
process AIRPLANE

 call TOWER giving GATE yielding RUNWAY

 work TAXI.TIME (GATE, RUNWAY) minutes

 request
 work TA
 relinquis
end " proce

process A
 call TO
 work T
 reques

Prog
 1 RUNWAY

KEOFF.TIME (AIRPLANE) minutes

h 1 RUNWAY

ss AIRPLANE

IRPLANE

WER giving GATE yielding RUNWAY

AXI.TIME (GATE, RUNWAY) minutes

t 1 RUNWAY

Since 1962S
ramming Language

 CACI.

ssume
rein is
change.

y.
Copyright  1997 CACI Products Co.
September 1997

All rights reserved. No part of this publication may be reproduced by any means without written permission from

For product information or technical support contact:

In the US and Pacific Rim: In Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
Phone: (619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 Phone: +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677

The information in this publication is believed to be accurate in all respects. However, CACI cannot a
the responsibility for any consequences resulting from the use thereof. The information contained he
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such

SIMGRAPHICS I, SIMGRAPHICS II and SIMSCRIPT II.5 are registered trademarks of CACI Products Compan

Windows is a registered trademark of Microsoft Corporation.

Table of Contents
Preface .. a

1. SIMSCRIPT II.5 BASIC CONCEPTS ... 1

1.1 INTRODUCTION... 1
1.2 VARIABLES .. 1
1.3 READING INPUT DATA .. 2
1.4 CONSTANTS ... 3
1.5 ARITHMETIC EXPRESSIONS ... 4
1.6 COMPUTING VARIABLE VALUES ... 5
1.7 SPECIALIZED COMPUTATION STATEMENTS .. 6
1.8 DISPLAYING THE RESULTS OF COMPUTATION .. 6
1.9 SKIPPING UNWANTED INPUT DATA .. 9
1.10 LOGICAL EXPRESSIONS .. 10
1.11 CHANGING THE FLOW OF COMPUTATION USING LOGICAL EXPRESSIONS .. 12
1.12 MORE ON LOGICAL EXPRESSIONS .. 16
1.13 REPETITION USING CONTROL PHRASES... 19
1.14 CONTROL PHRASES EXTENDED TO COVER MORE THAN ONE STATEMENT 21
1.15 LOGICAL CONTROL PHRASES ... 22
1.16 ALTERING THE FLOW OF CONTROL WITHIN A LOOP................................. 26
1.17 CHANGING THE FLOW OF CONTROL BY DIRECT ORDER 27
1.18 THE LOGICAL END OF A PROGRAM ... 29
1.19 THE PHYSICAL END OF A PROGRAM ... 29
1.20 A NOTE ON SIMSCRIPT II.5 PROGRAM FORM 29
1.21 CLARIFYING COMMENTS IN A PROGRAM ... 30
1.22 SOME SAMPLE SIMSCRIPT II.5 LEVEL 1 PROGRAMS 31

1.22.1 Roots of a Quadratic Expression ... 31
1.22.2 Finding the Area of a Triangle .. 32
1.22.3 Finding the Maximum and Minimum of a Set of Numbers 33
1.22.4 Computing Square Roots ... 34

2. PROGRAMMING LANGUAGE CONCEPTS .. 37

2.1 VARIABLE AND LABEL NAMES REVISITED ... 37
2.2 VARIABLE MODES ... 37

2.2.1 REAL and INTEGER Variables ... 38

2.3 EXPRESSION MODES ... 40
2.4 SYSTEM-DEFINED CONSTANTS ... 42
2.5 SUBSCRIPTED VARIABLES .. 43
2.6 READING SUBSCRIPTED VARIABLES.. 49
2.7 USING SUBSCRIPTED VARIABLES IN EXPRESSIONS 50
2.8 NESTED DO LOOPS ... 51
2.9 THE STRUCTURE OF A SIMSCRIPT II.5 PROGRAM 51
2.10 ROUTINE DEFINITION ... 54
2.11 GLOBAL AND LOCAL VARIABLES ... 56
2.12 ROUTINE ARGUMENTS ... 60
2.13 ROUTINES USED AS FUNCTIONS ... 62
2.14 GLOBAL AND LOCAL VARIABLES, ROUTINES, FUNCTIONS, AND SIDE

EFFECTS .. 64
i

SIMSCRIPT II.5 Programming Language
2.15 LIBRARY FUNCTIONS ...64
2.16 USING NON-SIMSCRIPT ROUTINES ... 65
2.17 RETURNING RESERVED ARRAYS TO FREE STORAGE 65
2.18 ARRAY POINTERS AS ROUTINE ARGUMENTS ..66
2.19 TEXT MODE VARIABLES ... 69
2.20 READING AND DISPLAYING TEXT VARIABLES.. 70
2.21 OPERATIONS WITH TEXT VARIABLES ...71

2.21.1 Concatenation: CONCAT.F(text1, text2...textn)...72
2.21.2 Substring: SUBSTR.F(text, index, length) ...72
2.21.3 Pattern Matching: MATCH.F(text, pattern, skip) ... 73
2.21.4 Length Function: LENGTH.F(text) ..73
2.21.5 Case Conversion: UPPER.F(text) and LOWER.F(text) 73
2.21.6 String Repetition: REPEAT.F(string,count) .. 73
2.21.7 Truncation and Expansion: FIXED.F(string,length) ...73
2.21.8 Blank Character Elimination: TRIM.F(string, flag)... 74
2.21.9 INTEGER to TEXT Conversion ITOT.F(integer) .. 74

2.22 ALPHA VARIABLES ..74
2.22.1 TEXT to ALPHA Conversion: TTOA.F(text) ..75
2.22.2 ALPHA to TEXT Conversion: ATOT.F(alpha) ...75

2.23 RECURSIVE ROUTINES ..75
2.24 PRE-PROCESSING PROGRAM TEXT ...81
2.25 MORE ON CHANGING THE FLOW OF COMPUTATION..................................84
2.26 SOME DATA-RELATED LOGICAL VALUES ..86
2.27 MORE SAMPLE SIMSCRIPT II.5 LEVEL 1 PROGRAMS 89

2.27.1 A Data Analysis Program: 1 ...89
2.27.2 A Data Analysis Program: 2... 90
2.27.3 A Matrix Multiplication Program ..91
2.27.4 A Matrix Multiplication Routine ...92

2.28 MORE ON PROGRAM FORMAT ... 93
2.29 A USEFUL OUTPUT STATEMENT ..94
2.30 SUBPROGRAM VARIABLES ...95
2.31 THE STORE STATEMENT ...98

3. Inpu t/Output Concepts .. 99

3.1 INTRODUCTION ... 99
3.2 A SEARCH CAPABILITY.. 99
3.3 A STATEMENT FOR COMPUTING SOME STANDARD FUNCTIONS OF

VARIABLES ...100
3.4 INPUT/OUTPUT STATEMENTS ..103

3.4.1 Physical Device Specification ..104
3.4.2 The Formatted I/O Statements READ and Write ...106
3.4.3 Format Lists ...110
3.4.4 Controlled READ and WRITE Statements ..116
3.4.5 Variable Formats.. 117

3.5 MISCELLANEOUS INPUT/OUTPUT STATEMENTS AND FACILITIES119
3.5.1 Logical File Assignment: The OPEN Statement ..119
3.5.2 End-of-File Conditions ...120
ii

Contents
3.5.3 Repositioning Files ..121
3.5.4 Input/Output of Nondecimal Information ...121

3.6 INTERNAL EDITING OF DATA ... 122
3.7 WRITING FORMATTED REPORTS .. 124

3.7.1 Page Heading Control ...136

4. MODELLING CONCEPTS... 137

4.1 INTRODUCTION ... 137
4.2 ENTITIES AND ATTRIBUTES ... 137
4.3 SETS ... 139
4.4 TEMPORARY ENTITIES .. 144
4.5 PERMANENT ENTITIES .. 147
4.6 SYSTEM ATTRIBUTES ... 149
4.7 ATTRIBUTE DEFINITIONS: MODE AND DIMENSIONALITY 150
4.8 SETS: THEIR DECLARATION AND USE .. 151
4.9 ENTITY CONTROL PHRASES ... 164
4.10 COMMON ATTRIBUTES .. 168
4.11 COMPOUND ENTITIES .. 170
4.12 IMPLIED SUBSCRIPTS .. 172
4.13 DISPLAYING ATTRIBUTE VALUES .. 174
4.14 SOME SAMPLE PROGRAMS ... 176

4.14.1 An Inventory Control Example ... 176
4.14.2 A Data Analysis Application ...178
4.14.3 An Analysis of Prime Numbers ..181
4.14.4 Dynamic Definition and Use of Attributes ...181

5. DISCRETE SIMULATION CONCEPTS .. 183

5.1 INTRODUCTION ... 183
5.2 DESCRIBING A SYSTEM MODEL .. 183

5.2.1 Event Declaration... 187
5.2.2 Event Notices ...188
5.2.3 Process Declaration ...189
5.2.4 Scheduling Events and Processes ..190
5.2.5 Processes and Events Scheduled for the Same Time191

5.3 THE SIMULATION MECHANISM .. 193
5.3.1 The Simulation Clock ...195
5.3.2 Assigning Event and Process Attributes ..197
5.3.3 Process Interactions .. 200
5.3.4 Interrupting and Resuming a Process ..201
5.3.5 Processes and Resources ...202
5.3.6 Requesting and Relinquishing Resources ... 203
5.3.7 Process Notice: Additional Attributes ..205
5.3.8 External Processes and Events ... 207
5.3.9 Triggering Processes and Events Externally ...209
5.3.10 Time and Date Expressions in External Data ...210

5.4 MODELLING STATISTICAL PHENOMENA .. 214
5.4.1 Random Step Variables ...220
5.4.2 Random Linear Variables .. 220
5.4.3 Programmer-Defined Random Variables... 221
iii

SIMSCRIPT II.5 Programming Language
5.5 SIMULATION ANALYSIS .. 223
5.6 MODEL VERIFICATION AND DEBUGGING ... 232
5.7 SYNCHRONOUS VARIABLES ...236
5.8 SIMULATION EXAMPLE .. 238

5.8.1 A Sample Model.. 238

6. ADVANCED TOPICS.. 249

6.1 INTRODUCTION ... 249
6.2 PROGRAMMER-DEFINED ARRAY STRUCTURES: POINTER VARIABLES249
6.3 STILL MORE ON CHANGING THE FLOW OF COMPUTATION257
6.4 ATTRIBUTE DEFINITIONS: PACKING AND EQUIVALENCE260
6.5 ATTRIBUTE DEFINITIONS: FUNCTIONS ..271
6.6 COMPOUND ENTITIES INVOLVING TEMPORARY ENTITIES........................... 272
6.7 TWO ILLUSTRATIONS OF SET RANKING BY FUNCTION ATTRIBUTES273
6.8 USING “OPTIONAL” ATTRIBUTES ...275
6.9 DELETION OF SET ROUTINES ... 278
6.10 LEFT-HANDED FUNCTIONS ...279
6.11 MONITORED VARIABLES ...282
6.12 IMPLEMENTATION DETAILS FOR THE TALLY STATEMENT288

APPENDIX A. FORMAT CONVENTIONS USED IN PRINT STATMENTS...................... 291
APPENDIX B.FUNCTIONS AND ROUTINES ...295

B.1 FUNCTIONS ...295
B.2. ROUTINES ..305

APPENDIX C. SIMSCRIPT REFERENCE SYNTAX .. 307

C.1 BASIC CONSTRUCTS... 307
C.2 Primitives ..308
C.3 Metavariables ...309
C.3 THE STATEMENT SYNTAX ... 312
C.5 Preamble Statement Precedence Rules ..330

Index..333
iv

Figures
Figure 1-1. Flow of Control After an if Statement .. 13
Figure 1-2. Flow of Control After Shortened if Statement 14
Figure 2-1. A List Structure: One-dimensional Array 43
Figure 2-2. Elements of a One-dimentional Array Called LIST 44
Figure 2-3. A Table Structure: A Two-dimensional Array 45
Figure 2-4. Elements of a Two-dimensional Array Called TABLE 45
Figure 2-5a. Program Consisting of a Subprogram Called by a Main Routine . 53
Figure 2-5b. Program Consisting of Two Subprograms Called by a

 Main Routine ... 53
Figure 2-5c. Program Consisting of Three Subprograms and a Main Routine 54
Figure 2-6. Tree Construction ... 79
Figure 2-7. A Binary Tree .. 80
Figure 2-8. A Complex Tree .. 81
Figure 3-1. Report Using Row and Column Repetition 125
Figure 3-2. Column Repetition, Page 1 ... 130
Figure 3-3. Column Repetition, Page 2 ... 131
Figure 3-4. An Example of Column Repetition .. 132
Figure 3-5. An Example of Format Suppression ... 134
Figure 4-1. Storage of Attributes in a Two-dimensional Array 138
Figure 4-2. Order of Storage of the Attributes of an Entity 139
Figure 4-3. Automatically-defined Attributes of COMMUNITY Entities 140
Figure 4-4. Automatically-defined Attributes for Members of the Class MAN 140
Figure 4-5. Owner-member Set Relationships .. 141
Figure 4-6. Set Relationships .. 142
Figure 4-7. Set Relationships .. 143
Figure 4-8. Entity Creation .. 145
Figure 4-9. Attribute Storage of Permanent Entities 148
Figure 4-10. Storage of Attributes of a Permanent Entity 152
Figure 4-11. Storage of Attributes of a Temporary Entity 152
Figure 4-12. Storage of System Attributes and Set Pointers 152
Figure 4-13. Entity Structures for FARM and DOG 154
Figure 4-14. Entity Records .. 155
Figure 4-15. Entity Records .. 155
Figure 4-16. Entity Records .. 157
Figure 4-17. Entity Records .. 158
Figure 4-18. A Set with Two Members .. 159
Figure 4-19. A Set with Three Members ... 160
Figure 4-20. FIFO and LIFO Set Organizations .. 163
Figure 4-21. Entity Structures for TANKER and TUG 170
Figure 4-22. Display of Result Produced by Data Analysis Program 180
v

SIMSCRIPT II.5 Programming Language
Figure 5-1. An Activity Delimited by Two Events ...184
Figure 5-2. A Process May Be Considered to be Comprised of a Sequence of

Events Occurring in Time ...185
Figure 5-3a. Two Overlapping Activites ..186
Figure 5-3b. Two Nested Activities ...187
Figure 5-3c. Two Activities with a Common Event Time187
Figure 5-4. Possible Layout of Event Notice Entities189
Figure 5-5. The Future Events Set Organization ...194
Figure 5-6. Attributes of Process Notices Created by Process Declarations

Above ...207
Figure 5-7. A Rectangular Coordinates System .. 218
Figure 5-8. Storage of RANDVAR Sample Values ...223
Figure 6-1. One-dimensional Array X with Its Base Pointer250
Figure 6-2. Base Pointers in a Two-Dimensional Array250
Figure 6-3. Base Pointers in a Three-Dimensional Array 251
Figure 6-4. Memory Structure After Reserve Statement252
Figure 6-5. Memory Structure After Assignment of Data Arrays to Row

Pointers .. 253
Figure 6-6. Family Tree.. 254
Figure 6-7. Family Tree Stored in a Rectangular Array254
Figure 6-8. Family Tree Stored in a Ragged Table.. 254
Figure 6-9. Memory Structure for Family Tree, N = 4256
Figure 6-10. Entity Storage ..264
Figure 6-11. Array Storage ..268
Figure 6-12. Array Storage .. 268
Figure 6-13. Record Structure ...277
vi

puter

es the

vels"

ea-

ability.

nts

n and

es and

e of

solete,

f

 book

ch

er's

e for

 com-
Preface

SIMSCRIPT II.5 is a rich and versatile computer programming language enhanced with com

graphics, designed to solve general programming problems. This book, which describ

SIMSCRIPT II.5 language, is divided into chapters describing non-graphical language "le

which provide an organized path through the language:

Level 1 (Chapters 1 and 2): General purpose language statements.

