activity may be thought of as two events, with the logical ordering
that it must start sometime before it can stop. In SIMSCRIPT II.5, such a collection of related
events may be represented by a process. A process may be viewed as a collection or sequence of
related events separated in time. The previous activity may be elaborated to illustrate the process
concept by including some extra, but related, events (see figure 5-2).

machining process

A A

-¢— turning 5 change tools 3 4—— boring — p
t t

operator intervention

start machining. stop machining
at time tl1 at time tN

Figure 5-2. A Process May Be Considered to be Comprised of a Sequence of
Events Occurring in Time

To model activities in SIMSCRIPT II.5, the significant events in the life of the system and the logic

of their interactions must be identified. Subprograms can be written, using the previously-described
data structures to model the physical components of the system, and incorporating the logic of the
event interactions. The more complex activities are conveniently modelled using the process con-
cept to collect related events. SIMSCRIPT I1.5 then provides a timing mechanism, which organizes
execution of these subprograms, managing any interactions, so as to order the events in a temporally
correct sequence.

While it has not been pointed out explicitly why the normal main-routine-subprogram structure is
not adequate for the simulation task, it is not difficult to see why this is so. Consider the following
situation: A simulation model has one kind of entity — callPERSON— that performs one kind

of activity — call it aJORB. Let the job activity be delimited by the two eveSTART.JOB and
END.JOB. Routines are written to describe the logic of both events. Should it be desired to simulate
two people performing such a job concurrently, the simulation must execute the routine
START.JOB for eachPERSOI. Now, if two events should occur when the simulation time has the
same value, they can be thought of as happening simultaneously. If the two people are to start at

185

SIMSCRIPT II.5 Programming Language

the same time, these programs must be executed simultaneously; that is, in parallel. On a sequential
computer, this is, of course, impossible.

Within the evenSTART.JOB, the evenEND.JOE will be scheduled to occur after some estimated

job performance delay time. When the e\END.JOR occurs for the firsPERSO, the simulation

clock will be advanced to some higher value. That is, it will indicate that simulated time has passed.
But this advancement of the clock is not correct, as the START.JOB for the secor PERSON

cannot yet have been executed. Therefore, some mechanism, ottcall , is required to indi-

cate thaEND.JOBIs to be executed only after all events that have lower clock times associated with
them have been executed.

The alternative provided by the SIMSCRIPT I1.5 system schedule an event for occurrence

in future simulated time. In figure 5-3 two jobs are started and ended at different times to illustrate
the concepts of event occurrence and event scheduling. Table 5-1 lists the order in which subpro-
grams representing tISTART.JOB anc END.JOB events of figure 5-3 must be executed.

In a SIMSCRIPT II.5 simulation model, the logic of any state-changes and activity interactions as-
sociated with an event are described i event routine. Several related events with the logic to
indicate their ordering in time may be incorporated process routine, to describe an entire ac-
tivity. The timing mechanism for both event and process routines is similar. It is more easily de-
scribed initially for events, which may be thought of as the limiting case of a simple process (a
single event delimits both the beginning and end of an activity that has no perceptible duration).

Job, activity
Job, activity

START.JOB; END.JOB;
START.JOB, END.JOB,

: >
Simulated time

Figure 5-3a. Two Overlapping Activites

186

Discrete Simulation Concepts

Job; activity
Job, activity

Simulated time

START.JOB, END.JOB END.JOB,
. 2

START.JOB;

Figure 5-3b. Two Nested Activities

7\

START.JOB; END.JOB, Simulated time
START.JOB, END.JOB,

Figure 5-3c.Two Activities with a Common Event Time

Table 5.1. Figure 5-3 Event Order

Time Figure 5-3a. Figure 5-3b. Figure 5-3c.
START.JOB, START.JOB, EEESHQE} gin saralle
START.JOB, START.JOB,

END.JOB, END.JOB, END.JOB,
END.JOB, END.JOB, END.JOB,

5.2.1 Event Declaration

A routine is declared to be event routine rather than a callable subprogram by use of the word
event rather tharroutine in the routine definition. The flow of control within an event routine
behaves in the ordinary way, in that control is passed to the start of the event and leaves by a
return statement. Typical event routine declaration statements are:

event ARRIVAL given LOCATION and ALTITUDE
event DEPARTING(DESTINATION)
event ALLOCATION(SUM, PERSON1, PERSON2)

187

SIMSCRIPT II.5 Programming Language

These event routine definitions are similar to routine definitions; values appear to be received as
input arguments, described in any of the normal forms. Events canncielding arguments
because they are not called directly from other subprograms and, hence, have no place to which
these values may be returned. The way in which argument values are transmitted to event and pro-
cess routines will be discussed later. The general form of an event routine definition is:

event name (optional input argument list)

5.2.2 Event Notices

There may be a number of different event types or event classes in a program. For each class there
may be many instances at different times. Associated with each instance of each class is an event
notice, used to maintain information about the event. An event notice is a temporary entity that has
five special predefined attributes. One of these attribtime.a , contains the simulation time at

which the event is to occur. An event notice is filed in a future events set, ranked on this attribute.
The SIMSCRIPT II.5 timing routine is responsible foceessively removing event notices from

the future events set, updating the apparent simulation time and initiating the execution of the ap-
propriate event routine. Another attribleunit.a , concerns the way in which the event is sched-

uled, for instance, whether it is scheduled from data external to the program. External events need
not, for the present, be considered specially. They are discussed in a later section. The remaining
attributes are those required for membership in the future events set; as the name ofev.s ,etis

the attribute namep.ev.s, s.ev.s , andm.ev.s , represent the predecessor, successor, and
membership attributes.

Event notices may, like any other temporary entity, have additional user-defined attributes. These
may be either variables or functions, and may denote ownership or membership of other sets. Event
notices, however, must be declared separately from nonevent notice entitieevent notice

statement is used in the preamble to declare an event and any user-defined attributes. The state-
ment:

event notices

when placed before a groupevery statements, denotes that event notices rather than temporary
or permanent entity declarations follow. The special attributes required by an event notice are de-
fined automatically. They must not be redefined, and they must not be equivalenced (see Chapter
6 for a discussion of equivalencing). For this reason, the explicit placement of event notice at-
tributes is restricted, usually within the first five entity words. This depends on the implementation,
and the appropriate user manual should be consulted.

Commonly, event notices have only the specially defined attributes and no additional attributes or
set pointers. They are used only to trigger events within simulated time. When this is the case, the
phrase:

event notice name list

188

Discrete Simulation Concepts

may simply be added to tleventnotices statement to identify the names listed as event names,
indicating that associated event notices requiring system-defined attributes are to be defined for
them. Such events might be declared by a preamble statement:

preamble
event notices include ARRIVAL, and WEEKLY.REPORT
every JOB.OVER has a NEXT.JOB and owns some PEOPLE

The layout of the event notice entities might then appear as shown in figure 5-4. Note that the order
that the predefined attributes take within the event notice is implementation-dependent.

ARRIVAL WEEKLY.REPORT JOB.OVER
TIME.A TIME.A TIME.A
EUNIT.A EUNIT.A EUNIT.A predefined attributes
P.EV.S P.EV.S P.EV.S
S.EV.S S.EV.S S.EV.S
M.EV.S M.EV.S M.EV.S
NEXT.JOB
F.PEOPLE user-defined attributes
L.PEOPLE
N.PEOPLE

Figure 5-4. Possible Layout of Event Notice Entities

5.2.3 Process Declaration

A routine is declared to beprocess routine in a similar manner, but the woprocess must
be substituted in the routine definition. For example:

process ALLOCATE.TRAIN given NO.OF.CARS, DESTINATION
The general form of the process routine declaration statement is:
process name (optional input argument list)

Associated with every declared process is an entity called a process notice. The construction of the
process notice is similar to an event notice, being filed in the same way in the future eev.s ,set
but it has some extra predefined attributes that have meaning only for a process.

Each process routine must be declared inprocesses section of the preamble. Process
declarations are otherwise identical to event declarations. All the conventions for defining event

189

SIMSCRIPT II.5 Programming Language

notices or temporary entities apply. Like event notices, processes and the corresponding process
notices may be defined using fevery statement, if user defined attributes are to be declared, or
with theinclude phrase, if no user attributes are defined. For example:

processes MACHINE.JOB, CHECK.JOB
every ALLOCATE.TRAIN has a NO.OF.CARS, a DESTINATION

In general, characteristics attributed to events or processes may be taken to apply equally to both
unless stated otherwise.

5.2.4 Scheduling Events and Processes

Process and event notices may be filed in the future events set, scheduling their associated routines
for activation at specific instants in future simulation time, usischedule statement, which has
the general form:

schedule an event at time expression
or
a process attime expression

This statement creates an event or process notice, stime.a attribute (the time for which it is

to be scheduled) to the value of the time expression and files the notice in the appropriate event set.
The time expression must evaluate to a real variable or constant. Theactivate, re-

schedule , andcause are all synonyms fcschedule . The worcschedule is commonly used

in conjunction with events a activate with processes. These statements are interpreted to
mean:

activate a process called variable at time expression
and
schedule an event called variable at time expression

whereprocess is the name of the process routine variable associated with the entity class. It may
be seen that this is similar to the usagcreate anddestroy for entities. Aschedule state-
ment may be written with an explicit variable name, as in:

schedule an ARRIVAL called RUSH.ORDER at time expression

If an event or process notice already exists (as a temporary entity, it may have been created previ-
ously), aschedule statement may specify that it be filed in the future events set using the word
this rather tharan:

schedule this event called variable at time expression

190

Discrete Simulation Concepts

The wordthis inhibits creation of a new entity. The pointer value identifying the particular event
notice, which must be of class entity, is assumed to be stored in the named variable. The statement
form:

schedule this event at time expression

obviously uses the pointer value currently held in the variable having the same name as the event.
A global variable of this name, of course, is always defined, although a local redefinition may also
exist.

Several variations of these statement forms are permitted. Thea andan are synonyms, as
are the wordthis, the , andthe above . Examples are:

schedule an ARRIVAL at time expression
schedule the above ARRIVAL called RUSH at time expression
schedule this ARRIVAL at time expression

The first statement creates an event notice before scheduling. The second and third statements use
event notices of type arrival, whose identification numbers are stoRUSH andARRIVAL, re-
spectively.

5.2.5 Processes and Events Scheduled for the Same Time

It can happen that several different processes or events are scheduled for the same time; for exam-
ple, the arrival of one job, the completion of another, and the preparation of a report. Resolving
these conflicts is important in situations where events or processes interact with each other or with
entities in the model. A statement of the form:

priority order is process or event hame list

imposes a priority ordering on the processes and events named, so that in cases where process no-
tices of different kinds have the same event time, the process notice of the higher-priority process
type is selected first. The assigned priority is determined by order of appearancpriority

name list. The first process named is given the highest priority.priority statement appears

in a program, the priority of events and processes are determined by the order in which they first
appear in preamble declarations.

The priority of a process is associated with the process class. The class of a process or event notice
is assigned one of the vali, 2, 3 ... according to either its declared priority or declaration

order. Three different processes, for example, declared without priority in the preamble, will be as-
signed the classes 1, 2, and 3, respectively, in the order in which they are declared. If only a subset
of the processes or events declared are listepriority statement, the remaining processes are
given lower priority than the ones listed, and are ranked among themselves in the order of first ap-
pearance in declarations. A global variaevents.v , has as its value the total number of differ-

ent process and event classes declared.

191

SIMSCRIPT II.5 Programming Language

It is, of course, possible to have more than one process or event of the same kind scheduled to occur
at the same or different times in the future. For example, a machine-shop simulation may have
many indentical machining activities in progress concurrently. Completion of two or more of these
may be scheduled to occur at exactly the same time. If this happens, the timing routine uses a “first
scheduled-first occurs” rule to “break the tie.” The order in which simultaneous events of equal pri-
ority are executed is determined by the sequence in which they were previously scheduled. Al-
though several events can appear to take place at the same instant in simulated time (the simulation
clock has the same value during the execution of each), there argamtereasons for wanting to

impose a priority ordering. This may be done by specifyinbreak ties statement:

break process/event name ties by high attribute name

or
break process/event name ties by low attribute name

which gives priority to the process with the high (low) attribute value when two or more propcess
notices of the same type have the same process time. The attributes are, of course, ones that have
been defined ilevery statements for the process named. In cases where more than one set of tie-
breaking attributes are needed, clauses of the form:

, then by high attribute name
or
, then by low attibute name

can be added to tlbreak ties ~ statement. As many such clauses may be added as are necessary.
Processes defined by the statements:

process
every DISPATCH has a VALUE, a DUE.DATE and a PRIORITY

might have ties resolved among competing process notices by statements such as:

1. break DISPATCH ties by high PRIORITY

2. break DISPATCH ties by high PRIORITY, then by low DUE.DATE

3. break DISPATCH ties by high VALUE, then by LOW PRIORITY,
then by high DUE.DATE

In statement 1, amotDISPATCF processes scheduled to occur at the same simulated time, the pro-
cess notice with the largePRIORITY attribute will occur first. In 2, among process notices sched-
uled to occur at the same simulated time and having idePRIORITY values, the notice with the
smallesDUE.DATE will occur first; and similarly for 3 and other variations.

192

Discrete Simulation Concepts

5.3 The Simulation Mechanism

A SIMSCRIPT I1.5 simulation is controlled by the timing routine that organizes the execution of
event and process routines in simulated time. Every simulation program must contain the state-
ment:

start simulation

which passes control of further program execution to this timing routine. In order to set the system
in motion, the model must have been initialized by previously executed statements, defining the ini-
tial state of the system and scheduling one or more initial events or process activities. The overall
outline of a SIMSCRIPT I11.5 simulation model will generally have the form:

declarations

initialization of system variables, entities and sets

scheduling of initializing processes and events
start simulation

terminating control statements

The statemerstart simulation passes control to the simulation timing mechanism. For the
purpose of explaining the simulation mechanism, events and event notices are considered. The tim-
ing mechanism for a process behaves in the same way, but a process may be considered to comprise
a sequence of events occurring over a period of time. The timing mechanism removes the most im-
minent event notice from the future events set, updates the simulation time to the event time indi-
cated, and passes control to the routine for this event. Upon completion of this event, the timing
routine again turns to the future events set to determine the next event routine to be executed. This
sequencing continues until all event notices in the future events set are exhausted. When this hap-
pens, control is returned to the statement directly aftestart simulation statement. It must

be remembered that statements executed during event and process routines may be continually in-
teracting with the future events set, dynamically scheduling further events.

As long as there are events to be executed, the timing routine, initiate(start simulation

statement, is in control. The common way to end a simulation is to cease scheduling future events
and let the timing mechanism exhaust the contents of the future events set. Another method, of
course, is to halt all execution, usinstop statement within some scheduled event or process rou-
tine.

The future events set, shown in figure 5-5, in which event and process notices are filed, is in fact a
singly subscripted set. Each subscript value denotes a different process or event class. In a simu-
lation declared to have six different event classes, there are six "parallel" event sets. Each event
class has a global variabi. event , associated with it, denoting the subscript value of the event
class. These values are assigned, usually, by order of declaration of event classes, but may be al-
tered b priority statements.

193

SIMSCRIPT II.5 Programming Language

F.EV.S
TIME.A
EUNIT.A 0 0 0
: A))
M.EV.S 1(0 1

o
[EEY
o
[EE

L.EV.S

Figure 5-5. The Future Events Set Organization

A system-defined global variablevents.v , has as its value the number of event classes. The fu-
ture events setis namev.s , denoting “events set.” The first- and last-in-set attril f.ev.s

anc l.ev.s , are defined as one-dimensional attributes of the system, and are dimensioned by
events.v . The attributep.ev.s.,s.ev.s ,andm.ev.s are, of course, attibibutes of the event

and process notice entities. The routiFF andRS ared defined for the set. Scheduling an event,

194

Discrete Simulation Concepts

then, causes an event notice of the appropriate class to be filed and rankd¢ime.a attribute

in the set corresponding to its class, usually by the rot.ev.s that is the standard file first rou-

tine for the seev.s . Events named ibreak ties statements are filed by a special routine for

that event class. Each time control passes to the timing routine, at the start of simulation or at the
completion of any event, the next event to be executed is selected by searching the even sets in order
of priority, as indicated bi.event values, and taking the one that has the lowest value of future
time,time.a . Inthe case of ties, the first one selected is taken. Thus, priority across event classes
is determined by thi.event ordering. Priority within a class is determined by ranking within set,
which in turn depends either on filing order or, if specified, on break ties filing. When an event
notice is selected and removed from the future events set, this event represents the next significant
time instant in the life of the system. The simmulation time that is maintained in a system-defined
global variaabletime.v , is advanced, therefore, to take on the value time.a attribute. An-

other global variableevent.v , is set to reflect the class of the event about to be executed. The
number of event or process notices filed in an event class at any time is available by reference to
(i.event). Although this has the name of the stanw\. set attribute, and is used in the same

way, it is, for considerations of efficiency, implemented as a system function.

5.3.1 The Simulation Clock

Throughout the progress of a simulation, the current value of simulated time is maintained by
SIMSCRIPT I1.5 in adouble global variable nametime.v . Before the start of simulation,

time.v is zero. From then otime.v increases, by discrete jumps, representing the passage of
time between events. Each time a notice is selected from the future events set, the value of the time
attribute of the selected procetime.a , is used to updatime.v . It can happen that the value
oftime.v remains the same before and after the updating, and all events that occtime.v

is constant appear to happen simultaneously. The phrase:

at time expression

used in eschedule statement, states when, in future simulated time, the event is to occur. This
expression ireal -valued. It is the value that is stored in time.a attribute of the process or

event notice, that is compared against other event times during event selection, and that becomes
time.v when an event is selected for execution. An absolute time is always specifieat n an
phrase. The phrase:

at 0.00
might be used to schedule an event that is to initiate the simulation. An incremental form:
at time.v + 1.5

states that the event is to occur at the current simulation time plus 1.5 time units. If the basic time
unit is interpreted as hours, the phrase may be read, "in one and one-half hours from now". If the

195

SIMSCRIPT II.5 Programming Language

basic time unit is interpreted as microseconds, the phrase reads as, "in one and one-half microsec-
onds from now."

Many simulations represent activities in real time, where the time units commonly used are minutes,
hours, and days. Some standard conversion factors allow SIMSCRIPT II.5 to recognize these time
units. The standard unitstime.v are presumed to mean days (e.g., 1.47 is one and forty-seven
one-hundredths days). The phrases:

in arithmetic expression days
in arithmetic expression minutes
in arithmetic expression hours

are understood to mean that the named event is to octime.v plus the specified number of

days, hours, or minutes. The wunits can be used instead days , and the worafter sub-

stituted forin . Conversions are made by taking the unitime.v as days and using twreal

mode, conversion variablehours.v ancminutes.v , initialized by the SIMSCRIPT I1.5 system

to 24 and 60, respectively. These values may be changed at any time to reflect a different measure-
ment of simulated time.

If time is to be simulated in units of days, hours, and minutes, it can be convenient to reconvert ab-
solute values ctime.v to these units. Three system functions described in table 5-2 provide this
capability. A simulation time of zero is assumed to correspond to the start of the first hour within
the first day of a week.

These functions may be useful in displaying results of a simulation, tracing simulation activity, or
in imposing realistic constraints on the execution of events in simulated time. Two examples illus-
trate these uses:

1. A check to allow arrival events to occur only on weekdays or a Saturday:

if WEEKDAY .F(time.v) greater than 6,
reschedule this ARRIVAL at TRUNC.F(time.v)+1
always

2. A process trace statement put at the head of a process routine:

write WEEKDAY .F(time.v), HOUR.F(time.v) and MINUTE.F(time.v) as
"MACHINING ACTIVITY STARTS ON DAY", | 2,
"AT TIME", 12,"", 12,/

A third kind of event scheduling uses the wcow (ornext , its synonym) in statements such as:
schedule an ARRIVAL now

Processes or events scheduled wnow phrase occur as soon as control passes back to the timing
routine. They precede any scheduled processes or events that may have the same scheduled time.
If two or more are scheduled to ocnow, they are ranked on thepriority if they are of differ-

196

Discrete Simulation Concepts

ent classes, on theébreak ties attributes, if these are specified, or on a first-in, first-out basis if
na break ties attributes have been specified.

Table 5-2. Time Conversion Functions

Name Argument Function Function Examples
9 Mode Values P

weekday.f REAL time integer 1-7 weekday.f(5.32)
expression day of current week |=6

hour.f REAL time integer 0-23 hour.f(5.32) = 7
expression hour of current day

minute.f REAL time integer 0-59 minute.f(5.32)
expression minute of current =40

hour

Corresponding to tkschedule statementis cancel statement, which removes a specified pro-
cess or event notice from its future events set, before it has been selected for execution. This negates
the action of the schedule statement that filed the event notice. Itis written:

cancel this process/event
and

cancel this event called variable

As usual, the first form is interpreted as:
cancel this event called event

The wordsthe orthe above can be substituted fthis when necessary. The event notice re-
moved is not automatically destroyed. If required, it may be explicitly destroyed, as may any tem-
porary entity. An attempticancel an event that has not been scheduled, and is therefore not filed
in the future event set, terminates the program with an error message.

5.3.2 Assigning Event and Process Attributes

If an event or process notice is declared to have user-defined attributes, values may be assigned to
these in two ways: through standard attribute (entity) references in assignment statements, and also
within a schedule statement specifying the notice. Recall that a statement such as:

schedule an event given expression list at time expression

uses the time expression totime.a (event) attribute. It will also assign the values given in
the expression list to successive attributes of the event notice, starting with the first user-defined
attribute. If fewer expressions are listed than there are attributes, the remaining attributes are ini-

197

SIMSCRIPT II.5 Programming Language

tialized to zero. If no expression list appears, all, if any, user-defined attributes are set to zero.
Thus, the preamble definition:

processes
every SERVICE has a SERVER, a CUSTOMER,
and may own a TRANSACTION.SET

followed in some routine by the statement:

schedule a SERVICE giving TELLER(N) and F.QUEUE at time expression

assigns the values TELLER(N) andF.QUEUE to the attribute SERVEF andCUSTOME, respec-
tively, but leaves the set-ownership attributes set to zero. Following the conventional notation of
thecall statement, a number of argument list forms may be used: thegiven may be used,
or the argument list enclosed in parenthesesyielded phrase may be used. Examples are:

schedule an ARRIVAL giving ORIGIN now
reschedule this SERVICE giving A and B in 2 days

As these attributes are initialized at the time of scheduling, their values are unchanged by filing and
removing them from the future event set. Thus, they provide a means for passing values to event
and process routines. There are some difficulties, however, attached to accessing these values with-
in the routines. Upon entry to an event routine, the associated event notice is usually destroyed, and
so the attributes are no longer accessible. This is not the case for process notices. A process has a
lifetime associated with the duration of an activity, whereas an event is instantaneous. Process no-
tices are not automatically destroyed until completion of all activity represented by the process. The
automatic destruction of an event notice is suppressed by appending thesaving the

event notice to theevent routine definition, as in:

event ARRIVAL saving the event notice

In this way, the attributes can be accessed within the event routine, or even later. The global vari-
able with the name of the event is set by the timing routine to the event notice pointer before exe-
cution of the event routine is initiated, and so may be used to subscript the attributes. The event
notice may be later destroyed as for any temporary entity. Care should be taken not to alter the value
of this variable, b schedule statements, for example, until all attributes have beeessed, or

before using it in destroying the event notice. It must not, of course, be redefined as a local variable,
as this makes access to the global value impossible. In the case of processes, a system-maintained
global variableprocess.v , holds at all times either a pointer to the process notice of the currently
executing process, or a zero value if no process routine is executing. Thus, this variable may be
used within a process routine or within subprograms called from a process routinestthe at-

tributes of the associated process notice. Such a subprogram cprocess.v to determine
whether, in this instance, it has been called from a process or a nonprocess routine.

A second way in which the values of attributes passed to an event or a process routine may be made
available is to define a list of given arguments to the routine. At entry to the routine, and in the case

198

Discrete Simulation Concepts

of events, before the event notice is destroyed, the values of the user-defined attributes are assigned,
in order, to these local argument variables. Only as many attributes as have corresponding argu-
ment positions are copied. Specification of more arguments than there are user-defined attributes
has no meaning, and is not permitted. Care must be taken in selecting these argument names.
Should they be chosen as identical with the declared attribute names, then the local argument usage
will always take precedence, rendering subsecaao@ss to the &ty attributes themselves impos-

sible. This may be of significance in the process case, where the process notice must retain infor-
mation across the sequence of events within the process activity. The above event routine definition
could be written as:

event ARRIVAL given ORIGIN

where the now local argumeORIGIN will be initialized from the attribute value specified at the
time of scheduling.

Event notices that have not been destroyed may be reused, as in a case whenthis is re-

quired in the scheduling statement, avoiding the creation of a new event notice entity. Care should
be taken, if this is done, that event notices be used only in appropriate event classes. It will become
apparent that this is the mechanism by which processes may represent more than one of the events
within an activity. The following examples demonstrate some of these points.

1. Accessing the attributes of a saved event notice. The event notice entity is saved for filing
in a user-defined set:

event DEPARTURE(NAME, DESTINATION) saving the event notice
let DEPARTURE.TIME(DEPARTURE) = time.v
add 1 to PASSENGER.LIST(DESTINATION(DEPARTURE))
file DEPARTURE in DEPARTURES.SET
return
end

2. Event notice reused to schedule another similar event. A separate entity is created for pro-
gram-defined manipulations:

event ARRIVAL given NAME, ORIGIN saving the event notice
define NAME, ORIGIN as text variables
create a JOB
let IDENTITY(JOB) = NAME
let PLACE(JOB) = LOCATION
file JOB in LIST.OF.JOBS
reschedule this ARRIVAL("WALDO", "ALASKA") in 5 days
return
end

3. Asimple instantaneous process routine which behaves like an event. Note that the process
notice is not destroyed until exit from the routine and so the attIDENT may be access-
ed from within the routine.

199

SIMSCRIPT II.5 Programming Language

process TASK
write IDENT(TASK), time.v as
/,"TASK: ", T 10, "STARTED AT: " D(4,2),/
activate a COMPLETION giving IDENT(TASK) in 2 days
return
end

The important points to remember about process and event activation are:

1. Time.v is setto thd¢ime.a attribute at activation

2. Aglobal variable with the same name as the event or process is given the value of the event
or process notice pointer. The attributes may be accessedlththis variable.

3. Inthe case of events only, the event notice is destroyed uisaving phrase is used, and

4. When thereturn statement is executed, control passes to the timing routine to select the
next process.

5.3.3 Process Interactions

Up to now, processes have not appeared to differ greatly from events. However, it has been stated
that processes may represent an activity that has a duration in simulated time. Such an activity, in
its simplest form, has two delimiting events. The start event of the activity is represented by the
initiation of the process routine. The terminating event must take place after some lapse of simu-
lated time. In the simple case, this lapse of time can be estimated. In an event-based simulation, a
terminating event would be scheduled at this interval in the future. Within a process routine or a
subroutine called from a process routine, however, either of two statements may be used to halt the
process execution for a given lapse of simulation time. These statements are:

work time-expression

and
wait time-expression

The effect of these statements is to file the process notice associated with the process back in the
future events set, after adjusting time.a attribute to indicate the future time at which execution

of the process routine should resume. When simulation time has advanced so that the process notice
becomes again eligible for execution, this execution is resumed at the statement followork the

orwait . Other events and activities may, of course, be executed during the time lapse. The two
statements differ only in the status attributed to the process during the passing of simulation time.
This status is recorded in a special attribute of the process notice, where it may be interrogated by
any other executing routine. These statements allow for the representation of determined passages
of simulation time during an activity. The time to spend in a waiting or working state must be
known when the statement is executed. The time to carry out a specified machining task on an au-

200

Discrete Simulation Concepts

tomatic tool, for example, may be estimated from dimensions and material of the workpiece and an
activity accordingly set twork for this time.