Level 2 (Chapters 3 and 4): The entity-attribute-set features of SIMSCRIPT II.5. These f

tures have been updated and augmented to provide a more powerful list-processing cap

This level also contains a number of new data types and programming features.

Level 3 (Chapter 5): The simulation-oriented part of SIMSCRIPT II.5, containing stateme

for time advance, event-processing, generation of statistical variates, and accumulatio

analysis of simulation-generated data. The powerful new modeling constructs of process

resources are described in great detail.

Chapter 6 is a collection of various topics which need not be understood for initial us

SIMSCRIPT II.5. This chapter also describes several features of the language which are ob

but are being supported for compatibility.

A companion text, Building Simulation Models with SIMSCRIPT II.5, teaches the fundamentals o

simulation methodology through the use of SIMSCRIPT II.5 case studies. The material in this

relates closely to the short course given regularly by the CACI Products Company.

A third book, SIMSCRIPT II.5 Reference Handbook, provides a description and examples of ea

of the language elements in alphabetical order.

Interactive simulation graphics for SIMSCRIPT II.5 is described separately, in the SIMGRAPHICS

II User's Guide for SIMSCRIPT II.5. Other features of SIMSCRIPT II.5 are covered in the us

manual for each specific system.

SIMSCRIPT II.5 is available for PCs running WindowsNT and Windows95. It is also availabl

VMS systems and most UNIX workstations.

Free Trial Offer

SIMSCRIPT II.5 is available on a free trial basis. We provide everything needed for a
plete evaluation on your computer. There is no risk to you.
a

SIMSCRIPT II.5 Programming Language

wing
Training Courses

Training courses in SIMSCRIPT II.5 are scheduled on a recurring basis in the follo
locations:

La Jolla, California
Washington, D.C.
London, United Kingdom

On-site instruction is available. Contact CACI for details.

For information on free trials or training, please contact the following:

In the U.S. and Pacific Rim: In the UK and Europe:

CACI Products Company CACI Products Division
3333 North Torrey Pines Court Coliseum Business Centre
La Jolla, California 92037 Riverside Way, Camberley
(619) 824.5200 Surrey GU15 3YL UK
Fax: (619) 457.1184 +44 (0) 1276.671.671

Fax: +44 (0) 1276.670.677
b

ns on

ns to be

le of a

 to:

(in this

ted in

 printed

t from

per

ers and

m vari-

rations.
1. SIMSCRIPT II.5 Basic Concepts

1.1 Introduction

A computer program is a list of instructions directing a computer to perform certain operatio

data. A programming language is used by a programmer to describe the data and the actio

performed. SIMSCRIPT II.5 is one such programming language. Here is a simple examp

SIMSCRIPT II.5 program:

read X and Y
add X to Y
print 1 line with Y thus
The Sum is: *****
stop

This program consists of four SIMSCRIPT II.5 statements. The statements are instructions

1. Read the values of two variables called X and Y from input data

2. Add these variables together

3. Print the sum of the variables along with the explanatory message, The Sum is: , and

4. Stop.

The example illustrates the basic computer operations of input (reading data), computation

case, addition), and output (printing results).

In program examples throughout this book, SIMSCRIPT words and commands will be prin

lower case characters. Variable names, routine names, and other user-supplied terms will be

in upper case characters. Thus, in the above example, read, and, add, to, print, line,

with, thus , and stop are all SIMSCRIPT words. X, Y, and the phrase, The Sum is: are ex-

pressions provided by the programmer. SIMSCRIPT words which appear in the text (apar

those in program examples) will appear in bold characters. Again, variable names appear in up

case characters. Finally, small segments of code are presented in the ‘courier ’ font as shown

above.

Although SIMSCRIPT does support string variables, the rest of this chapter focuses on integ

reals. See paragraph 2.19.

1.2 Variables

As shown in the above example, programs use identifying names to refer to values of progra

ables. A variable is a data item that may take on different values as it is acted upon by ope

A program statement such as:

add X to Y
1

SIMSCRIPT II.5 Programming Language

t least

e last

gnored.

is

alue of

iables

us, the

at

 repre-

 for the

 These

g num-

 list.

ma, or

ey

read and
means add the current value of X to the current value of Y, giving Y a new value.

A variable identifying name is any combination of letters, digits, and periods that contains a

one letter, so that it may be distinguished from a number. For example, X, COST,

ACCOUNTS.RECEIVABLE, SIZE, MAN3, PART1, 5Y , and 1A are all legal names, whereas 27,

1, and 4.6 are not. A slight restriction on variable naming is that any periods appearing as th

characters of a name are completely ignored. Upper and lower case distinctions are also i

Thus, Myvar, MyVar , and MYVAR all refer to the same quantity. It will be shown later in th

manual how this rule may be used as a notational aid.

Hereafter, whenever a variable name is used in a statement, it is understood to refer to the v

the variable identified by that name, not to the name itself. The values given to numeric var

may be whole numbers (integers) or numbers with a fractional part (decimal numbers). Th

value associated with a variable named X may at various times be 0 or 125 or 16.72 or -0.00001 ,

or whatever number has most recently been assigned to X. The range in magnitude of numbers th

can be internally represented in a computer and the accuracy with which numbers can be

sented are, of course, subject to limits. These limits depend on the particular machine but,

present, may be taken to be sufficiently generous not to be the subject of concern.

At the start of program execution, the value of each numeric variable is set equal to zero.

variables are said to be "initialized to zero."

1.3 Reading Input Data

One way in which specific numeric values can be assigned to program variables is by readin

bers as input data. An example of the read statement is:

read X, Y and QUANTITY

X, Y , and QUANTITY are variable names. They are used in this statement in a variable name

In general, a SIMSCRIPT II.5 list consists of a string of quantities separated by either a com

the word and , or a comma followed by the word and . Some examples of variable name lists as th

might appear in read statements are:

read PRICE, QUANTITY, DISCOUNT
read PLACE and DISTANCE
read NAME, DATE, PLACE and TIME
read NAME, and DATE, PLACE and TIME

The general form of a read statement is:

read variable name list

When a SIMSCRIPT program executes a read statement, it reads as many fields from the input

data as there are variable names listed in the statement. Successive numeric values are
2

SIMSCRIPT II.5 Basic Concepts

put data

s. Ex-

d on a

contig-

ic data

cupies

en, of a

fer to

, may be

cannot

n equiv-

epresent
assigned to corresponding variables in the read list. The numbers can be entered in the in

in integer or decimal form. For example, the numbers 5, 5.0, and 5.000 are equivalent.

Data items read into or printed by a computer are treated in physical groupings called record

amples of a record are a single line typed on a computer terminal, a record, or a line printe

printer. Within a record, data items are considered to be separated into fields. A field is a

uous string of symbols delimited at the beginning and the end by at least one blank. Numer

fields may also be delimited by the beginning or the end of a record. Each numeric value oc

one data field.

Successive read statements do not necessarily read new input records, because a SIMSCRIPT II.5

program can treat input data as a continuous stream of data fields. The precise location, th

number within a record is not considered. An example illustrates this "free-form" concept: Read

X, Y, Z sets X to the value 3, Y to the value 2.1 , and Z to the value 67.33 when each of the sets

of input data records in table 1-1 is read.

Table 1-1. Sample Data Records
__

Record Number Values

(1) record 1 3.0 2.1 67.33

(2) record 1 3.00

record 2 2.1 67.33

(3) record 1 3

record 2 2.1

record 3 67.33

__

1.4 Constants

Program statements may use numbers directly, such as the "2" in add 2 to SUM , or the number

"3.14" in add 3.14 to VOLUME . These numbers are called constants. When used, they re

their literal values. They are not names of variables and do not represent other values.

Constants may have the same range of numeric values as variables, and where appropriate

used interchangeably in all computations. Constants differ from variables in that their values

be changed. Add 5 to X is a legal use of the variable X and the constant 5. Add 5 to 4 is not

a legal use of the constant 4 because it is giving a new value of 9 to the constant 4.

Whole numbers and fractional numbers, signed or unsigned, are allowed as constants. Whe

alent representations of a number exist, they have the same value; 2.5 and 002.500 both r

the same number. The statements add 1 to COUNTER and add 1.00 to COUNTER have the

same effect.
3

SIMSCRIPT II.5 Programming Language

rators.

gle vari-

 op-

 two

a

ed by a

utively.

es

 to clarify

ich the

from left

ses are

to one

efore

 the
1.5 Arithmetic Expressions

Arithmetic expressions are formed by combining variables and constants with arithmetic ope

The arithmetic operators are + (add), - (subtract), * (multiply), / (divide), and ** (exponentiate).

Two of these operators, plus and minus, can be used as unary operators, that is, with a sin

able or constant. The constants +1 and -1 are examples of the use of plus and minus as unary

erators on the constant 1. All of the operators can be used as binary operators, that is, with

variables (or constants or a variable and constant). If we let A and B represent either a variable or

constant, then + A and - A are examples of plus and minus as unary operators, and A + B, A **

B are examples of arithmetic expressions that use binary operators.

The simplest expression consists of a single constant, or a single variable, perhaps preced

unary plus or minus operator. An expression, + A , may be written as A, with the unary plus implied.

This is not possible, of course, with the unary minus operator.

All binary operators must be explicitly expressed, and no two operators can appear consec

For example, multiplication of the variables A and B must be written as A * B , and not AB. The

latter would be interpreted as the value of a variable called AB. Addition of the expressions A and

-B can be written as A + (-B) or A - B , but not A + -B . This last example shows that parenthes

must be used to separate unary and binary operators. Parentheses may also be used (1)

the operations in an expression to make it more readable, or (2) to specify the order in wh

operations in an expression are to be performed.

Simple expressions can be connected by any of the arithmetic operators (+, -, *, /, **) to

form compound expressions. The "parentheses rule" states that expressions are evaluated

to right, removing parentheses before applying operator hierarchy rules. Imbedded parenthe

evaluated from the inside out. Thus:

a + (b*c) + d

is evaluated by first computing the value of (b*c) and then adding this value to a and d.

When parentheses are omitted, the hierarchy of operations is:

1. Exponentiation **

2. Multiplication and division * and /

3. Addition and subtraction + and -

This hierarchy specifies the order in which the different operations are performed relative

another. Exponentiation is performed before multiplication or division, and either of these b

addition or subtraction. For example, the expression A + B/C + D**E * F - G is taken to mean

A + (B/C) + (D E * F) - G . If precedence is not completely specified by these rules,

operation specified farthest to the left in the expression is performed first, as in A * B/C , which is

computed as (A * B) / C .
4

SIMSCRIPT II.5 Basic Concepts

 paren-

pression.

or,

 example

An expression is written as a string of variable names, constants, arithmetic operators, and

theses. Any number of spaces from zero upward may be used to separate the parts of an ex

Therefore, A+B, A+ B, A + B and A +B are treated identically. The exponentiation operat

** , is treated as a single unit and no spaces may appear between its two asterisks. Some

expressions are given in table 1-2.

Table 1-2. Sample Mathematical Expressions
__

Expression Comment

PRICE A variable is itself an expression

53 A constant is also an expression

(PRICE) Parentheses are optional

DUEIN - DUEOUT

PRICE * QUANTITY

PRICE * (ORDER - SALES) Parentheses change precedence order

A + B + C + D

X ** 2 In mathematical notation, this is X2

A + X ** 2 + X ** 4 Equivalent to the following:

A + (X ** 2) + (X ** 4)

X + Y / Z This means

 X + (Y/Z) ,

 not:

(X + Y)/Z

- A ** B This means -(A B) , not (-A) B

__

1.6 Computing Variable Values

One way of assigning a value to a program variable is to use a read statement. Another way is to

use a let statement. The general form of this statement is:

let variable = expression

as in the statements:

let X = 0
let X = (Y + 1)/15
let PRICE = QUANTITY * SALES.PRICE
let BALANCE = STOCK - PURCHASE
let UNIT.COST = TOTAL.COST / NUMBER.OF.UNITS
let AREA = 3.14 * RADIUS ** 2
5

SIMSCRIPT II.5 Programming Language

l sym-

ned to

or.

o

 to

ements,

 from a

tfor-

-

th pre-

, as in:
When a let statement is executed, the current values of the variables on the right of the equa

bol (=) are used to compute the value of the arithmetic expression. This value is then assig

the variable on the left of the equal symbol.

Used in this way, in conjunction with the word let , the equal symbol is an assignment operat

In the statement:

let X = Y * 2

the value of the expression Y * 2 is computed and assigned to the variable X. The previous value

of X is replaced by the new value; and in:

let X = X + 1

a new value of X is computed by adding 1 to the current value of X and assigning this new value t

X. Use of the word let is optional. That is, the = operator is enough for assigning an expression

a variable.