There are cases when the time lapse depends on the interaction of other activities. If the machining
task demands that the machine be reset, say, by operator intervention at some stage, then the activity
must delay when this point in the process is reached until an operator is available, which may de-
pend on concurrent activities within the machine shop. To represent this circumstance, a process
routine maysuspend its own activity to continue only on an explicit command issued by some oth-

er event or process routine, naming the suspended process. Reactivation causes execution to con-
tinue at the statement following tlsuspend statement. The statement is simply the word
suspend , optionally followed by the the woiprocess . The suspended status is also recorded in

the process notice status attribute. The following example indicates that executicSHIP pro-

cess cannot continue until a berth becomes free, which depends on the departure of another vessel:

process SHIP

if BERTH.STATUS not equal to .EMPTY
file SHIP in BERTH.QUEUE
suspend

always

Some other process, which may be a concurrent execution SHIP process, but representing
another ship, might include the statements:

if BERTH.QUEUE is not EMPTY
remove first SHIP from BERTH.QUEUE
reactivate this SHIP now

else
let BERTH.STATUS = .EMPTY

always

5.3.4 Interrupting and Resuming a Process

Only a process that is executing may suspend itself. Any executing process, or routine, however,
may interrupt another process that is active but not executing (i.e., while the process to be
interrupted is in avait or work state). The interrupted process is placed in an interrupted state.
When this happens, the process notice is removed from the future events set, and the time that the
process would have remained inwork orwait state isrecorded inttime.a attribute of the
interrupted process notice. An interrupted process may be returned to the active state, that is,
replaced in the future events set, bresume command issued by any other process or routine
naming the interrupted process. “time.a attribute at the time of resumption is used to schedule

the end of thework orwait state. It is incremented by the cur time.v before being used as

a ranking attribute for filing.

201

SIMSCRIPT II.5 Programming Language

A process routine has three code segments in addition to those of an event routine. At first entry,
an initializing segment calls a set-up routine that allocates storage space for saving the process
environment (the given arguments and local variables). Subsequent re-entries restore the process
environment from this save area. The address of this recursive storage area is maintained in the
rsa.a attribute of the process notice. The second additional code segment calls a library routine
that saves the local environment each time the process is delayed or suspenwait/work/
request/suspend . Whenever this occurs, execution control is returned to the timing routine.

Finally, when a process executereturn statement, the recursive save area for this process rou-
tine invocation is released, the process notice is destroyed, and control is transferred to the timing
routine.

The various process interaction and control statements described above have meaning only in the
context of process routines. Although events and other routines may interrupt and resume process-
es, they may not themselves work, wait, or suspend. Some implementations of SIMSCRIPT restrict
these last statements to process routines only. Some others allow them to be used effectively within
the process context, but at a subprogram level lower than that of a calling process. Care should be
taken that such commands are issued only when the subprogram has been called from a process rou-
tine at the highest level.

5.3.5 Processes and Resources

The previous sections have described possible process routine interactions that are supported by
SIMSCRIPT I1.5. The most common reason for such interactions is competition among concurrent
processes for some limited resources. This is often why processes must suspend and wait for reac-
tivation by others. SIMSCRIPT II.5 provideresource modelling facility. Included in the re-

source concept are the automatic queuing of processes for unavailable resources and their automatic
reactivation when the required resources becomes available. Special statements allow processes to
request and relinquish specific resources.

Resources are declared inresources section of the preamble. A resource is, in fact, represent-
ed as a permanent entity, but with some predefined attributes:

U.resource specifies the number of units of this resource currently available.
Each resource also has the owner attributes for maintaining two sets:

Q.resource is the set of processes currently waiting (queued) for this resource.

X.resource s the set of processes currently using (executing with) this resource.

Additional user-defined attributes may be specified, as for any permanent entity. However, in order
that the required attributes be definedresources heading must precede cevery statement
that defines a resource with special attributes. Resources that require only the predefined attributes

202

Discrete Simulation Concepts

may be specified in the optio include phrase. As resources are maintained in SIMSCRIPT
II.5 as permanent entities, they must be created before they can be used.

The simplest form of a resource consists of a single unit of a single resource type. An example is a
single-runway airport representation. This may be declared and created by the statements:

Preamble:

resources include RUNWAY
Program:

create every RUNWAY(1)
let UURUNWAY(1) =1

There is only one valid index vali 1 , for the entity. The "units" attribute for this index is e1..0
There is only one type of runway, and there is only one of them. To expand to multiple resources,
there are two alternatives. The choice depends on the structure of the model:

1. Add more identical units of the resource. These are identical. They all serve from a single
queue.

2. Add more resource elements. These may each have different properties, they must be spe-
cifically requested, and there may be different numbers of each available.

The first case may be illustrated by the example of a bank with three tellers:

create every TELLER(1)
let UTELLER(1) = 3

To a bank customer, there is only one type of resoTELLER(1) . There are, however, three of

them and any one will satisfy a request for service. To illustrate the second case, suppose the airport
expands to three runways, only one of which may take jet aircraft. In this case, the resource may
be created as:

create every RUNWAY(2)
let URUNWAY(1)=1 " FOR ANY AIRCRAFT
let URUNWAY(2) =2 " LIGHT AIRCRAFT ONLY

Now, aircraft requesting a runway resource must be specific as to the runway type. Light aircraft
may request either, basing their choice, perhaps, on examination U.RUNWAY;/) values. Jet
aircraft may request oOnRUNWAY(1.

5.3.6 Requesting and Relinquishing Resources

A process requests a quantity of any given resource usequest statement. The effect is as
follows. If the requested quantity of the resource is available, it is given to the process, and the pro-
cess continues execution at the statement followinrequest statement. If the requested quan-

203

SIMSCRIPT II.5 Programming Language

tity is not available, the process is put in a passive state and filed in the queue of processes waiting
for the particular resource.

An optionalwith priority expression may be added to request statement. The queue is
ranked on higlpriority . If the phrase is not present, priority is treated as zero. An op-
tional comma may be placed before with priority phrase. Examples of trequest state-
ment are:

request 1 WORKER(2) with priority 2
request 2 MACHINE(JOB.TYPE)
request 3 UNITS OF MATERIAL with priority 5

As the resource name is in fact a permanent entity name, it should be subscripted. If it is not, the
variable of the same name is used as an implicit subscript. This variable is initialized to 1 at re-
source creation, but care should be taken if it is subsequently alterfor each resource
statements, for example. Note that some implementations use an implicit subscript value of 1. Itis
recommended that explicit subscripting be used in all cases.

A process that has requested some units of a resourcrelinquish ~ some number of these, but

not necessarily all it has. The number of units of the resource beinguishied is added to the

total quantity available. If any processes are queued awaiting the resource, they are scanned from
the front of the queue. Each is reactivated, with a corresponding reduction in the quantity of available
units of resource, until one is found whose request cannot be satisfied. The scan is then terminated.

The process relinquishing the resource continues execution at the statement immediately following
the relinquish statement. Threlinquish statements corresponding to the above resource
request statements would be:

relinquish 1 WORKER(2)
relinquish 2 MACHINE(JOB.TYPE)
relinquish 3 UNITS OF MATERIAL

By way of explanation, it was stated that processes may be filed in queues, either waiting for, or
executing with, resources. This is not quite correct. Since a process may, in practice, require sev-
eral resources concurrently, a special temporary eqc.e) is created at earequest for are-

source. It is thesqc.e entities that are filed both in the set of resources associated with this
process(process), and also in either of the s x.resource or g.resource , depending on
whether the request has or has not been satisfied. gc.e also has a pointer attribuiwho.a)

pointing to the process notice of the requesting process. The attributeqc.e entity are shown

in table 5-3. Theq.resource set is ranked by higpty.a , thus permitting preemptive queuing

prior to allocation of resources. Tg.resource andx.resource pointers are equivalenced, as

a process is either queuing or executing with any given resource.

204

Discrete Simulation Concepts

Table 5-3. Attributes of QC.E Entity

Attribute Description
who.a The process pointer
gty.a Integer Number of Resource units
pty.a Integer Priority of request
p.rs.s
S.IS.S
p.g.resource or P.X. resource
S.g.rsource or S.X resource

5.3.7 Process Notice: Additional Attributes

The process notice has all the standard event attriltime.a, eunit.a, s.ev.s, m.ev.s).
In addition the following attributes are defined:

Rsa.a : A pointer to the recursive save area for the process.
Sta.a : The current state of the process.

Passive (0)
Active (1)
Suspended (2)
Interrupted (3)

Sta.a may briefly take other (implementation specific) values to indicate particular
transitional states. Forinstance, a value of 4 could indicate that the process is to destroy
itself.

Ipc.a : Correspondstl.event . The process class attribute has the value of the event set sub-
script for process notices of this class. This value is initialized when the process no-
tice is created.

F.rs.s :Attribute for owning a set of resources.
For example, the following process declarations:

preamble
processes
include DESIGN, TEST
every CREATION has a SCHEDULE and owns some MATERIALS

205

SIMSCRIPT II.5 Programming Language

will create process notices that have the attributes shown in figure 5-6. The exact layout of the pro-
cess notice is, as for event notices, implementation-specific.

A process notice may be destroyed, as may any temporary entity, destroy statement. Be-
fore specifying a destroy statement for a process that suspend ed orinterrupt ed state,
consideration should be given to the following points:

1. Resources owned by the process are not automatically relinquished

2. Localtext variables of the process and any active subroutines are not automatically erased

3. The storage of thrsa.a array is not automatically released.

206

Discrete Simulation Concepts

DESIGN TEST creation
time.a time.a time.a
eunit.a eunit.a eunit.a
predefined p.ev.s p.ev.s p.ev.s
attributes
S.ev.s S.ev.s s.ev.s
m.ev.s m.ev.s m.ev.s
sta.a sta.a sta.a
ipc.a ipc.a ipc.a
rsa.a rsa.a rsa.a
f.rs.s frs.s frs.s
schedule
user-defined f.materials
attributes
|.materials
n.materials

Figure 5-6. Attributes of Process Notices Created by Process Declarations
Above

5.3.8 External Processes and Events

A common validation technique used in simulation modelling is to exercise a model using event
data derived from a record of events occurring in the system under study. This is tacerebliv-

en simulation. Alternatively, a collection of projected event times may, of course, be used to study
the behavior of a modelled system.

To support this technique, SIMSCRIPT I1.5 provides a mechanism by which, rather than scheduling
events using statements within a program, they may be scheduled directly from event times present-
ed as an input data stream.

It is possible for processes and events to belong to one or both of two cateinternal or
endogenous as has so far been described, external orexogenous , as described here. Each

class of external events or processes has, as usual, an associated routine describing actions to be
taken upon its occurrence. The difference between the two event categories lies in the manner in
which the event is scheduled. (Note that the term "event" may be taken here to also mean the
initiating event of a process.)

Events may be triggered from external input data by declaring themexternal events or
processes in a statement of the form:

207

SIMSCRIPT II.5 Programming Language

external processes are process name list

or

external processes are event name list

When an event name appears ilexternal ~ process statement in the preamble, provision is made
to create a new event notice each time an input data record containing the event name is read from
the external data. This event notice is identical in form with those already described.

One of the predefined attributes in a process or event neunit.a , records the unit number of

the input device on which information about this event is input. For events and processes not trig-
gered externally, this attribute remains zero. The logical unit numbers of devices on which external
event data are to be input are declared in a statement of the form:

external process units are device list
or
external event units are device list

The wordsprocess andevent are synonymous in this case. Devices may be specified as integer
constants or as variables. If variables are used, they must be initialized to valid unit numbers before
the start of simulation. If external events have been declared external units statement

appears, the standard input unit is assumed to be a source of external event data. If such a statement
does appear, and the standard input unit is also to be used for event data, it must be included in the
list of external units.

A simulation program having the procesTASk andREPOR might contain the following state-
ments in its preamble:

external processes are TASK and REPORT
external process units are DAILY.TASKS, WEEKLY.TASKS and 5

These statements indicate that the SIMSCRIPT I1.5 system must be prepared to trigger the process-
esTASK andREPOR from external data, and that three input devices are to be used to input these
data. These may be indicated mnemonically as being associated with information about particular
events. However, the SIMSCRIPT II.5 system attaches no significance to these names. Any exter-
nal event may be triggered by data read from any of the declared external units.

External events and processes may be includpriority statements, declaring their priority
over other events and processes, whether internally scheduled or externally triggered. Note that the
priorities are associated with the events or processes, and not in any way with the external units.

Events or processes that are declared texternal can be given priority over other classes of
events but cannot be ranked among themselvebreakties statement. No ranking attributes

are assigned values by external triggering, as may be done by giving arguments in a schedule state-
ment. Even if some instances of the event class are internally scheduled and have attributes initial-

208

Discrete Simulation Concepts

ized, they must compete with the externally triggered event notices on a first-come, first-served
basis.

Since an event or process routine can be activated in either of two ways, and each of these ways
provides a different source of data for the routine, a logical expression is provided for use within
such aroutine to determine how this instance of the routine was initiated. The expression compares
the keyworcprocess orevent with either of the property wordnternal orexternal and

yields a true or false result. The form of the expression is:

process is property or process is not property
and
event is property or event is not property

as in the statements:

if process is internal,
read NAME and DESTINATION as B 20, (2) 1 10
always

and

if event is external and data is ended,
stop
otherwise

5.3.9 Triggering Processes and Events Externally

Events are triggered externally by event data records appearing in chronological order on each of
the external input devices. Such a data record contains the name of an event or process, the time at
which it is to occur, and, optionally, data to be read by the event or process routine. The event data
records are read one at a time, their information recognized and deciphered, and event or process
notices created for the events or processes indicated. This paragraph deals with two issues: the op-
erations performed by SIMSCRIPT II.5 when external process records are read and the format of
the external data records.

When &start simulation statement is recognized, the first task performed by the timing mech-
anism is to read information about the first event on each of the external units. When an external
datarecord is read, the event class is recognized and the event time computed from data on the record.
An event or process notice is created, and the scheduled event time and the number of the unit from
which the data record was read are stored itime.a andeunita attributes of the notice. If

the event notice has been declared with user-defined attributes, it conforms to the preamble decla-
ration. However, none of the user-defined attributes is assigned values. The notice is then filed in
the future events set corresponding to its class. Internally and externally generated notices are filed
together. They are distinguished by eunit.a attribute. A coded value eunit.a , usually

zero, denotes that a notice has been internally scheduled.

209

SIMSCRIPT II.5 Programming Language

The format of an external data record is:

1. Process or event name, eREPORT

2. Process activation time in any of three formats
3. Data for the process (optional)
4

Mark.v delimiting character (normally ")

The name and activation time are read in free form from the external data record. Optional data for
the event or process routine may be in any programmer-defined format. A delimiting symbol is
used by the system to advance properly from one set of external data to the next. As the optional
data may span more than one physical record, and a routine may possibly leave some of these data
unread, the SIMSCRIPT I1.5 system must have a way of advancing to the start of a new set of event
or process data when signaled by the timing routine. The SIMSCRIPT I1.5 system searches for a
delimiting character that matches the value of a global variable 1 mark.v . This is an alpha
variable, which by default is an asteris*", but which may be assigned a different value under
program control. This delimiter must terminate each set of external data, triggering an event or pro-
cess.

5.3.10 Time and Date Expressions in External Data

There are three formats in which event times can be stated. The decimal time units

format . In this format, time is specified asreal -valued decimal number such as 0.0, 15.56, or
20.0. The number is interpreted as the absolute time at which the event triggered by the external
data record is to occur. In the second foriday-hour-minute format , threeinteger num-

bers specify the day, hour of the day, and minute of the hour at which the event is to occur. All three
numbers must be present. Sample times and their interpretation are:

000 representing the start of simulation
012 30 12:30 in the afternoon of the first day
21037 10:37 in the morning of the third day

Hours are numbered from 0 to 23 and minutes from 0 to 59. In the third " calendar time
format , the day is expressed as a calendar date, and the hour and minute of theintegeras
numbers. For example:

1/15/82 4 30 represents 4:30 in the morning on January 15, 1982

Using the calendar date format, the year can be expressed as 1982 or as 82. IfXXis used,
19XX is assumed. Years after 1999 and before 1900 must therefore be expressed completely.

Before the calendar format can be used, the calendar date of the start of simulation must be set to
provide an origin against which calendar time specifications can be compared. This must be done

210

Discrete Simulation Concepts

before thestart simulation statement is executed. The origin is set by a call to a library rou-
tine. The arguments to this routine are as shown below:

call origin.r(integer month expression, integer day expression,
integer year expression)

Because simulatiotime is maintained time.v and saved in tttime.a attribute of event and
process notices asreal number, conversions must be made between calendar specifications and
the SIMSCRIPT II.5 internal representation. The algorithm that performs this conversion assumes
the origin date is a Monday, and that simulation starts at the beginning of that day (00.00 hours).
Time.v is always set to zero at the start of simulation.

Four functions are provided to convert year, month, and day expressions into cumulative simulation
times and vice versa. These functions are described in table 5-4. The examples assume that the
origin time has been set to July 1, 1982, by the call:

call origin.r(7, 1, 82)

Table 5.4 Calendar Date Conversion Functions

Name Arguments Function Function Example
9 Mode Values P
date.f 3 INTEGER INTEGER | current simulation | date.f(7,15,82) =
expressions day 14
month, day, year
year.f REAL time INTEGER | current year year.f(476.2) =
expression 1983
month.f REAL time INTEGER | 1-12 current monthl month.f(476.2) = 10
expression
day.f REAL time INTEGER | 1-31 day.f(476.2) = 21
expression day of current
month

These functions may be used directly within statements to convert from calendar format times. For
example:

schedule a DEPART at date.f(MONTH, DAY, YEAR) + SERVICE.TIME
Sample external event data records, containing no optional data, are:

SERVICE 1/15/80 05 35 *
ARRIVAL 14 05 35 *
DEPART 476.2 *

211

SIMSCRIPT II.5 Programming Language

When an externally triggered event or process is eventually selected as the current one by the timing
routine, the number of the unit from which the scheduling data was read is assread.v , the

current input pointer Rcolumn.v is positioned to read the first column after the activation time,

and control is passed to the event or process routine. In this routine, then, free-form or formatted
read statements can be used to read any optional data, following the activation time data in the ex-
ternal data record. In this way event related data may be passed to this instance of the routine. For
example:

external processes are SERVICE

process SERVICE
define CUSTOMER.NAME as a text variable
read CUSTOMER.NAME

return
end

External event data card:
column number
0 1 2 3 4 5
12345678901234567890123456789012345678901234567890
SERVICE 525.30 JOHNSON *

data field read mark.v character

position ofrcolumn.v when timing routine
transfers to everARRIVAL

When an externally triggered instance of a event or process routine first returns control to the timing
routine (recall that this may happen more than once for a process, through process interaction state-
ments), any remaining optional data fields present must be skipped in the data stremark.v |l

is encountered, signifying the next set of external process or event data. In no case should a process
or event routine attempt to read more data than are written for it, that is, pass into the next set of
external data. When a routine reads fewer data than are provided, the programmer can pass over it
by searching for and moving to the nmark.v symbol, or leave this task to the SIMSCRIPT 1.5
system.

212

Discrete Simulation Concepts

External process data may only be coded in printable fBinary mode may not be used for ex-
ternal process and event data.

The following routine demonstrates an externally triggered process that reads some external data
and executeswork statement. In this example, at process reactivation, the true duration of service
is computed (the process could possibly have been interrupted) and compared with the predicted
service time:

process UNLOAD

read ID(UNLOAD) and SERVICE.TIME(UNLOAD)

let START.TIME(UNLOAD) = time.v

work SERVICE.TIME(UNLOAD) days

let DURATION = time.v - START.TIME(UNLOAD)

let OVERRUN=DURATION-SERVICE.TIME(UNLOAD)
print 1 line with ID(UNLOAD), OVERRUN thus

OVERRUN FOR ** WAS *** *** DAYS

end

return

The important facts to remember about externally triggered events and processes are:

1.
2.

Time.v is, as usual, set to the process activation time

Read.v is set to the number of the unit on which the triggering data were encountered, and
which may have further data for the process routine

Rcolumn.v is positioned to read the first column after the time data

When control returns to the timing routine, data fields on the current external unit are
skipped until emark.v delimiter is found, and the data following are used to schedule the
next external process from that input u Read.v reverts to the standard input unit, and
the timing routine then pogeds in the normal way to select the next event.

If a process may be triggered both internally and externally, and has arguments specified, these can
only be initialized if the process has been internally scheduled. The routine can test whether it may
expect the attribute values to be set, or whether it should accept data from the external unit as shown

here:

process UNLOAD given ID and SERVICE.TIME

if process is external
read ID and SERVICE.TIME
always
let START.TIME(UNLOAD) = time.v
work SERVICE.TIME days
let DURATION = time.v - START.TIME(UNLOAD)
let OVERRUN = DURATION - SERVICE.TIME
print 1 line with ID, OVERRUN thus

OVERRUN FOR ** WAS *** *** DAYS

end

return

213

SIMSCRIPT II.5 Programming Language

Comparing this example with the previous one, notelD andSERVICE.TIME have been de-

clared as arguments. These names now refer to the local argument values, not the process notice
attributes, although they may be initialized from these attributes if the process is scheduled inter-
nally. Thus, the names are not subscripted in this version.

5.4 Modelling Statistical Phenomena

As simulation is essentially a tool for drawing statistical inferences about the operations of stochas-
tic systems, it is essential that a simulation modelling language should provide facilities for model-
ling statistical phenomena.

The principal mechanism of the SIMSCRIPT 11.5 statistical sampling feature is the function
random.f , which generates a stream of pseudorandom numbers between 0 and 1. Starting from
an initial valuerandom.f generates successreal numbers that can be used in decision-making
statements or as data in other statistical calculations. The numbers gene random.f are
statistically independent of one another. A multiplicative congruence algorithm is used. The
parameters are dependent on characteristics of internal numeric representations, which may vary on
different machines.

Random.f has one argument, an index number that selects one of several independent random
number streamsRandom.f(1) samples from random number strel, random.f(5) from

random number streas, etc. All SIMSCRIPT I1.5 programs are initialized with 10 random num-

ber streams. The starting numbers for these streams are containeinteger system array.
Traditionally, the first number in a pseudorandom number sequence is called the seed of the se-
guence. As pseudorandom numbers are generated, new values are asseed.v , so that it
contains the current seed expressiinteger form.

Should more streams be needed, a programmer can override the default condition by releasing
seed.v and specifying his or her own array size, as in:

main
release seed.v(*)
read ARRAY.DIM
reserve seed.v(*) as ARRAY.DIM
read seed.v
end

Therandom.f function may be referenced in logical or assignment operations, as for any function.
At each reference, a new number from a pseudorandom sequence is returned. For example:

214

Discrete Simulation Concepts

1. if random.f(1) less than TRANSITION.PROBABILITY
let COUNT = COUNT + 1
always

2. for each CONTESTANT,
do
if random.f(CONTESTANT) greater than FINISH,
file CONTESTANT in POSSIBLE.WINNER
always
add 1 to STEPS(CONTESTANTS)
loop

Random.f can be viewed in two ways — as generating uniformly distributed pseudorandom vari-
ables between 0 and 1 or as generating probabilities. The above examples illustrate the use of the
function in the probability sense.

SIMSCRIPT I1.5 provides twelve functions for generating independent, pseudorandom samples
from commonly encountered statistical distributions. Each of these functions has as its arguments
the parameters that describe the distribution and a pseudorandom number stream index. Each time
one of these functions is invoked, one or more pseudorandom numbers are generated from the in-
dicated stream, usirrandom.f , and an appropriate transformation is made to produce the correct
sampling distribution. The functions, the arguments, and their properties are described in table 5-5.

If the stream number, i, is negative in any of these function calls, a quantity called an antithetic vari-
ate,1 - random.f(abs.f(i)) , is generated. Antithetic variates are used in simulation experi-
ments to reduce the variance of estimates of simulation-generated data. Discussions of their use can
be found in most simulation texts.

These statistical functions are often used with simulation models to generate event times and activ-
ity durations. Some examples illustrate their use.

1. An activity generator process schedules task processes, assuming that the time between
successive task initiations is axpenentially distributed quantity with mean timeMEAN
days. For example:

process GENERATOR
until time.v gt TIME.LIMIT
do
activate a TASK now
wait exponential.f(MEAN, 1) days
loop
return
end

215

SIMSCRIPT II.5 Programming Language

Table 5-5. Statistical Distribution Functions

n
y of

Function :
Name Arguments Function Value
Mode

beta.f e1.,€e o,i REAL Generates a beta-distributREAL number with
REAL, REAL,
INTEGER €1 = powero x,

e, = power of 1-x) using streani

binomial.f i1.e,i 2 |INTEGER Generates thINTEGEF number of successes
INTEGER, i 1 independent trials, each having probabilit
REAL, .
INTEGER success using stre.i 3 .

erlang.f e,i 1,i 2 |REAL Generates an Erlang distribulREAL number
REAL with mean =e andk =i 1 using streari ».
INTEGER
REAL

exponential.f e,i REAL Generates an exponentially distribuREAL
REAL, number with mean e using streari.
INTEGER

gamma.f eq1.e 2,i REAL Generates a gamma-distribuREAL number
REAL,REAL, with mean =1 andk =e 5 using streari .
INTEGER

log.normal.f e1.,€e o,i REAL Generates a log normally distributREAL num-
REAL,REAL, ber with mean :eq and standard deviatione3
INTEGER using streani.

normal.f €q,€e o,i REAL Generates a normally distributREAL number
REAL,REAL, with mean :eq and standard deviationes us-
INTEGER ing streani .

poisson.f e,i INTEGER Generates a Poisson-distribuINTEGEF num-
REAL, ber with mean = using streani .
INTEGER

randi.f i1,i 2,i 3 |INTEGER Generates aINTEGEF number uniformly dis-
INTEGER, tributed betweei ; andi 5, inclusive using
INTEGER, streami 3
INTEGER

triang.f eq1.€¢ 2, 3, |REAL Generates a triangularly distributREAL num-
i ber with minimum =eq, mode : e 5, and maxi-
REAL,REAL, mum =e3 using streani .
REAL,
INTEGER

uniform.f e1,€e 2,i REAL Generates a uniformly distributREAL number
REAL,REAL, betweere, ande, using streati .
INTEGER

216

Discrete Simulation Concepts

Table 5-5. Statistical Distribution Functions - Continued

Function :
Name Arguments Function Value
Mode
weibull.f e1,e o,i REAL Generates a Weibull-distribut REAL number
REAL,REAL, with shape paramete e 1 and scale parameter =
INTEGER eo using streani .

2. Although similar to the previous example, TASk process now has a given argument as-
sumed to have a Poisson distribution with a mean of 5. Note that two separate random num-
ber streams are to be used in sampling the distributions:

process GENERATOR
until time.v gt TIME.LIMIT

end

do

let NUMBER = poisson.f(5.0, 1)

activate a TASK giving NUMBER now
wait exponential.f(MEAN, 2) days

loop
return

3. Evaluation of Pl m):

In a rectangular coordinate system (figure 5-7), the equation of a circle is:

.2
|

2 2

+j=r

2 2 2
that is, any point (i,j) with<randj<randi1 +j <r lies inside a circle of radiusr. The

, 2 , 2 ,
area of the circle inr . A square of side 2r has an area =. The ratio of the area of the

. 2 2
circle to the area of the squarens /4r =1/4.

217

SIMSCRIPT II.5 Programming Language

r r

Figure 5-7. A Rectangular Coordinates System

If we generate N points (i,j) within the square in a random fashion, some of the points will fall with-
in the circle, and some will not. In fact, the proportion of those falling within the circle will be ap-
proximatelyt/4 of all the points. If M is the total number of those that fall within the circle, then
M/N is approximately equal m/4. We can estimate the valuenias 4M/N. The accuracy of this
estimate improves as N increases, and is proportion/N. >

The program shown below uses the funcuniform.f to generate pointi,j) that are random-
ly distributed within a square of side R. It does this by generating random numbers between 0 and
R and assigning them in pairsi and;j .

Each such poiniij) lies somewhere inside the squarei 2 +j 2 <r 2, the point also lies within
the circle, and is added tv to record this fact. This procedure is repeN times. Each time, a
differenti andj are generated and used to determine if the pij) lies within the circle. At
the end oN point generations, the approximatiorn is printed.

main
normally mode is real
define HIT, | and NO.SAMPLES as integer variables
read RADIUS and NO.SAMPLES
let RADSQ = RADIUS**2

letHIT=0
for 1 =1 to NO.SAMPLES,
do

let XSAMPLE = uniform.f(0.0, RADIUS, 1)
let YSAMPLE = uniform.f(0.0, RADIUS, 1)
if XSAMPLE**2 + YSAMPLE**2 e RADSQ, " within circle
add 1 to HIT
always
loop
let APPROX.PI =4 * HIT/NO.SAMPLES
print 1 line with NO.SAMPLES, APPROX.PI as follows
THE ESTIMATED VALUE OF Pl AFTER *** SAMPLES [S * *****
stop
end

218

Discrete Simulation Concepts

When a sampling distribution cannot be characterized by one of the statistical sampling functions,
declarations can be given that define table look-up sampling variables. A table look-up sampling
variable has a list of possible numeric values together with their associated probabilities. It selects
a sample value by generating a random number and matching it against the possible probability val-
ues. Table look-up variables, hereafter cerandom variables, are declared in statements of the
form:

the system has a name random step variable

or
every entity has a name random linear variable

Suchrandom variables must be declared as attributes, either of some enti the system

The first form states that sampling is done froreal - orinteger -valued sampling distribution
in a steplike manner. The second states that sampling is performed with linear interpolation done
betweerreal sample values. The following illustrations describe how this is done.

Assume that random variable, or attribute, has the sampling distribution in table 5-6 associated
with it. Note that the cumulative probabilities in the left-hand column range from 0.0 to 1.0. Sam-
pling is performed by generating a probability value urandom.f(1) , matching it with a value

in column 1, and selecting an appropriate value from column 2. Since samplrandom.f are

always between 0.0 and 1.0, and are uniformly distributed between these extremes, the samples
drawn from column 2 will be chosen randon ly.

Table 5-6. Sampling Distribution (Example)

Cummulative Probability Sample Value
0.00 0.0
0.10
0.20 1.0
0.25
0.38 25
0.45
0.60 3.0
0.77 9.0
0.90
0.99 11.8
1.00 209

30.0
333
50.0
66.7

219

SIMSCRIPT II.5 Programming Language

5.4.1 Random Step Variables
If the sampling variable is defined by the statement:

the system has a SAMPLE random step variable

sampling is done as follows in the staternlet X = SAMPLE

1. Arandom number is drawn frorandom.f(1)

2. This random number is compared with successive cumulative probability values until a val-
ue is found that equals or exceeds it

3. The column 2 value (table 5-6) associated with this cumulative probability value is returned
as the value of the sample. Examples are:
If the random number drawn is 0..SAMPLE = 2.5
If the random number drawn is 0.<SAMPLE = 11.8
If the random number drawn is 0.(SAMPLE = 30.0
If the random number drawn is 0.'SAMPLE = 50.0

5.4.2 Random Linear Variables

Randorr variables defined estep can be eitheinteger - orreal -valued. If the sampling vari-
able is defined by the statement:

the system has a SAMPLE random linear variable

sampling is done as follows:

1. Arandom number is drawn frorandom.f(1)

2. This random number is compared with successive cumulative probability values until a val-
ue is found that equals or exceeds it

3. Interpolation is done between the column 2 value (table 5-6) associated with the stopping
cumulative probability value and the column 2 value precedingi represents the index
of the stopping probabilitC(i) the probability, anV(i) the sample value, the interpo-
lation formula is:
SAMPLE = V(i-1) + random.f - C(i-1) [V(i) - v(i-1)]
C() - C(i-1)

Examples are:

If the random number drawn is 0. SAMPLE = 2.5
If the random number drawn is 0. SAMPLE = 11.8
If the random number drawn is 0. SAMPLE = 23.6

220

Discrete Simulation Concepts

If the random number drawn is 0.<SAMPLE = 42.6

Randorr values defined i linear ~ can only bereal -valued. Interpolations are donereal
arithmetic, and the accuracy is determined by the machine representation. Rounding is done in the
above examples for illustration only.

If the mode orandom variables does not agree with the background mode, the mode must be spec-
ified in adefine statement. Thidefine statement may also be used to specify a random number
stream other than the default stream (number 1). On some implementations, this stream number
may be declared to be a variable, which must evaluate to the number of a valid stream, whenever
used.

Example:

DefineSAMPLE as erandom attribute of an entitJOB. The values cSAMPLIarereal . Sampling
is done usindinear interpolation and random stream 6.

every JOB has a SAMPLE random linear variable
define SAMPLE as a real, stream 6 variable

Sampling is always automatic. That is, a random variable behaves as a right-hand function. When-
ever a random variable appears, a routine that performs sampling is executed. SIMSCRIPT 1.5
generates these routines using random number stream 1 unless otherwise < pecified.

5.4.3 Programmer-Defined Random Variables

If the you require a type of sampling other than step or linear, you must omit thestep or

linear from the definition of the random variables and provide your own sampling function.
Three system functions are provided for sampling (table 5-7). They correspond to the type of
lookup previously describe d.

Table 5-7. System Sampling Functions

Function Mode | Arguments Description
istep.f integer | v,e Returns a random sample from tav using stream
e.
lin.f real v,e Returns a random sample from tav using inter:

polation and streate.

rstep.f real v,e Returns a random sample from tav using stream
e.

Because of the special storage assignrandom variable sample values and probabilities, special
input treatment is necessary. When a variable definrandom appearsin a free-forread state-
ment, the following occurs:

1. Pairs of free-form data values are read urmark.v character appears.

221

SIMSCRIPT II.5 Programming Language

2. The first of each pair is assumed to be a probability. The second is assumed to be a sample
value.

3. Asystem-defined, three-attribute entrandom.e , is created for each pair. The probabil-
ity value is assigned to its first attribuprob.a . The sample value is assigned to its sec-
ond attribute, referred to dvalue.a if the variable isinteger , or rvalue.a if the
variable isreal .

4. The entities are filed in a set having the same name random variable. The third at-
tribute in eaclrandom.e record is a pointer nams.variable

5. Occupies the space declared forrandom variable or attribute.

Input probabilities can be cumulative or individual. If cumulative, the last probability must be 1.0.

If individual, they must sum to 1.0. Arandom variables have their probabilities stored cumula-
tively. If any probability appears as less than 0 or greater than 1, the program terminates with an
error message.

The following examples illustrate hcrandom variables are defined and used.
Definition:

the system has a RANDVAR random step variable
define RANDVAR as an integer variable

Input statement:
read RANDVAR
Input data:
0.1100.2 25 0.3540 0.55 100 0.8 150 1.0 200 *

The sampling probabilities are expressed cumulatively in six pairs of sampling values. These pairs
are stored in six entities in a set narRANDVAR

Storage 0RANDVA sample values is shown in figure 5-8.

222

Discrete Simulation Concepts

RANDVAR |—p» 0.1 0.2 0.35
10 25 40
0.55 0.8 10
100 150 200
0

Figure 5-8. Storage of RANDVAR Sample Values
Use of therandom variable:

let NEXT.VALUE = RANDVAR
if RANDVAR greater than LIMIT,

If the input data had the form:

0.1100.1250.1540 0.2 100 0.25 150 0.2 200 *

the data would be stored in the same form. Individual probability values are accumulated as the
data are read.

Randorr variables cannot appear in any other forrread statement, becauseput of arandom
variable "value" obviously means something special. If RANDVAR is an attribute of a permanent
entity, one can seread RANDVAR(l) but notread RANDVAR, because the latter statement is in-
terpreted as a free-form array read statement. Only a random variable data list can be read
atonetime. IRANDVA is an attribute of a temporary entiread RANDVAR is interpreted aread
RANDVA(entity), using implied subscripting.

5.5 Simulation Analysis

The principal outputs of simulation experiments are statistical measurements. Such quantities as the
average length of a waiting line and the percentage of idle time of a machine are typical examples.

Two featuresaccumulate andtally , provided in SIMSCRIPT 1.5, allow such information to

be gathered during a simulation run, without requiring any other explicit action to be specified with-

in the program. These two preamble statements can instruct the compiler that automatic data col-
lection and analysis are to be performed at appropriate places in a program. The program text can

223

SIMSCRIPT II.5 Programming Language

remain clear of any explicit statements which might obscure the logic of the model. A statement of
the form:

tally compute list of name

performs computations similar to those of compute statement, but in a global manner, over

time, rather than locally to an instance of its use. Each time the named variable changes value, ap-
propriate actions are taken to collect the statistics requested in the compiName may be the

name of an unsubscripted global variable, unsubscripted system attribute, or an attribute of a tem-
porary, permanent, or permanent compound entitname is an attribute of a permanent entity, as
many variables are reserved to store the statistical counters as there are elename. If name

is an attribute of a temporary entity, each entity record is generated with statistical counter-variable
attributes.Name cannot be a function attributerandom variable, or a dimensioned array.

Some examples illustrate the use oftally statement and the attributes and functions generated
by it.

1. Use oftally with an unsubscripted global variable:
Preamble:

preamble
define TIME as a real variable

tally MEAN.TIME as the mean,
and VAR.TIME as the variance of TIME

Preamble generates:

(a) A statistics-gathering function routine, which is called whenever an assignment is
made t TIME anywhere in the program. The function counts the number of times
TIME changes value, and records the sum and sum of squares of the vTIME. of

(b) Global variables A.1, A.2, A.3] to record thenumber, sum , and
sum.of.squares of TIME for the computations (mean andvariance

(c) FunctionsMEAN.TIME andVAR.TIME which use the values of the global counters
to computemean andvariance whenever they are referenced.

Thetally variables may be used in statements su:h as

print 1 line with MEAN.TIME AND VAR.TIME as follows
MEAN = ** *** \VAR|ANCE = *** ***
if (VAR.TIME/MEAN.TIME) le TOLERANCE

224

Discrete Simulation Concepts

2. Use oftally with an attribute of a permanent entity:

Preamble:

preamble
permanent entities
every PERSON has some CASH.IN.POCKET

tally AVERAGE.CASH as the mean
and MAX.CASH as the maximum of CASH.IN.POCKET

Preamble generates:
(a) A statistics-gathering function routine with one argument, the index number of the
referenced entity.

(b) Attributes for thesum andnumber for each entity. These are permanent attribute
arrays withN.PERSO! elements.

(c) A function AVERAGE.CAS to comput mean fromsum andnumber .
(d) Attribute MAX.CASI for each entity MAX.CAStis a permanent attribute array with
N.PERSO! elements.

Thetally may be used in statements such as:

for each PERSON,
list AVERAGE.CASH(PERSON) and
MAX.CASH(PERSON)
for each PERSON,
compute MEAN.CASH as the mean of
AVERAGE.CASH(PERSON)

3. Use ottally with an attribute of a temporary entity:
Preamble:

preamble
temporary entities
every JOB has a NUMBER.OF.OPERATIONS

tally TOTAL as the sum of NUMBER.OF.OPERATIONS

Preamble generates:

(a) A statistics-gathering function routine with one argument, the pointer to the
referenced entity.

225

SIMSCRIPT II.5 Programming Language

(b) An additional attribute nameTOTAL for the temporary entitJOE.
Thetally variables may be used in statements such as:

for each JOB in QUEUE(MACHINE),
do
if TOTAL(JOB) le MAX.ALLOWED,
remove the JOB from QUEUE(MACHINE)
perform NEXT.JOB given JOB
always
loop

Statistical computations of a different sort are made when theaccumulate replace tally

These calculations introduce simulation time into the average, variance, and standard deviation cal-
culations, weighting the collected observations by the apparent length of simulation time for which
these values have held. Table 5-8 comparetally andaccumulate computations. To be con-

cise, some additional notation must be defined:

TL The simulated time at which @accumulated variable was set to its current value

T0 The simulated time at whi accumulation starts

Accumulate andtally statements cannot both be declared for the same variable. A programmer
must decide whether a variable is time-dependent or not, normally a simple task, and specify one
or the other. An illustration of the use of accumulate statement is given in the following ex-
ample.

preamble
permanent entities
every MACHINE has a STATUS, a
PROCESSING.SPEED and owns a QUEUE
temporary entities
every JOB has a VALUE and belongs to a QUEUE
accumulate AVG.QUEUE as the mean
and MAX.QUEUE as the maximum of N.QUEUE
accumulate MACHINE.STATE as the mean of STATUS
end

226

Discrete Simulation Concepts

Table 5-8. Tally and Accumulate Computations

Statistic Tally Accumulate
NUMBER N N
SUM >X SXHTIME.V - T))
SUM.OF.SQUARES X SXCHTIME.V - T)
MEAN SUM/NUMBER SUM/(TIME.V - T)

MEAN.SQUARE

SUM.OF.SQUARES/

SUM.OF.SQUARES/(TIME.V - TO)

NUMBER
VARIANCE MEAN.SQUARE -MEAN**2
MEAN.SQUARE - MEAN**2
STD.DEV SQRT.F(VARIANCE)
SQRT.F(VARIANCE)
MAXIMUM LargestX LargestX
MINIMUM Smalles X SmallesiX
A
™ N
5 s =
é
w o
o A %
2
= 3
53
Ez < <
z ol S =
o~ - -
N S S
| | I | I I I I L
0 2 4 6 8 10 12 14 16 18

Simulated time in decimal days

Figure 5-9. A Sample Time-Series

227

SIMSCRIPT II.5 Programming Language

Table 5-9. Accumulate Computations

N.QUEUE Time Value Time Value Increment Area Sum
Began Ended

@)) ©) (4=(3)-(2 (B)=(1)*(4) Q)
0 0 1.2 1.2 0 0
1 1.2 3.0 1.8 1.8 1.8
3 3.0 4.6 1.6 4.8 6.6
2 4.6 6.1 15 3.0 9.6
3 6.1 8.0 1.9 5.7 15.3
4 8.0 8.3 0.3 1.2 16.5
5 8.3 11.2 2.9 14.5 31.0
2 11.2 124 1.2 24 334
1 12.4 141 1.7 1.7 35.1
0 14.1 17.1 3.0 0 35.1
1 17.1 18.0 0.9 0.9 36.0

The sums in table 5-9 are maintained for the computatiAVG.QUEUE(1). If, at simulated time
11.2 (time.v=11.2), AVG.QUEUE(1) appears in a statement sucllistAVG.QUEUE(1)

it is computed from table 5-9 data31.0/11.2=2.77 . That is, the average number of jobs in
QUEUE(Q) fromtime.v=0 to time.v=11.2 is 2.77 . If at some time between changes in
N.QUEUE(1), say attime.v=0 , a value fotAVG.QUEUE(1) is requested, it is computed as
[16.5+5(10-8.3)]/10=2.5 by the functiorAVG.QUEUI.

More complete information on the values attained by tallied global variables, system attributes, and
attributes of permanent entities can be obtained by requesting a frequency count of the number of
times a variable takes on specified ranges of values. Statements of the form:

tally namel (rl to r2 by r3) as the histogram of name2

define an arre namel with (r2 - r1)/r3 + 1 elements, one for each elemeiname2, plus an ad-
ditional element for overflows. name2 is the name of a permanent attribute, an array of histo-
grams will be defined. The interval betwer2 andrl is divided into classer3 units wide. If a
sample falls betweerl andr1 +r3 |, the value of the elemenamel(1l) is incremented bl. If

it falls betweerrl +r3 ancrl +2r3 , namel(2) is incremented, and so forth.

Thus, the average value of a variable, and the distribution of values it takes at different times, over
the duration of a simulation run, may be requested by preamble statements such as:

228

Discrete Simulation Concepts

preamble
define VALUE as a real variable
tally AVERAGE as the mean and
FREQUENCY(0 to 100 by 5) as the histogram of value

WheneveVALUE changes, observations are summed to provide data for coOmAVERAG, and

counts are made in 21 interval counters that indicate the number oVALUE is between 0 and

5,5 and 10, 10 and 15, etc. If a value is lessr1, it is counted in the first cell. If equal to or
greater thar2 , it is counted in the last cell. The range specifications of the histogram are usually
defined as constants, but in some implementations may be defined as variables. In the latter case,
the range variables must be assigned meaningful values before the monitored variable is first refer-
enced.

The histogram array may be displayed, as a subscripted array, in any of the normal ways. The dis-
play formatting has the responsibility for labelling the individual element values of the histogram
array. Note that histograms cannot be compiled for attributes of temporary entities because the lat-
ter may not have subscripted attributes.

Histograms are defined differently for variables that appeaccumulate statements. What is

of interest is not how many times values within a given range appear, but the total time spent in the
different ranges of values during a simulation run. This allows, for instance, for the calculation of
state probabilities. Consider the following example:

preamble
permanent entities
every MACHINE has a STATUS, and owns a QUEUE

accumulate MEANQ as the mean of N.QUEUE
accumulate STATE.PROBS(0 to 2 by 1)

as the histogram of status
' ' POSSIBLE VALUES OF STATUS ARE:
o STATUS = 0 MACHINE IDLE
' ' STATUS = 1 MACHINE IDLE BUT COMMITTED
o STATUS = 2 MACHINE ENGAGED

end

As simulation proceeds, the value STATU¢ changes for the different machines. Each time
STATUS changes, the length of time the machine was in that particular state is added to the proper
element of the arraSTATE.PROBS. Since MACHINE is a permanent entity, arSTATUS is
therefore a one-dimensional attribute anSTATE.PROB¢ is a two-dimensional array. The first
dimension isN.MACHINE and the second is 3, derived as ((2-0)/1 + 1).

The percentage time, and therefore the state probabilities, spent in each state by each machine can
be obtained by:

229

SIMSCRIPT II.5 Programming Language

for each MACHINE,
print 1 line with
STATE.PROBS(MACHINE,1)/time.v,
STATE.PROBS(MACHINE,2)/time.v,
STATE.PROBS(MACHINE,3)/time.v as follows
PROBABILITIES OF BEING IN STATES 0, 1 AND 2 ARE *.**, * *x %%

and adaptive decisions can be made within a model by such statements as:

if STATE.PROBS(1,1)/time.v < STATE.PROBS(2,1)/time.v,
call ACTION(1)
else

Eachtally oraccumulate statement also generates a routine for reinitializing the counters used
in calculating its statistical quantities. These routines can be invoked at any time by statements of
the form:

reset the totals of variable list
Thus, the declarations of the above preamble make the following statements possible:

reset totals of N.QUEUE(MACHINE)

reset totals of STATUS(5)

reset totals of N.QUEUE(5) and STATUS(5)
for each MACHINE,

reset totals of N.QUEUE(MACHINE)

In cases where both periodic and cumulative statistics are requirtally, accumulate ,and
reset statements can be qualified so that multiple statistical counters are used. The statement
forms are:

tally variable as the namel statistics of name2

tally variable(n to n by n) as the namel histogram of nhame2

accumulate variable as the namel statistics of name2

accumulate variable(n to n by n) as the namel histogram
of name2

reset namel totals of name2

Daily, weekly, and cumulative statistics N.QUEUE in the above preamble could be requested us-
ing qualified names as shown below:

accumulate
DMEANQ as the daily mean,
WMEANQ as the weekly mean and
MEANQ as the overall mean of N.QUEUE

Periodic events could then print the relevant statistics at daily and weekly intervals in simulation
time, resetting only the appropriate counters by using the qualifiers in the statements:

230

Discrete Simulation Concepts

reset the daily totals of N.QUEUE
reset the weekly totals of N.QUEUE

or
reset the daily and weekly totals of N.QUEUE

If areset statement does not specify one of the declared qualifying names, all counters associated
with the relevant variable are reinitialized. Where variables are used in histogram range specifica-
tions, they should be only altered followinreset statement, and before any subsequent refer-
ence to the monitored variable.

It should be noted that the compiler can only generate the necessary statistics-gathering logic in
those cases where values are referenced using their globally known names. If a variable is passed
to a routine as an argument, where it is referenced by another name, the appropriate actions cannot
be taken. Ifitis returned as a yielded argument, of course, the changes will be noted upon return
from the routine. An exception, however, is the case where an array base pointer is passed as an
argument. As such pointers effectively pass the array values by reference, the actual elements of a
monitored array may be referenced under a different name, that of the local argument of the called
routine. Such usage cannot be detected by the compiler and, hence, no statistics can be maintained
for these references.

A final note on statistics-gathering concerns the minimization of storage requirements for compu-
tations of statistical quantities. It may happen that the statistics of changes to a program variable is
required, but the actual value of the variable is not needed for any other purpose. Consider the fol-
lowing example:

preamble
temporary entities

every JOB belongs to a QUEUE,
has a DUE.DATE and an OVERRUN

tally AVG.LATE as the mean of OVERRUN
end

process JOB.STATS

for each JOB in QUEUE
let OVERRUN = DUE.DATE(JOB) - time.v

If the logic of the program does not require the valuOVERRU for any other purpose than to
compute the average, it is possible to perform tally =~ computations 0 OVERRU without its

231

SIMSCRIPT II.5 Programming Language

value being stored. This alternative provides the convenientally —andaccumulate
specifications without wasting entity storagesp by storinginnecessary information. Declare
OVERRU as i dummy variable in the preamble declaration:

define OVERRUN as a dummy variable

This declaration saves one location in eJOE entity created. Such savings, resulting fdummy
specifications, can be significant in models requiring a large number of statistical computations on
many entities.

Any preamble-defined variables and attributes can be decladummy, but these should only be
used fortally oraccumulate purposes.

5.6 Model Verification and Debugging

Even carefully prepared programs are rarely error-free. Errors in a program fall into two categories:
syntactic errors and logical errors. Errors in the syntax of SIMSCRIPT 1.5 programs are detected
and reported by the language compiler. Error and warning messages are displayed, referring, where
appropriate, to the program statement line where the error was detected, and usually identifying the
incorrect word or symbol. Such errors may then be corrected and the program resubmitted for com-
pilation. A listing of the error messages produced by the compiler, together with an explanatory
message for each, is contained in each SIMSCRIPT II.5 user's manual. The compiler also produces
a numbered listing of the statements within each program section compiled, including the preamble
section. Following this listing of each section is a cross-reference listing that names each global
and local variable, entity type, and subprogram referenced, specifying for each its mode, dimension-
ality, and the line numbers in which references appear. Variables used as implicit subscripts are
included in this cross-reference. Careful examination of the cross-reference can identify misspelled
variable names, which may otherwise by default be taken as declarations of new local variables,
references to undeclared functions, which may be taken as references to subscripted arrays, and oth-
er typographical errors in program preparation.

If syntax errors are detected within subprograms (but not within the preamble section), it is only
necessary to recompile those incorrect routines, preceding them with a copy of the preamble state-
ments as input to the compiler. This feature of separate routine compilation facilitates the prepara-
tion of large programs containing many routines.

Recall that some special routines may be generated by the compiler to perform such tasks as set
management, entity creation, and statistics gathering. If the preamble has not been altered, the re-
dundant regeneration of these routines may be suppressed by prefixing tlold to the pream-

ble definition. In addition, even the compiled listing of this preamble may be suppressed by titling

it very old preamble in the definition.

Alternatively, we should explain that certain statements and programming constructs in
SIMSCRIPT I1.5 are implemented by generating a number of additional SIMSCRIPT I1.5

232

Discrete Simulation Concepts

statements (unseen in the normal listing) which are then interpreted by the compiler. A special
compilation option may be specified that allows these statements, and any compiler-generated
routines, to be included in the program listing. It is also possible to obtain a listing of the object
code generated by the compiler. Although these listings are not normally of use, they can serve to
determine the precise actions specified and thus prove helpful in pinpointing the source of some
complex errors.

Eventually all routines in a program will have been compiled without error. These routines can be
submitted, with any required data, for execution. The SIMSCRIPT 1.5 user's manual for a specific
implementation should be consulted for details on the management of the object code modules pro-
duced by the compiler and their linking and execution. Errors in program logic may then become
apparent, either by the abnormal termination of the program or by the production of results that are
deemed incorrect.

The possible reasons for abnormal termination are many and varied. They may arise either from
error conditions detected by the operating system of the machine on which the system is implement-
ed or those detected by the SIMSCRIPT I1.5 system. In the first case, the action to be taken must
be determined by the operating system response to the error condition, which may be independent
of the SIMSCRIPT II.5 system.

When the SIMSCRIPT 1.5 system detects an error condition, it endeavors to supply meaningful
information that will help you to identify and correct the source of error. An error message is pro-
duced that describes the reason for termination. A traceback is also produced, which names the cur-
rently executing subprogram, usually identifying the line of program source text corresponding to
the error location, and lists any arguments and local variable values. This information is then listed
for each abprogram in the hierarchy of such subprograms, leading back to the program initiation

in themain routine.

The precise format of this traceback, and the options that may be selected to vary its format, are
implementation dependent. Consult the user's manual. In general, variables are listed by name and
mode, and their values interpreted in a meaningful way. A report on the status of any input/output
devices, the current contents of the future events set, and memory usage statistics are usually in-
cluded.

On completing the error traceback report, the SIMSCRIPT II.5 system attempts to call a routine
with the predefined nansnap.r . If you have included a routine of this name, it will be executed

at this point. This routine may include any valid SIMSCRIPT 1.5 statements and provides a mech-
anism by which a specially written routine may be added to augment the normal traceback output.
Snap.r may also be written to produce additional information on the status of a program, by listing
the contents of selected global variables. Examine the program status at the time of error, in con-
junction with an up-to-date program listing. This will often identify an error in program logic.

Many of the SIMSCRIPT II.5 implementations provide for comprehensive checking and potential
error detection: array subscript bound checking, invalid entity referencing, set membership and

233

SIMSCRIPT II.5 Programming Language

ownership checking, and so forth. These checks may usually be suppressed by selecting compila-
tion options for well-tested programs, at some gain in execution speed. Unless performance is crit-
ically important, however, it may prove worthwhile to retain these checks. Rarely can a complex
program claim to be fully tested, and this checking proves most valuable in the early identification
of errors.

Should the ceback and error reporting prove inadequate to determine the error source, or indeed,
should the error be manifest through incorrect program output, rather than by any error termination
action, there are several programming aids that can help to track the progress of computation.

The most common error situation is that data values are known before one stage of the processing,
but the results of the data manipulation appear incorrect at a later stage. Simulation modelling pro-
vides a particularly difficult case, where the ordering of many interacting computational processes
may not be clearly determined. In such circumstances, it is usually helpful to rerun the program and
incorporate a number of additional display actions which more closely follow the changing values
of the key variables. Thus, the section of program logic in error may be isolated. SIMSCRIPT 1.5
provides a number of ways by which additional display output may be obtained with minimal alter-
ation to the program text.

The most direct way is to include extra display statements at chosen significant points within the
logic. The use dlist statements minimizes the programming required to obtain clearly labeled
output. The traceback output may also be requested at any point, without any error condition, by
including the statements:

trace

or
trace using device

The use of left- and right-hand monitoring routines enables all references to selected variables to be
noted. Their values may be checked, modified if necessary, and any required display output gen-
erated. By including a single preamble declaration, together with the monitoring routines, at recom-
pilation, almost any variable, with some restrictions, may be selected for monitoring, requiring no
change to its referencing within the program. These changes may be easily reversed when moni-
toring is no longer required.

Two checking statementbefore andafter , which may be included in the preamble, may be
used to monitor a number of the more complex operations performed in SIMSCRIPT I1.5. These
statements name programmer-supplied routines, which are to bebefore orafter the spec-

ified operations. These operationsaftercreating orbefore destroying named entities,
andfiing in orremoving from named sets. As the future events set is of special importance in
simulation modelling, two special forms of these statements, using the scheduling or
canceling , apply to certain of the operations on this set.

234

Discrete Simulation Concepts

To usebefore orafter tracing, routines having the same number of input arguments as are trans-
mitted for the operation being monitored are written and included with the program. These argu-
ments will be used to pass entity pointers or index values, and any required subscripts, to the user-
supplied checking routines.

Suppose, for example, during the validation of a simulation model, it is desired to display the sim-
ulation times at which arSHIP entities are filed in BERTH.SET. The statements to do this might
be:

Preamble:

permanent entities
every HARBOR may own a BERTH.SET

temporary entities
every SHIP has a TONNAGE
and may belong to a BERTH.SET

before filing in BERTH.SET call CHECK

Routine:

routine CHECK given SHIP, SUB1
define SHIP and SUBL1 as integer variables
list time.v, attributes of SHIP, SUB1
return

end

As shown, the routine must be written to accept the correct number of set SUbBBERTH.SET,

here, is one-dimensional and the dimension identifies the o\HARBO. As in the case of mon-

itored variables, these calls may be added to or removed from a program, with minimal effort, and
require no modification to any existing program routines.