1.7 Specialized Computation Statements

Because addition and subtraction are such frequently used operations, two special stat

combining both expression evaluation and assignment operations, may be used. The add and

subtract statements are used to add or subtract the value of an arithmetic expression to or

program variable. The statement forms are:

add arithmetic expression to variable
subtract arithmetic expression from variable

The statements are equivalent to the let statements:

let variable = variable + arithmetic expression
let variable = variable - arithmetic expression

The add and subtract statements have the virtues of being easy to write and being straigh

ward in meaning. Some examples of these statements are:

add 1 to COUNTER
add ITEM * COST to BILL
subtract 3 * X + 6 * Y from Z
subtract COST from CASH

1.8 Displaying the Results of Computation

The print statement was used in the first example in paragraph 1 to display the result of a compu

tation. This statement may be used either to display some predefined text, or to display bo

defined text together with the current values of program variables or arithmetic expressions

print I lines as follows
6

SIMSCRIPT II.5 Basic Concepts

ns

 to be

at line

e.

ement:

mns.

ons are

pres-

isplay

ted

indi-

nd fol-

filled

f print
or

print I lines with arithmetic expression list as follows

followed by I lines of descriptive text and format information. The line count I is a positive integer

constant. The word line can be used instead of lines to improve readability. Thus and like

this may be used as alternatives to the phrase. Some sample print statements are:

print 2 lines as follows
print 1 line thus
print 2 lines with X and Y like this
print 4 lines with X, X**2, Y, Y**2, X*Y, N as follows

The I lines, called format lines, that follow the print statement can contain as many as 80 colum

of textual information and formats for variables or arithmetic expressions whose values are

printed. There can be either text, or formats, or both in any format line. The length of a form

is measured as the number of columns from column 1 to the last nonblank column in the lin

Textual information appearing in format lines is printed exactly as it appears. Thus, the stat

print 1 line as follows
......This is a Sample Format Line.....

prints a single line of output containing the above message. The statement:

print 2 lines thus
 Summary Report
INCOME EXPENSE DATA

prints two lines of output as they appear in the format lines. Any character except an (*) or a vertical

bar (|) can appear in a format line as a textual message. Blanks are "printed" as empty colu

When print statements are used to display the value of arithmetic expressions, the expressi

listed in the print statement, and descriptive formats are provided for their values. The ex

sions are first evaluated, and then printed in the display formats in left-to-right order. The d

formats are described using asterisk (*) characters to indicate the desired positioning of the prin

values.

The general format description for a numeric value is of the form ***.**, where the asterisks

cate the number of print positions before and after the decimal point. The decimal point a

lowing asterisks may be omitted if no fractional part is to be printed. If necessary, the value is

rounded before printing. Blank print positions to the left of the decimal point, although not

with asterisks, may be used if required by the magnitude of the number. A complete list o

formats is given in Appendix A.
7

SIMSCRIPT II.5 Programming Language

ve

-

o one

w

The variables PRICE and ITEMS appearing in the following print statements are assumed to ha

the values 100.899 and 27, respectively:

1. print 1 line with PRICE/ITEMS thus
PRICE/ITEM = $*.***

is printed as:

PRICE/ITEM = $3.737

2. print 1 line with PRICE/ITEMS as follows
PRICE/ITEM = $*.**

is printed as:

PRICE/ITEM = $3.74

3. print 3 lines with PRICE, ITEMS, PRICE/ITEMS thus

PRICE = $***.*
ITEMS = *
PRICE/ITEM = $*.***

is printed as:

PRICE = $100.9

ITEMS = 27
PRICE/ITEM = $3.737

When several values are to be printed contiguously, the single parallel (|) is used in place of an as

terisk to terminate a format on the left. If this is not done, two contiguous formats merge int

another. Thus, two contiguous three-digit integer fields can be expressed as ***|** , and six con-

tiguous one-digit integer fields as |||||| .

Blank lines can be included in the print format lines, or the skip statement may be used. If E is

any arithmetic expression, the statement:

skip E output lines

skips a number of lines equal to the value of E rounded to an integer. The word output is optional.

The words line and lines are synonymous. Some examples of the usage are:

skip 1 output line
skip N lines
skip X + 3 * Y output lines

If E is negative, it is treated as zero. At most, one complete page will be skipped.

Pages can be ejected before printing, so that the next print statement starts at the top of a ne

page, by using the statement:
8

SIMSCRIPT II.5 Basic Concepts

vely

te-

le, data

fferent

assed.

ration

cord is

 written
start new page

The print, skip , and start new page statements can be used together to produce attracti

labeled output reports.

As a final caution, note that whereas a print statement can appear on a line with previous sta

ments, each of its following format lines must appear on a separate line. Format lines should, in

general, not be indented.

1.9 Skipping Unwanted Input Data

Input data records may contain more information than is required by a program. For examp

collected from a laboratory experiment or a population survey may be analyzed in several di

ways by different programs.

A skip statement may also be used to allow unwanted input data fields or records to be byp

A statement of the form:

skip E fields

passes over E data fields. The arithmetic expression E is rounded to an integer, if necessary. If E is

negative, it is treated as an error, causing the program to terminate. For example:

skip 2 fields

skips the next two data fields, and:

skip I/J fields

skips no data fields if I/J is equal to 0, skips 3 fields if I/J = 2.7 , or skips 4 fields if I/J =

4.13 .

When a data field (value) is read, SIMSCRIPT II.5 waits at the end of the data field in prepa

for the next read statement. Hence, when a field at the end of a data record is read, the re

retained until the next read statement is executed.

The skip statement can also be used to skip the remainder of a current data record when it is

as:

skip 1 record

An equivalent statement:

start new record

or

start new input record
9

SIMSCRIPT II.5 Programming Language

ines.

s-

r mes-

s phys-

 de-

tions

sions,

en alter-

inary

lues of

mine its
is somewhat more descriptive. Note that the word input is optional. If input is not specified,

this usage of the skip statement is distinguished by context from that used to skip output print l

The word records implies input , while lines implies output .

The skip record statement can be generalized to the form:

skip E records

in which case the current data record and the following E - 1 records are bypassed. If the expre

sion (E) is zero, no records are skipped. If it is negative, the program terminates with an erro

sage. The statement:

skip 3 records

skips the remainder of the current data record and also the next two data records. (See paragraph

3.5.2 for program termination on end-of-file.)

1.10 Logical Expressions

Normally, computation proceeds from statement to statement in the order in which statement

ically appear in a program listing. For example, in the four-statement example in paragraph1, the

program first executes the read statement, then the add statement, then the print statement, and

halts when it reaches the stop statement. A fundamentally important extension of the concepts

veloped so far is the ability to specify, in a program, conditions under which alternative ac

should be performed.

Arithmetic expressions may be combined, using relational operators, to form logical expres

which may be determined to be either true or false and then may be used to choose betwe

native actions. A logical expression is formed by joining two arithmetic expressions with a b

relational operator. The relational operators are:

= equal

≠ not equal

< less than

≤ less than or equal

> greater than

≥ greater than or equal

When a logical expression is encountered during the execution of a program, the current va

the variables or arithmetic expressions that make up the logical expression are used to deter

truth or falsity. Thus, if X = 1 and Y = 0 , the logical expression:
10

SIMSCRIPT II.5 Basic Concepts

ical

yboard

 II.5

 be sep-

.

entheses

 forms
X = Y is false

X ≥ Y is true

X < Y is false

X + Y = X * Y is false

For readability in different contexts, SIMSCRIPT II.5 provides alternative ways of writing log

expressions. Table 1-3 relates the mathematical symbol of each relational operator with ke

symbols, English abbreviations, and "literary English" equivalents permitted in SIMSCRIPT

comparisons.

Unless the keyboard symbols (column 2, table 1-3) are used, each relational operator must

arated from the arithmetic expressions on either side by a parenthesis, or at least one blank

Typical logical expressions are:

1. Y > O

2. AGE less than RETIREMENT

3. CODE not equal to ZIP

4. LEVEL < THRESHOLD

5. (FIXED + NUMBER * UNITS) greater than LOWBID

6. A >= (B * X ** 2 + 3.57/C)

7. (X ** 2 + Y ** 2) greater than Z ** 2

8. X ** 2 + Y ** 2 > Z ** 2

Examples 5, 6, and 7 demonstrate that the arithmetic expressions may be enclosed in par

for clarity without changing their meaning. Examples 7 and 8 illustrate the use of equivalent

of a relational operator.
11

SIMSCRIPT II.5 Programming Language

etween

is exe-

hen the

struc-

s. The

ility
Table 1-3. Relational Operators
__

 Permitted Permitted
Mathematical Keyboard English "Literary English"

 Symbol Symbol Abbreviation Equivalent

= = eq Equal or Equals

≠ <> ne Not Equal To

< < ls/lt Less Than

> > gr/gt Greater Than

≤ <= le No Greater Than or

Not Greater Than

≥ >= ge No Less Than or

Not Less Than

__

1.11 Changing the Flow of Computation Using Logical Expressions

The if statement is used to test the truth or falsity of a logical expression and to choose b

alternative sequences of instructions accordingly. The general form of the if statement is:

if logical expression
 first group of statements
else
 second group of statements
always

and may be flowcharted as shown in figure 1-1. In this figure, the first group of statements

cuted when the logical expression is true, and the second group of statements is executed w

'logical expression' is false. The term "flow of control" is used to denote the sequence of in

tions followed under specific conditions, chosen from among the possible such sequence

keywords else and always may be replaced by alternative synonyms to improve the readab

of the if statement:

Else may also be expressed as otherwise

Always may also be expressed as regardless or endif

An example of the if statement is:
12

SIMSCRIPT II.5 Basic Concepts

e choice
if STATUS = BUSY
add 1 to NO.IN.QUEUE

else
let STATUS = BUSY

always

Here, a STATUS variable is tested against a value denoting BUSY status. The variable NO.IN.QUEUE

is incremented if the status flag is busy and the flow of control passes to always . Otherwise, the

status flag is set to reflect the now BUSY status and control naturally passes to the always statement.

Figure 1-1. Flow of Control After an if Statement

The else statement and 'second group of statements' are optional. There are cases when th

is simply whether or not to perform an action. This shortened form of the if statement is:

if logical expression
group of statements

always

logical
expression

E L S E

first group
of

statements

second group
of statements

A L W A Y S

True

False
13

SIMSCRIPT II.5 Programming Language

s is ex-

n

the

 words
and is flowcharted in figure 1-2. When the logical expression is true, the group of statement

ecuted and flow of control continues through the always statement. When the logical expressio

is false, control transfers directly to the always . For example:

If X less than A
let A = X + Y
let B = X - Y

always

Figure 1-2. Flow of Control After Shortened if Statement

To improve program readability, the logical expression appearing in an if statement may be op-

tionally followed by a comma. The word is may also be used before the "English" versions of

relational operators in logical expressions. Examples are:

if STATUS is not equal to BUSY,
if X is less than A,

Also, because logical comparisons with the value zero occur frequently in programming, the

zero, positive , and negative may be combined with the words is and is not , replacing

logical
expression

group
of

statements

A L W A Y S

True

False
14

SIMSCRIPT II.5 Basic Concepts

le log-

etic

gainst

e self-

For ex-

 of the

nd 17

by

 of

 of
both the conditional operator and the right hand arithmetic expression, to form more readab

ical expressions in these special cases. Examples are:

if X is zero equivalent to if X = 0

if X-Y is positive equivalent to if X-Y > 0

if Z is not negative equivalent to if Z >= 0

Zero, positive, and negative may be thought of as properties associated with an arithm

expression. SIMSCRIPT II.5 allows for the expression of a number of such logical tests a

predefined properties. These will be presented in later sections as the context demands.

If statements can be "nested" by putting if statements within the statement group of other if state-

ments, thus allowing complex conditions to be specified. The statement group in an if statement

can contain any number of statements. The only qualification on this group is that it must b

contained with respect to other if statements appearing within it. Each if is matched by a corre-

sponding always , as left parentheses are matched with right parentheses in an expression.

ample, the following program segment might be used to classify persons by age into one

groups CHILD, TEEN , or ADULT defined by the the age groups under 11 years, between 12 a

years, and over 18 years:

if AGE less than 12
add 1 to CHILD.COUNT

else
if AGE less than 18

add 1 to TEEN.COUNT
else

add 1 to ADULT.COUNT
always

always

To indicate program structure and flow of control, it is helpful to indent and align each if in a col-

umn with its corresponding else, always, otherwise, regardless, or endif . Obvious-

ly, an out-of-place else or always in a program can greatly alter the flow of control and there

the meaning.

A feature of one particular construct of nested if statements is that a failure to satisfy any one

the logical conditions specified by any of the nested if statements effectively causes a transfer

control out of the range of the entire nest. Such a structure is illustrated below:

if VALUE > 1000.00
let PRIORITY = 2
if TIME.DUE < 3

add 1 to PRIORITY
if WORKTIME < 1

add 1 to PRIORITY
always

always
always
15

SIMSCRIPT II.5 Programming Language

a

irst

ndi-

ucture.

must

ison be-

 such as

thout

on

e com-

re
The failure of any test causes a transfer to one of the cascaded always statements, and hence

transfer out of the structure. Successive if statements add further logical tests to that of the f

if statement. This structure may be simplified for readability by prefixing the word then to the

second and subsequent if statements, and eliminating all but one of the consecutive always state-

ments. The example shown above could be written as:

if VALUE > 100.00
let PRIORITY = 2
then if TIME.DUE < 3

add 1 to PRIORITY
then if WORKTIME < 1

add 1 to PRIORITY
always

Note that the then if construct is only applicable to nested logical tests in which the false co

tion for any of the tests is to have the same effect — a transfer of control out of the nest str

While the use of then if may reduce the number of statements required, the programmer

judge whether such use obscures the logical intent of the structure.

1.12 More on Logical Expressions

The logical expressions described above have used relational operators to specify compar

tween two arithmetic expressions, or between one such expression and defined properties

zero or negative . This section elaborates on the structure of logical expressions.

A logical expression may be negated by following it with the phrase is false , as in the expres-

sion:

value < LIMIT is false

The is false phrase may be used to improve readability by stating a desired condition wi

forcing an unnatural transposition of logic. For example, a test may be written as:

if QUANTITY > INVENTORY
let ORDER = ORDER - 1

always

or:

if QUANTITY <= INVENTORY is false
let ORDER = ORDER - 1

always

with equal effect. For symmetry, the phrase is true is permitted. The form selected depends

how the programmer wants a logical expression to appear to a reader.

Simple logical expressions containing arithmetic expressions and relational operators may b

bined using logical operators to form compound logical expressions. The logical operators aand
16

SIMSCRIPT II.5 Basic Concepts

he log-

ical ex-

ed,

 expres-

ssion

low.

s
as op-
r hier-

ch a

 phrase

 given
and or . (In this context, a comma cannot be substituted for the word.) If E1 and E2 are logical

expressions, then:

E1 and E2 is true if both E1 and E2 are true

E1 or E2 is true if either or both of E1 and E2 are true

Compound logical expressions may contain more than two simple logical expressions, as in t

ical expression:

E1 and E2 or E3 and E4

When more than two simple logical expressions appear in an unparenthesized compound log

pression with the operators and or or , the operator and is evaluated first. Parentheses can be us

however, to indicate a specific order of evaluation. In the absence of parentheses, the above

sion is, by convention, evaluated, as though it had been written:

(1) (E1 and E2) or (E3 and E4)

If a program requires some other logic, the statement can be written as:

(2) E1 and (E2 or E3) and E4

which means something quite different. Version (1) is true either if both E1 and E2 are true or if

both E3 and E4 are true. Version (2) is true if E1 is true and E4 is true, and either E2 or E3 is true.

Compound logical expressions can be used with is false and is true phrases. An is false

or is true phrase always applies to the logical expression preceding it. If this logical expre

is compound, it must be enclosed in parentheses, as shown in the logical expression:

E1 is false and (E2 or E3) is true

A few simple rules that govern the writing and evaluation of logical expressions are given be

1. A logical expression enclosed in parentheses remains a logical expression.

2. In the absence of parentheses, and is evaluated before or . Successive logical expression
are used as operands of and operators, and these evaluated expressions are then used
erands of or operators. Parentheses can always be used to indicate specific operato
archies.

3. Is true and is false phrases apply to logical expressions preceding them. If su

logical expression is compound, it must be enclosed in parentheses. Otherwise, the

only applies to the expression adjacent to it.

Some examples that illustrate the writing and evaluation of complex logical expressions are

below. In these examples, the variables I, J, K, M , and N are positive numbers; the variables Q,

R, S , and T are negative numbers; and the variable Z is zero.
17

SIMSCRIPT II.5 Programming Language

 follow

al

n may
1. I equals J is true or false depending on the values I, J

2. I equals Q is always false

3. M + N is positive is always true

4. M + T is positive is true or false depending on the values M, T

5. I > 0 and J > 0 is always true

6. I > 0 or R > 0 is always true

7. I eq J and Z eq 0 is true if I equals J , and false otherwise

8. I eq J or Z eq 0 is always true

9. I = J and K > N and R = S is true if all three conditions are true, and

false otherwise; it is evaluated as ((I =

J) and (K > N) and (R = S))

10. I = J or K > N or R = S is true if any one of the three conditions

is true; it is false only if all are false

11. I = J and K > N or R = S is true if either of the two conditions

around the or is true; it is evaluated as

(I = J and K > N) or (R = S)

12. Z is zero and (I < 0 or S < 0) and Q = T is true if Q = T

13. Z is zero and (I > 0 or S < 0) and Q = T is true if Q = T

14. J< K and (I = Q or S < 0) and J + K < I is true if J < K and J + K < I

When a statement containing a compound logical expression is executed, it does not always

that all logical conditions in the statement are examined. For example, in the segment:

if X > Y**2 and COUNT > N
add ...

always

both logical expressions have to be true for the add statement to be executed. If the first logic

expression (X > Y**2) is false, there is no need to evaluate the second (COUNT > N), as the compound

logical expression X > Y**2 and COUNT > N can never be true regardless of the values of COUNT

and N. In normal circumstances, the fact that all the parts of a compound logical expressio

not be evaluated each time will cause no difficulty.

It should be noted that compound logical expressions formed using the logical operator and may

be written in an alternative way. Using e to represent an arithmetic expression and R to represent a

relational operator, such compound logical expressions may be written as:

Form Example

e R e 1 < X

e R e R e 1 < X < N
18

SIMSCRIPT II.5 Basic Concepts

e com-

in its

 more

 state-

ble

t

ew

h the

ment is

 corre-
e R e R e R e 1 < X < N = SUM

e R e R e R e R e 1 < X < N = SUM is greater than 5

In each of these cases, all of the expressed logical relationships must be true in order for th

pound expression to be true. For example, in the second illustration, X must be greater than 1 and

less than N. Thus, the expression 1 < X < N is equivalent to 1 < X and X < N .

1.13 Repetition Using Control Phrases

Another important concept is that of repetition. Much of the power of the computer lies with

ability to repeat a sequence of instructions. A SIMSCRIPT II.5 statement can be executed

than once by prefixing it with a control phrase. An example of a control phrase prefixed to a

ment is:

for I = 1 to 3 by 1
print 1 line with I and I ** 2 thus

THE SQUARE OF * IS *

The control phrase, for I = 1 to 3 by 1 , controls the execution of the print statement to

which it is prefixed, causing this statement to be repeated three times, first with I = 1 , next with

I = 2 , then with I = 3 . To demonstrate, the example uses the value of the variable I within the

print statement, displaying the lines:

THE SQUARE OF 1 IS 1
THE SQUARE OF 2 IS 4
THE SQUARE OF 3 IS 9

The general form of a control phrase is:

for V = E1 to E2 by E3

where E1, E2 , and E3 are arithmetic expressions, and V is a variable. E3 must be greater than

zero, or an error results.

The first time the control phrase prefixed to a statement is executed the control phrase variaV is

set equal to the value of E1. If the value of E1 is not greater than that of E2, the controlled statemen

is executed. After execution, the value of E3 is added to the control phrase variable, and if this n

value is again less than E2, the controlled statement is repeated. This process continues, wit

control phrase variable taking on successively larger values until it exceeds the value of E2.

If the phrase by E3 is omitted from the control phrase, a value of 1.0 is assumed for E3. This form

is convenient when the control phrase is used simply to count the number of times a state

executed. A comma at the end of a control phrase is optional.

The following examples illustrate some control phrases and the successive values of their

sponding control phrase variable:
19

SIMSCRIPT II.5 Programming Language

ot

nt

me

ly dif-

f state-

 to 12

ment,
Examples of

Control Phrases Successive Values of v

for I = 1 to 5, 1,2,3,4,5

for I = -5 to 5, -5,-4,-3,-2,-1,0,1,2,3,4,5,

for I = 0.0 to 2.0 by 0.5 0.0,0.5,1.0,1.5,2.0

for I = 10 to N by M, If N is less than 10, the controlled statement will n

be executed.

If N is at least equal to 10, the controlled stateme

will be executed with I=10, 10+M, 10+2*M, ...,

10+n*M until I exceeds N.

As stated earlier, the value of the expression E3 is added to the control phrase variable each ti

the statement is repeated. A variant of the control phrase format causes the value of E3 to be sub-

tracted, and thus allows the control phrase variable to step backward:

for V back from E1 to E2 by E3

Everything applicable to the forward stepping control phrase applies to this phrase. The on

ference is in the direction in which the control phrase variable changes value. Again, E3 must be

greater than zero.

Control phrases can be nested together, providing more complex control over the repetition o

ments:

for NUM = 1 to 12,
for MULT = 1 to 10,

print 1 line with MULT, NUM, and MULT * NUM thus
** TIMES ** IS ***

This example computes and prints the multiplication tables for each of the numbers from 1

and for multipliers from 1 to 10. Both control variables are used within the controlled state

producing the displayed result:

1 TIMES 1 IS 1
2 TIMES 1 IS 2
3 TIMES 1 IS 3
.
.
10 TIMES 1 IS 10
1 TIMES 2 IS 2
2 TIMES 2 IS 4
3 TIMES 2 IS 6
.
.
10 TIMES 12 IS 120
20

SIMSCRIPT II.5 Basic Concepts

 an inner

tire range

se

se is an

ariables

re

 number

tement.

ate the

d

tation:

ble

nt-

 to

nts are

a back-
Used in this way, the first control phrase is said to be an outer phrase, and the second phrase

phrase. The controlled statement is repeated so that the inner phrase steps through the en

of values for the inner control phrase variable MULT for each new value of the outer control phra

variable NUM.

An indefinite number of phrases can be nested together in this way. Each successive phra

outer phrase of the following phrase and an inner phrase of the preceding phrase. Control v

of outer phrases can be used in the expressions E1, E2 , and E3 of inner phrases, as their values a

defined within these phrases. This usage will be explored in more detail in Chapter 2.

1.14 Control Phrases Extended To Cover More Than One Statement

The concept of a control phrase can be expanded to permit the phrase to control an arbitrary

of statements. Statements to be controlled as a group are enclosed between the words do and loop .

A control phrase controls grouped statements in exactly the same way it controls a single sta

As an example, consider a program, similar to the very first example, but extended to calcul

sum of any 10 numbers supplied as input data. The variable TOTAL can be assumed to be initialize

to zero. However, it is explicitly assigned a zero value here to clarify the steps in this compu

let TOTAL = 0
for COUNT = 1 to 10 by 1
do

read NUMBER
add NUMBER to TOTAL

loop
print 1 line with TOTAL as follows
THE SUM IS : ****
stop

The two grouped statements read a new value from the input data, assign its value to the varia

NUMBER, and then add this value to TOTAL. This group executes 10 times, after which the increme

ed value of the control phrase variable, COUNT, halts the repetition. The flow of control passes

the following statement that displays the result. Note that in this example COUNT is not used any-

where within the controlled statements, but only to control the number of times the stateme

repeated.

A do loop (as we shall call this expanded structure hereafter) can also be constructed from

ward iterating for phrase. Thus, we can write:

for I back from 10 to 1
do
.
.
loop
21

SIMSCRIPT II.5 Programming Language

 control

-

ximate

sented

 value

 halted

e result.

e

s of

 some

ay be
It is common to indent in some regular way the statements that are to be repeated within the

structure of a do loop (as for the statement groups in an if statement) drawing attention to the de

parture from normal sequential flow of control.

The following program uses a number of terms from an infinite series to estimate an appro

value for the irrational number PI. The value of PI, approximately 3.14159..., can be repre

by the infinite series:

PI/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 ...

The accuracy of the approximation is controlled by a variable read from input data. This data

sets a limiting value on the size of the divisor in the terms of the series. The summation is

when the values of subsequent terms become too small to affect the desired accuracy of th

For example:

read LIMIT
let VALUE = 0
let SIGN = +1
for DIVISOR = 1 to LIMIT by 2
do

add SIGN/DIVISOR to VALUE
let SIGN = -SIGN

loop
print 1 line with VALUE*4 as

The Approximate Value of Pi is *.******
stop

The variable DIVISOR takes the values 1,3,5,... until it exceeds the limiting value. Note th

use of the unary operators to control the sign of successive terms.

1.15 Logical Control Phrases

Normally, a do loop, controlled by a for statement, is executed over the entire range of value

the control variable generated. An alternative is to control the repetition of statements using

logical condition that may be evaluated during the execution of the controlled statements.

A logical control phrase contains a logical control operator and a logical expression and m

used to control a do loop. The logical control phrases are:

while logical expression

and

until logical expression

The following example illustrates the use of a logical control phrase in a program:
22

SIMSCRIPT II.5 Basic Concepts

er

wing

d as

 ex-

 of the

luded

n the

s

 state-

e use-

re for
while TOTAL.WEIGHT < LIMIT
do

read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
add FARE to TOTAL.REVENUE

loop

In this example, the value of the variable TOTAL.WEIGHT is incremented for each set of passeng

data read. As long as TOTAL.WEIGHT does not equal or exceed the value LIMIT , the statements in

the do loop are repeated. When the logical condition becomes untrue, that is, TOTAL.WEIGHT

equals or exceeds LIMIT , the repetition terminates and control transfers to the statement follo

loop .

An until phrase is similar to a while phrase, but the terminating condition may be expresse

the logical complement of that used in the while phrase. The phrase:

until TOTAL.WEIGHT >= LIMIT

could be substituted for the while phrase in the above example with an identical effect. In the

ample in the previous section, the calculation of an approximate value for PI, the accuracy

computation was controlled by an input data value limiting the magnitude of the divisor in inc

terms of the series. It might seem more straightforward to specify directly a lower bound o

size of the terms to be included in the summation. The following example uses an until phrase to

control the do loop:

read LOW.BOUND
let VALUE = 0
let SIGN = +1
let TERM = 1
let DIVISOR = +1
until TERM less than LOW.BOUND
do

add (TERM * SIGN) to VALUE
let DIVISOR = DIVISOR + 2
let SIGN = -SIGN
let TERM = 1/DIVISOR

loop
print 1 line with VALUE*4 as

The Approximate Value of Pi is *.******
stop

Recalling that for control phrases may control the repetition of single statements as well ado

loops, note that while and until statements may be used in the same way. Because a single

ment may not, for the present, appear to offer much scope for altering the logical condition, th

fulness of this construction may not be immediately appreciated. It is mentioned he

completeness and will be expanded on in later chapters.
23

SIMSCRIPT II.5 Programming Language

e fol-

-

dition

l-

ression

n-

s have

state-

r exam-

s

ol vari-
Because there is no automatic termination of a do loop controlled by a while or until phrase, as

there is with a for phrase, care must be taken not to program a nonterminating loop, as in th

lowing program segment:

while NUMBER.OF.SEATS is not zero
do

read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT

loop

This loop is not terminal, as the value of NUMBER.OF.SEATS is not affected by any statement with

in the do loop, and hence, if the logical expression is true when the loop is initiated, the con

will never become false. One means of avoiding this problem is to use a combination of a for con-

trol phrase modified by a logical control phrase. A while phrase, for example, may be used to a

low a for phrase to direct the sequence of program control as long as a specified logical exp

is true. The logical expression is reevaluated each time the for phrase changes the value of its co

trol variable. Thus, the loop in the following example may be terminated either when all seat

been allocated or when the total baggage weight exceeds the allowable limit:

for COUNT = 1 to NUMBER.OF.SEATS,
while TOTAL.WEIGHT not greater than LIMIT

do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT

loop

This example could have been written equally well using an until phrase:

for COUNT = 1 to NUMBER.OF.SEATS
until TOTAL.WEIGHT > LIMIT

do
.
.