Table 5-10 lists the variations of before andafter statements, with the arguments passed to
the routines called.

235

SIMSCRIPT II.5 Programming Language

Table 5-10. Before and After Arguments

Operation Before After
creating an entity (not allowed) Entity identifier
destroying an entity Entity identifier (not allowed)
scheduling an event Entity identifier, time Entity identifier, time
canceling an event Entity identifier Entity identifier
filing in a set Entity identifier, set subscripts | Entity identifier, set subscripts
removing from a set Entity identifier, set subscripts | Entity identifier, set subscripts
Note Infile before andfile after statements, the identifier of the second named entity ig not
passed as an argument.

In some implementations the entity identifier passed remove first orremovelast hasa
zero value.

Removals from the events set by the timing routine may not be monitored by the above statements,
as these are not done in the usual way. SIMSCRIPT II.5 does provide a mechanism by which, under
program control, the activation of events or processes may be monitored. A subprogram variable,
between.v , may be assigned the name of a routine which will then be called immediately before
each new activation of a process or event routine. Atthe time tbetween.v routine is called,

the simulation timetime.v , will already have advanced to time.a attribute of the selected

event or process notice, the global varieventv has been updated to the event or process pri-

ority class, and the global variable of the same name as the event or process type holds the pointer
to the event or process notice, allowing the attributes to be referenced. This event tracing may be
inhibited at any time by resettilbetween.v to zero.

5.7 Synchronous Variables

Recall that it is possible for two or more process interactions or events to be scheduled for precisely
the same instant in simulation time. The order of activation of the associated routines is then deter-
mined from the class or priority of each, while the valutime.v remains constant. This oper-

ation, however, may not prove satisfactory if two or more of these routines must access the same
variable. Ifitis modified by the first, this modified value is the one accessed by timel s&hat

is required is a mechanism by which such values appear unchanged until all events at an instant have
been completed, and the simulation time has been advanced. Such a mechanism may be pro-
grammed, using tt between.v feature. In the following example, we assume that the values
which may be accessed by "parallel interactions" are elements of a one-dimensional array. A memo
entity is created, through left-hand monitoring of these values (discussed in pai6.1(), for

each assignment to any value. A routine called throucbetween.v variable updates the values
appropriately, using an equivalenced name to inhibit monitoring, at the first change in simulation

236

Discrete Simulation Concepts

time. A local saved variable is used in this routine to record the vitime.v , allowing an ad-
vance in time to be detected.

preamble
the system owns a SYNCH.SET
and has a (XARR, YARR)
define XARR as a 1-dimensional array monitored on the left
define YARR as a 1-dimensional array
temporary entities
every MEMO has a VALUE and an INDEX
and belongs to the SYNCH.SET
define INDEX as an integer variable
end

main
let between.v = 'SYNCH.RTN'

start simulation
end

left routine XARR(SUBSCRIPT)
define SUBSCRIPT as an integer variable
enter with ASG.VAL
create a MEMO
let INDEX(MEMO) = SUBSCRIPT
let VALUE(MEMO) = ASG.VAL
file MEMO in SYNCH.SET
return
end

routine SYNCH.RTN
define SAV.TIME as a saved variable
if SAV.TIME ne time.v
let SAV.TIME = time.v
for each MEMO in SYNCH.SET
do
remove MEMO from SYNCH.SET
let YARR(INDEX(MEMO)) = ASG.VAL(MEMO)
destroy MEMO
loop
always
return
end

A statement such det XARR(1) = XARR(1) +1 does not appear to have any effect until sim-
ulation time advances. This example merely demonstrates the principle. It may be extended as re-
quired.

237

SIMSCRIPT II.5 Programming Language

5.8 Simulation Example

The example described in this paragraph is designed to illustrate the SIMSCRIPT I1.5 entity-at-
tribute-set structure in a natural problem setting. For a complete development of simulation con-
cepts and modelling techniques, refeBuilding Simulation Models with SIMSCRIPT , by E.

C. Russell.

5.8.1 A Sample Model

To illustrate the naturalness, readability, and power of SIMSCRIPT II.5, we shall now model a sim-
ple job shop that operates as follows.

There are any number of machines clustered in groups called production centers. Each center has
different machines, but within a center, machines are identical. The number of centers and the num-
ber of machines within centers will not change during a simulation run.

Jobs are orders that come into the shop from outside at times provided as input data. Each job con-
sists of a sequence of tasks to be performed by specified machines. The routing of jobs through the
shop and the processing time at each machine, are specified as input data.

After a job is processed by one machine group, it is routed to the next required production center.
It is put into process at once if there is a machine available. Otherwise, it is put into the queue of
jobs waiting for a machine in that center.

The purpose of the study is to evaluate the performance of the shop for a particular workload, mea-
suring the delays experienced by jobs at each machine group, and overall delays in the shop. Ex-
periments which might typically be conducted with such a model include: evaluating the impact of
reconfiguring the machines in the shop, deciding whether the system could handle additional job
types, considering whether reordering the tasks for certain jobs would improve turnaround, and
studying the effect of different workloads.

238

Discrete Simulation Concepts

Production Centers

Index 1 2 3 4 5 6 7 8

| | | | |] | | [[
nUmoer |y 3 2 1 1 1 1 2
machines| || ||| [[J[_]|
Type IPress N Saw | LatheII Mill | IShaperI IGrinderI IWelderI | Drill
First Job

]
0 Arrival Time

Routing set of
tasks for this
job

0.5 1.0 0.5 2.0 1.0 Task Mean Time

3 Task Production
| [| [| | | Center Index
Press Saw Shaper Welder Lathe Machine Type

The machines are modeled as a single resource comprising several production centers.
Each center has a number of units representing its number of identical machines. The
sequence of tasks for each job is represented as a set of temporary entities called the

routing set.

239

SIMSCRIPT II.5 Programming Language

1 preamble

2 normally mode is integer

3

4 resources

5 every PRODUCTION.CENTER has a MACHINE.TYPE
6 define MACHINE.TYPE as a text variable

7

8 processes

9 every JOB has an ARRIVAL.TIME

10 and owns a ROUTING.SET

11 define ARRIVAL.TIME as a real variable

12

13 temporary entities

14 every task has

15 a TASK.DOER

16 a TASK.DURATION

17 and belongs to a ROUTING.SET

18 define TASK.DURATION as a real variable

19 define TASK.DOER as an integer variable

20

21 define ROUTING.SET as a fifo set

22

23 external events are JOBINIT and ANALYSIS

24 external event unit is 1

25

26 define CYCLE.TIME as a real variable

27

28 accumulate AVG.QUEUE.LENGTH as the average
29 of N.Q.PRODUCTION.CENTER
30

31 tally AVG.CYCLE.TIME as the average,

32 and NO.OF.JOBS.COMPLETED as the number of CYCLE.TIME
33

34 define LAST.REPORT.DATE as a real variable

35

36 end

The Preamble contains the destination of the objects involved in the simulation — its processes and

resources, its entities, attributes, and sets, and the required statistics.
Jobs passing through the shop are modelled bJOE process.

The route each job follows through the shop is defined by an ordered ITASKs called the
ROUTING.SE'. EachTASkis a temporary entity with attributes defining the required mactDOEIR
and processing tim«DURATIOI).

Desired statistics are specified non-procedurally, \accumulate andtally statements

240

Discrete Simulation Concepts

1 main

2 use 1 for input

3 read N.PRODUCTION.CENTER

4

5 create every PRODUCTION.CENTER

6

7 for each PRODUCTION.CENTER do

8 read MACHINE.TYPE(PRODUCTION.CENTER)
9 U.PRODUCTION.CENTER(PRODUCTION.CENTER)
10 loop

11

12 start simulation

13

14 stop

15 end

This routine sets up the production center data structure. The number of production centers is read and
the centers are created. The type and number of machines for each center is then read until all produc-
tion centers have been defined.

Simulation then begins with the first job arrival JOB.INIT .

Number of production cente{8

Tvoe and numbeCPRESS 1 SAW 3 LATHE 2 MLLL 1
of each machinefCSHAPER 1 GRINDER 1 WELDER 1 DRILL 2
O

Data read b MAIN

241

SIMSCRIPT II.5 Programming Language

1 event JOBINIT

2 define MACHINE.NAME as a text variable

3

4 create A JOB

5 let ARRIVAL.TIME.. = TIME.V

6

7 read MACHINE.NAME

8 until MACHINE.NAME = “$" DO

9 create a TASK

10 read TASK.DURATION..

11

12 for each PRODUCTION.CENTER

13 with machine.type(production.center) eq machine.name
14 find the first case

15 if found

16 let TASK.DOER(TASK) = PRODCUTION.CENTER
17 file the task in the ROUTING.SET

18 else

19 write MACHINE.NAME as /, “NO FACILITIES FOR :", T *
20 destroy the TASK

21 always

22 read MACHINE.NAME

23 loop

24

25 activate this JOB now

26

27 end

This event sets up the job data structure.

The first job arrives at time 0. The job’s required machines and associated processing times are read.
As the machine names are read, they are validated against the production center names. The vali-
dated task is then filed into the job’s routing set.

TheJOE process is activated.

First job arrives { JOBINIT 0000
at time 0.

Routing and processi{PRESS 0.5 SAW 1.0 SHAPER 0.5 WELDER 2.0 LATHE 1.0 $*
times for this job

FJOBINIT 0000
0 SAW 1.0 LATHE 400 GRINDER 0.5 SHAPER 2.0%*
Second and subsequenCJOBINIT 0030
iobs with arrival C DRILL 1. SHAPER 1.00 LATHE 2.0 SHAPER20 MILL1.00%*
times, routina and CJOBINIT 0230
processing times. 0 SAW 1.0 WELDER 1.00 DRILL 0.5 LATHE 1.5 MILL 2.00 $

*

Data read byJOBINIT

242

Discrete Simulation Concepts

1 process JOB

2 define TASK, REQUIRED as integer variables

3

4 until ROUTING.SET is empty

5 do

6 remove the first TASK from the ROUTING.SET

7 request 1 units of PRODUCTION.CENTER(TASK.DOER(TASK))
8 work TASK.DURATION.. HOURS

9 relinquish 1 units of PRODCUTION.CENTER(TASK.DOER(TASK))
10 destroy the TASK

11 loop

12

13 let CYCLE.TIME = TIME.V - ARRIVAL.TIME

14

15 end

This process models the complete life cycle of a job through the shop.

UNTIL
REMOVE
REQUEST

WORK
RELINQUISH
DESTROY
LOOP

Processing of thiJOE is to continue until it ROUTING.SET is empty.
The firstTASKin the set is removed for processing.
A MACHINI of type indicated bTASK.DOEF is requested.

Execution of the requestirJOE process is suspended, if necessary, until a
MACHINL becomes available. While a partic. JOB process is suspended,
other processes, including other instance JOE process, will run using other
machines.

As no priorities are specified, a first-in-first-out discipline is provided whenever
more than one suspended process is waiting for the same type of resource.

Work on thisJOE continues only when iMACHINI becomes available.
The JOE delays itself for a set time to model actual processing MACHINI:
The MACHINEis made available for other jobs.

Since this operation is complete, TASk entity is destroyed.

Mark end ¢ UNTIL loop.

Numeric results are gathered “on the fly” laccumulate andtally — statements contained in
the Preamble. The final computation, is the total time, including delays, that it took to process

this job.

243

SIMSCRIPT II.5 Programming Language

1 event ANALYSIS

2 print 1 line thus
EXAMPLE JOB SHOP SIMULATION

3

4 skip 2 output lines

5 print 1 line with LAST.REPORT.DATE * HOURS.V,

6 TIME.V * HOURS.V thus
REPORTING PERIOD ¥ * HRS. TO **** HRS.

7

8 skip 1 output line

9 print 2 lines with NO.OF.JOBS.COMPLETED,

10 AVG.CYCLE.TIME * HOURS.V thus
JOBS COMPLETED DURING PERIOD : il
AVERAGE COMPLETION TIME : *** HRS.

11

12 call DETAILED.REPORT

13 let LAST.REPORT.DATE = TIME.V

14 reset totals of CYCLE.TIME

15 for each PRODUCTION.CENTER

16 reset totals of N.Q.PRODUCTION.CENTER
17

18 end

This event is initiated at times sjfead in the input data shown below.

It prints the report heading, and three lines of statistics as shown on the sample report. Analysis
then callsDETAILED REPOR’, for completion of the report. The last few lines reset the statistics
for the next reporting time.

Two reaquests for " ANALYSIS
analvsis and reports. NANALYSIS
One reauest at 8 hours 0
and the other at 1 day.

O
[@)e.]
oo

Format of time is
days hours minutes (d h m)

Data read byANALYSIS

244

Discrete Simulation Concepts

1 routine DETAILED.REPORT
2 define GRAND.AVERAGE as a real variable
3 skip 1 output line
4 print 1 line thus

AVERAGE NUMBER OF JOBS WAITING FOR EACH PRODUCTION CENTER :
5
6 SKIP 1 OUTPUT LINE
7 PRINT 1 LINE THUS

MACHINE CENTER AVERAGE QUEUE
8
9 skip 1 output line
10 for each PRODUCTION.CENTER
11 do
12 print 1 line with MACHINE.TYPE.., AVG.QUEUE.LENGTH
13 thus
*kkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkx *%* . *%

14
15 compute GRAND.AVERAGE asthe average of AVG.QUEUE.LENGTH
16 loop
17 skip 1 output line
18 print 1 line with GRAND.AVERAGE thus

OVERALL AVERAGE QUEUE LENGTH : ok ok
19
20 end

This routine is called by eve ANALYSIS to output the table of machine groups and queue
lengths shown on the sample report below.

EXAMPLE JOB SHOP SIMULATION

REPORTING PERIOD 0.0 HRS. TO 8.0 HRS.
JOBS COMPLETED DURING PERIOD : 2
AVERAGE COMPLETION TIME : 6.50 HRS.
AVERAGE NUMBER OF JOBS WAITING FOR EACH PRODUCTION CENTER:
MACHINE CENTER AVERAGE QUEUE
PRESS 0.0
SAW 0.0
LATHE 0.0
MILL 0.0
SHAPER .25
GRINDER 0.0
WELDER .19
DRILL 0.0
OVERALL AVERAGE QUEUE LENGTH : .05

Sample report
Report requested after 8 hours of simulation

245

SIMSCRIPT II.5 Programming Language

There are many other ways to formulate the job shop model. A more realistic approach can be
found in the bool Building Simulation Models with SIMSCRIPT . In that version, there are any
number of machines clustered in groups. Each group has different machines but within a group,
machines are identical. Instead of having a routing associated with each job that comes into the
shop, there are a number of job prototypes. Each job prototype consists of a sequence of tasks. Each
task comprising the prototype has a specified machine group and mean task completion time. Task
completion times are sampled from exponential distributions using the given mean.

Each job arrives according to a Poisson process, at which time its job prototype is randomly selected
according to a statistical distribution provided as input data. Each job is routed through the se-
guence of machine groups needed to do its selected prototype's tasks.

The output report from that simulation is as follows.

246

Discrete Simulation Concepts

EXAMPLEJOB SHOP SIMULATION

THE JOB TYPE DESCRIPTIONS
JOB NAME FIRST
TASK SEQUENCE
MACHINE
CASTING_UNITS
PLANES
LATHES

MEAN TIME
2.08
.58
33

POLISHING MACHINES 1.00

JOB NAME SECOND
TASK SEQUENCE
MACHINE
SHAPERS
DRILL_PRESSES
LATHES
JOB NAME THIRD
TASK SEQUENCE
MACHINE
CASTING_UNITS
SHAPERS
DRILL_PRESSES
PLANES

MEAN TIME
1.75
1.50
1.08

MEAN TIME
3.92
4.17

.83
.50

POLISHING_MACHINES 42

THE JOBS WERE DISTRIBUTED AS FOLLOWS:

NAME PROBABILITY

FIRST 241

SECOND .681

THIRD 1.000
RESULTS AFTER

JOB TYPE NO. COMPLETED

FIRST 51

SECOND 94

THIRD 47

DEPARTMENT INFORMATION

40.01 HOURS OF CONTINUOUS OPERATION

AVERAGE DELAY
(HOURS)
18
32
18

NAME NO. OF MACHINES UTILIZATION AVG. NO. OF JOBS MAXIMUM
IN BACKLOG BACKLOG
CASTING UNITS 14 57 .01 2
LATHES 5 .60 47 6
PLANES 4 .38 .04 2
DRILL_PRESSES 8 .59 .39 8
SHAPERS 16 73 1.24 13
POLISHING_MACHINES 4 44 .06 2

Sample Report
Job shop model from “Building Simulation Models with SIMSCRIPT 1.5

247

SIMSCRIPT II.5 Programming Language

248

6. Advanced Topics

6.1 Introduction

This chapter describes a variety of SIMSCRIPT II.5 features which need not concern the first-time
user, but which an experienced programmer may find of interest.

6.2 Programmer-Defined Array Structures: Pointer Variables

We stated previously that the allocation of storage space to an array is determined from the number
of elements, or in the case of multidimensional arrays, from the product of the array dimension
bounds. Although true in principle, this statement is a simplification. The storage allocation for the
elements of a one-dimensional array, for example, is determined from both the number of elements
and the declared mode of the array. Associated with this storage allocation is an array base pointer,
which holds the address in the computer memory of the allocated storage space. In the case of a
one-dimensional array nam&gdthe associated base pointer is naigyl . Recall this usage in
thereserve statement. The function of theserve statement is to allocate computer storage to

an array and assign the internal location of this storage as the value of the base pointer. An array
base pointer is internally represented in a way similar iateger variable. It can be manipu-

lated as an integer variable. However, this is generally unnecessary and should be done with great
care and full appreciation of the internal array representation.

A one-dimensional array, allocated storage by the statement:
reserve X(*) as 10

is structured as a contiguous group of memory locations, pointed to by the array base pointer, as
shown in figure 6-1. The base pointer itself is not contiguous with the array storage, butis allocated
storage in the same way asiasteger variable.

A two-dimensional array was introduced conceptually as an array of one-dimensional arrays. In
fact, this is precisely how a two-dimensional array is internally represented. The base pointer of a
two-dimensional array points not directly to the doubly subscripted variable elements, but to a one-
dimensional array of pointers. Each element of this pointer array serves as a base pointer for the
one-dimensional array representing an entire row of the two-dimensional array. Note that the base
pointer itself and the array of row pointers are all pointer type variables, and therefore stored in an
integer -like form. The representation of the fully subscripted variable elements depends on the
declared mode of the array. A two-dimensional akayhich has been allocated storage by the
statement:

reserve X(*,*) as 5 by 3

is stored as shown in figure 6-2.

249

ELEMENTS
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)
X(8)
X(9)

X(10)

BASE POINTER
| X() |

0 Y

Figure 6-1. One-dimensional Array X with Its Base Pointer

A three-dimensional array is structured similarly. The base pointer points to an array of row point-
ers, each of which points to an array of column pointers, each of which, in turn, points to an array
of element variables. A three-dimensional ¢ X , which has been allocated storage by the state-
ment:

reserve X(*,*,*) as 5 by 3 by 2

is stored as shown in figure 6-3. Every element reference with at least one asterisk in its subscript
listis a pointer. Every fully subscripted element reference, that is, with no asterisk occupying any

subscript position, is a reference to a single element variable. In internally evaluating an element
reference, pointers are cascaded from one dimension to another, using subscripts from left to right.

ELEMENTS
X(1,1)
X(1,2)
X(1,3)

X(2,1)
X(2,2)
X(2,3)

ROW POINTERS
X(1,%)
X(2,%)
X(3,%)
X(4,%)
X(5,%)

BASE POINTER
| X(*‘*)

X(3,1)
X(3,2)
X(3,3)

\J
Ooooo

RN

OoOoo Oooo ooo ooo oo

X(4,1)
X(4,2)
X(4,3)

X(5,1)
X(5,2)
X(5,3)

Figure 6-2. Base Pointers in a Two-Dimensional Array

250

Advanced Topics

An appreciation of these internal structures is not essential to the use of subscripted variables. Ar-
rays are allocated storage usingreserve statement, and array elements (subscripted variables)
are referenced by previously described methods. Pointer words need not be mentioned explicitly.
Also, the manner in which rows and columns of arrays are linked need not be taken into consider-
ation.

An understanding of array representation, however, together with the ability to manipulate pointers
as variables, permits the construction of arbitrary data structures suited to the specific requirements
of different problems. Such pointer manipulation may be accomplished using the asterisk notation
described above in SIMSCRIPT 1.5 statements.

COLUMN ELEMENTS
POINTER
X(1.1.%)

X(1.2.*)
X(1.3%)

X(1.1.1)
X(1.1.2)

|

X(1.2.1)
X(1.2.2)

X(2.1.*)
X(2.2.*)
X(2.3.%)

X(1.31)
X(1.3.2)

ROW PONTER

X(1.**)
X(2.**)
X(3.*%)
X(4.**)
X(5.*%)

X(3.1.%)

X(3.2.*)
X(3.3.%)
X(4,1.*)
X(4.2.*)
X(4,3.%)

/!

I A e

X(2.1.1)
x(2,1.2)

BASE PONTER

X(2.2.1)
X(2.2.2)

NN

ooood
Ooo0o Oooo ooo oOoo gooo

X(2.3.1)
X(2.3.2)

X(5,1.*)
X(5.2.*)
X(5.3.%)

X(3.1.1)
X(3.1.2)

X(3.2.1)
X(3.2.2)

X(3.3.1)
X(3.3.2)

X(4.1.1)
X(4.1.2)

X(4.2.1)
X(4.2.2)

X(4.3.1)
X(4.3.2)

X(5.1.1)
X(5.1.2)

X(5.2.1)
X(5.2.2)

X(5.3.1)
X(5.,3.2)

Figure 6-3. Base Pointers in a Three-Dimensional Array

251

SIMSCRIPT II.5 Programming Language

The utility and application of this feature are best described in a series of examples.

1. It can be used to construct a "ragged table," a two-dimensional array with a different num-
ber of elements in each row. The construction follows:

(a) Setup a base pointer and an array of row pointers:
reserve TABLE(*,*) as 5 by *

This statement assigns an array of five elements, each of which contains an unassigned pointer, to
the base pointeTABLE(*,*) . The asterisk in the array assignment cli5 by * indicates that

only pointers, not data values, are to be stored. After execution of this statement, the structure
shown in figure 6-4 exists in memory. The base pointer points to the array of row pointers. The
row pointers do not yet point to anything because arrays have not been assigned to them.

ROW POINTERS

O TABLE(LY)

BASE POINTER O TABLE(2,

| TABLE(") | > 0 TABLE(3.Y)
O TABLE(4,%)

O TABLE(5,")

Figure 6-4. Memory Structure After Reserve Statement

(b) Assign data arrays to each of the row pointers. A dimension must be given for each
row, by reading a data value for each row. For example:

forl=1to5,
do

read D

reserve TABLE(l,*) as D
loop

Thereserve statement assigns an array of D elements to each of the row pTABLE(l,*)
as | varies from 1 to 5. If the valuesDread are4, 2,6, 1 , and3, respectively, the final ragged
table structure appears as shown in figure 6-5.

The ragged arreTABLE(1,J) may be used in the same way as any rectangular array, with the only
restriction that care must be taken not to reference a nonexistent array element, as, for example,
TABLE(4,3) in figure 6-5.

2. The pointer mechanism may be used to make the processing of multiple-dimensioned ar-
rays more efficient, eliminating the recomputation of unchanging subscripts when process-
ing elements of a single dimension in some regular fashion. For example, the program
segment described in (a) below can be made more efficient by rewriting it as shown in (b).

252

Advanced Topics

(a) for1=1to 10, read CUBE(J+7,K+L,I)
(b) let DUMMY (*) = CUBE(J+7,K+L,*)

for I=1 to 10, read DUMMY(I)

whereDUMM has been defined as a one-dimensional array, of the same nCUBIE, but has not
been reserved. The revised statement eliminates the need for recomputing the subCUBEs of
not affected by thfor loop every time a new elemengiscessed. ittle additional memory space

is taken, for the arraDUMM never has more space allocated than is needed for its base pointer.

DATA ELEMENTS
TABLE(1,1)
TABLE(1,2)
TABLE(1,3)
TABLE(1,4)

TABLE(2,1)
TABLE(2.2)

ROW POINTERS
TABLE(1,%)
TABLE(2,%)
TABLE(3%)
TABLE(4,%)
TABLE(5,%)

TABLE(3,1)
TABLE(3.2)
TABLE(3,3)
TABLE(3,4)
TABLE(3,5)
TABLE(3,6)

BASE POINTER

[TABLE(**)

|/
ooOooaod

| TABLE(4,1)

7NN

OoOoOo — Oooooooooo oogod

TABLE(5,1)
TABLE(5.2)
TABLE(5,3)

Figure 6-5. Memory Structure After Assignment of Data Arrays to Row Pointers

3. It has already been stated that once an array has been reserved, it cannot be reserved
again. The SIMSCRIPT II.5 system ignores instructions to reserve an array when the
pointer to the array already has a value. When a program is first initialized, all array
pointers are zero, making the freserve possible. After this, the presence of a non-
zero value in a pointer variable dictates whether or not a reserve will be executed. This
makes it possible to use a reserve statement more than once to reserve multiple instanc-
es of an array by saving the value of the array base pointer and then resetting it to zero
before the second and subsequent reserves. Any specific instance of the array may be
accessed by restoring the value of the appropriate base pointer. The example below il-
lustrates how such a mechanism can be employed:

A program is to be developed to store genealogical information in the form of a
family tree. Such a tree has an individual at its apex, his parents at the next level,

his parents' parents below that, and so on. Figure 6-6 illustrates a family tree con-
taining four levels of genealogical information.

This information can be stored in a rectangular array, as depicted in figure 6-7.
While simple enough to do, there is a waste of computer meraoaybe of all the
empty cells.

253

SIMSCRIPT II.5 Programming Language

A more memory-conserving storage scheme is shown in figure 6-8. No more
computer words are allocated than there are data to store. Our task is to show how
this scheme can be programmed and used with the technique of array pointers.

INDIVIDUAL ..o | 1
PARENTS ..o 2 3
GRANDPARENTS... 4 5 6 7
GREAT-

CRANDPARENTS | 8 9 | |10 |11] |12 | |13 14 | | 15

Figure 6-6. Family Tree

1

2 3

3 5 6 7

4 10 11 12 13 14 15
Figure 6-7. Family Tree Stored in a Rectangular Array

1

2

4 6 7

8 10 11 12 13 14 15

Figure 6-8. Family Tree Stored in a Ragged Table

In the following program, the data of each level are stored in anTREE. At level one TREE has
one element; at level two, two elements; at level three, four elements; ...; andN, 2N-1 el-
ements. The array pointers for N arrays are stored in a list calLEVEL, which hasN elements,

254

Advanced Topics

one for each level of the genealogical tree. Assume that the number of levels in the tree and the
names (coded as integer numbers) of the family members arranged in proper order on data records
are given. A tree with the family data suitably arranged is first constructed using the following pro-
gram:

preamble
normally mode is integer
define LEVEL and TREE as 1-dimensional arrays
end
read N " Number of levels
reserve LEVEL(*) as N
forl=1to N,
do
reserve TREE(*) as 2**(I-1)
read TREE
let LEVEL(I) = TREE(*)
let TREE(*) =0
loop
stop
end

ForN =4 , the memory structure at the end of program execution looks as shown in figure 6-9. To
print out a person's Kth-level ancestors, write:

read K
let TREE(*) = LEVEL(K)
for | =1 to 2**(K-1)
print 1 line with TREE(I) as follows
Ancestor is **

To pick out specific ancestors, the tree can be searched until a matching code is found:

read CODE
forl=1to N,
do

let TREE(*) = LEVEL(l)
for J =1 to 2**(I-1)
do
if TREE(J) equals CODE
print 1 line with CODE, J and | as follows
Ancestor ** found in position * of level *
stop
otherwise
loop
loop
print 1 line with CODE as follows
UNABLE TO FIND AN ANCESTOR WITH THE CODE **
stop
end

255

SIMSCRIPT II.5 Programming Language

256

This example resembles example (1) above, but the "ragged table" structure is explicitly imple-
mented using one-dimensional arrays to further illustrate the way in which pointers may be manip-
ulated.