Two additional logical control phrases, with a rather different effect, may be used to modify

ment repetition, as so far discussed. These are:

with logical expression

and

unless logical expression

Unlike while and until phrases that control the termination of repetition, a with phrase may be

used to selectively control whether or not the statements are executed at each repetition. Fo

ple, a with phrase modifies the sequence of values that pass from a for phrase to the statement

that it controls. The logical expression is tested each time a new value of the for phrase control

variable is generated, and if the expression is false, then execution for this value of the contr
24

SIMSCRIPT II.5 Basic Concepts

ted con-

ass into

, except

value

ld

he loop,

d

s-

the

and

ly
able is skipped. This operation effectively passes control around the statements for a selec

trol variable value or set of values. The phrase is useful for screening values before they p

for -phrase-controlled statements. A store, for example, that does business every weekday

Wednesday, might, in accounting for the weeks' sales, use the program statements:

for DAY = 1 to 6
with DAY not equal 3

do
read SALES.QUANTITY,...

.

.
loop

In this example, the with phrase causes the statements within the loop to be skipped for the

3, which is generated as a value for DAY in the for sequence, and for which value the loop wou

normally be executed.

The word when can be used as a synonym for with . The words unless or except when can

be used equivalently to show that the items passing the indicated test are screened from t

rather than accepted. Hence, the above example could be written:

for DAY = 1 to 6
unless DAY = 3

do
.
.

With, unless, while , and until phrases can be attached to nested for statements. When this

is done, each with or unless phrase applies to the for statement immediately preceding it, an

each while or until phrase applies to all preceding for phrases. The example statement illu

trates this:

for DELTA = 1 to 100 by 0.5,
for Q = L1 to L2 by DELTA,

while (DELTA/Q) less than LIMIT
for V = -Q to Q by STEP,

with V ne 0
do

add ... to SUM
.
.

loop

The outer for phrases step the variables DELTA and Q through a sequence of values as long as

logical expression in the while phrase is true. A false condition ends the for phrase control by

transferring to the next statement after the loop statement. Each time the variables are stepped

the logical expression is true, the inner for steps the variable V through a sequence of values. On
25

SIMSCRIPT II.5 Programming Language

ent

ns of

 of con-

 previ-

eration.

ample

:

s

s de-

l phrase
those values in the sequence, however, for which the logical expression in the with phrase is true

(i.e., all values but zero) are passed on to the statements in the do loop.

Sequences of with, unless, while , and until phrases can be attached to for phrases in any

combination. More than one of each type of phrase is permitted. While and until control phrases

may also be modified by with and unless phrases, and may be nested with other independ

while and until phrases to control statement repetition. Again, the use of such combinatio

control phrases will become more apparent in later examples.

1.16 Altering the Flow of Control Within a Loop

There are occasions when it may be necessary to exercise more explicit direction on the flow

trol than may readily be specified using the control structures discussed so far. Consider the

ous example:

for COUNT = 1 to NUMBER.OF.SEATS,
while TOTAL.WEIGHT < LIMIT

do
read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT

loop

Examination of the statements within the loop shows that if the loop is terminated by the while

phrase, the weight of the last passenger's baggage must have overflowed the LIMIT value. This

may not be quite what was intended. The problem arises because the test of the condition is made

only at the beginning of the loop, and all the statements in the loop are executed at each it

There are occasions when the test should logically be made within the loop. The following ex

uses a leave statement to transfer control out of the loop when the LIMIT is about to be exceeded

for COUNT = 1 to NUMBER.OF.SEATS
do

read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
if TOTAL.WEIGHT + BAGGAGE.WEIGHT > LIMIT

leave
otherwise
add BAGGAGE.WEIGHT to TOTAL.WEIGHT

loop
let LOAD.FACTOR = (COUNT-1)/NUMBER.OF.SEATS
.
.

The leave statement, which may only be used within a do loop, causes the flow of control to pas

to the statement immediately following the loop statement that delimits the do loop. This addition

to the construction of a do loop proves useful in those cases where the terminating condition i

pendent on some of the actions performed within the loop. Note the use of otherwise in this ex-

ample. This usage is discussed in the next paragraph. Note also that the value of the contro
26

SIMSCRIPT II.5 Basic Concepts

e, and

 where

r more

t

 con-

ed with

control

f a ref-

ror

lective
variable COUNT remains set to the value assigned at the last evaluation of the control phras

may be used in subsequent computation.

The cycle statement bypasses any further statements within the do loop, beginning the evaluation

of the control phrases determining the next repetition. Again, this statement can be useful

the tested condition is dependent on some evaluation made within the loop. Although one o

if statements could be used to achieve a similar effect, the cycle statement makes it clear tha

there is to be no further computation within this iteration of the loop.

for COUNT = 1 to NUMBER.OF.SEATS
do

read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
if FARE is not equal to FIRST.CLASS.FARE

cycle
otherwise
read MENU.CHOICE, SEAT.SELECTION
if MENU.CHOICE = VEGETARIAN

.

.
always

loop

1.17 Changing the Flow of Control By Direct Order

The leave and cycle statements are two special cases of a generalized capability to directly

trol the order in which statements are executed. Any statement in a program may be prefix

a label. A label is a name enclosed in single quotation marks (apostrophes). The flow of

may then be directed to continue from this statement by executing a go to statement referencing

the label. The go to statement is of the form:

Go to 'label'

or

Go to label

The quotation marks are mandatory when the label is defined (i.e., when it appears in front o

erenced statement), but optional when the label is referenced in a go to statement. The word to

is also optional. In Program 1-1, go to is used both to transfer out of the loop control if an er

condition is detected, and to transfer to a group of common statements after performing se

processing for individual cases.

Note that the second group of statements and the terminating always is omitted when the first

statement group of an if group ends with an unconditional transfer of control (i.e., leave, cycle,

go to). In other words, an else or otherwise immediately preceded by go to is equivalent to

an always statement.
27

SIMSCRIPT II.5 Programming Language

ovide

aly
Program 1-1.
__

for COUNT = 1 to NUMBER.OF.SEATS
do

read PASSENGER.NO, FARE, and BAGGAGE.WEIGHT
let CHECK.SUM = ...
if CHECK.SUM <> CHECK.VALUE

go to 'CHECK.ERROR'
otherwise
if FARE = FIRST.CLASS.FARE

add 1 to CHAMPAGNE.COUNT
go to 'TOTALS'

otherwise
if FARE = EXECUTIVE.CLASS.FARE
.
.

go to 'TOTALS'
otherwise
if FARE = ECONOMY.CLASS.FARE
.
.

go to 'TOTALS'
otherwise
if FARE = STANDBY.FARE
.
.

go to 'TOTALS'
otherwise

'TOTALS'
add BAGGAGE.WEIGHT to TOTAL.WEIGHT
add 1 to MEALS.REQUIRED

loop
let LOAD.FACTOR = (COUNT-1)/NUMBER.OF.SEATS
.
.

'CHECK.ERROR'

 print 1 line with PASSENGER.NO thus
 ERROR IN TICKET NO. ******

__

The otherwise (or the synonym else) in this example could be replaced by always, endif

or regardless with exactly the same meaning. This structure has been retained to pr

compatibility with earlier versions of the SIMSCRIPT language. To clearly identify this anom

in control structure, it is suggested that the otherwise synonym for else be reserved for this

usage.
28

SIMSCRIPT II.5 Basic Concepts

an

 mul-

gic un-

hould

action

e

t

strates

e

e of the

ols —

d

CRIPT

rs +, -, ',

l char-

ers. In

ay be

en-

ection of

bers, and
The go to statement provides great flexibility in directing the flow of control. However, it c

detract from the clarity of the logic and the readability of the program. Unwisely used, it can

tiply the possible paths through the program, rendering comprehension and testing of the lo

necessarily difficult. Structured programming principles suggest that the logic of a program s

be expressed in restricted control flow structures. In particular, the concepts of conditional

and iteration should be represented using the if and do loop structures.

1.18 The Logical End of a Program

The stop statement is used to terminate a program. Because there may be more than onstop

statement in a program, and control flow may be diverted around any stop statement, it does no

always appear as the last statement of a program listing. The following program segment illu

the use of the stop statement in conjunction with an if statement:

if X is zero
print 1 line as follows
ZERO IS AN ILLEGAL VALUE FOR X
stop

otherwise
let Z = Y/X

Note: The stop statement is considered to be an unconditional transfer of control.

1.19 The Physical End of a Program

The last statement in every SIMSCRIPT II.5 program must be end . It signals that the entire sourc

program has been read. The example programs at the end of this chapter illustrate the us

end statement.

1.20 A Note on SIMSCRIPT II.5 Program Form

SIMSCRIPT II.5 programs are composed of sequences of conventionally arranged symb

some are standardized key words such as let and read and others are programmer-constructe

variable names and numeric constants. The basic symbolic units recognized by the SIMS

II.5 compiler in scanning program statements are names and numbers, the special characte

*, /, **, (,), ", >, <, |, $, =, the punctuation marks period, comma, and blank, and other specia

acters.

Commas are required in some places in SIMSCRIPT II.5 statements and are optional in oth

particular, they are required to separate items in a list of any sort. To aid readability, they m

used optionally after the logical condition of an if statement or the end of a control phrase. Wh

ever a comma may or must be used in a particular statement, its use is made clear in the s

the text that defines the statement.

Because SIMSCRIPT II.5 statements are not written in any specific format, but spaced across and

between lines as a programmer wishes, blanks are needed to separate words (names, num
29

SIMSCRIPT II.5 Programming Language

east one

e read-

 be writ-

atement

es and

bol

t

 a single

enting

he use

uld be

r

 state-

ed wher-
key words) in statements. Two adjacent statement words must always be separated by at l

blank unless one of them is a special character. Thus:

let X = Y

can be written as:

let X=Y

but not:

letX=Y,

and:

if (SIGN + 5) is greater than DELTA

can be written as:

if(SIGN+5) is greater than DELTA

but not as:

if(SIGN+5) isgreaterthanDELTA.

Merely looking at a statement usually makes it clear whether a blank is needed or not. Because mul-

tiple blanks are treated as single blanks, blank characters can be freely used to improve th

ability of statements, as many of the illustrations in this book demonstrate.

Statements can be typed as desired in a program, with one slight restriction. A statement can

ten on more than one input line, or several statements can be written on the same line, but st

words (names, numbers, and key words) cannot be split between lines. Consequently, nam

constants are restricted to the length of one record. (Remember that the exponentiation sym**

is a single unit and cannot be split.) Statement labels, where used, must precede the statement bu

need not appear on the same line as the statement. More than one label may be prefixed to

statement.

The logical structure of a program should be reflected in the physical layout. The use of ind

to draw attention to a departure from sequential execution of statements is one example. T

of appropriate control structures, rather than ad hoc direction of control flow through go to , can

contribute greatly to this goal.

1.21 Clarifying Comments In a Program

Whenever it appears that a clarifying remark would be helpful to the reader, a comment sho

used. A comment is delimited on the left by two single apostrophes (''). Comments can appea

anywhere in a program except within a word. They may appear on the same line as program

ments or on separate lines. Comments serve only as documentation, but they should be us
30

SIMSCRIPT II.5 Basic Concepts
ever the logical intent of a program is not immediately evident from its SIMSCRIPT II.5 instruction

sequences. The use of comments will be il lustrated in many of the example programs below.

1.22 Some Sample SIMSCRIPT II.5 Level 1 Programs

The following programs illustrate the SIMSCRIPT II.5 concepts and statements presented in this

chapter. The programs are printed as they might appear before being submitted for compilation.

The flexibili ty of SIMSCRIPT II.5 makes many program statement formats possible. Those used

here are examples only.

1.22.1 Roots of a Quadratic Expression

The fol lowing example, demonstrating the use of nested if statements, calculates the roots of a

quadratic equation, which may be expressed in the general form:

AX2 + BX + C = 0

First, the coeff icients, A, B , and C, are read from input data. They are printed so that they may be

checked for any input errors. The coeff icients are then tested for the trivial zero, constant, or linear

cases. Otherwise, the roots, alpha and beta, may be calculated from the familiar formulae:

alpha = -B + (B**2 - 4AC)**(1/2)

2A

beta = -B - (B**2 - 4AC)**(1/2)

2A

Before obtaining the square root, the sign of the sub-expression B2 - 4AC is evaluated. I f this value

is less than zero, the roots have complex values; otherwise, real values. Notice how the print

statement, as used in the example, can be used to print both the program title and the labeled variable

names.
31

SIMSCRIPT II.5 Programming Language

__

__

The

 The
Program 1-2.

'' Program To Compute The Roots of a Quadratic Equation
'' of the Form AX**2 + BX + C = 0

read A,B,C
print 2 lines with A,B,C as follows
ROOTS OF THE QUADRATIC EQUATION WITH COEFFICIENTS:

A=***.** B=***.** C=***.**
if A eq 0
if B eq 0

if C eq 0
print 1 line as follows

TRIVIAL CASE, COEFFICIENTS ALL ZERO
else
print 1 line with C as follows
EQUATION STATES ***.** = 0
always

else
print 1 line with -C/B as follows
LINEAR, ONE ROOT ALPHA = ***.**
always

else
let X = B**2 - 4*A*C

if X ls 0
let IMAG = ((-X)**0.5)/(2*A)
let REAL = -B/(2*A)
print 2 lines with REAL,IMAG as follows
EQUATION HAS COMPLEX ROOTS
REAL PART = ***.** IMAGINARY PART = ***.**

else
let X = X ** 0.5
let ALPHA = (-B+X)/(2*A)
let BETA = (-B-X)/(2*A)

print 2 lines with ALPHA,BETA as follows
EQUATION HAS REAL ROOTS
ALPHA = ***.** BETA = ***.**

always
always
stop
end

1.22.2 Finding the Area of a Triangle

This program demonstrates nested if statements, using more complex logical expressions.

program calculates the area and perimeter of a triangle with the lengths of the sides A, B , and C as

input data. The first if statement verifies that none of the sides is of zero or negative length.
32

SIMSCRIPT II.5 Basic Concepts

hat the

e con-

ts that

__

__

nts

in-

 and the

s

second if statement checks that the values read will form a triangle, based on the condition t

sum of the lengths of any two sides is greater than the length of the remaining side. All thre

ditions of the if statement must prove false before control is passed to the group of statemen

calculates the area and perimeter.

Program 1-3.

‘’Program to Compute the Area and Perimeter of a Triangle
‘’Given the Lengths of the Sides
read A,B,C
print 2 lines with A,B,C as follows

CALCULATE AREA OF A TRIANGLE WITH FOLLOWING SIDES:
A=**.** B=**.** C=**.**

if A <= 0 or B <= 0 or C <= 0
print 1 line as follows

TRIANGLE CONTAINS SIDE OF ZERO OR NEGATIVE LENGTH.
else

if A+B <= C or B+C <= A or C+A <= B
print 1 line thus

SIDES DO NOT FORM A TRIANGLE.
else

let S = (A+B+C)/2
let AREA = (S*(S-A)*(S-B)*(S-C))**O.5
print 1 line with AREA, 2*S as follows

THIS AREA IS ***.** PERIMETER = ***.**
always

always
end

1.22.3 Finding the Maximum and Minimum of a Set of Numbers

This program demonstrates the simple use of a do loop to repeat the same sequence of stateme

with different data values. The program reads N input numbers and records the maximum and m

imum values encountered. When all the numbers have been processed, the average value

maximum and minimum values are printed.

Note that the first value is read outside the control of the do loop and used to initialize the variable

MAX, MIN , and SUM. Subsequent values are compared with the values of MAX and MIN, replacing

either where appropriate.
33

SIMSCRIPT II.5 Programming Language

__

__

ng ex-

tion of

utation.

pping

re root,

. Note
Program 1-4.

''Program to Compute the Maximum, Minimum and Average
'' of a Set of Numbers
read NUMBER '' NUMBER OF DATA OBSERVATIONS
if NUMBER < 1

go to FINISH
otherwise
read VALUE
let MAX = VALUE
let MIN = VALUE
let SUM = VALUE
for COUNT = 2 to NUMBER by 1
do

read VALUE '' DATA VALUE
add VALUE to SUM
if VALUE > MAX

let MAX = VALUE
always
if VALUE < MIN

let MIN = VALUE
always

loop
print 3 lines with SUM / NUMBER, MAX, MIN thus

THE AVERAGE VALUE IS ***.****
THE MAXIMUM VALUE IS ***.****
THE MINIMUM VALUE IS ***.****

'FINISH'
stop
end

1.22.4 Computing Square Roots

The square root of a number is required in many calculations. In fact, in two of the precedi

amples, square roots were obtained using exponentiation. The following is an implementa

Newton's method to approximate square roots.

The example demonstrates the use of a logical control phrase to control an iterative comp

The logical condition specifies a relative precision of the estimated square root as a sto

criterion. Note that the first statement within the loop calculates a new estimate for the squa

using the last estimated value. This technique is fundamental to such iterative procedures

also the explanatory comment appearing beside the statement to invert the sign of DELTA, should it

be negative.
34

SIMSCRIPT II.5 Basic Concepts

Program 1-5.
__

''Program to Calculate Approximate Square Roots
read NUMBER
if NUMBER is not positive

print 1 line thus
CANNOT EVALUATE SQUARE ROOT: VALUE NOT POSITIVE

else
let SQRT = NUMBER/2.0
let DELTA = SQRT
until DELTA < (0.00001 * SQRT)
do

let SQRT = (SQRT + NUMBER/SQRT)/2.0
let DELTA = NUMBER/SQRT - SQRT
if DELTA is not positive

let DELTA = -DELTA '' USE THE ABSOLUTE VALUE
always

loop
print 1 line with NUMBER, SQRT thus
THE SQUARE ROOT OF *******.**** IS ****.*****

always
stop
end
__
35

SIMSCRIPT II.5 Programming Language
36

 of let-

s with-

eadable

r or two

ne pe-

 Thus,

orma-

uishing

ion is

l names

ctly by

listed in

ed by

r own

ic val-

 repre-

umeric
2. Programming Language Concepts

2.1 Variable and Label Names Revisited

Chapter 1 defined variable and label names separately. A variable name is any combination

ters and digits that contains at least one letter. A label is any combination of letters and digit

out the "at least one letter" constraint. These rules can be expanded easily to permit more r

programs by incorporating periods into the definition of names and labels.

Let a name be any combination of letters, digits, and periods that contains at least one lette

or more nonterminal periods. A constant is any combination of digits, possibly containing o

riod. A variable name must look like a name and a label can look like a name or a constant.

variables can be distinguished from numbers while maintaining the widest latitude in name f

tion. Some examples of variable and label names are shown in table 2-1.

Table 2-1. Variable and Label Names
__

Variable Names Label Names

PART.NUMBER LABEL

NUMBER.OF.PARTS SECTION.1

TOTAL PART.4

.PAGE ERROR

__

As mentioned previously, it must be stressed that terminal periods cannot be used in disting

names. The names X, X... , and X... all represent the same variable value; the labels '5' and '5. '

are identical.

Although SIMSCRIPT II.5 does not prohibit the use of any particular words (the one except

the word and , which should not be used as a name) or names, there are a number of specia

that are recognized in certain contexts. Guard against using any of these names incorre

remembering the special naming conventions used for them. Some of these names are

Appendix B, under various headings. Each of these names either begins with a letter follow

a period or ends with a period followed by a letter, so it is good practice to not name you

variables the same way!

2.2 Variable Modes

In the previous discussion, it was assumed that variables in SIMSCRIPT II.5 take on numer

ues. No explicit restrictions have been placed on the magnitude or precision of the numbers

sented by variable names. Complete freedom from concern over the expression of n
37

SIMSCRIPT II.5 Programming Language

infinite,

 of inte-

nge in

— one

 vary be-

.5 im-

sed to

chapter,

tion is

n

nteger

, -

n

ll

that

ning an

al

 vari-

 that
quantities is an attractive idea. However, both the range and number of real numbers are

while a computer has a finite range of representations.

The enumeration of items, or iterations, requires the exact representation of a sizable range

ger numbers. Many other calculations require the representation of a potentially greater ra

magnitude of the real numbers but are necessarily limited in accuracy.

Most computer systems, therefore, provide two internal representations for numeric data

trading some exactness of representation for increased range. These representations may

tween different computer systems. The precise limitations pertaining to any SIMSCRIPT II

plementation may be found in the appropriate user's guide. A programming language is u

describe both the actions and the data on which these actions are to be performed. In this

some of the ways in which data are described are discussed.

A variable definition statement serves to declare the properties of a variable. This informa

used to determine the way in which the variable may be manipulated.

2.2.1 REAL and INTEGER Variables

SIMSCRIPT II.5 numeric variables may be declared to be integer or real . Variables declared

as integer represent only whole numbers. Variables declared as real represent numbers that ca

have fractional values. Note that a whole number, lying within an established range of the i

values, may be represented either by an integer or real variable. It is the possibility of a frac-

tional value, and not any particular value, that makes a variable require a real definition. The

numbers 56, -6745, 91, -1, and 0 are integer -valued. The numbers 56.0, 35.7846, 0.999876

27.45, and 0.0. are real -valued.

Every SIMSCRIPT II.5 program has a preamble that contains variable definition information. I

some cases, as in the previous examples, this preamble is implied but need not be written as a

variables are treated as real . Whenever a variable has a property that differs from one

SIMSCRIPT II.5 assumes, a variable definition statement must be used. Programs contai

explicit preamble begin with the one-word statement preamble . This section, containing variable

definition statements, is separated from succeeding program action statements by the word end .

As stated, the mode of a numeric variable is assumed real unless otherwise specified. The "norm

form" of SIMSCRIPT II.5 variables is real numbers. The assumed real condition can be changed

by using the statement:

 mode is integer

This statement resets the compiler's "background conditions" so that all following program

ables are assumed integer unless otherwise specified. Mode is but one of several properties

can be used to describe variables. Hence, the general form of the normally statement is:

normally, specification phrase list
38

Programming Language Concepts

 or

sed but

ed in

e

s their

ar are

r

tation.

riable

uld be

ystems

to
Specification phrases may appear in the list in any order, separated, as usual, by commasand .

The comma after the word normally is optional. The equals symbol (=) may replace the word is .

As additional specification phrases are added in later sections, phrase choices will be increa

these rules will not change.

Another possibility is to force explicit definition of all variables by use of the form:

normally, mode is undefined

This will produce a diagnostic for every undefined variable. This form is strongly recommend

order to guard against inadvertent background definition of misspelled variables.

Individual variables that differ from the implied or normally defined mode can have their mod

specified in a define statement. This statement lists one or more variable names and define

common mode. The statement:

define X, Y, Z as integer variables

illustrates the way in which the define statement is used to declare that the variables X, Y, Z

represent only integer values. If the background conditions were declared to be integer , a sim-

ilar define statement using the word real might be used to define some variables as real .

The define statement has a number of alternative forms. The only words that must appe

define , the variable names being defined, as , and the word variable or variables . The words

a, an, integer , and real are included when needed. Some examples of the define statement

are:

define X as a real variable
define X and Y as integer variables
define X, Y, Z as variables
define X as a variable

The description of the define statement, like the normally statement, will be expanded in late

paragraphs to include more than variable mode definition.

Some computer systems provide an internal numeric representation of real numbers with an

increased precision, usually achieved by doubling the size of the internal binary represen

SIMSCRIPT II.5 allows variables to be declared with this representation, by the use of the va

mode double . On these systems, the normal background condition is double to allow the

maximum precision for decimal values. The appropriate SIMSCRIPT II.5 user's manual sho

consulted to determine whether this variable mode is implemented. In general, on those s

that do not support this mode, double is interpreted as real .

Throughout this book, the behavior ascribed to real variables may be assumed to extend

double variables. Examples of declarations are:

define AMOUNT, INTEREST as double variables
39

SIMSCRIPT II.5 Programming Language

ld

xpres-

ed

re

to

 that are

ression

e arith-

epre-

iable
and

normally, mode is double

2.3 Expression Modes

Although statements that combine integer and real variables are allowed, a programmer shou

be aware of the way in which computations are carried out whenever using "mixed mode" e

sions. When A and B represent two variables, constants, or sub-expressions, then:

 1. Arithmetic expressions of the form A op B, where A and B represent variables of specifi

mode, or constants of that mode, and op is any of the arithmetic operations +, -, and *, a

integer if both A and B are integer , and real if either A or B is real .

2. Expressions of the form A/B are always real (Two integer expressions can be divided
yield a truncated integer result by a library function called div.f . Library functions are
described in paragraph 2.15).

3. Expressions of the form A**B are always real .

Compound expressions are evaluated from left to right as a sequence of simple expressions

evaluated according to the above rules. In the following examples, if A, B, and C are integer ,

then:

A/B + C is real

A + B + C is integer

A**B + C is real

When an expression appears on the right-hand side of a let statement or in an add or subtract

statement, and its mode differs from the mode of the variable on the left-hand side, the exp

is converted to the mode of the variable before the value of the variable is changed. When th

metic expression constituents of logical expressions differ in mode, all integer expressions are

converted to real before evaluating the logical expression as true or false.

Conversions from integer to real are straightforward. An integer to real conversion takes

the whole number that is the value of an integer variable and converts it to a real number with

the same value; 25 becomes 25.0, -11 becomes -11.0, and so forth.

Real to integer conversions are more complex. Obviously, any fractional part cannot be r

sented by the integer . Real values are rounded to whole numbers by adding +0.5 to the var

if its value is positive or -0.5 if it is negative, and truncating the result. If X is integer and e is

some real -valued expression (formed according to the above rules), then:

let X = e sets X = 0 if e = 0.2 since 0.2 + 0.5 = 0.7 → 0

let X = e sets X = 1 if e = 1.4999 since 1.4999 + 0.5 = 1.9999 → 1

let X = e sets X = 2 if e = 1.50000 since 1.50000 + 0.5 = 2.0000 → 2
40

Programming Language Concepts

ed

d

-

e ad-

istent

dicated

heir ef-

 values

lly, a

r con-

itions
Where double variables are supported, conversions between double and integer modes follow

the same procedures as conversions between integer and real . Hence, expressions mixing

integer and double arithmetic operations follow the procedure outlined above for mix

integer and real expressions.

Expressions containing mixed double and real variables are evaluated to yield a double preci-

sion result, which may be automatically converted to the real mode, if necessary. When require

by context, as in mixed real and double mode expressions, real values are automatically con

verted to double before evaluation.

If, in the following examples, R has been defined as a real variable and D as a double variable,

then in executing the statement:

let D = D + R

R is converted to double before the addition, which produces a double precision result, while:

let R = R * D

converts R to double before the multiplication, but the result is truncated to real before reassign-

ment.

As may be seen, the provision of different modes of variable representation brings with it som

ditional complexity. A variable defined with a certain mode can only be used in ways cons

with its definition. In some cases, automatic conversion between modes is performed as in

above, although information may be lost as in the case of real to integer conversion, where the

fractional value may no longer be represented. Be aware of such implied conversions and t

fect on program behavior.

One particular potential source of error, however, is the attempted assignment of variable

read from input data to variables defined with conflicting internal representation. Specifica

data field containing a noninteger format number should not be assigned to an integer variable

in a read statement. This will result in loss of information and is therefore treated as an erro

dition.

Table 2-2 specifies the actions taken when different combinations of data and variable defin

occur.
41

SIMSCRIPT II.5 Programming Language

__

ta-

5

ot

r

atical

9..., and

s a li-

5 pro-

 be used

racters

ir val-
Table 2-2. Real-Integer Input Data Conversions
__

Input Data Variable

Format Defined as Action

integer integer Data value stored in variable

integer real Data value converted to decimal represen

tion and then stored in variable; e.g., 5

stored as 55.0

real real Data value stored in variable

real integer Program terminates with error message; n

possible to store fractional value in intege

representation.

__

2.4 System-Defined Constants

Scientific and engineering calculations often involve standard scientific constants. Mathem

computations frequently require values of numeric constants. Numbers such as PI = 3.1415

e = 2.718... are examples of well-known and often-used constants.SIMSCRIPT II.5 maintain

brary of standard values. When the name of a library constant is used in a SIMSCRIPT II.

gram, the correct numeric value of the constant is inserted in its place. These constants may

wherever a numeric literal constant could be used.

Library constants have names that look like variable names except that they end in the cha

.c (a naming convention used by the SIMSCRIPT II.5 system). The library constants and the

ues are listed in table 2-3.
42

Programming Language Concepts

__

 A fea-

ay that

mple,

r data

ividual

dimen-

 1 up to
f ele-

icular el-
Table 2-3. System-Defined Constants
__

Standard
Name Symbol Value Units Mode

pi.c p 3.141159265 -- Real*

Exp.c e 2.718281828 -- Real*

inf.c ∞ Largest value -- Integer

computer can store

Rinf.c ∞ Largest value -- Real*

computer can store

Radian.c - 57.29577 Degrees/radian Real*

* On systems that support additional precision, these constants are of double mode.