An understanding of the use of pointer variables, then, enhances a programmer's ability to construct
and use data structures. There are many potential applications: For example, rows of matrices can
be interchanged by simply changing pointer values. Large matrices with many identical rows can
be compressed by arranging several pointers to point to the same array row.

LEVEL TREE
1
| 1
2 | 2 | 3
3 —— | 4| 5| 6|7
4
———— | 8 | 9 (10| 11|12 |13 (14|15

Figure 6-9. Memory Structure for Family Tree, N =4

It may now be appreciated that reserve statement may be restated as:
reserve pointer list as array description

where a pointer list consists of a list of array or array row base pointers, having at least one asterisk
in their subscript list, and an array description describes the size and content of the array or arrays
being reserved and pointed to. If an array description does not contain a notational asterisk, (i.e.,
the phrasby * is not used), an array of data elements is reserved. If an array description contains

a notational asterisk, the asterisk indicates that pointer words are being reserved and that subsequent
reserve statements will be used to allocate data arrays to these words. It is only meaningful to
have a single notational asterisk in an array description, as this is sufficient to indicate that pointers,
not data, are being allocated at this level of the array dimensionality. This asterisk must follow any
constants and expressions that define the dimensions of previous subscript positions. The following
reserve statements illustrate these concepts:

reserve ARRAY(*,*) as 5 by 7
(Allocates a 5 by 7 data array.)

reserve ARRAY (*,*) as 6 by *
(Allocates six pointer variables.)

Advanced Topics

reserve ARRAY(*) as 6 by *
(Similar to above.ARRAY(**) is understood.)

reserve ARRAY(1,*) as 12
(Allocates twelve data elements to a pointer variable.)

reserve X(*),Y(*) and Z(*) as N, TABLE(J,*) as N+8

(Recall that several pointers can be assigned storage space of the same dimension and function
(pointers or data), and that several array reservations can be made in tlreserve state-

ment. Each pointer is, of course, assigned a separate block of storage.)

As shown in the fourth example above, a base pointer can be wriX(*) regardless of the de-
clared dimensionality of the array. For instancX is defined as three-dimensiorX(*) is inter-
preted aX(*,**) . Although convenient, this does little to elucidate the logic of the operation.
In general, it is recommended that the full notation be used.

6.3 Still More on Changing the Flow of Computation

A variety of methods for directing the flow of control during program execution have already been
presented. Additional power to direct the control flow is provided by allowing labels to be sub-
scripted. A label name is subscripted in the same way as a variable, that is, by suffixing the label
with a subscript expression enclosed in parentheses. Although labels used in this way appear sim-
ilar to subscripted variables, there are some differences. The number of subscripts allowed on a la-
bel name is limited to one. reserve statement is not used with subscripted labels; rather, labels
carrying specific integer subscript values are defined in place, in the same way as unsubscripted la-
bels. If any occurrence of a label is subscripted, all references to this label name must be subscript-
ed. Although all subscripted labels must be defined with positive integer constants in their subscript
positions, it is unnecessary for the subscripts to start with 1, or for them to be consecutive. Thus,
LABEL(4) can be defined without havirLABEL(1), LABEL(2) , orLABEL(3) appear in the
program. Control, however, should be transferred only to subscripted labels that have been defined.
The general form of a subscripted ltgoto statement is:

go to label(arithmetic expression)

As in other forms of thgo to statement, the worto is optional. When a subscrip go to

statement is executed, control is transferred to the statement prefixed by the label name subscripted
by theinteger value of the expression intgoto statement. If no label has been defined with

this subscript value, an undefined transfer will occur, usually terminating execution with an error
message. Thus, care must be exercised when using this statement. For example, in a program con-
taining the subscripted lab¢A(1), A(2) , andA(3) , the programmer must ensure that the state-
mentgo to A(l) is not executed when the valuel isno 1,2 or3. The following statements,
emulating the functions of a simple calculator, demonstrate the use of subscripted labels:

257

SIMSCRIPT II.5 Programming Language

define OPCODE as an integer variable
read OPERAND1, OPERAND2, OPCODE
go to OP.LABEL(OPCODE)

'OP.LABEL(1)' let RESULT = OPERAND1 + OPERAND2
go to PRINT

'OP.LABEL(2)' let RESULT = OPERAND1 - OPERAND2
go to PRINT

'OP.LABEL(3)" let RESULT = OPERAND1 * OPERAND2
go to PRINT

'OP.LABEL(4)' let RESULT = OPERAND1 / OPERAND2
go to PRINT

'PRINT' print 1 line with RESULT thus
RESULT IS *******.******

Theread statement accepts two numeric operands and an integer value in the range 1 to 4 indicat-
ing the operations addition, subtraction, multiplication, and division. This integer code is used as a
label subscript to select the appropriate transfer. The maximum subscript value allowed is arbitrari-
ly limited to 3000. As an internal table (dimensioned by the largest subscript value used) must be
generated, the use of widely ranging subscripts can lead to inefficiencies.

When the number of possible transfers is small, and the indexing values can be chosen to be con-
tiguous from 1, an alternative construct may be useful. The possible transfer labels may be listed,
in order, within ggo to statement. llabell, label2, label3, ..., labeln represent
statement labels, arE represents an arithmetic expression, a statement of the form:

go to labell or label2 or ... or labeln per E

evaluatese (rounding if it isreal valued) and transfers program controlabell if E=1, to
label2 if E=2, ..., tolabeln if E=n. That is, control is transferred to the label in the first label

position, or the second label position, or tif! label position, according to the computed value of

the expressioE. Again, illegal transfers, whek lies outside the rancl to n, cause abnormal
program termination in most SIMSCRIPT I1.5 implementations. Any label names defined within
the program may be included in the list, and any name may be repeated in more than one position.
The label names in the list must be separated by theor , or by a comma. The woto is op-

tional. Typical computegoto statements are:

go to ACCOUNT.ONE or ACCOUNT.TWO per CUSTOMER
go to READ.AGAIN, WINDUP, CONTINUE or HALT per
INSTRUCTION

Two or more distinct label names may be used to identify the same statement. They are called
equivalent labels. The use of equivalent labels, together with the corgoto statement, may

be useful during program development, when the logical paths in the program have been identified,
but not all segments have been fully coded. goto statement may list all the segment labels.

A number of these may reference the same statement. The use of a cgo to is shown in

the following example, which is an alternative to the previous example. It can be seen that several

258

Advanced Topics

additional functions are planned, but not yet developed. The code for these may be added in the
appropriate places viibut modifying thegoto statement.

go to ADD,SUB,MULT,DIV,EXP,SIN,COS,TAN,LOG per OPCODE

'ADD' let RESULT = OPERAND1 + OPERAND2
go to PRINT

'SUB' let RESULT = OPERANDL1 - OPERAND2
go to PRINT

'MULT" let RESULT = OPERAND1 * OPERAND2
go to PRINT

'DIV' let RESULT = OPERAND1 / OPERAND2
go to PRINT

'PRINT' print 1 line with RESULT thus
RESULT IS ***-k***.******
go to NEXT

'EXP'

'SIN'

'Cos'

'TAN'

'LOG'
print 1 line thus
THIS OPERATION NOT YET IMPLEMENTED
go to NEXT

Although the above constructs provide great flexibility in directing control flow, they should be
used carefully. Not all illegal transfers may be detected as such, possibly allowing undesired trans-
fers with strange side effects. The relevant user's manual should be consulted to determine the de-
gree to which transfers are checked in a particular implementation. Alternatively, the programmer
may explicitly check the index value before itis used irgoto statement.

Under some circumstances, it may be desirable to write sections of a program in which control flow
may be explicitly directed without the need to uniquely define statement labels. In order to make
local changes in the flow of computation, several statements are provided.

Thejump ahead statement transfers control to the fhere statement that follows it. Thump
back statement transfers control to the fhere statement that precedes it. Sevjump state-
ments can refer to the sahere statement, as in the following example:

259

SIMSCRIPT II.5 Programming Language

read DATA
if DATA > 10
add DATA to DATA.GT.10
jump ahead
otherwise
if DATA>5
add DATA to DATA.GT.5
jump ahead
otherwise
add DATA to DATA.LS.5
here

The usefulness of this label-free capability becomes particularly apparent when coupled with the
text substitution feature of SIMSCRIPT I1.5. Consider the following example of a program written
for interactive terminal execution:

preamble
normally mode is integer
substitute these 7 lines for INPUT
here if mode is not integer

print 1 line thus
PLEASE USE NUMERIC VALUE
skip 1 field
jump back

otherwise

read

end
main

input LAMBDA

input MU

Each substitution frinput contains a label-free jump when the program text is fully expanded.

6.4 Attribute Definitions: Packing and Equivalence

It has been assumed thus far iall data values are stored individually in separate and distinct com-
puter locations. Occasionally, to minimize storage space requirements, it may be desirable to share
storage locations between more than one variable. This may be done in two ways: If the ranges of
values of the variables are limited in magnitude, a single location may be divided between several
variables. If certain variables are known to be of importance only at nonconcurrent times during

260

Advanced Topics

program execution, they may share a common location. Locations in computer memory are com-
monly referred to as "words". The size of each, usually a measure of the size in binary digit posi-
tions, is termed the "wordlength."

When a word is divided between more than one data value, the values are said to be packed in the
word. When a data location is so defined that it may be referenced by different names, the names
are said to be equivalent. SIMSCRIPT I1.5 offers facilities for pacinteger andalpha data

and for equivalencing any attribute values, with some restrictions.

Subscripted system attributes, and attributes of temporary and permanent entities, can be packed
and equivalenced. Unsubscripted system attributes can only be equivalenced. This is one reason
for defining certain values as system attributes, rather than as global variables, which can be neither
packed nor equivalenced.

The SIMSCRIPT II.5 system uses programmer-specified packing factors to store and retrieve data
values. The fact that data are packed is reflected in a program's preamble but not in its executable
statements. A programmer operates at all times on a logical level, for exAGE(PERSON; and

the SIMSCRIPT I1.5 system determines hAGE(PERSON is physically represented. Owing to
inherent differences between computer systems, it is impossible to implement all forms of packing
and equivalencing in an identical manner on all SIMSCRIPT 1.5 implementations. Use of these
features, therefore, may adversely affect the portability of programs between different systems. In
general, with the decreasing limitations on memory capacity apparent on most systems, it is expect-
ed that such system-dependent usage may be avoided.

Attribute packing is specified by attaching a packing factor enclosed in parentheses to an attribute
name. Three types of packing are available: field, bit, and intrapacking. Field and bit packing ap-
ply to all subscripted attributes. Intrapacking applies only to subscripted system attributes and to
attributes of permanent entities.

Using field and bit packing, data fields can be laid out within computer words. The field-packing
notation (1/2), for example, specifies that the attribute value to which it is attached is to occupy the
first half of a computer word. The bit-packing notation (1-16) specifies that bits 1 through 16 are
to be used to store an attribute value. Because computers differ in word size and in instructions
available to access parts of words, it is impossible to specify all the possible field- and bit-packing
factors available in different SIMSCRIPT I1.5 implementations. Table 6-1 shows the packing fac-
tors available on typical 32-bit word-length machines. Consult the appropriate SIMSCRIPT 1.5
user’'s manual to determine the packing supported on a particular machine.

Attribute names are processed as they appeevery statements. Normally, they are allocated
successive words within antép structure. Attribute equivalence may be specified by enclosing a

list of attribute names within parentheses. All attributes within parentheses are assigned to the same
word. If two such attributes have the same packing factors, their names are synonyms. Overlapping
packing factors can also be specified. Attributes enclosed in equivalencing parentheses must appear
in a list without the separatca, an , orthe . The parenthesized list must, however, be preceded

261

SIMSCRIPT II.5 Programming Language

by one of these words. The following examples illustrate the use of field- and bit-packing factors
for attributes of temporary entities.

Table 6-1. Field and Bit-Packing Factors for Common 32-Bit Machines

Field-Packing Factor Attribute Value Placement
1/2 first half of computer word
2/2 second half of computer word
1/4 first quarter of computer word
2/4 second quarter of computer word
3/4 third quarter of computer word
4/4 fourth quarter of computer word
Bit-Packing Factor Attribute Value Placement
bits n through m inclusive
n-m 1<n<32
1<m<32
n<m

temporary entities

1. Declaration:

every PERSON has an AGE and a NAME

Entity structure:

AGE

NAME

2. Declaration:
every PERSON has an (AGE(1/2) and NAME(2/2))

Entity structure:

AGE NAME

262

3. Declaration:

every PERSON has an AGE(1/4), a NAME and a SEX(1/4)

Entity structure:

AGE

unused

NAME

SEX

unused

4. Declaration (assuming 32-bit word):

every PERSON has an (AGE(1-8) and NAME(9-32))

Entity structure:

bit positions 1

32

AGE

NAME

5. Declaration:

every PART has a (LEFT.VALUE(1/2), RIGHT.VALUE(1/2),

TOTAL.VALUE)

Entity structure:

-4———TOTALVALUE —MMMM™™

LEFT.VALUE

RIGHT.VALUE

6. Declaration:

every PERSON has an (AGE(1/4), NAME(2/4),
WEIGHT(17-32)) and owns a FAMILY

Entity structure:

1

17

32

AGE

NAME

WEIGHT

F.FAMILY

L.FAMILY

N.FAMILY

Advanced Topics

263

SIMSCRIPT II.5 Programming Language

7. Declaration:

every PERSON has an AGE(1/4), owns a FAMILY, has a
(NAME(2/4) and WEIGHT (2/2))

Entity structure:

AGE

NAME WEIGHT

F.FAMILY

L.FAMILY

N.FAMILY

Field and bit packing cinteger attributes of permanent entities and subscripted system attributes
places two or more attributes in each element of the same array. The declaration:

permanent entities
every HOUSE has an (ADDRESS(1/2), and ZIP(2/2))

places similarly indexed valuesADDRES andZIP in the same location.

This preamble declaration allows the executable statecreate every HOUSE(5) to allocate
storage as shown in figure 6-10.

ADDRESS(1) ZIP(1) element 1
ADDRESS(2) ZIP(2) element 2
ADDRESS(3) ZIP(3) element 3
ADDRESS(4) ZIP(4) element 4
ADDRESS(5) ZIP(5) element 5

Figure 6-10. Entity Storage

More than one set of attributes, of course, may be packed in aevery statement; for example:

every SHIP has a (TONNAGE(1/2), CAPACITY(2/2)),
a (DESTINATION(1/2), HOME.PORT(2/2))

This statement pairs the attribuTONNAGEandCAPACITY and the attributeDESTINATION and
HOME.POR within the elements of two attribute arrays. Some additional examples follow.

normally mode is integer
permanent entities

264

1. Declaration:

every TRUCK has a LOAD and a HEIGHT

Attribute arrays:

LOAD | g elementl

—— HEIGHT

element 2

element N.-TRUCK

LOAD and HEIGHT are separate arrays.
2. Declaration:
every TRUCK has a (LOAD, WEIGHT)

Attribute arrays:

LOAD — p» elementl
element 2

element N.-TRUCK

LOAD and WEIGHT refer to the same data array.
3. Declaration:

every TRUCK has a (LOAD(1/2), HEIGHT(2/2))

¢—| HEIGHT

Advanced Topics

265

SIMSCRIPT II.5 Programming Language

Attribute arrays:

LOAD |— = elementl ¢——| HEIGHT

element 2

element N.TRUCK

LOAD is stored in the left, and HEIGHT in the right half of each element within the data array.
System attributes:

(1) Declaration:

normally dimension is 0
the system has a HIGH and a LOW

Attributes:

HIGH LOW

(2) Declaration:

normally dimension is 1
the system has a HIGH and a LOW

Attributes:
HGH | g elementl 1 -<€+—— LOW
element 2 2
word N M

(3) Declaration:

normally mode is integer, dimension is 1
the system has a (HIGH, LOW)

266

Advanced Topics

Attributes:

HIGH ——» — LOW

word N

HIGH andLOV are synonyms. Both are pointers to the same attribute array. This is an array because
the background dimensionality is setto 1.

(4) Declaration:

normally mode is integer, dimension is 1
the system has a (HIGH(1/4), LOW(2/2))

Attributes:

HIGH word 1 unused 4—— LOW
word 2
word N

The elements of the attribute arrays are packed in the same locations as of a shared data array. The
second quarter of each data word is unused.

Intrapacking is used to compress array storage of subscripted system attributes and attributes of per-
manent entities. The intrapacking notati*/2) specifies that two distinct element values are to

be packed in each storage location. That is, the array in which the elements are stored is com-
pressed. For example, the declarations:

normally dimension is 1
the system has a LIST(*/2)

and the stateme reserve LIST(*) as10 specifies and allocates storag LIST as shown in
figure 6-11.

267

SIMSCRIPT II.5 Programming Language

base pointer of

LIST
> word1| LIST(1) LIST(2)
word 2 LIST(3) LIST(4)
word3 | LIST(5) LIST(6)
word4 | LIST(7) LIST(8)
word5 | LIST(9) LIST(10)

Figure 6-11. Array Storage

When a system attribute is multidimensional, packing takes place at the data-storage level only; the
array pointer words are unpacked. Thus the statements:

normally dimension is 2
the system has a LIST(*/2)

and
reserve LIST(*,*) as 3 by 4
specify and allocate storageLIST as shown in figure 6-12.

As with field and bit packing, intrapacking specifications depend on computer implementation. Ta-
ble 6-2 shows permissible intrapacking factors for common 32-bit wordlength machines. Other im-
plementations have their permissible factors specified in the implementation manuals.

L —— | LIST(1,1) LIST(1,2) word 1
Base Pointer LIST(1,3) LIST(1,4) word 2

| gl LIST(21) | LIST(2,2) |wordn

LIST(2,3) | LIST(2,4) | word n+1

L | LIST(31) |LISTE,1) |wordm

LIST(3,3) | LIST(3,4) | word m+1

Row Pointers Attribute values

Figure 6-12. Array Storage

268

Advanced Topics

Table 6-2. Intrpacking Factors for Common 32-Bit Machines

. Attribute Value
Intrapacking Factor
Placement
(*/2) 2 values per word
(*/4) 4 values per word

Attributes are usually assigned locations within the entity structure in order of their appearance in
anevery statement, taking any explicit equivalencing and packing into account. Itis also possible,

however, to specify exactly where an attribute is to be placed within a temporary entity structure by
following its declaration with the clauinword 7, where¢i is an integer constant, as in examples

1. and 2. below.

1. Declaration:

temporary entities
every PERSON owns a FAMILY, has an AGE in word 1,
and has a HEIGHT

Entity structure

word 1 | AGE

word 2 | HEIGHT

word 3 | F.FAMILY

word 4 | L.FAMILY

word 5 | N.FAMILY

It may be seen thiAGE now occupies the first location.
2. Declaration:

every PERSON has an (AGE(1/4),SEX(2/4),HEIGHT(2/2))
in word 1 and a DEBT in word 2

Entity structure:

word 1 AGE SEX HEIGHT

word 2 DEBT

269

SIMSCRIPT II.5 Programming Language

This can provide a second method of equivalencing attributes: If two attributes are explicitly as-
signed to the same word number within an entity structure, they are equivalenced. Care should be
taken that this is not done inadvertently. Some implementations insist that such equivalencing be
recognized by enclosing the attribute names in parentheses, as is done when explicitly equivalenc-
ing an attribute group. In addition, there are certain restrictions on equivalencing attributes of dif-
ferent modes. In general, for examjtext mode variables may not be equivalenced with other
modes because of the v text is implemented through pointer values. Any inconsistent usage

of these pointers could give rise to serious errors.

Attributes of permanent entities and system attributes are not assigned to words, but a similar effect
is achieved by using the clauin array i, wherej is an integer constant. This array may be
thought of as comprising the structurethe system entity.

In certain implementations, such explicit assignment, either for temporary or permanent entities,

may be recognized by the compilation process, leading to efficiencies at program execution time.

It may also affect the requirements for independent compilation of the routines in a program. Con-

sult the appropriate user manual for implementing specific details of packing and equivalencing.

Obviously, the use of these features may give rise to problems if a program is to be transported
across different systems.

The results of packing, equivalence, and word and array specification are shown in table 6-3.

Table 6-3. Attribute Specifications

Specification Assignment
No packing, equivalence, or word or array specffiAttributes assigned to separate words or arrays in
cation the order of their appearance in preamble
Word or array specification Attributes are assigned specified words or arga

locations. Remaining attributes assigned as abpve.

Equivalence specification Specified attributes assigned to the same word or
array
Packing specification Field and bit packing used to place more than pne

attribute within a computer word

Intrapacking used to compress storage for arrays

The every statement optionally permits detailed specification of the attributes of an entity. The
use of packing factors, equivalence parenthesesword andarray clauses gives a programmer
a good deal of control over the allocation of computer sto ‘age.

270

Advanced Topics

6.5 Attribute Definitions: Functions

When defined by statements of the form:

the system has an attribute name function
every entityname hasan attribute name function

a system attribute or an attribute of a permanent or temporary entity is treated as a function and not
as avariable. Any reference to such a function attribute is in effect a reference to a function routine
with the same name. That is, a subprogram having the same name as the declared attribute must be
included as one of the program routines. The routine must have the same number of arguments as
the declared or implied dimensionality of the attribute, that is, no arguments for an unsubscripted
system attribute, one argument for a temporary or permanent entity, two arguments for a two-di-
mensional system attribute, etc.

Function attributes, because they are computational procedures, have no storage space allocated to
them. Declarations of attributes as functions interspersed between other attribute declarations have
no effect, therefore, on storage allocation of attributes to arrays or entity records. To illustrate:

Declaration:

every AUTO has a FUEL FUNCTION, a CONSUMPTION.RATE,
a FUEL.CAPACITY and a DEPARTURE.TIME

Entity structure

word 1 CONSUMPTION.RATE

word 2 FUEL.CAPACITY

word 3 DEPARTURE.TIME

Assume the function attributFUEL, is defined by the following routine:

routine FUEL(AUTO)

return with FUEL.CAPACITY(AUTO) -
(TIME - DEPARTURE.TIME(AUTO)) *
CONSUMPTION.RATE(AUTO)

end

Assuming that the value of the current time is maintained in a global vaTIME, the amount of
fuel currently remaining in a particular auto is calculated at each apparent attribute reference of the
type:

let AMOUNT = FUEL(AUTO)

As the variabl¢TIME changes, the reported valueFUEL(AUTO) changes.

271

SIMSCRIPT II.5 Programming Language

Function attributes have a number of uses: they can be used, as above, to determine values of con-
tinuously changing quantities; to perform complex calculations; to provide optional attributes, de-
scribed in a later example, and to perform monitoring and other operations. For example:

Declaration:

every CONSUMER has a CREDIT.RATING FUNCTION,
a BANK.BALANCE, a DEBT.TOTAL,
a MORTGAGE.PAYMENT, a NUMBER.OF.DEPENDENTS
and a SALARY

Function attribute definition:

routine CREDIT.RATING(CONSUMER)
if SALARY(CONSUMER) - MORTGAGE.PAYMENT(CONSUMER)
or... more conditions
return with O
otherwise
return with 1
end

Program statement:

if CREDIT.RATING(CUSTOMER) eq 0
call ACTION1 giving CUSTOMER
else

6.6 Compound Entities Involving Temporary Entities

Compound entities composed exclusively of temporary entities, or of mixtures of permanent and
temporary entities, look the same as "permanent” compound entities but function differently. The
difference lies in the fact that all attributes of "mixed" or "temporary” compound entities are func-
tions. They have no storage allocated to them. They cannot be created or destroyed, as can (and
indeed must) the entities of which they are composed. A routine must be written for each compound
attribute (including any set pointers) of this type that accepts the attribute indices as arguments and
returns a single value as the attribute value (which may be a set pointer). Thus, the declaration:

every JOB,MAN has an INFLUENCE FUNCTION

whereJOB andMAL are temporary entities, definINFLUENCE as a function having the back-
ground mode. This function can be further defined, as in:

define INFLUENCE as a real FUNCTION
if necessary. When a statement such as:

let T = TIME * INFLUENCE(JOB,MAN)

272

Advanced Topics

is executed, the routitNFLUENCE is called with the argumerJOBandMAI — two pointer values
identifying temporary entities. The routine then might perform the following as:

function INFLUENCE(I,J)
define | and J as integer values
if PRIORITY(l) > PM
and STATUS(J) > 5M
return with (STATUS((J)/5M) * (PRIORITY(1)/PM))
otherwise
return with 1
end

returning the apparent attribute value.

6.7 Two lllustrations of Set Ranking by Function Attributes

As described in paragrad.€, sets are normally ranked on either the order in which entities are filed

in them FIFO andLIFO) or on the values of some attributes of their member entities. In the latter
case, although cascading can be used to resolve ties, only simple single-attribute ranking compari-
sons can be made. Complex ranking comparisons can be devised using function attributes as rank-
ing variables. Program 6-1 illustrates how a function attribute can be used to define a ranking
variable that is the weighted average of several attribute values.

273

SIMSCRIPT II.5 Programming Language

Program 6-1.

preamble
temporary entities
every JOB has a LABOR.COST, a MATERIAL.COST,
an OVERHEAD, a PROFIT, a RANKING FUNCTION
and belongs to a QUEUE
permanent entities
every MACHINE owns a QUEUE
define QUEUE as a set ranked by high RANKING
end

main
read N.MACHINE
create every MACHINE
until data is ended
do
create a JOB
read LABOR.COST.., MATERIAL.COST.., OVERHEAD.., PROFIT..
and MACHINE..
file JOB in QUEUE(MACHINE)

remove JOB from QUEUE(MACHINE)

loop
end

routine RANKING given JOB
define JOB as an integer variable
return with (LABOR.COST..*2 + MATERIAL.COST..*3
+ OVERHEAD.. + PROFIT..*4) / 10.0
end

The preamble defineERANKING as a function attribute (JOE and as the attribute by which jobs

are to be ranked when they are filed iQUEUI set owned by SoOmMACHINE. The routine
RANKINC provides a procedure for computing a ranking value. The routine is invoked each time a
JOBis filed. Itis used to compute a ranking value folJOEB being filed, and for all the jobs against
which this job's ranking value must be compared in order to insert it properly.

A somewhat more complex use of a function attribute is found in Program 6-2, which uses an at-
tribute of the first member of a set owned by an entity as the ranking value for that entity's filing in
another set.

274

Advanced Topics

Program 6-2.

preamble
temporary entities
every JOB has a VALUE, a RANKING.FUNCTION, owns a
ROUTING, and belongs to a QUEUE
every PATH has an ORIGIN, a DESTINATION, a DISTANCE,
and belongs to a ROUTING
permanent entities
every MACHINE owns a QUEUE
define QUEUE as a set ranked by high RANKING
define ROUTING as a set ranked by low DISTANCE
define RANKING as an integer function
end

routine RANKING(J)

define J as an integer variable
return with ORIGIN(F.ROUTING(J))
end

6.8 Using “Optional” Attributes

In certain situations involving the processing of large amounts of data, the programmer may need
to define entities with a large number of attributes, many of which, however, are constant. For ex-
ample, in census data records the code n/a (not applicable) may appear in several places. When it
is desired to conserve the amount of space allocated to individual entity records, function attributes
may be used to define "optional attributes." These are actually represented by entities stored in a
special set only if their values differ from specified default values. Thus, in the following example,

if the optional attributRAPID.TRANSIT is other than zero for a particular city, a record for it will
appear in that city's optional attribute set. Otherwise, the vaRAPID.TRANSIT would be found

in the default lis(DEFAULT(1)=0)

The following declarations and programs show how to set up and use optional attributes.

275

SIMSCRIPT II.5 Programming Language

Declarations:

preamble
temporary entities
every CITY has a NAME, a POPULATION, a STATE,
an OPTIONAL FUNCTION, and owns an OPTIONSET
every OPTION has a VALUE and a CODE and
belongs to some OPTIONSET
define NAME and STATE as text variables
define WHICH as a variable
define DEFAULT as a 1-dimensional array

end

Function attribute definition:

function OPTIONAL(J)
define OPT and J as integer variables
for each OPT in OPTIONSET(J),

with CODE(OPT) = WHICH,

find the first case

if found,

return with VALUE(OPT)

otherwise

return with DEFAULT(WHICH)
end

Program initialization to set up optional attribute structure:

main

read N
reserve DEFAULT(*) as N
read DEFAULT "LIST OF DEFAULT VALUES"

create a CITY
until mode is alpha,
do
create an OPTION
read CODE and VALUE
file OPTION in OPTIONSET
loop

end

276

Advanced Topics

Program statements that employ optional attributes:

let WHICH = 1 “INDICATING THE FIRST OPTIONAL ATTRIBUTE
let X = OPTIONAL(CITY)

If an entity CITY has an entity filed in itOPTIONS set with aCODI value of1, X is set to the
VALUE of the entity. If an entitCITY has no such entity filed iOPTIONS, X is set to
DEFAULT(1) .

The program can be made even more straightforward if functions are used to define the optional
attributes themselves. RAPID.TRANSIT is an optional attribute (CITY, it can be defined and
used by the following statements:

define RAPID.TRANSIT as an integer function
routine RAPID.TRANSIT(CITY)

define CITY as an integer variable

let WHICH =1

return with OPTIONAL(CITY)
end

The diagram in figure 6-13 shows the record structures for a temporary entity of tCITY that
has several "normal attributes" and several "optional attributes."

CITY f67 000 000
F.OPTIONS 1 1 is the code for
RAPID.TRANSIT
L.OPTIONS P.OPTIONS
N.OPTIONS S.OPTIONS P
NAME
POPULATION 3 500 000
STATE 4 4 is the code for
EDUCATION.EXPENSE
P.OPTIONS
S.OPTIONS |~
DEFAULT /
1 0)
2 0 257 532 000
3 100 57 57 is the code for
MUNICPAL.DEBT
P.OPTIONS
S.OPTIONS
97 200
98 10
99 4510
100 -1

Figure 6-13. Record Structure

277

SIMSCRIPT II.5 Programming Language

6.9 Deletion of Set Routines

Certain routines are automatically generated for each defined set during the processing of a program
preamble. Sets declaredFIFO (explicitly or implicitly), LIFO, orranked require different rou-

tines to perform their filing and removing operations. Each generated routine is tailored to individ-
ual program specifications reflecting such operations as set attribute deletions and cascaded set
rankings.

The most generally defined set, an unranked one declared asFIFO or LIFO, has seven rou-
tines generated for it. Four are for filing and three for removing. The routines are named and their
functions stated in table 6-4.

Table 6-4. Set Manipulation Routines

Routine Generated Function
Name

File first T.set Files an entity first or ranked
File last U. set Files an entity last
File before V. set Files an entity before a specified entity
File after W.set Files an entity after a specified entity
Remove first X. set Removes the first entity
Remove last Y. set Removes the last entity
Remove specific Z. set Removes a specified entity

A set declared by the statement:

define QUEUE as a FIFO set
thus has seven routin€T.QUEUE, U.QUEUE, ..., Z.QUEUE generated for it.

Ranked sets, by their definition, do not permit filing first, last, or before or after a specific entity
without attention to the specified set ranking. Hence, ranked sets generate four routines, there being
only one file routine.

In addition, certain set operations are impossible if specific set attributes are not present. For in-
stance, "filing before" is impossible irLIFO set if the predecessor attribute has been deleted.

Table 6-5 shows the set attributes that must be present for the indicated set operations to be per-
formed. Because all set attributes are not required for all set operations, table 6-5 can be used to
determine which attributes to delete in order to save memory space. For example, if a program only
files and removes first, the set attribLL andP can be deleted without penalty. If they are not de-
leted, the generated programs keep track of and update them anyway.

278

Advanced Topics

The generation of specific set routines can also be suppressed to conserve maceamsp their
associated operations are not used in a program. To do so, a list of the set operation codes, sht
in table 6-5, is attached tcdefine set statement in the following form:

,without set operation code list routines
The comma is optional. A typical program might contain the statement:

define QUEUE as a FIFO set without P and N
attributes and without FB, FA and RS routines

Table 6-5. Set Operation-Set Attribute Relationships

“Wneumonig | SetNameprefix | FERER

FF T. F.S

FL u. F.L,S

FB V. F,S,P

FA W. F.S

RF X. F.S

RL Y. F.LS,P

RS z. F,S,P

In unusual cases, where the programmer wants to use set-type statements but wants to provide
own set operation routines, all seven routines can be deleted. Th& andR delete the four file

and three remove routines, respectively. A complete range of set specifications is thus possibl
Mere mention of a set nameevery statements calls for all three set attributes for the owner and
member entities and all seven set routines. Additional definitioidefine set statement can
selectively delete set attributes and set routines. The extreme statement:

define set as a set without F,L,P,S,M and N
attributes without F and R routines

removes all mechanisms that make set operations possible.

6.10 Left-Handed Functions

Functions are normally used in a "right-handed" manner. is, they are referenced as on the
right-hand side of an assignment operator, where they return a single value computed from
number of given arguments. An example of a right-handed SIMSCRIPT 1.5 function is the use o

279

SIMSCRIPT II.5 Programming Language

substr.f to provide a copy of an embedded character string from a specified position within a
sourcitext string.

Defining a function as "left-handed" indicates that it receives a value, rather than computing one.
SIMSCRIPT I1.5 also allows the functisubstr.f to be used in a left-handed manner. The state-
ment:

let substr.f(STRING,1,3) = "ABC"

replaces the first three character positions i text variableSTRING. The substr.f function
appears to receive, rather than return, a value.

Any function can be defined to be used in both a right- and a left-handed manner. To compute a
value, the right-handed version of the function is called. When a reference is made in a left-handed
manner, that is, to store a value, the left-handed version is called.

No new concepts or statements are involved in the definition of right-handed functions, for all the
functions dealt with thus far have been right-handed. All of the by-now-familiar declarative forms:

function name given argument
function name (argument list)

indicate that the statements that follow, up to the stateend, define a computational process,
hence, a right-handed function. In programs that use both right-and left-handed functions, the word
right may be put befo function , but this is optional.

A left-handed function is headed by one of the forms oroutine statement shown above, pre-
ceded by the worleft , asin:

left function ACCESS given | and J
and
left function ALLOCATE

In addition to the usual mechanism for transmitting input argument values to a function when it is
called, a left-handed function must have a way of receiving a right-hand-side value. A special state-
ment of the form:

enter with variable

must be the first executable statement in every left-handed function. It specifies that the value
"computed on the right" and thus transmitted to the left-handed function is to be stored in the named
variable, which can be local or global, unsubscripted, subscripted, or an attribute, for use within the
function. From there on, a left-handed function functions exactly like any other function. It can
store the value, perform computations with it, execute input-output statements, etc. Program 6-3
illustrates the definition and use of right- and left-handed functions.

280

Advanced Topics

The computations within tfrmain routine seem to deal with simple subscripted variables. In fact,
the surrounding functions and the preamble declarations define the data structures dealt with. In
this sense, the program is independent of the structure used for storing and analyzing its data.

Program 6-3.

preamble
the system owns the DATASET
temporary entities
every SAMPLE has a VALUE,
and belongs to the DATASET
define X as a real function
define VALUE as a real function

end
main
read N
forl=1to N,
read X(I)
for1=1to N-1,
with X(I) less than 2 * X(I+1)
compute M = avg, V = variance, K = number of X(I)**2
list K,M,V
stop
end

right function X(I)
define 1,J,S as integer variables
if | greater than N.DATASET
print 1 line with I thus
MEMBER *** OF COLLECTION X DOES NOT EXIST
stop
otherwise
let S = F.DATASET
ford=1tol-1,
let S = S.DATASET(S)
return with VALUE(S)
end

left function X(I)
define 1,J,S as integer variables
define A as a real variable
enter with A
if N.DATASET less than I-1,
print 1 line with I,N.DATASET thus
TRYING TO CHANGE THE ***TH OF ONLY ***VALUES
stop
otherwise

281

SIMSCRIPT II.5 Programming Language

if | eq N.DATASET+1
create a SAMPLE called S
file S last in DATASET
else
let S = F.DATASET
forJ=1to I-1,
let S = S.DATASET(S)
always
let VALUE(S) = A
return
end

6.11 Monitored Variables

Thus far, program names representing data values have had either memory locations or routines as-
sociated with them. Names defined as variables referred to values stored in computer words.
Names defined as functions referred to values computed or stored by associated programs.

A new data type, a monitored variable, has both a storage location and a function routine associated
with it. The statements required to define and use monitored variables parallel the statements re-
guired to define variables and functions and to implement left-handed functions.

Any variable, array, or attribute is defined as monitored by a statement of the form:
define name as a variable monitored on the left

or
define name as a variable monitored on the right

or
define name as a variable monitored on the right and left

The wordthe beforeright andleft is optional.

Because monitored variables have data values as well as routines associated with them, mode and
dimensionality declarations can also be included, as in:

define X as a real, 2-dimensional array monitored
on left and right

Monitoring on the right and on the left is obtained through function routines similar to right- and
left-handed functions. If a variable is declared as monitored on the right (or left), a right-handed (or
left-handed) monitoring routine must be provided. A routine is able to perform a monitoring func-
tion by the inclusion of one new executable statement. The statement differs, depending on whether
the routine is right- or left-handed.

282

Advanced Topics

The task of a right-handed function routine is to return a data value to a calling program. A typical
right-handed function (not performing a monitoring task) is:

function EXAMPLE(1,J)
statements using | and J

return with expression
end

The function nam(EXAMPLE) represents a subprogram name. The argument list transmits initial
values forl andJ from a calling program tEXAMPLI, and thereturn with statement returns a
computed value to the calling program.

If EXAMPLIis declared as a monitored variable, its name refers to both data and a monitoring rou-
tine. EXAMPLE(K,5) is both a legitimate subscripted variable reference and a call on a routine with
argumentK and5. The additional statement needed to convert a normal right-handed routine to a
right-handed monitoring routine fetches the data value associated with the monitored variable
name, and makes it accessible to a named variable within the routine. The statement is:

move to variable

The program:

function EXAMPLE(I,J)
move to Q

statements using 1,.J, and Q

return with expression
end

starts out by assigning the valueEXAMPLE(I,J) to G, which then can be used freely in the rou-
tine. Themove statement variable can be local or global, unsubscripted or subscripted, an attribute,
or even a left-handed function.

Except for definincEXAMPLE as being monitored, no other change is made in the rest of the
program. EXAMPLE is reserved and used in the normal way; all data references are to
EXAMPLE(l,J) , as though it were a simple subscripted variable.

Used for left-handed monitoring, tmove statement must assign a value to the data cell associated
with a monitored variable. The statement that does this is of the form:

283

SIMSCRIPT II.5 Programming Language

move from arithmetic expression

The value of the arithmetic expression is stored in the variable referenced by the routine name and
its arguments, if any. For examEXAMPLE(I,J) . The form of a typical left-handed monitoring
routine is:

left function EXAMPLE(I,J)
enter with Q

statements using 1,Q

move from expression
end

A value is transmitted to the function by enter statement, computations are performed, and a
value is assigned to the monitored variable bymove statement.

The following short programs use monitored variables in several different ways for data editing,
where the monitored variable feature provides two important benefits: (1) It keeps the main body
of the program clear of data-checking and message printing statements, making it easier to under-
stand; and (2) Conversion of the program to remove the editing feature aandoeplished by
changing only one preamble statement and discarding two routines, with the main body of the pro-
gram text unchanged. However, the program must be recompiled.

This program first reads successive sets of data representing subscript values for a two-dimensional
array and the associated data value. The subscripts are checked by the left-monitoring routine be-
fore values are assigned. Default values are computed for any unassigned values. The initialization
data are delimited by a single non-numeric field, and followed by query data, requesting the value
identified by two given subscripts. These subscripts are also checked, this time by the right-moni-
toring routine.

284

Program 6-4.

Advanced Topics

preamble

end

normally, mode is integer

define DATA as a real, 2-dimensional array
monitored on the right and the left

define M and N as variables

main

end

read Nand M "THE ARRAY BOUNDS
reserve DATA(*) as N by M "RESERVE THE ARRAY
until mode is alpha,

read 1,J,DATA(I,J)
forl=1to N,

fordJ=1toM

do "ASSIGN DEFAULT VALUES

if DATA(1,J) eq O
if J greater than |
let DATA(1,J) = 1

else
let DATA(1,J) =-1
always
always
loop
skip one field "THE ALPHA DELIMITER
until mode is alpha
do
read 1,J

print 1 line with 1,J,DATA(1,J) like this
THE VALUE OF DATA(***¥) |S #¥** **
loop
stop

function DATA(L,K)

define VALUE as a real variable

"THE FETCHING OF THE VALUE DATA(L,K) IS INHIBITED

"UNTIL THE SUBSCRIPTS ARE VERIFIED

if L less than 1

end

or L greater than N

or K less than 1

or K greater than M

print 1 line with L,K thus

INVALID SUBSCRIPTS *** AND ***
stop

otherwise

move to VALUE "THE VALUE OF DATA(L,K) IS FETCHED

return with VALUE

285

SIMSCRIPT II.5 Programming Language

left routine DATA(L,K)
define VALUE as a real variable
enter with VALUE
"DON'T CHANGE THE VALUE OF DATA(L,K)
"IF SUBSCRIPTS ARE OUT OF BOUNDS
if L less than 1
or L greater than N
or K less than 1
or K greater than M
print 1 line with L,K thus
INVALID SUBSCRIPTS *** AND ***
else
move from VALUE "TO DATA(L,K)
always
return
end

2. Monitored variables used for data transformation:

Program 6-5.

preamble
permanent entities
every SERIES owns a GRAPH
temporary entities
every SAMPLE has an XVAL and a YVAL
and belongs to a GRAPH
define XVAL and YVAL as real variables
monitored on the right
define GRAPH as a set ranked by high YVAL,
without M attribute,
without FB,FA,FL and RS routines
normally, mode is integer
end

286

main
read N.SERIES
create every SERIES
for each SERIES,
do
read N
alsoforl=1to N
do
create a SAMPLE
read XVAL and YVAL
file SAMPLE in GRAPH
loop
for each SERIES,
call PLOT.GRAPH
stop
end

routine PLOT.GRAPH
"ASSUME XVAL BETWEEN 0 AND 132
"ASSUME YVAL BETWEEN 0 AND LINES.V-4
start new page
print 1 line with SERIES as follows
PLOT OF SERIES NUMBER **
for each I in GRAPH
compute X as the maximum of XVAL(I)
print 2 lines with X, YVAL(F.GRAPH) thus
X RANGE IS 0 TO *** *
Y RANGE IS 0 TO **.*
skip 1 output line
for each | in GRAPH
do
if | ne F.GRAPH

skip trunc.f(YVAL(I)) - trunc.f(YVAL(P.GRAPH(I)))

output lines
always
write as B TRUNC.F(XVAL(I))+1,"*"
loop
return
end

Advanced Topics

"MONITOR ROUTINES CONVERT DATA VALUES BEFORE THEY ARE PLOTTED

"CONVERSION IS OUTSIDE THE PLOTTING ROUTINE

function XVAL(I)

define V as a real variable

move to V

return with log.e.f(V) "FOR EXAMPLE
end

function YVAL(I)
define V as a real variable

287

SIMSCRIPT II.5 Programming Language

move to V
return with V**2 "FOR EXAMPLE
end

The monitoring routines deliver transformed values of the attributes to the plotting routine without
changing their values in memory. As there are no left-handed monitoring raXVAL andYVAL

are stored as they are read. To change the transformations, only the monitoring routines need be
altered. main andPLOT.GRAPH stay the same.

6.12 Implementation Details for the TALLY Statement

The program preamble generates any required attributes and routines tally ~ statement. A
left-handed monitoring routine is always generated for each tallied variable. The number of gener-
ated attributes and other routines varies with the statistical quantities specified. Table 6-6 presents
the cases in which additional routines and attributes are generated.

Table 6-6. Tally Actions

Statistical Quantity Tally Action

number Uses name itally list. Attribute generated mean, variance,
std.dev , mean.square, minimum or maximun requested and
number not requested.

sum Uses name itally list. Attribute generated mean, variance or
std.dev requested ansum not requested.

mean Function with name i tally list generated.

sum.of.squares Uses name itally list. Attribute generated mean.square,
variance orstd.dev requested ansum.of.squares not requestef.

mean.square Function with name itally list generated.
variance Function with name i tally list generated.
std.dev Function with name i tally list generated.
maximum Uses name itally list.
mimimum Uses name tally list.

From these examples it can be seen that certain counters, defined as variables or as attributes, are
required for the statistical computations. These counters are listed in table 6-7.

288

Advanced Topics

Table 6-7. Counters Required for Tally Statements

Statistic Counters
number N, the number of samples
sum SX;, the sum of sample values

2
sum.of.squares SX', the sum of squares of the sample values

mean SXi, N

variance SXi, sz, N

std.dev SX;, SXZ, N

maximum M, the value of the largest sample and N
minimum M, the value of the smallest sample and N

289

SIMSCRIPT II.5 Programming Language

290

Appendix A. Format Conventions Used In
Print Statments

Value & Typical Formats Display Results Examples
Integer
* (@) Printan integer value. Print1line withJthus

The value of J is***

*x (b) If the expression is not in- prints, forj =3

el teger-valued, print a
rounded integer value by
adding + or - 0.5 to the val-
ue of the expression, de-
pending on its sign, and
truncating the result.

The value of J is 3

or prints, forJ =9.7
The value of J is 10

or prints, for =-97.6

(c) Print as many digits as ~ The value of Jis -98

possible to the left, upto

the next nonconsecutive *

or textual character, treat-

ing the rightmost as the

low-order position; if

space not sufficient, use

scientific notation.

(d) Only the position of the
rightmost digit must be
shown.

Decimal

. (a) Print a decimal value; Print 1 line with X
thus

The value of X is *.**

291

Value & Typical Formats Display Results Examples

x (b) Treat the integer partas prints the line
(c) and (d) above;
The value of X is 3.25

* xx (c) Round the decimal part toif X = 3.4545 ; the conver-
the number of digi speci- sion for printing i€3.2495 +
fied by asterisks to the0.005 =3.245 [13.25 . The
i right of the decimal point. value ofX, as stored in the
An expression irounded computer is unchanged.

** k%

' in the " decimal place by
adding 0.5*10** (-n) and
truncating at the 1! deci-
mal place.

() If trailing decimal digits
are zero, print them. If the format is****, 3.5
prints a: 3.500

(e) Print a rounded integer be-

tween O and 1 3.257 prints as3. in the for-
mat **,

(f) Print a fractional value be-

tween O and 1 Frac.f (3.257) prints
as257 in the format.***

Scientific

........ (@) Printa number in the form Using the format

decimal number E+XX]]
the value 3726.257 is printed

as 3.7E+03
at least 8 consecutive periods

(b) the value of the compute

expression is decimal it would be printed as
number *10**+XX; 3.7263E+03

dUsing format...........

(c)0<|decimalnumber|< |

292

Value & Typical Formats

Text

*kkkk

Alpha

*kkk

Appendix A. Format Conventions Used In Print Statments

Display Results Examples
(@) Print a text value If NAMI has the value
"JOHN",

(b) Print text characters, left- Print 1 line with NAME
justified, up to the number thus

of print positions. PUPIL'S NAME |S *x#kkx
() If the value has fewer char-Prints:

. PUPIL'S NAME IS JOHN
acters, complete the field
with blanks.

(@)Print an alpha value, left-If CODI has the valueK",

justified in the field. Print 1 line with CODE

thus DESTINATION CODE
IS **

(b) If the alpha variable repre- prints:
sents more than oichar- e o\ ATION CODE IS K
acter, print as many as are
indicated, using blanks to
complete the field as re-
quired.

293

SIMSCRIPT II.5 Programming Language

294

Appendix B.

Functions and Routines

B.1 Functions

Function
Mnenonic

abs.f

and.f

arccos.f

arcsin.f

arctan.f

atot.f

beta.f

Function

Arguments Mode

e Mode of e
TGS Integer

e Real

e Real

e.e Real

1 2
e Text
e.e,e Real
2’73

Description

Returns the absolute value of the expression.

Logical product oflend g

Computes the arc cosine of a real expression;

1>e>1.

Computes the arc sine of a real expression,

1>e>1.

Computes the arc tangent (1)’fe§ (el,ez) 3
(0,0).

Converts asipha expression to &xt value.

Returns a random sample from a beta distri-
bution.

e = power of x, real
e, = power of (1-x), real;1@ 0

e,= random number stream, integer

295

Function
Mnenonic

binomial.f

concat.f

cos.f

date.f

day.f

dim.f

Function
Arguments Mode
e.e.e Integer
1273
a,b... Text
e Real
e.e.,e Real
273
e Integer
v(*) Integer

Description

Returns a random sample from a binomial
distribution.

e = number of trials, integer
e, = probability of success, real

€,= random number stream, integer

Concatenates any numbe text strings
to produce a singltext string.

Computes the cosine of a real expression giv-
en in radians.

Converts a calendar date to cumulative simu-
lation time, based on values given to
origin.r

e = month, integer
€= day, integer

e, = year, integer

Converts simulation time to the day portion-
based on values givenorigin.r

e = cumulative simulation time, real

Returns the number of elements pointed to by
the pointer variable v, in the dimension of the
array v.

296

Function
Mnenonic

div.f

efield.f

erlang.f

exp.f

exponential.f

fixed.f

frac.f

Function
Arguments Mode
€€, Integer
none Integer
e.e.e Real
2'73

e Real
e.e Real
172

s,e Text

e Real

Appendix B. Functions and Routines

Description

Returns the truncated value o{/e;).
e = dividend, integer
e, = divisor, integer;
ez0

Returns the ending column of the next data
field to be read by read free-form state-
ment. May affect file position.

Returns a sample value from an Erlang distri-
bution.

el = mean, real
€, = k, integer

e,= random number stream, integer

th
Computesexp.c to the e power; e must be
real.

Returns a random sample from an exponen-
tial distribution.

e1 = mean, real

e, = random number stream, integer

Expands or truncatestext string to a given
length.

s = string, text

e = length, integer

Returns the fractional portion of a real expression.

297

SIMSCRIPT II.5 Programming Language

Function
Mnenonic

gamma.f

hour.f

int.f

istep.f

itoa.f

itot.f

length.f

lin.f

298

Function
Arguments Mode Description
€€,8, Real Returns a random sample from a gamma distribu-
tion.
e =mean, real
e =k, real
2
e,= random number stream, integer
e Integer Converts event time to the hour portion.
e = cumulative event time, real
e Integer Returns the rounded integer portion of a real ex-
pression.
v,e Integer Returns a random sample from a look-up table
without interpolation.
v = variable that points to the look-up table.
e = random number stream, integer
e Alpha Converts an integer expression to an alphanumer-
ic value (one digit only).
e Text Convers an integer expression ttext value.
a Integer Returns the length oftext variable in charac-
ters.
v,e Real Returns a random sample from a look-up table,

using linear interpolation.
v = variable that points to the look: table

e = random number stream, integer

Function
Mnenonic

line.f

log.e.f

log.normal.f

log.10.f

lor.f

lower.f

match.f

max.f

Function

Arguments Mode

e Integer

e Real
e.e.e Real

1273

e Real
€€, Integer

S Text
55,8 Integer
€., e Real if any €;

Appendix B. Functions and Routines

Description
Yields the line number currently being executed.

€ = process notice pointer

Computes the natural logarithm of a real expres-
sion; e > 0.

Returns a random sample from a log normal dis-

tribution.

e1 = mean, real
e2 = standard deviation

e,= random number stream, integer

Computes log of a real expression.

Logical sum of ¢ and 5

Converts letters intext string to lower case.

Returns the location of a text substring with a

text string or O if not found.

s, = source, text
s, = pattern to be matched, text

e = number of characters of source to be
skipped, integer

Returns the value of the Iarge;. real; if none, in-

teger

299

SIMSCRIPT II.5 Programming Language

Function
Mnenonic

min.f

minute.f

mod.f

month.f

nday.f

normal.f

out.f

300

Function
Arguments Mode
e.e,..e Real if any
2 n
e Integer
e.e Real if either j;
172
real; if none,
integer
e Integer
e Integer
e.e.e Real
2'73
e Alpha

Description

Returns the value of smallesi. e; real; if none,

integer

Converts event time to the minute portion.

e = cumulative event time, real

Computes a remainder as real; if none, integer
e =trunc.f (e /e)*e_;
172 72

e#0.
2

Converts simulation time to month portion
based on values givenorigin.r

e = cumulative simulation time, real

Converts event time to the day portion.

e = cumulative event time, real
Returns a random sample from a normal dis-
tribution.

el = mean, real
e2 = standard deviation, real

e,= random number stream, integer

Sets or returns theth\alphabetic character in-
the current output buffer; e must yield an in-
teger value; e > 0; both right and left-handed
function.

Function
Mnenonic

poisson.f

randi.f

random.f

real.f

repeat.f

rstep.f

sfield.f

Function
Arguments Mode
€€, Integer
e.e.e Integer
2'73
e Real
e Real
s,e Text
v,e Real
none Integer

Appendix B. Functions and Routines

Description

Returns a random sample from a Poisson dis-

tribution.

el = mean, real

e, = random number stream, integer

Returns a random sample uniformly distrib-
uted between a range of values.

e = beginning value, integer
€, = ending value, integer

e,= random number stream, integer

Returns a pseudorandom number between
zero and one.

e = random number stream, integer

Caonvertsan integer expression to a real value.

Repeats a strir etimes.
s = string, text

e = integer

Returns a rando sample fromalck-up table.
v =variable thatoints to the look-up table

e = random number stream, integer

Returns the starting column of the next data
field to be read by read free-form state-
ment. May affect file position.

301

SIMSCRIPT II.5 Programming Language

Function Function
Mnenonic Arguments Mode Description
shl.f CRCS Integer Shift e lefte positions. Vacated positions
are filled with zeros.
shr.f e.e Integer Shift e right e positions. Vacated positions
are filled with zeros.
sign.f e Integer Indicates the sign of a real expression.
life>0
Oife=0
-life<O
sin.f e Real Computes the sine of a real expression given
in radians.
sqrt.f e Real Computes the square root of a real expres-
sion; e > 0.
substr.f S,¢1,€2 Text Sets or returns a substring of a text value,
both a left-handed and right-handed function.
In the left-handed usage, s must be an unmon-
itored variable.
s = string, text
e = position, integer
e,= length, integer
tan.f e Real Computes the tangent of a real expression

given in radians.

302

Function
Mnenonic
trang.f

trim.f

trunc.f

ttoa.f

uniform.f

upper.f

e.e.e.e
12 3 4

S,e

Function

Mode

Real

Text

Integer

Alpha

Real

Text

Appendix B. Functions and Routines

-
Returns a value from a triangular distribution.
e; = distribution minimum, real
e, = mean of distribution, real
g5 = distribution maximum, real

e, = random number stream, integer

Trims leading and/or trailing blanks from a
string.

s = string, text
e = flag, where
-1 = trim leading blanks
0 = trim leading and trailing blanks

+1 = trim trailing blanks

Returns the truncated integer value of a real
expression.

Converts first character of text expression to
alpha.

Returns a uniformly distributed random sam-

ple between a range of values.

e = beginning value, real
€, = ending value, real

e,= random number stream, integer

Converts letters in a text string to upper-case.

303

SIMSCRIPT II.5 Programming Language

Function Function
Mnenonic Arguments Mode Description
weekday.f e Integer Converts event time to the weekday portion.
e = cumulative event time, real
weibull.f €.€,€, Real Returns a sample value from a Weibull distri-
bution.
e = scale parameter, real
e, = shape parameter, real
e,= random number stream, integer
xor.f e.e Integer Logical difference off and &
year.f e Integer Converts simulation time to the year portion

based on values givenorigin.r

e = cumulative simulation time, real

304

B.2 Routines

Routine
Mnemonic

date.r

origin.r

snap.r

time.r

Appendix B. Functions and Routines

Arguments Description
d,t Returns the current date and tim¢ext mode. For-

mat of the returned value is system-dependent.

d = date, text

t = time, text

m,d,y Establishes an origin time when the calendar format is
used.

m = month, integer
d = day, integer

y = year, integer

none User-supplied routine called when an execution error is
detected.
none Controls simulation timing and selects events.

305

SIMSCRIPT II.5 Programming Language

306

Appendix C. SIMSCRIPT Reference Syntax

C.1 Basic Constructs

The notation employed in describing SIMSCRIPT IL.5 is an improved version of conventions used
in several computer programming language descriptions. In the following pages:

1.