__

2.5 Subscripted Variables

Variables as described above may represent single, numeric data items in SIMSCRIPT II.5.

ture of many programming languages is the facility to represent and manipulate data in a w

reflects the natural structure of the data. Data occurring in the form of lists or tables, for exa

have a regular structure. SIMSCRIPT II.5 provides a structure by which a number of simila

items, the array elements, may be collectively referenced by a single name, while each ind

element may be referenced by subscripting the array name with an index value.

A simply ordered collection of data items, such as a list (figure 2-1), is represented by a one-

sional array. The elements of this array can be referenced by an identifying name, LIST , for exam-

ple, and an index number, called the array subscript, which can assume integer values from
the total number of elements in the list. The array name is used to identify the collection o

ments. The subscript, enclosed in parentheses after the array name, is used to denote part

ements. Thus, the name of the variable that is the first element in the array LIST is LIST(1) , the

fifth element is called LIST(5) , and the I th element is LIST(I) . Figure 2-2 shows the list of figure
2-1 with the individual element names inserted.

Figure 2-1. A List Structure: One-dimensional Array
43

SIMSCRIPT II.5 Programming Language

 the day

month

s could

f

 of the

pability

rovides

ogram

r. An

er of

 order,

selves

nsional

items or-
Figure 2-2. Elements of a One-dimentional Array Called LIST

To demonstrate the use of such a structure, consider the problem of determining the date as

of the month, given the day number within the year. Clearly, the number of days within each

are 12 items of data that might be used in some orderly, repetitive computation. These value

be represented as the elements of a one-dimensional integer array, DAYS, indexed by month.

Thus, DAYS(1) would have a value of 31, DAYS(2) a value of 28 (ignoring the complication o

leap years for the present), and so forth. The program segment:

read DAYNUM
for MONTH = 1 to 12 by 1

while DAYNUM gt DAYS(MONTH)
do

subtract DAYS(MONTH) from DAYNUM
loop
print 1 line with DAYNUM, MONTH thus...
The **th day of the **th month

successively subtracts the values of DAYS(1), DAYS(2) , and so on from the input value, DAYNUM,

until it comes within the range of the number of days in some month. In this case, the use

array provides representation of the data in a way that matches the repetitive processing ca

of the do... loop .

The array elements need not, of course, be accessed in order. The array structure p

immediate access to any individual element, selected by subscript. Consider a computer pr

to maintain an inventory of goods. Each item in the inventory is allocated a code numbe

integer array, STOCK, holds in each element, indexed by the item code, account of the numb

such items currently in stock. This information might be updated, during the processing of an

by the program statements:

read ITEM.CODE and QUANTITY
subtract QUANTITY from STOCK(ITEM.CODE)

Although all elements of a one-dimensional array must be similar, these elements may them

be arrays. A table of data items (figure 2-3), for example, may be represented by a one-dime

array where each element represents a row of the table as a one-dimensional array of data

dered by column number. Such a structure is termed a two-dimensional array.

LIST(1) LIST(2) LIST(3) LIST(4) LIST(5) LIST(6) LIST(7) LIST(8) LIST(9)
44

Programming Language Concepts

f sub-

s a par-

 here

icate

 of the

 comma.

re 2-4,

element

al array

s unsub-

If their

d in a

sumed

eclared
Figure 2-3. A Table Structure: A Two-dimensional Array

Variables with a two-dimensional array structure are referenced by an identifier and a pair o

scripts. The first subscript identifies a selected one-dimensional array. The second identifie

ticular element within this array. Figure 2-4 shows the two-dimensional array of figure 2-3,

called TABLE, with the individual element names inserted. Note how the subscript values ind

each element's position in the structure of the table. The identifier (as before) is the name

complete array structure. The subscripts are enclosed in parentheses and separated by a

Each subscript is associated with an element location in one coordinate dimension. In figu

the first subscript is used as the element location in the row direction, and the second as the

location in the column direction.

This data structuring is not limited to two dimensions. In general, a data collection that hasn ref-

erence indices can be represented as an n-dimensional array structure. A three-dimension

called CUBE might have elements CUBE(I,J,K) . A seven-dimensional array called SEVEN.DIM

might have elements SEVEN.DIM(A,B,C,D,E,F,G) .

Subscripted variables (the elements of arrays) share the same range of possible modes a

scripted variables. All elements of any one array, however, must be of the same mode.

mode differs from that of the background conditions set within a program, it can be declare

define statement in the same way as with unsubscripted variables. For instance, if the as

mode of all as yet undeclared variables has been set to real , write the statement:

define LIST and TABLE as integer arrays

Figure 2-4. Elements of a Two-dimensional Array Called TABLE

The dimensionality of an array, whether it has 0, 1, 2, 3 or more subscripts, should also be d

in the preamble. A dimensionality specification phrase can be included in either normally or

Column 1 Column 2 Column 3 Column 4 Column 5

Row 1

Row 2

Row 3

Column 1 Column 2 Column 3 Column 4 Column 5

Row 1 TABLE(1,1) TABLE(1,2) TABLE(1,3) TABLE(1,4) TABLE(1,5)

Row 2 TABLE(2,1) TABLE(2,2) TABLE(2,3) TABLE(2,4) TABLE(2,5)

Row 3 TABLE(3,1) TABLE(3,2) TABLE(3,3) TABLE(3,4) TABLE(3,5)
45

SIMSCRIPT II.5 Programming Language

ifically

iables

clared

to

 which

istinct

ses 10

 mem-
define statements, depending on whether it is to apply as a background condition or to spec

named arrays. The phrase is written somewhat differently in each case.

An n-dimensional array background condition may be declared with a normally statement using

the phrase:

dimension is n

as in the statements:

normally dimension is 1
normally, mode is integer, dimension is 2

In a define statement, a dimensionality specification can be made for a list of subscripted var

with the dimensionality phrase n-dimensional as in the statements:

define LIST as an integer, 1-dimensional array
define LIST and VECTOR as real, 1-dimensional arrays
define CUBE as a 3-dimensional, integer array

In general, if a majority of program variables share some definable property, this may be de

as a background condition, using a normally statement. Define statements may then be used

override this specification for specific variables, as in the example:

preamble
normally, mode is integer, dimension is 2
define X, Y, Z and Q as real variables
define VECTOR as a 1-dimensional array

end

A variable must not, however, be used in more than one define statement. It is permissible to

write:

normally, mode is real, dimension is 1
define X as an integer, 0-dimensional variable

It is not permissible to write:

normally, mode is real, dimension is 1
define X as an integer variable
.
.
define X as a 0-dimensional variable

Each unsubscripted (zero-dimensional) variable requires a location in computer memory in

to record its current value at any time. Similarly, each element of each array requires a d

memory location where its value can be stored. A one-dimensional array with 10 elements u

such memory locations, a two-dimensional array with 3 rows and 5 columns uses (3*5) = 15

ory locations, and so forth.
46

Programming Language Concepts

tically.

umber

he di-

xpres-

ximum

of these

ent:

t appear

n

ch sub-

e a sub-

cution.

ed.

ed, no

si-

-

termine

nt:
The allocation of space within computer memory to unsubscripted variables is done automa

This automatic allocation cannot be made for subscripted variables. An array may have any n

of elements, and space cannot be allocated until this number is known.

The reserve statement is used to explicitly allocate computer memory space for arrays. T

mensionality of each array is indicated by asterisks in subscript positions. Subscript size e

sions declare the largest value that each subscript position index can assume. The ma

subscript values may also be referred to as the array dimensions or bounds. The product

expressions is used to determine the total space requirement of the array. Thus, the statem

reserve LIST(*) as 9

allocates memory space for the 9 elements, LIST(1),LIST(2),...,LIST(9) of the one-dimen-

sional array called LIST , and the statement:

reserve TABLE(*,*) as 3 by 5

allocates space for the elements of the two-dimensional array TABLE.

A reserve statement is an executable statement, rather than a declaration, and thus can no

in the preamble of a SIMSCRIPT II.5 program. Until a reserve statement for an array has bee

executed, storage is not allocated for that array, and its element values are not defined. Ea

scripted variable must, therefore, be reserved before it can be used. Any attempt to referenc

scripted variable before space for it has been allocated will cause an error in program exe

All the element values of an array are initialized to zero at the time memory space is allocat

If a reserve statement specifying an array to which space is already allocated is encounter

action is taken and no further space is allocated. Even if the second reserve statement specifies

a different size, the amount of space allocated is as given by the first reserve .

More than one array allocation may be made by a single reserve statement. The effect of the two

statements shown could be achieved by executing the statement:

reserve LIST(*) as 9, TABLE(*,*) as 3 by 5

If an array name appears in a reserve statement without asterisks to indicate its subscript po

tions, the dimensionality previously declared in a define statement is understood. If no dimen

sionality declaration has been made, the number of subscript size expressions is used to de

the dimensionality. Thus, if an array has been declared as two-dimensional by the stateme

define MATRIX as a 2-dimensional, integer array

or, if no dimensionality declaration has been made for the array, the statement:

reserve MATRIX as 5 by 7

is understood to mean:
47

SIMSCRIPT II.5 Programming Language

xplicit

ionality

etected

er sub-

val-

reserve

with an

ne

nal

ined in
reserve MATRIX(*,*) as 5 by 7

The dimensionality of an array, then, is frozen either by explicit declaration in a define statement,

or when it is first referenced in an executable statement — which, of course, should be a reserve

statement. Although the dimensionality of an array may be apparent from the context, the e

declaration is recommended as an aid to program documentation. Once the array dimens

has been frozen, the array must be referenced consistently. Any inconsistent reference is d

as an error during program compilation.

Subscript size expressions may be arithmetic expressions containing variables, including oth

scripted variables. If such expressions are real , they are rounded to integer before they are used

as array dimension specifiers. Thus, the statement:

reserve LIST(*) as N, TABLE (*,*) as N by 2*M

allocates space for the arrays LIST and TABLE where the space requirement is dependent on the

ues of the variables N and M.

A subscript size expression should not evaluate to zero or a negative value. An attempt to

space using a zero- or negative-valued size expression will cause a program to terminate

error message. If any subscript expression in a reserve statement evaluates to 1, there is only o

element allocated to that dimension of the array. The statement:

reserve X(*) as 1, Y(*,*) as 1 by 3

allocates space to an array X with one element, X(1) , and a two-dimensional array Y with three el-

ements, Y(1,1) , Y(1,2) , and Y(1,3) . For all practical purposes, these one- and two-dimensio

arrays are equivalent to the unsubscripted variable X and a one-dimensional array Y.

When two or more arrays are to be allocated with the same dimensions, they may be comb

a list of array names. Thus, the following is acceptable:

reserve A (*,*), B(*,*), C(*,*) as 5 by 10

Any reserve statement can contain a sublist of this form among its list of arrays, as in:

reserve VECTOR(*) as 5,
A(*), B(*) and C(*) as 15,
LIST1(*) and LIST2(*) as N+M,
TABLE(*,*) as 3 by Y,
.
.

48

Programming Language Concepts

n array

y the

ns, such

e had

me

ing all

he list.

 is

der, with

w, as

e

 to

he ele-

of array
2.6 Reading Subscripted Variables

Subscripted variable values can be assigned from input data by including each element of a

in the variable name list of a read statement. In the following examples, let LIST be a singly sub-

scripted variable allocated by the statement reserve LIST(*) as 10 .

Individual elements of the array are read by listing their names (the array identifier followed b

appropriate subscript expression(s) enclosed in parentheses) in the list of a read statement. Values

of LIST(1), LIST(5) , and LIST(9) are read by the statement:

read LIST(1), LIST(5), LIST(9)

A variable name list can contain array elements whose subscript designators are expressio

as LIST(N*M+2/J) or LIST(I) , as long as the variables appearing in these expressions hav

values assigned to them. Note that, as the variables named in a read statement are processed from

left to right, variables to be used as subscripts may be assigned if they appear in a read statement

before their subsequent use in the same statement as subscripts, as in:

read N, M, LIST(N), LIST(LIST(N) + M)

This example shows that both unsubscripted and subscripted variables can appear in the saread

statement list.

This procedure is obviously tedious for large arrays, and so provision is also made for read

the values of a subscripted array, in order, by including the unsubscripted array name in t

Read LIST reads the 10 elements of LIST , as defined by the reserve statement. Numbers are

read and assigned to the elements of LIST in increasing subscript order: the first data item

assigned to LIST(1) , the next to LIST(2) , and so on. If LIST were a multidimensional array, the

data would be assigned to successive elements whose subscripts change in increasing or

the last subscript position varying most rapidly. A two-dimensional array is read in row-by-ro

in TABLE(1,1), TABLE(1,2), TABLE(1,3), ..., TABLE(1,N), TABLE (2,1),

TABLE(2,2), ..., TABLE(2,N) , etc.

Mixtures of unsubscripted variables, elements of arrays, and entire arrays can be read in onread

statement. In the following example, if LIST and VECTOR are one-dimensional arrays and X and Y

unsubscripted variables, the statement:

read X, LIST(Y), VECTOR

reads a data item and assigns its value to X, reads another data item and assigns its value

LIST(Y) , and then reads as many values as there are elements reserved in VECTOR.

Clearly, the repetition provided by the use of a control phrase is useful when processing t

ments of subscripted variables. Such a control phrase may be used to govern the reading

values. The following statement reads N data values, assigning them to the first N elements of the

array LIST :
49

SIMSCRIPT II.5 Programming Language

tatement

tition of

., those

s for

thmetic

valuation

over oth-

ations.

 of

ripted

ated first:

t

uld

-

irable
for I = 1 to N
read LIST(I)

If N were the reserved dimension of the array, this statement has the same effect as the s

read LIST .

A more complex example demonstrates the use of nested control phrases to govern the repe

a do loop. The loop reads and assigns data values to only the lower triangular elements (i.e

that lie below the diagonal) of a square two-dimensional array or matrix. For example:

reserve MATRIX(*,*) as N by N
for I = 1 to N

for J = 1 to N
do

if I gt J
read MATRIX(I,J)

always
loop

While the subscripts, in turn, take on the values to address each element, the read statement is

executed only when the if condition is satisfied. The data values supplied would be the value

MATRIX(2,1), MATRIX(3,1), MATRIX(3,2), MATRIX(4,1), MATRIX(4,2),

MATRIX(4,3) , etc.