Words in lower caskold letters denote required statement keywords, as well as optional
words or phrases used either for clarity or used as an optional feature.

Primitives are shown in lower casalics and denote words for which values must be sup-
plied, unless denoted as optional.

Metavariables, such as expressions, selection clauses (defined below), etc., are shown in
lower casatalics also. Again, actual expressions must be supplied.

A statement is a combination of keywords, primitives, and metavariables that follow a cer-
tain pattern called the syntax of the statement.

Brackets [] and braces { } denote choices. When brackets appear, a choice may be made
from the options indicated. When braces appear, a choice must be made. The items avail-
able for selection appear within the brackets or braces separated from one another by a ver-
tical bar |. When the choice can be repeated, a symbol (or symbols) that must separate the
items in that list of choices is written immediately after the right-hand brace or bracket en-
closed in angles. For example:

{A|B}<,>

represents a sequence of any number of As and Bs separated by commas. For example,
A A B A B

whereas:
{A}<,>

is equivalent to:

A[LAI[A]...[.A]

The null separator < > is used to indicate that no symbol need separate the items in a list.
An example of { A | B } <> might be AABAB...A. The choice represented by { A} <>
is equivalentto AlA]J[A]...[A]

A list separator symbol can itself be complex, involving choices and repetitions, as in
{A|B}<AND|OR >. Aninstance might be:

A AND BORBORA

307

8. Plural keywords ending in S suchvariables orlines, can be written in singular form as
variable orline when called for by the grammar of a statement.

C.2 Primitives
Integer: Sequence of digits delimited by blanks, special characters, or an end of record.

Name: Any sequence of letters and digits containing at least one letter and delimited by blanks,
special characters, or an end of record.

Special name: The syntax of special names is the same as name. However, each special name is
required in the context specified.

Each of the following names must be defined in the program preamble before use in other contexts:
attribute name
event name
permanent entity name
process name
gualifier name
resource name
set name

temporary entity name

Routine name, while not necessarily defined in the preamble, must correspond to a user-defined
routine.

Word{ integer
| name
| number
| special character
| string
}

Words must be separated from each other by one or more blanks unless one of them is a special
character. Periods (.) are ignored between words and at the end of statements.

Comments can be inserted between any two words in a program by enclosing them in quotation
marks (") formed by two consecutive apostrophes. The right-hand set of quotesiseseary if
the comment is the last item on the line.

308

Appendix C. SIMSCRIPT Reference Syntax

C.3 Metavariables

In order to compress the syntax description of the statements, several commonly repeated expres-
sions, or metavariables, are defined here rather than at each permissible usage.

arithmetic expressic. = [+| -] { (expressio)

| number

| subprogram constant
| string constant

| [$]variable

bR

array referenc = ([expressio]<,>{*}<,>)

comma: ={, [and|,and}

for phrase:

for { name{ back from | =} expressio to expressio [by expressio]
| { eact |all |every}
{ permanent entity nar | resource narr [called variable]
| name [{ from | after } expressio]
{ of |in |on|at} set nam [subscrip]
[in reverse ordel]
}
}

} .][selection claus |termination claus] < >

format:

309

SIMSCRIPT II.5 Programming Language

format1 ={ B expressio | Sexpressio |/}

format2 ={ formatl, |integel A expression

| intege C expression

| intege | expression

|intege D (expressio, expressio)
| intege E (expressio, expressio)
| intege T expressio |integel T *

}

logical expression:

{{ (logical expressia)
| expressio { [is] relational operator expressit} < >
| expressio [is][not] { positive | negative | zera }
| mode [is][not]{ real |integer | alpha | text }
| data [is][not] ended
| card [is][not] new
| page [is][not] first
| [the |this] set nam [subscrip] is [not] empty
| [the |this] expressiois [not]
in [a |an |the | som¢] set name
| { event process is[not]
{ internal | endogenous
| external | exogenous
}
}H is]{ true |false}

}{ and |or}

310

number: = {integel| intege |integel[.intege] }

program label: ='name¢|numbe }'

relational operator:

{{=] eqg|equals |equal tc }

| {~ =]|<>|ne|not equal tc}

[{<]Is|lt |less thar}

| {>|gr|gt|greater than}

| { < =|le | not greater than | no greater thar }
| {> =1|ge|notless thar | no less thai }

}

selection clause:

{ with

| [excep] when

| unless

} logical expressio [,]

string constant: = "name¢|numbe |blank} <>"

special character: = {(|)|+|-|#|/]*|$}

subscript: = ({expressio} <, >)

subprogram constant: = routine nam '}

Appendix C. SIMSCRIPT Reference Syntax

311

SIMSCRIPT II.5 Programming Language

termination clause: = while |until } logical expressia[,]

variable: =name[subscrip | array referenc]

C.4 The Statement Syntax

{ accumulate|tally }
{ name{=|as}[the] [qualifier nami]
{ average |avg | mean
| sum
| number |num
| variance | var
| std.dev | std
| sum.of.square | ssq
| mean.square¢ | msq
| minimum | min
| maximum | max
}
| name ({ name| [+ | - Jnumbe } to { name| [+ | - Jnumbe }
by { name¢ | numbe })
{ as| =} [the][qualifier nam:] histogram

} < commi > of name

Specifies automatic data collection and analysis.

{ activate | cause | reactivate | schedule | reschec }ile
{ a]an|the[above] | this}

{ process nam | event narr } [called variable]

[{ given|giving } { expressio } < commi >

| (expressio } < comm;i >)

312

Appendix C. SIMSCRIPT Reference Syntax

{ at expression
| now | next

| {in |after } expressio { units | days | hours | minutes }

Creates (foa oran) and places an event or process notice in the pending list in propeolciyical
order.

add expressio to variable

Adds the value of expression to the value of the variable variable.

after - Se¢ before.

[alsc]{ for |termination claus }
[for | termination claus | selection claus] < >

do [this | the following]

Logical phrases control the execution of statements that follow them. When more than one state-
ment is to be controlled, the woldo andloop must bracket the statements. Multiple control phras-
es terminating control on the salloop statement are preceded by the walsc.

always - Setif.

{ before | after }
{{ creating | destroying } < commi >
[a]an|the |any] temporary entity name
| { filing |removing } < commi >
[in |from]{ a]an [the |any} set name
| { activating | causing | canceling | interrupting | scheduling } < commi >
[a|an|the|any] § process narr | event nam}

} call routine name

313

SIMSCRIPT II.5 Programming Language

Specifies a call to the named routine whenever the indicated statement is executed.

routine (automatically supplied) are:

Inputs to the

BEFORE AFTER
create not allowed entity identifier
destroy entity identifiel not allowed
file entity identifier, subscripts entity identifier, subscripts
remove entity identifier, subscripts entity identifier, subscripts
activate entity identifier, time entity identifier, time
cause entity identifier, time entity identifier, time
schedule entity identifier, time entity identifier, time
cancel entity identifiel entity identifier
interrupt entity identifiel entity identifier

begin heading

Marks the beginning of a heading section within a report section.

begin report [on a new pag] [printing for , in groups of integer

[per page]]

Marks the beginning of a report section with optional new page and column repetition features.

break { event nam | process nan } ties { by |on} [high | low]

attribute nam } < commithen >

Establishes the priority order within a process or event class in case of time-tie.

314

Appendix C. SIMSCRIPT Reference Syntax

{ call | perform | now } routine name
[{ given|giving |the |this } { expressio } < commi >

| ({ expressio } < comm:i>)] [yielding { variable } < commi>]

Invokes a routine used as a procedure.

cance [the [above] | this] event nanr [called variable]

Removes a scheduled event notice from the pending list.

caus¢ - See activate.

close [unit|tape] expression

Exact syntax is implementation-specific.

compute
{ variable { =] as}|[the]
{ average |avg | mean
| sum
| number | num
| variance | var
| std.dev | std
| sum.of.square | ssq
| mean.square¢ | msq
| minimum | min
| maximum | max
| { minimum | min } (variable)
| { maximum | max } (variable)

}

315

SIMSCRIPT II.5 Programming Language

} < commi > of expression

Must be controlled by a logical control phrase. Computes the indicated statistics of the expression
expression after thoop statement if the control is oveido...loop block.

create { [a|an] { temporary entity nan | process nan | event narr }
[called variable]
| { eact |all |every } {{ permanent entity nar |resource nan }

[(expressio)]} < commi>

Obtains a block of words of the appropriate size for the named entity.

cycle | next

Returns control immediately to the top of a loop for testing and next iteration. Must be contained
within ado...loop block.

define { set nam} <commi>as[a|an][LIFO |FIFO] set

[ranked { by [on} [high |low] attribute nam }
<commithen >]

[without 8F |[L [N |[P|S|M } attributes]

[[,]without{ FF |FL |FB|FA |F|RF|RL |RS|R } < comm:i >routines]

Defines set ranking and optional deletion of owner and member attributes and processing routines.

define { routine nam } < commi>as[a|an]

[integer | alpha | real |double | text]

[releasable | fortran | nonsimscript] { routine | function }
[{ given|giving |with } integel[values |arguments]]

[[commi]yielding integel [values | arguments]]

Defines routines, their mode and the number of given/yielding arguments for consistency checking.

316

Appendix C. SIMSCRIPT Reference Syntax

define{ nam¢} < commi>as[a|an]
[[integer | real | double | alpha | text | signec integer]
[integel - { dim |dimensional}]
[dummy | subprogram | strean { name | intege! }]
]<[commi] >
{ variable | array}}

[monitored on { [the] { left |right } } < commi>]

Defines the properties of global variables.

define { nam¢} < commi>as[a|an]
[[integer | real | double | alpha |text]
[integel - { dim |dimensiona '}]
[subprogram]
[savec |recursive]
]<[commi] >

{ variable | array }

Defines the properties of local variables.

define word to mear { word } < >

Instructs the compiler to substitute the words following the keyimean for the indicated word

in all subsequent statements, before they are compiled. The sequence of words to be substituted is
terminated by the first end of record followimean. The sequence of words i define to

mean statement cannot be empty.

destroy{ [the | this] { temporan entity name¢ | process name
| event namr } [called variable]
| eact { permanent entity nar | resource namr }}

Releases the block of storage for the specified ename.

317

SIMSCRIPT II.5 Programming Language

do loop [this | the following]

Used witl loop to delimit a group of statement controlled by one or more logical control phrases.

else - Sef.

end

Marks the physical end of a program preamble, routine, report section, or heading section within a
report section.

enter with variable

Used to transfer a right-hand expression to a local variable within a left-handed function.

erase - name }

Used to release storage usedtext variables.

{ event|upon} [to |for] event name

[{ given|giving |the |this } { name¢} < commi >

| ({ name¢} < commi>)]

[saving the event notic]

Event routine heading. Unlesaved , the associated event notice is automatically destroyed when
the event routine is executed.

{event notice: |event:} [{ include |are }{ event namr } < commi >]

Preamble statement marking the start of event declarations.

318

Appendix C. SIMSCRIPT Reference Syntax

every { entity nam } < commi > [may | can]
{ has { a|an |the | some } attribute name
[({ integer/intege | */intege! | integer-intege })]
[in { array |word } integel | function]
|owns { { a|an |the | some} set nam } < commi >
| belongs tc{{ a|an|the |some} set nam } < comm: >
| has{ a|an|the | some} attribute name
random [step | linear] variable
[in { word |array } intege!]

} < commi >

Entity-attribute-set structure declaration. Specifies optional attribute packing, equivalences, word
assignments, and functions.

{ external | exogenou }
{ event | proces: } units are

{ name¢|intege } < commi >

Logical input devices from which external event/process data will be read.
{ external events exogenou }

{ events | processe } are { event nam | process nan } < comm; >
Declares the names of the events and processes which can be triggered externally.
file [the |this] expression

[first |last | { before | after } expressio]

in [the | this] set nam [subscrip]

Places an entity in a set.

319

SIMSCRIPT II.5 Programming Language

find { the first case
| { variable = [the] [first] expressio } < commi >

]
[if { found |none} [,]]

Must be controlled by for phrase with a selection clause, but cannot be witdo...loop block.
The optionif statement directs control after the control phrase has been completed, depending
upon the outcome of ttind .

gc[to]{ 'program labe [(expressio)]’
| program labe [(expressio)]

| 8 program labe' | program labe } < or > per expression

Transfers control to a labelled statement or one of several labelled statements in a list according to
the integer value of the transfer expression expression.

if logical expressia|,]
[statemer] <>

[else | otherwise |

[statemer] <>

{endif | always | regardles: }

Theif statement directs control to one of two possible groups of statements, depending on the out-
come of logical expressionf statements may be nested to any comple xity.

interrupt [the |this | the above] process nar [called variable |

Removes a process from the pending list, computes the "time (time.a - time.v) and stores it
in time.a (process namn) [ortime.a (variable)].

320

Appendix C. SIMSCRIPT Reference Syntax

last columr { is | = } integer

Directs compiler to ignore columns beyond integer on subsequent input records.

leave

Transfers control to the statement immediately following the loop statement.

let variable = expression

Assigns the value of expression to the variable variable. If variable is integer and expression is real,
the result is rounded before storing.

list { expression
| attributes of { entity [called expressio]
| eact entity
[{ from | after } expressio]
[{in|of |at|on} set nam [subscrip]]
[in reverse ordel]
[, { selection claus | termination claus } <>]

}

} < commi >

A free-form output statement that labels and displays values of expressions, and one- or two-dimen-
sional attributes or arrays.

{ loop[| repeat}

Used witl do to delimit a group of statements controlled by one or more logical control phrases.

321

SIMSCRIPT II.5 Programming Language

main

Marks the beginning of the main routine in a program. Execution commences at the first executable
statement aftimain .

move { from expression

| to variable

}

Used only within a routine defined for a monitored variable to access or set the value of that vari-
able.

NOTE: move to left-monitored variable

move from right-monitored variable
next - Seecycle.
normally [,]
{ mode{ is | =} { integer |real |double | alpha | text | undefined}
| type { is| = }{ savec |recursive }
| { dimensior |dim } { is | = } integer

} < commi >

Establishes background conditions for properties of variables and functions that are effective unless
overridden by subsequedefine declarations or, in the case of local arrays, first use.

now - See call.

322

Appendix C. SIMSCRIPT Reference Syntax

oper [unit] expressio for

Cinput 0O [name = exoression [
Coutput O [recordsize = expression [
O Ccomma [binary O

[(noerror O

Exact syntax is implementation-specific.

otherwise - Setif.

perform - Setcall.

permanent entities [include { permanent entity nar } < commi >]

Preamble statement marking the start of permanent entity declarations.

[new |old |very old] preamble

Marks the beginning of the program preamble.

print integel [double] lines

[with { expressio |a group of { expressio }
<comm; >fields } } < commi >]

[suppressing from columr intege! |

{ thus | like this | as follows }

The integer lines following the print statement are format lines containing text and pictorial
formats for the display of indicated expression values.

The phrase:a group of { expressio } < comm: > fields anc suppressing from column
intege r, can only be used within report sections that have column repetition.

323

SIMSCRIPT II.5 Programming Language

priority order is { event namr |process nan } < comm; >

This preamble statement assigns a priority order to different classes of processes and events to be
used to resolve time-ties in scheduling.

proces:[to | for] process name
[{ given|giving |the |this } { name¢} < commi >
| ({ name¢} < commi>)]

Process routine heading declaration. The process name process must be declared in the preamble.

processe [{ include |are } { process nan} < commi >]

Preamble statement marking the start of process entity declarations.

read { { variable } < commi> [as{[double] binary

| [(expressio)] { formaiy } < commi> }]
| as { forma’1 } < comm;i >

}

[using { the buffer | [tape | unit] expressio }]

Reads data, either formatted or free-form from a specified device or the previously established input
device.

regardless - Seeif.

releas¢{ variable } < comm;i >

Frees storage occupied by variables (either arrays or attributes of permanent entities or resources).

324

Appendix C. SIMSCRIPT Reference Syntax

relinquish expressio [units of] resource nan [(subscrip)]

Makes the specified number of units of the resource available for automatic reallocation.
remove [the]

{{ first |last} variable

| [this | above] expression

} from [the | this] set nam [subscrip]

Removes an entity from a set.

repeal - Se¢loop.

request expressio [units of] resource [(subscrip)]

[[,] with priority expressio]

Makes a request for the specified number of units of the resource. If not available, the requesting
process is enqueuedpriority order and suspended awaiting availability of the resource.

reschedul¢ - Se¢ activate.

reserve{{ variable } < commi > as { expressio }

<by>[by*]}< commi>

Allocates blocks of storage of the specified size to the variabl by * “is specified only pointer
space (for miti-dimensioned arrays) is allocated. Otherwise the data storage is also allocated.

325

SIMSCRIPT II.5 Programming Language

reset [the] [qualifier nam«] < commi >

totals of { variable } < comm: >

Initializes accumulate Ortally —counters associated with varia if totals is not preceded by
qualifier name(s), all counters of variable are (re)initialized. Otherwise, only those counters with
the matching qualifiers are reset.

resource({ include |are } { resource narr } < commi >]

Preamble statement marking the start of resource entity declarations.

resume [the | this | the above] process nan [called variable |

Used to restore a previously interrupted process to the pending list with the remaining "time-to-go"
taken frontime.a (process nam).

resume substitution

Used to reinstate the substitutions previously nullified suppress substitution statement.

return [(expressio) |with expressio |

Used in a procedure, this statement returns control to its calling program. Used in a function, this
statement returns control and a value to its calling program.

rewind [tape | unit] expression

Rewinds an input/output device.

326

Appendix C. SIMSCRIPT Reference Syntax

[left |right] { routine |function | subroutine }

[to | for] routine name

[{ given|giving |the |this } { nam¢} < commi >
| ({ name¢} < commi>)

[yielding { name} < commi >]

Routine heading declaration. The prleft orright is for declaring monitoring routines. A
routine used as a function has (given arguments.

schedule - Set activate.

skip expressio { fields

| [input |output]{ cards |lines |records }

}

Applies to the current input or current output u'Skip expression fields applies only to
the current input unit. If neithinput noroutput is specifiec cards anc records imply input
anclines impliesoutput

start new{ page

| [input |output] { card |line |record }

}

Applied to the current input or output unit. If neitinput noroutput is specifieccard and
record imply input , ancline implies output

start simulation

Causes the timing routintime.r) to begin selecting and executing events and/or processes.

327

SIMSCRIPT II.5 Programming Language

stop

Halts program execution and returns control to the operating system.

store expressio in variable

Assigns the value of expression to variable without regard to mode.

substitute{ this |these } integel lines for word

Instructs the compiler to substitute the next integer lines following "word" for each occurrence of
"word" in all subsequent statements before they are compiled. Blank lines and lines containing only
comments do not count in this statement.

subtract expressio from variable

Subtracts the value of expression from the value of variable and stores the difference in variable.

suppress substitution

Used to nullify current substitutions (possibly in order to modify the substitutions).

suspent [proces: |

Used to place the current process in the passive state and return control immediately to the timing
routine without destroying the current process.

tally - Se¢accumulate.

328

Appendix C. SIMSCRIPT Reference Syntax

temporary entities

Preamble statement marking the start of temporary entity declarations.

the systen [may | can]
{ has{{ a|an |the |som¢} attribute name
[({ integer/intege | */integer | integer-intege }) |
[in { array |word } intege |function]
} < commi >
|owns { { a|an|the |some} se } < commi >
| has { a |an |the | some} attribute name
random [step | linear] variable
[in { word |array } intege!]

} < commi >

Specifies attributes of the system and sets owned by the system. Also specifies optional attribute
packing, equivalences, word assignments, and functions.

[then]if - Setif.

trace [using [tape | unit] expressio]

Produces a backtrack of the current function and subroutine Trace is executed automatically
when SIMSCRIPT detects an error during execution. In this case, the standard listing device is
used.

upon - Seeevent.

329

SIMSCRIPT II.5 Programming Language

use{ the buffer | [tape | unit] expressio } for { input | output }

Establishes the indicated input or output device as the current input or output unit. All subsequent
input/output statements that do not specify their own devicusing phrases use these current
units. Specifyin the buffer causes reading or writing to an internal file.

{ wait |work } expressio { units | days | hours | minutes }

Introduces a delay of expression time-units into a process.

work - Se¢ wait.

write { expressio } < comm: > { as{ [double] binary

| [(expressio)]{ forma'rz} < comm; >

}

| as { forma’r1 [*}

}

[using { the buffer | [tape | unit] expressio }

]

Writes data to the specified device or the previously established output device according to the spec-
ified format.

C.5 Preamble Statement Precedence Rules

The following statements may only appear in the program preamble (except where otherwise not-
ed). No other statements may appear in the preamble.

330

Appendix C. SIMSCRIPT Reference Syntax

Statement

Type Statement Rules

la normally Can appear anywhere in preamble.

1b define to mean

lc substitute

1d suppress substitution

le resume substitution

1f last column

2a temporary entities A preamble may contain many types of 2a,
2D,

2b permanent entities 2c, 2d, and 2e statements.

2c event notices

2d processes

2e resources

3a every Many can follow a type 2 statement.

3b the system An entity can appear in more than every
statement.

4 define variable No precedence relation if it defines a global
variable. Must follow all Type 3a statements
if it defines an attribute named in them. A
variable, attribute, or function can appear in
only onedefine statement.

5 define set Must follow Type 3 statements which declare

the MEMBE or OWNEI entity.

No type 6-9 statement can precede any Type 2-3 statements.

6a break ties One statement allowed for each process or

6b external events event notice.

6c external processes

6d external units

7 priority Must follow all Type 2c, 2d, and Type 6b and
6¢ statements (and thevery statements).

8a before One of each per entity/set action.

331

SIMSCRIPT II.5 Programming Language

Statement
Type Statement Rules
after
%9a accumulate One statement allowed for each attribute
or unsubscripted global variable.
9%b tally

332

Index

A
a group of ... fields clau..........cccccoeeeeinns 131
abs.ffunction............cccccii 295
accumulate stateme..........coe........ 226, 229, 230
activate Stateme..........uvvvveeineereeeeeeererernnann, 190
add statemen.........ccoeeeeeeeeeeiecinnn, 10, 18, 146
after statemel......cccceeeeeeiiiiiiiiccc 235
alpha mode.........coeeveeeiiiiiiiiiie e, 74, 110
alpha variable..........cccccocvvveirnnnn. 74,113, 124
alphanumeric descript.........cccceeeevviviiinnnen. 109
always stateme.........cccccvveevviniiiiienneeenn, 13, 27
aNd OPEratC.........ccoevevvrviirieeeiiiiieeee e e e e e e e e 16
and.ffunctiorn.........cccoevvvvviviiiie e, 295
arccos.ffuNCLion........oooeeee e, 295
arcsin.f functior...........cccovvvvve 295
arctan.ffunctiol..........ccccvvvvv, 295
arithmetic expressior.................... 4,65, 74, 117
arithmetic operatol...........ccccoeevviccviinieeeeeeenn, 4.
array POINTEIS.......ccovvieciiiieeeecrieeee e e 65, 253
ASEEIISK v uvuieiie e 7...
At Phrase.......ccccvvvvieiieieeee e 195
atot.ffunction............cooe 295
attribute name claus...........ocovvvvvviceeeenennnn. 142
Attribute packing.......cccccceeeevveveeeeeennnnn, 261, 319

B
before statemer.........ccooovvieiiiiiiee e, 101
begin heading stateme............cccccceee.. 125, 314
begin report stateme..................... 124,129, 314
beginning column descript.........cccccceeeeennne. 114
beginning column format descrip................ 114
beta.f function..........cccooooviiiviiii . 295
between.v variable............cccoeevvviiiiniiiinnnnnn. 236
binomial.f function............ccocecvieiiiiiiininnnnn. 296
Dit PACKING ...eeveiiieiiiiiiee e 261
blanks.........cccoviiiiii e 7, 293, 308
break ties stateme............covvvvvvieieeeiiinnnnnn.. 208
buffer.v variabli..........cccocooooiiiiiiiiiin e, 123
BUFfErS...cc e, 123

C
calendar time forma.........cccoceeeeeiiiiiiiiieieeens 210
call statemer.........cccceeeeveevevevnennns 55, 61, 95, 198
called phrase.........cccoevvvieiiiineii e, 164
cancel stateme............ccccvvvv, 197
card iS NeW Phras.........ccccovevniiieee e 38
Case Stateme.......ocvvvviviie e 84
character string descrip.......cccccevvvveeeernnnnne. 115
character string format descript................... 115
character string........cccccvveveviciiiieennnnnn. 113, 116
close statemer............ovvvvviiiiieeiiieiiiiieeeeeeeenns 121
COMIMAS....ciuieiieeieeei e e e eaaa 29, 143, 307
COMMENTS. ...t 30..
COMMON attribUteS......ccevveveiceice e, 168

compound entiti€............coocvveeeiiiiieenens 170, 272
compute statemel..............eevvvevevieeennnnn, 100, 224
computer representation descrif.................. 110
COMPUTING VARIABLE VALUES............... 5
concat.f function.........coceeeeeiiiiiiieiiee e, 296
control phrase..........cccceeiviiieeennen 50, 101, 313
COS.ffUNCHON......ccvviiiiiiiec e, 296
create stateme...................... 144, 147, 153, 172
cycle statemer.........ooccviiiiiiie 27
D

data is ended phra........cccoocveeeeiiiiieienninen. 87
date.f funCtion.......coeeveiiiieieieieeeee e, 296
date.r FOULING.....ee i 305
day.ffunctior..........ccccevviiiiie 296
day-hour-minute forme...........coecccvvveeennnnnn. 210
debugging......cooceeeiiiii 232
decimal descriptt........cceevvirieeeiiiiieee e, 107
decimal format descript..........ccccooevveeennnn. 112
decimal time units forMi..........coceeeeeeeeeeeennnn. 210
default statemel.........cevvvvvviiiiiiiiiiiieieieeeeens, 84
define a variable as monitored on the

left statemen.......cc.ooovvveveeeeeeeiennen, 236
define as a variable monitored on the

right statemen.........cccccevvvieeeeenee, 282
define routine stateme...............vvvvvvvvevniieenns, 55
define set stateme................ooovvivivviiiiiinnnn, 279

define statement
.... 45,56, 60, 77, 150, 162, 221, 259, 331

define to mean stateme............cocoovvuvennn 82, 317
define variables stateme.............cocovvvvvnnnn... 282
destroy stateme.........cocceeevvieee e 206
dim.ffunCtionceeeeiiiiiiiii e 296
div.f fUNCLiON.....eveiie e, 297
(o [N (o0} o A 26, 44,101, 318
double MOode.....cccooovveeieiiiiiiiiee e 39
dummy variable.........cccooiiiiii, 232
E
efield.f functionevvvvvvvivviiiiiiceennnn, 87, 297
EISE .o, 12, 13, 28, 86, 318
end statemer.......cccvvvvvieeeeiennnn. 29, 55, 124, 128
ENAEM........ciiiieeeeeee e 87.
ENAIf. i 12,15
end-of-file conditions..................ooovvvvvvevinnnn, 120
endselect Statemeé.............vvvvvvvveriiiiiiiieienennn. 84
enter with statemer...........ccceee...... 237, 280, 318
entity control phrase.........ccccccceeeeeiiiiinnnnen, 164
entity NeSHIN.L......eeveieeeiii e, 156
eof.vvariablé.......ccoooeeiiiii, 120
equivalencini.........cccccvveeeeennn. 98, 188, 261, 270
erase Stateme........cccooevviieeiiii i 70
erlang.ffunction.......cccccvveeeeneee, 297
eunit.a attribute..........cccceeeennnn. 188, 189, 205, 209

333

SIMGRAPHICS I1.5 Programming Language

EV.S SBL.ciiiiiiiiiir e 188, 205 inreverse order phra.........ccccceeevvieeeeennnen. 166
event and process attribut................... 186, 188 inword i phras..........ccceeeeeviiiieeeiniiieee e, 269
event attributes..........cccooevei i 205 include phrase........cccooccveeeeiiiiiieennnne, 190, 203
event is statemer..........oooecviiiieiiieiee e, 209 indirect function cal.............oooocciiiiiield 96
every statemen...........ooevvviviiiiiiciieeeees 138 INPUL StAtEMEeN......cooeiiieeiiie e 108
except Whe ... 25, int.ffuNCtion ... 298
exp.ffUNCHONoooiiiiii e 297 integer format descriptC..........cccccvevriieeeennnnn, 106
exponential.f function............cccccevviiicinenen, 297 iINteger MOdt........cccoovviieeeiiiiiee e, 38
external event..........ccceeeevieie i 319 INTEGER Variable:..........cccccccciiiiiiniinne, 38
external process units statem............c......... 208 INEraPaCKiNG.......ocvveeieiiieee e, 261
external ProCesst.........cccvveevvceveeeennnenne. 207,331 Ipc.aattribute..........cceeeeeiiiiiiiieiieeee e 205
external processes statemt............cceevveeeen. 212 IS €MPLY PAras......coovveiieiiiiie e, 160
= is false phras..........ccoceeiviii 11,16
, iS not empty phrast..........ccceeiiiiieieiiiieen, 160
F.IS.8 attribUute....oooons 205 5 {rUE PRTAS.....eveeeeee oo 16.
field packing............ccovvvvviiniiiiinnii 261 St FUNCHOT v 298
FIFO SBIS.....ooiviiiis 273 H0@.F FUNCHON 1 ovveeeeeeeee oo 298
file after routine. ... 278 QL FUNCHO . veveevee oo eeeeeseeeeeee e 298
file after Statemel................oooninnens 156 jvalue.a attribut.......oov.ovveeeeeeeeeeeeeeeeeeeneenn, 222
file before statemer..........ccccovvevvveeeeivnnennn, 156
file last statemen.......ccccccoeevvecvvviiiieeecieee 156 J
find Statemer........occvveviiii 99 jump ahead stateme.........ccccceeevviieeeeniiinenn. 259
fixed.f function..........occoveveiiiien 297 jump back statemel.......cccveeieiiiiiiiieiiieeen 259
for statemer......... S 25. L
formal argument liS.........ccccooiiiiiniiiiiieee, 60
format deSCHPIO.........ovoveeeeeeeeeeeeeeeeeeeeen. 106 labelnamet. ... 37,59, 258
format lists......ueveveeeeeeiiecc e, 110 LABEL NAMES ..o 37
FOMMALS...cvceeeee e, 7o JADRIS o 21..
fraC.f FUNCHON........cvoveeeeeeeeeeeeeeeeeeeeees 297 lastcolumn Statemel........c.oocovivviiniinnss 94,129
FuNCtion attribute:...........ocooveveveeeeeeeeeeeeen, 7 leave Statemer. ... 26, 321
FULUTE EVENtS SE..noneee 188, 193, 201 left function StAteME ... 280
length.ffunction..............cocciiiiiiee s 298
G let Statemen...........coc.evvervnnnn! 5, 6, 40, 98, 147
gamma.f function......cccccceeeeeiiniiiiiiiiieiiien, 298 library functions............ccccovvvveeeeee e, 40
given argumer.i 60, 72, 86, 96, 202, 217, 279, 327 LIFO SetS......cvvivieeeiiiiiiiiiiiiieeeeee e 273
global variables linffunctionccooviiii e, 298
56-64, 76, 105, 148, 165-172, 224-233,lIN€.....ccccvriieiiiiiiiie et 7.
261, 317 line.ffunction.........ccceeviiieiieiee e 299
line.v variable..........cccooviiiiiiie 126
H lines.vvariable.........ccccooiiiniii e 126
)) list statement............... 91, 94, 103, 117, 174, 234
heading.v variabl.............ccccccooocin, 136 I0CAI AITAYS.....veeeeeereeeereeseeereessrennd 67,77, 322
here Statemen. ..., 299 150 10.F FUNCHON. ..veoeeeeeeeeee e, 299
hour.f funct_lon .. 298 10G.€.F FUNCHON ... 299
hours.v variable............o.covvvniinnin 196,244 15g.normal.f fUNCHOT.......verveeeeeee e, 299
| logical expressior................ 10, 12, 16, 159, 160
if found statemel.........c.oooeecviiiiiiiieeee e, 276 LOGICAL EXPRESSION:......oooovoiiiiinnn. 10
if NONE StAteMeN........voveveeeeeeeeeeeeeeeeens 100 look-ahead functior.........c.oouivvvrinreriisnennan, 87
if page is first statemer...........cococoeeceeenn.n. 126 00p Statemen............cocovveenne. 25,51, 101, 313
if statement... ... 12. 14, 159, 320 lor.f funct|or._ .. 299
nested if statemen........o.oooo 15 lower.f fuNClioN.........ccovvvviiiiieeriee e 299
Input statements...........oevvvereieeeiieiiineeeeees 222 M
IMplied SUDSCTIPLS.......ooooiiviii 172 1 eV.S ALADUL....veeeeveeeeeeeeeee e 188
=T = PP 270 MAIN StAEMEN.cre oo 54

334

Mark.v variable...........cccooeovvvvneiriinnnnnnn.. 210, 221
match.f function.........ccoceeeiiiiieiiiie e, 299
max.f function.........cccooeeviiiiiciien e, 299
MAXIMUML ...t 227, 288
[0 01ST= 1 o RPN 289
MIN.ffUNCLioncoeviiiii e, 300
MINIMUM e, 289
minute.f funNction..............ooevvviieiie e, 300
minutes.v variablt..........ccocoovvieieeeiiiiiiiieeenns 196
MOd.f fuNCLioN.........ceiiiiiiee e, 300
MOdEes.......oovvvveevevrrinnnns 37, 40, 63, 110, 150, 270
monitored variables..............cccccceeeennnnn. 235, 282
MONItOring routine..........c.cevevveeininneeen. 288, 327
month.ffunction..............ooovviiiii e, 300
MOVE frOM....cvviiiiiiiiiiee e 284, 322
MOVe Statemen..........ccveeiiiiiicieeeeeeeeeane, 283
00101V (o IS 322
N
names
label NamMe........coovvvveeiiiiii e, 37.
variable nameé...........ooooeeiiiiiiee e, 37.
nday.f function...........occcceiiiiiiie, 300
NEGALIVE ...ceeeiiiiiiiee it 14..
nested do l00f........uvvvviiiiiiiiieee e, 51.
normal.f funCtion.........ccccooeiieiiiiiiiiee e 300
normally statemer............. 38, 57,59, 77, 82, 150
(10 0=T 0 1o [T N 87..
NOW PRFASE.....veiiiei it 196
(01U 0] o 1= 289
O
OpeN StateMEer......c.cvvvviieiiiiiieeiiin e 119, 122
optional attribute............cccocvi i, 275
(o] ge] o1=T - 1o I TUPPPPTTRN 17..
ONgiN.r TOULINE......ccviiiiiiiee e 305
otherwise...................... 26, 63, 90, 209, 276, 320
otherwise statemer..........ccccceccvviveeeeeeeeeenininns 12
OthEIrWISE ... 26, 27
OUL.f fFUNCLIOr.....ccccee e, 300
output stateme................ 103-119, 280, 321, 330
(01011011 | APPSO U PSPPI 8.
P
p.ev.s attribute..........cccoociiiin, 188, 189
P.IS.S SE..iiiiiiiiiiiee 205
page.v variabl...........cccoociiiiniiii. 126, 136
pagecol.v variabl.............cccooiiiiiinie 136
parallel () characte..........cccooeevviiiiiiiiiiee e 8..
PArENNESE.....cciiiiiiiie i 4.
PEMO ..ttt 37.

permanent entities

144,147,164, 170, 203, 228, 261, 267, 32
pointer variable:............cccvviiiiniinnn. 249, 256
POISSON.T fUNCLION........cooiiiiiiiieiiiie e, 30

Index

POSITIVE. ...eeeeiiieee ettt 14.
preamble
... 38, 45-59, 260, 270, 278, 288, 308, 318
print statemen............. 6, 10, 19, 71, 95, 129, 323
priority statemen.........cccoccvveeeiiiienennn, 191, 208
prob.a attribute............coeevviiiiiiiiiiee e, 222
process attribute............ccoovvieieniiiieeeene, 197
process notick................. 190, 198, 205, 209, 211
process routing...................... 186, 193, 198, 202
Process StatemMe..........eeeeciiiiiiiiiiiieeeeeeeeee, 208
process.v variabl............ccocceiii, 198
Program formal........cccoecvveeeeiiiieeee e 93.
programmer-defined array structu.............. 249
pty.a attribute.........c.ooeeeeeiiiiiie 205
Q
(-TESOUICE Steueuieieieieeee e eeeeeeeeeee e 204
0C.€ ENIL...eiiiiiiie e, 204
gty.a attribute.......cccooiiiii 205
quotation mark........ccccceeveeernnnnns 27,69, 75, 308
R
randi.f fuNCioN......cooeeeveieiiiiiiieeee, 301
random variable...............ccccvvvvves 215, 219, 220
random.e eNtit......ccceeeeeieiiiiieeeeeeeeiieeeeeeeeeene, 222
random.f function..............ccceevvvvvnieennn, 214, 301
ranked Set......cccvveeeeieiiiiiiiiiieeeeeeeeeeee, 161, 278
rcolumn.v variabli..........ccccciiiieeiienenennn. 212
read statement
........... 2-9, 41-49, 70, 87-91, 106-117, 17

read.v variabl€..............cccceeeeeen 105, 120, 213
real varables.........ccvvvveeiiiiiiiiiiiiiieeeeee 40, 178
REAL variables............cccccovvvvvvvivviiiiiiiinn, 38
real.f fUNCHON.........vvveviciciee e 301
FECUISIVE FOULINE.......cceeeeeeieieieiiieeeeeeeeiveivae, 75
recursive variableé.............coovvvviiiiiiiiiiiiineeennn. 77
regardless......ooccveeeeeeieiiiiiiiiien, 12, 15, 28, 324
relational operator.........cccccceeevveccvvviineeeeeeeennn, 10
release stateme..........cceeeeeeeiiiiiiveveeennnnnns 65, 67
relinquish statemer........................ 202, 203, 325
remove first roUting..........coccvvvcieeieeeeieneneennn. 278
remove first statemer............ccoccvvvvnnnnn, 157, 201
remove last StatemMel.......ccceeeeiiieiiiiiiieeennnnnn, 157
repeat.f functior............ccccovveeee i, 301
request statemel.........ccovvvviiiieieeeiiienn e, 203
required set attribute.................cccciiiinnenn. 168
reschedule stateme.............cccccevvvvvvvvvnvnnnnn, 325
reserve statemet............... 47, 249, 252, 257, 325
reset statemer.........cccooeeviiiiiiineeenenes 230, 326
resume statemer........cccocoeeeeiiiiieeeeiin e 326
resume SUbStItULiC............cooevviiiiiiiieiiiiiiiiann, 331
_resume substitution statem................. 83, 326
‘return statemet........... 56, 63, 187, 200, 202, 326
rewind Statemel............ccccevvvvvvvvvviviveriiiennn, 326

335

SIMGRAPHICS I1.5 Programming Language

right-handed functions..............cccceeeviieinnee. 280
routine argumen...........ccceeeeenuvnen. 60, 66, 77, 96
FOULINE NAME.....vviieieeierieee e 1, 136
[S.8 Sttt ettt e et 205
rstep.f functior.........cccceeveeeeiiiiiiiiee 301
rvalue.a attribut..........ccocoeeeiiiiiiiie s 222
S

S.eV.S attribUtE.......cocovveeeiiiiee e, 188
IS8 SBliitiiiii et iei e 205
s.variable attribute...........cooovvveeiiiiiiiiiieeeienn, 222
saved variable..........ccovveeiiiiii e 76
saving the event notice phra................ 198, 318
schedule statemer........... 190, 195, 197, 208, 327
scientific descripto........ccccovvvveeiiiiiieiinenens 107
SEEA.V AITAY...ccciiueiriiee e, 214
select StatemMel....cceeeeeeieeeeiieiiiiieeeeeee e 84
set attribute...........ccoeeeeeeeeen. 162, 166, 171, 278
set membershi.....coccovveeeiieiiiiiie, 139, 151
set membership clau.........ccccoceeeiiiinnne 142
set ownership Clause...........ccoovveeeeiineenne 142
set pointers.............. 149, 162, 165, 169, 188, 272
SEL TOULINES. ... 278, 279
sfield.f functioncccooovvvveeeiiiiiie, 301
ShLFFUNCLION ..o, 302
Shrf fUNCHION.....vvvee i 302
Sign.ffuNCtion ... 302
SN FUNCLION....cvvve i 302
skip column descriptt........cccovvvveeeeiiiiennnene 115
skip column format descripte.........cccoceeenneee. 115
skip statemel.........ccccccevveeeeeninnns 8,9, 128, 327
skip to a new page descrip........cccccevveeennee 115
skip to a new page format descrip............... 115
skip to new record format descript.............. 115
(S T T I g o 11 (] T2 305
SQrt.fF fuNCLioN......cvvveeee i 302
Sta.a attributt.......ccvveeeiiiiieee . 205
start new page stateme..................... 9, 114, 287
start new record stateme...........cceeeveeennn... 9,117
start new stateme.........c.ocoeeevvviieeeei e, 327
start simulation stateme................ 193, 209, 327
statistical distribution function.............. 215, 216
£ (0 o [NV 227, 288, 289
Stop statemel.......cccoeveevveeiiinneenes 10, 29, 56, 328
store stateme.......ccoo v 328
subprograms...........cccccvvveeveeneeenn. 52,94, 95, 183
subroutine stateme.........cccccvvviiiieieinneeeenns 200
subscripted attribute...........ccccccvvvveeennne. 229, 261
subscripted label.........ccccccoevvivciiiiiiiieiee, 257
subscripted variable.......... 45, 46, 49, 50, 89, 281
substitute statemel.........cccceeeeevvvvvvnnnnn, 260, 328
substr.f function.........cceeeeeeiiiviee e 302
subtract stateme.........ceeveeeiiiviieieeereen 6, 328
SUIM ottt e e et e e e e e eara e 289

336

sum.of.square................. 102, 103, 224, 227, 289
suppress substitution statem................. 83, 328
suspend Statemel..........ocoveeeeeiiiieeeennns 201, 328
SYMDOIS ..., 3, 11, 29, 307
system attribute.............. 149, 152, 228, 261, 270
system functior..........cccevvvveveniiiieenen, 196, 221
system-defined constar............cccceeevviieeeenne 42
system-defined functior............ccccccoovineeene 86
T
tally statement........cccccvveeeevevicciieeeee e 328
tan.f fuUNCLION.......coieeeee e 302
temporary entitie144, 165-171, 225-229, 262- 272
temporary entities stateme...........ccccceeeeenn. 329
text desSCriptO......vvve i 109
text mode......ceeeveevivvnnnennn. 69, 71, 175, 270, 305
text variables.........cccoeeeveiiiiiiiieeeeee, 69, 71, 318
the buffer stateme.......cccoeeeeeeeiinnnl 324, 330
the first case stateme.............ceeeveeeeeenee. 84, 100
the system statemel..........ccoeeeevvvvvennnnn. 149, 329
then by Claust........ccooveieiiii e, 161
then if statemer........cccoeeeveeiiveci e, 16, 51
I 16 TS 7...
time.a attribute.........cccoeeeevievviieieeeeenee, 188, 201
tIME.T TOULING...ceeeeeeeeee e 305
time.v attribute........cooooovvvvieeeiiiie, 227, 236
time.v variabli........ccccccveeiiiiiiie e, 201
tiMING FOULINE.......oveeeiiiieeeee e 188
trace stateme.........cccoovveeiiiiiin e, 196
trang.ffunction........cccccovvi 303
transmit buffer format descript.................... 115
trim.FfuUNCLioncevveiiiiee 303
trunc.f fUNCLION......ovvee i, 303
ttoa.f fFUNCHONo 303
tYPE PhrasE.....cooveieiiiiiiiie e 77.
]
U.resource attribut..........ccceeeeeeiiiiiiiiinnnennnnn. 202
undefined Mmod...........oeeeeeeeeinninnnnn, 39, 257, 322
uniform.f fuNCLionevvvviiiiiiiceeeeeeee 303
UNIESS Phras........ccoovviviiiiiiiieecee e, 25
UNtil PArast.....cooeeiiiicceeee e, 25
UPON StAtEMEL..uui i 329
upper.f funNCtion.......ccccceeeeeeei e, 303
USE StateME.. .o 330
\
variable formal.........cccoooeeviiiiiieiieieeees 117
variable modes.........ccooeeeeviiiiiiiiieeii, 37, 69
variable names 1, 2, 5, 29, 31, 37, 39, 42, 56, 61, 70,
145, 232
variables
integer variable............ccccooviiinniie 38
real variable.........ccccooeeviiiiiiii, 38
VARIABLE names........ccoooeieiiiiiieenen. 37

Index

VananCe........ccoeeeeeeeeevvvieeeeenennn, 102, 288, 289, 312
W
weolumn.v variabl...........cccceiiiiiiieeeee, 128
weekday.f functior...........cccoeeeviiieienninnnnn, 304
weibull.f functior.........ccoeevieiieiiieee e, 304
When phras.......occoo 25.
while phrast.......occocceii, 23
Who.a attribute............coeeeveiiiieiieiee e, 205
With Phrase€........coocccviieiiiiiieceee e 24,99
with priority phras.........cccoovvcvivciiviiennneeenn, 204
without attributes phra.........cccccoovieeennnne 165
WOrd NUMDEIS. ..o 169, 170
WOrk Statemen...........cevveeeeeveieeeeieeiinnnnn. 213, 330
write statemer.......... 106-116, 123, 136, 174, 330
write.v variable............ccooeeveiiieiiiiiiinnnn, 105, 120
X
X.TESOUICE SEvvuniiiinieeiieeeeiiieeeeee e e e eaneeenenns 204
XOFF fUNCHON.....cvvviiiiccc e 304
Y
year.f funCtior.........ccceevviiii i, 304
yielded. ... 198, 231
yielded argumer...........ccccceeeennne. 60, 63, 67, 231
Z
4 =] (0 T 14

337

SIMGRAPHICS I1.5 Programming Language

338

	Table of Contents
	Figures
	Preface
	1. SIMSCRIPT II.5 Basic Concepts
	1.1 Introduction
	1.2 Variables
	1.3 Reading Input Data
	1.4 Constants
	1.5 Arithmetic Expressions
	1.6 Computing Variable Values
	1.7 Specialized Computation Statements
	1.8 Displaying the Results of Computation
	1.9 Skipping Unwanted Input Data
	1.10 Logical Expressions
	1.11 Changing the Flow of Computation Using Logica...
	Figure 1-1. Flow of Control After an if Statement
	Figure 1-2. Flow of Control After Shortened if Sta...

	1.12 More on Logical Expressions
	1.13 Repetition Using Control Phrases
	1.14 Control Phrases Extended To Cover More Than O...
	1.15 Logical Control Phrases
	1.16 Altering the Flow of Control Within a Loop
	1.17 Changing the Flow of Control By Direct Order
	1.18 The Logical End of a Program
	1.19 The Physical End of a Program
	1.20 A Note on SIMSCRIPT II.5 Program Form
	1.21 Clarifying Comments In a Program
	1.22 Some Sample SIMSCRIPT II.5 Level 1 Programs
	1.22.1 Roots of a Quadratic Expression
	1.22.2 Finding the Area of a Triangle
	1.22.3 Finding the Maximum and Minimum of a Set of...
	1.22.4 Computing Square Roots

	2. Programming Language Concepts
	2.1 Variable and Label Names Revisited
	2.2 Variable Modes
	2.2.1 REAL and INTEGER Variables

	2.3 Expression Modes
	2.4 System-Defined Constants
	2.5 Subscripted Variables
	Figure 2-1. A List Structure: One-dimensional Arra...
	Figure 2-2. Elements of a One-dimentional Array Ca...
	Figure 2-3. A Table Structure: A Two-dimensional A...
	Figure 2-4. Elements of a Two-dimensional Array Ca...

	2.6 Reading Subscripted Variables
	2.7 Using Subscripted Variables In Expressions
	2.8 Nested DO Loops
	2.9 The Structure of a SIMSCRIPT II.5 Program
	Figure 2-5a. Program Consisting of a Subprogram Ca...
	Figure 2-5b. Program Consisting of Two Subprograms...
	Figure 2-5c. Program Consisting of Three Subprogra...

	2.10 Routine Definition
	2.11 Global and Local Variables
	2.12 Routine Arguments
	2.13 Routines Used as Functions
	2.14 Global and Local Variables, Routines, Functio...
	2.15 Library Functions
	2.16 Using Non-SIMSCRIPT Routines
	2.17 Returning Reserved Arrays To Free Storage
	2.18 Array Pointers as Routine Arguments
	2.19 Text Mode Variables
	2.20 Reading and Displaying Text Variables
	2.21 Operations With Text Variables
	2.21.1 Concatenation: CONCAT.F(text1, text2...text...
	2.21.2 Substring: SUBSTR.F(text, index, length)
	2.21.3 Pattern Matching: MATCH.F(text, pattern, sk...
	2.21.4 Length Function: LENGTH.F(text)
	2.21.5 Case Conversion: UPPER.F(text) and LOWER.F(...
	2.21.6 String Repetition: REPEAT.F(string,count)
	2.21.7 Truncation and Expansion: FIXED.F(string,le...
	2.21.8 Blank Character Elimination: TRIM.F(string,...
	2.21.9 INTEGER to TEXT Conversion ITOT.F(integer)

	2.22 Alpha Variables
	2.22.1 TEXT to ALPHA Conversion: TTOA.F(text)
	2.22.2 ALPHA to TEXT Conversion: ATOT.F(alpha)

	2.23 Recursive Routines
	Figure 2-6. Tree Construction
	Figure 2-7. A Binary Tree
	Figure 2-8. A Complex Tree

	2.24 Pre-Processing Program Text
	2.25 More On Changing The Flow of Computation
	2.26 Some Data-Related Logical Values
	2.27 More Sample SIMSCRIPT II.5 Level 1 Programs
	2.27.1 A Data Analysis Program: 1
	2.27.2 A Data Analysis Program: 2
	2.27.3 A Matrix Multiplication Program
	2.27.4 A Matrix Multiplication Routine

	2.28 More on Program Format
	2.29 A Useful Output Statement
	2.30 Subprogram Variables
	2.31 The Store Statement

	3. Input/Output Concepts
	3.1 Introduction
	3.2 A Search Capability
	3.3 A Statement for Computing Some Standard Functi...
	3.4 Input/Output Statements
	3.4.1 Physical Device Specification
	3.4.2 The Formatted I/O Statements READ and Write
	3.4.3 Format Lists
	3.4.4 Controlled READ and WRITE Statements
	3.4.5 Variable Formats

	3.5 Miscellaneous Input/Output Statements and Faci...
	3.5.1 Logical File Assignment: The OPEN Statement
	3.5.2 End-of-File Conditions
	3.5.3 Repositioning Files
	3.5.4 Input/Output of Nondecimal Information

	3.6 Internal Editing of Data
	3.7 Writing Formatted Reports
	Figure 3-1. Report Using Row and Column Repetition...
	Figure 3-2. Column Repetition, Page 1
	Figure 3-3. Column Repetition, Page 2
	Figure 3-4. An Example of Column Repetition
	Figure 3-5. An Example of Format Suppression
	3.7.1 Page Heading Control

	4. Modelling Concepts
	4.1 Introduction
	4.2 Entities and Attributes
	Figure 4-1. Storage of Attributes in a Two-dimensi...
	Figure 4-2. Order of Storage of the Attributes of ...

	4.3 Sets
	Figure 4-3. Automatically-defined Attributes of CO...
	Figure 4-4. Automatically-defined Attributes for M...
	Figure 4-5. Owner-member Set Relationships
	Figure 4-6. Set Relationships
	Figure 4-7. Set Relationships

	4.4 Temporary Entities
	Figure 4-8. Entity Creation

	4.5 Permanent Entities
	Figure 4-9. Attribute Storage of Permanent Entitie...

	4.6 System Attributes
	4.7 Attribute Definitions: Mode and Dimensionality...
	4.8 Sets: Their Declaration and Use
	Figure 4-10. Storage of Attributes of a Permanent ...
	Figure 4-11. Storage of Attributes of a Temporary ...
	Figure 4-12. Storage of System Attributes and Set ...
	Figure 4-13. Entity Structures for FARM and DOG
	Figure 4-14. Entity Records
	Figure 4-15. Entity Records
	Figure 4-16. Entity Records
	Figure 4-17. Entity Records
	Figure 4-18. A Set with Two Members
	Figure 4-19. A Set with Three Members
	Figure 4-20. FIFO and LIFO Set Organizations

	4.9 Entity Control Phrases
	4-10. Common Attributes
	Figure 4-21. Entity Structures for TANKER and TUG

	4.11 Compound Entities
	4.12 Implied Subscripts
	4-13 Displaying Attribute Values
	4.14 Some Sample Programs
	4.14.1 An Inventory Control Example
	4.14.2 A Data Analysis Application
	Figure 4-22. Display of Result Produced by Data An...
	4.14.3 An Analysis of Prime Numbers
	4.14.4 Dynamic Definition and Use of Attributes

	5. Discrete Simulation Concepts
	5.1 Introduction
	5.2 Describing a System Model
	Figure 5-1. An Activity Delimited by Two Events
	Figure 5-2. A Process May Be Considered to be Comp...
	Figure 5-3a. Two Overlapping Activites
	Figure 5-3b. Two Nested Activities
	Figure 5-3c. Two Activities with a Common Event Ti...
	5.2.1 Event Declaration
	5.2.2 Event Notices
	Figure 5-4. Possible Layout of Event Notice Entiti...
	5.2.3 Process Declaration
	5.2.4 Scheduling Events and Processes
	5.2.5 Processes and Events Scheduled for the Same ...

	5.3 The Simulation Mechanism
	Figure 5-5. The Future Events Set Organization
	5.3.1 The Simulation Clock
	5.3.2 Assigning Event and Process Attributes
	5.3.3 Process Interactions
	5.3.4 Interrupting and Resuming a Process
	5.3.5 Processes and Resources
	5.3.6 Requesting and Relinquishing Resources
	5.3.7 Process Notice: Additional Attributes
	Figure 5-6. Attributes of Process Notices Created ...
	5.3.8 External Processes and Events
	5.3.9 Triggering Processes and Events Externally
	5.3.10 Time and Date Expressions in External Data

	5.4 Modelling Statistical Phenomena
	Figure 5-7. A Rectangular Coordinates System
	5.4.1 Random Step Variables
	5.4.2 Random Linear Variables
	5.4.3 Programmer-Defined Random Variables
	Figure 5-8. Storage of RANDVAR Sample Values

	5.5 Simulation Analysis
	5.6 Model Verification and Debugging
	5.7 Synchronous Variables
	5.8 Simulation Example
	5.8.1 A Sample Model

	6. Advanced Topics
	6.1 Introduction
	6.2 Programmer-Defined Array Structures: Pointer V...
	Figure 6-1. One-dimensional Array X with Its Base ...
	Figure 6-2. Base Pointers in a Two-Dimensional Arr...
	Figure 6-3. Base Pointers in a Three-Dimensional A...
	Figure 6-4. Memory Structure After Reserve Stateme...
	Figure 6-5. Memory Structure After Assignment of D...
	Figure 6-6. Family Tree
	Figure 6-7. Family Tree Stored in a Rectangular Ar...
	Figure 6-8. Family Tree Stored in a Ragged Table
	Figure 6-9. Memory Structure for Family Tree, N = ...

	6.3 Still More on Changing the Flow of Computation...
	6.4 Attribute Definitions: Packing and Equivalence...
	Figure 6-10. Entity Storage
	Figure 6-11. Array Storage
	Figure 6-12. Array Storage

	6.5 Attribute Definitions: Functions
	6.6 Compound Entities Involving Temporary Entities...
	6.7 Two Illustrations of Set Ranking by Function A...
	6.8 Using “Optional” Attributes
	Figure 6-13. Record Structure

	6.9 Deletion of Set Routines
	6.10 Left-Handed Functions
	6.11 Monitored Variables
	6.12 Implementation Details for the TALLY Statemen...

	Appendix A. Format Conventions Used In Print Statm...
	Appendix B. Functions and Routines
	B.1 Functions
	B.2 Routines

	Appendix C. SIMSCRIPT Reference Syntax
	C.1 Basic Constructs
	C.2 Primitives
	C.3 Metavariables
	C.4 The Statement Syntax
	C.5 Preamble Statement Precedence Rules

	Index