2.7 Using Subscripted Variables In Expressions

Recall that parentheses are also used to clarify the desired evaluation order in complex ari

expressions. Subscripted variables may appear in such expressions. In these cases, the e

of subscripts and the selection of the array elements may be considered to take precedence

er arithmetic evaluations. Note that subscripts may themselves involve expression evalu

Thus, in the statement:

let Z = X(I + 1) * Y(J + 1)

the subscript expressions I + 1 and J + 1 are evaluated first, thus selecting the two elements

arrays X and Y that are to be multiplied. The subscript expressions may even involve subsc

variables. The same procedure, applied to these expressions, ensures that these are evalu

let Z = X(Y(I + 1) + 1) * 2

The subscript I + 1 is evaluated to select an element from Y; 1 is added to the value of this elemen

to form the indexing value for the array X; and the selected element of X is then multiplied before

assignment to Z. After conversion to integer mode (if necessary), the subscript expression sho

always evaluate in the range of 1 to the size given in the reserve statement. Out-of-range sub

scripts will produce execution errors that either terminate the program or introduce undes

side-effects, depending on the implementation.
50

Programming Language Concepts

con-

r.

ogram

are ac-

d

ix

 row.

ps ter-

a-

ust ap-

 retains

n state-
2.8 Nested DO Loops

As shown above, a number of for statements, for instance, may be nested to provide complex

trol over the repetition of a do...loop . Do...loops may also be nested within one anothe

This proves convenient when processing variables with multiple subscripts. Consider a pr

fragment that computes the row and column sums of a two-dimensional matrix. The sums

cumulated in the appropriate elements of two one-dimensional arrays:

for I = 1 to NROWS
do

for J = 1 to NCOLS
do

add MATRIX(I,J) to ROWSUM(I)
add MATRIX(I,J) to COLSUM(J)

loop
loop

The do...loop controlled by the phrase for I = 1 to NROWS is termed the outer loop. Recall

that all the statements between the bounds of the do and the matching loop statements are repeate

for each value of the control variable. Thus, the inner do loop is repeated as each row of the matr

is indexed. Clearly, the inner loop indexes, for any one row, each matrix element within that

When do...loops are nested, each do should be paired with a matching loop as shown. Adopt-

ing a convention of indenting the controlled statements makes this clear. Where nested loo

minate on successive loop statements, however, a special construct, similar to the then if

construct, may be used. When also is prefixed to a for phrase, SIMSCRIPT II.5 automatically

pairs the do that follows with the loop that matches the do of the preceding for statement. Using

this statement, the above example can be written as:

for I = 1 to NROWS
do

also for J = 1 to NCOLS
do

add MATRIX(I,J) to ROWSUM(I)
add MATRIX(I,J) to COLSUM(J)

loop

The do statements themselves need not be immediately adjacent, but they must terminate on adj

cent loop statements. Statements to be repeated only under the control of the outer loop m

pear after the first do and preceding the also . Care should be taken, when using the also for

construct, not to obscure the logical intent of the repetition. To this end, the example above

the indenting of the earlier example.

2.9 The Structure of a SIMSCRIPT II.5 Program

In the previous discussion, a program has been understood to contain a number of instructio

ments, possibly preceded by some variable declaration statements in the preamble section of the
51

SIMSCRIPT II.5 Programming Language

ements

lem so-

t places

eeded,

 when-

ogically

 Com-

to log-

ely, and

ed by a

 perform

but

ram is

ng with

is hi-

bpro-

utine at

 must

bmitted

eeds

le pro-

tructure

amples

g the

gram,
program. Program control structures have been described by which logical groups of stat

may be executed conditionally, or repeated under some control.

There are two good reasons for developing a more elaborate program structure. First, prob

lutions can require sequences of similar or identical statements to be executed at differen

within a program. Although these statements can be rewritten in place each time they are n

it is convenient to be able to combine them into groups and refer to them by symbolic names

ever required. Second, this grouping enables the separation of program elements that are l

distinct. Large programs can become too big to comprehend at a single level of complexity.

plex systems are better understood if treated in a hierarchical fashion. Dividing programs in

ically related functional groups of statements allows these sections to be developed separat

then combined at a conceptually higher level to form a whole program.

These program sections are commonly termed routines. Labeled routines that are referenc

symbolic name are called subprograms. They are distinguished as programs because they

some specific task. They are called subprograms because they are not executed independently,

rather perform functions within the execution of a program. When execution of a subprog

requested by another routine, control passes from this calling routine to the subprogram, alo

instructions for returning control, at completion of the subprogram, to the calling routine. Th

erarchical structure is not limited to one level. A subprogram may itself call upon other su

grams.

Subprograms are not executed directly but are subordinate to a higher level routine. The ro

the highest level in the hierarchy is called the main routine. Every SIMSCRIPT II.5 program

have one main routine, and may contain one or more subprograms. When a program is su

for execution, the control flow is directed to the first instruction in the main routine and proc

from there, as the logic of the main routine-subprogram package directs. All of the examp

grams used thus far have contained only a main routine. In succeeding paragraphs, the s

and use of subprograms will be described.

Figure 2-5 shows three examples of main routine-subprogram routine organizations. The ex

in this figure consist of a main routine and one or more subprograms, with arrows indicatin

direction of program flow. An arrow pointing to a subprogram indicates a call on that subpro

and an arrow pointing in the opposite direction means a return to a calling routine.
52

Programming Language Concepts

fter ex-
Figure 2-5a. Program Consisting of a Subprogram Called by a Main Routine

In Figure 2-5a, the main routine calls on the subprogram in two places. In each instance, a

ecuting its statements, the subprogram returns control to the main routine at the statement following

the one that called it.

Figure 2-5b shows a slightly more complicated program composed of a main routine and two sub-

programs. The main routine calls on each of the subprograms. They are independent of each other.

Figure 2-5b. Program Consisting of Two Subprograms Called by a

 Main Routine

MAIN PROGRAM

END

SUBPROGRAM

SUBPROGRAM

MAIN PROGRAM

END

SUBPROGRAM

SUBPROGRAM

1

2

SUBPROGRAM1
53

SIMSCRIPT II.5 Programming Language

s

e

ontrol

ithin

passes

lls and

ificant.

gram

t return

elimit

 by the

 is pos-

. Each
Figure 2-5c illustrates a more complex situation in which a main routine and three subprogram

interact. Subprograms 1 and 2 are both called and calling routines: They are called by thmain

routine and, in turn, they call on subprogram 3. The call of subprogram 1 or 2 by the main routine

is the first level of calling. The call of subprogram 3 by subprograms 1 and 2 while under the c

of the main routine is a second level. In general, there can be any level of calling in effect w

a program at any time. The calling rules do not change from level to level. Control always

from a calling to a called program and back again. Whether there are many intermediate ca

returns between an original call on a subprogram and a return to its calling program is insign

If A calls B and B calls C, then C must return control to B before B can return to A. A subpro

cannot return control to any routine other than the one that called it. For example, C canno

control directly to A.

Figure 2-5c. Program Consisting of Three Subprograms and a Main Routine

2.10 Routine Definition

A SIMSCRIPT II.5 program may be composed of several program sections: a preamble (data dec-

laration) section, a main routine, and a number of subprograms. Statements are needed to d

these program components. As already noted, the variable declaration section is headed

word preamble and terminated by the word end .

The statements that make up the main routine should be preceded by the one-word statement:

main

This is not strictly necessary. Since all other sections of a program must have a heading, it

sible to omit the main statement and assume that statements belong to the main routine if not oth-

erwise labeled. Nevertheless, it is good programming practice to label program sections fully

MAIN PROGRAM

END

SUBPROGRAM

SUBPROGRAM2

SUBPROGRAM3

SUBPROGRAM3

1

54

Programming Language Concepts

-

 and:

hat pre-

he same

 be

y refer-

mmonly

tine

he body

icated
complete program may have only one main routine. The main routine, like all other program sec

tions, should be terminated by the word end .

A subprogram definition statement precedes the statements belonging to each subprogram

1. Declares that the statements following are part of a subprogram

2. Names to the subprogram

3. Sets up a communication mechanism for passing data to and from the subprogram.

Each subprogram has a name, which is declared in the subprogram definition statement t

cedes the statements composing the body of the subprogram. Subprogram names follow t

naming conventions as variables (see paragraph 2.1). Each variable and subprogram name must

unique. A subprogram definition of the simplest form is:

 routine name

The optional words to and for are allowed after the word routine . Thus, a program to calculate

square roots might be named SQUARE.ROOT and could be defined by the statements:

routine SQUARE.ROOT

or

routine for SQUARE.ROOT

or it might be named TAKE.SQUARE.ROOT and be defined by the statement:

routine to TAKE.SQUARE.ROOT

As the words to and for are optional, there are obvious ambiguities in using the words to and for

as subprogram names.

Execution of the statements within a subprogram may be requested from another routine b

encing the subprogram name. Such reference is known as calling the subprogram and co

takes the form:

call name

This is the simplest form of the call statement. Additions to this statement and alternative rou

references will be discussed in following paragraphs.

Each subprogram is defined with a routine statement. As for other program sections, an end

statement indicates the physical end of the routine. The statements in between constitute t

of the subprogram. The logical end of a routine, rather than the physical end, is normally ind

by the special statement:

return
55

SIMSCRIPT II.5 Programming Language

uld re-

 may

r data.

once in

aluate

st some-

ted back

 ways:

t.

 Every

utine in

ithin a

utine.

e used

n each

ay, for

l, local

d out of

l.

ppears

 known

exist-

is local

 spec-
 nor

ed by

 does

nt uses

s global

 local

round
While the stop statement is used to terminate processing in a main routine, the return statement

is used when processing in a subprogram is complete, indicating that the flow of control sho

turn to the calling routine (note that there is no restriction to the use of the stop statement in a sub-

program for abruptly halting all further execution within the program). Some of the examples

show a comment that includes the routine name following the end statement, which is done to

make clear the separation between routines.

Routines used within a program are generally required to interact with program variables o

The requirement to obtain the square root of a number, for example, may occur more than

a program, and is also a logical subdivision of the program activity. If the statements to ev

the square root of a number are to be grouped as a subprogram, the value of the number mu

how be transmitted to the subprogram, and the value of the square root must be communica

to the calling routine. Values are passed from calling to called routines and back again in two

implicitly, as values of global variables, and explicitly, through arguments in an argument lis

2.11 Global and Local Variables

A global variable is a variable whose name has a common meaning throughout a program.

use of the name of a global variable references the same data value, regardless of the ro

which the reference is made. A local variable, on the other hand, has a value defined only w

particular routine. A variable local to one routine cannot be directly referenced in any other ro

Consequently, if the same name is used for a local variable in more than one routine, the nam

refers to a different value in each routine, as if a different variable name were being used i

place. Thus, local variable names that are not intended to reference the same variables m

mnemonic reasons or even inadvertently, appear the same in different routines. In genera

variables do not maintain a permanent existence in computer memory, but rather pass in an

existence as control passes to or from the routine to which they have been declared as loca

The preamble is used to define global variables. A variable is only defined as global when it a

in a statement of the preamble. Therefore, variable names that are desired to be globally

must appear in define statements, even though their properties may be fully described by the

ing background conditions. Conversely, any variable not named in a program's preamble

to those routines where it is used. A variable may be explicitly defined as local to a routine by
ifying the name in a define statement within the routine. If it is not defined as a global name,

explicitly defined within the routine, it is implicitly defined as local by its use within a routine.

It is commonly considered good practice, however, to explicitly define all local variables us

every routine. When a name is locally defined within a routine, it is unique to that routine and

not conflict with any other uses of the same name. Thus, it is possible to have many differe

of the same name — both variables and labels — in an entire program. Names declared a

can be temporarily redefined as local within a particular routine by declaring their names in

define statements within the routines. Local variables have the properties of the backg
56

Programming Language Concepts

es are

ed both

ck-

 to an-

to

p-
(normally) conditions in effect at the time they are first encountered, unless these properti

redefined in the define statements.

All variables that do not appear in a program preamble are local. Local variables can be us

in subprograms and in main routines. Normally statements can be used in routines to set ba

ground conditions for local variables, but these conditions do not carry over from one routine

other. Only the last defined normally conditions in the preamble carry over from routine

routine. Program 2-1 illustrates how normally and define statements are used to specify pro

erties of local and global variables.
57

SIMSCRIPT II.5 Programming Language

Program 2-1.
__

preamble
normally, mode is integer
define V1 and V2 as real, 1-dimensional arrays
define V3, V4 and V5 as 2-dimensional arrays
normally, mode is real

end

main
read N
reserve V1,V2 as N, V3,V4,V5 as N by N
read V1 and V2
let V3(1,1) = V1(V2(1))

:
and other statements that make up a main routine,
including calling references to the subprograms

call PROCESS.DATA
:
call PRINTOUT
:

end '' of Main Routine

routine PROCESS.DATA
normally dimension is 1, mode is real
define Z as an integer array
normally dimension is 0
define L, M and N as integer variables
reserve Z as 10

'START'
for X = 1 to 10
do...

other statements that make up a routine
:

return
end '' of Routine PROCESS.DATA

routine PRINTOUT
define Z as a 2-dimensional variable
reserve Z as 10 by 5

'START'
let X = 1
:
return

end '' of Routine PRINTOUT

58

Programming Language Concepts

 last

s in

ne

the

round

s

st

or

ters a

outine.

ust be

tines

 in the

atement

tines

, and
Some points to observe from this example are:

1. A preamble can have more than one normally statement. Each successive normally

statement sets background conditions that hold until they are overridden. The

normally conditions hold for all undefined local variables in routines. Local variable

routines can have their properties defined by normally and define statements in the

routines.

2. The order of normally and define statements is important. In the above routi

PROCESS.DATA, the variable Z is defined as 1-dimensional because the normally

statement has set this background dimensionality. The define statement declares only

that it is to be an integer array. If the order of these statements is reversed,

normally conditions of the program preamble will apply to Z, and it will be defined as an

unsubscripted variable, a definition that subsequently will be contradicted by the reserve

statement. The possibility of error may be reduced by placing less reliance on backg

conditions and fully defining the mode and dimensionality of variables.

3. The name X appears in both subprograms, implicitly defining X as a local variable in both

routines. The mode and dimensionality of X are derived from the background condition

in effect. In this case, the mode is real in both routines, as explicitly declared in the fir

normally statement in PROCESS.DATA. It is taken from the preamble -defined back-

ground condition for routine PRINTOUT, which does not set any background mode. F

similar reasons, the dimensionality is also zero.

4. Unsubscripted local variables (L, M , and N in PROCESS.DATA, X in both routines) are

automatically assigned storage locations and initialized to zero when control en

routine. They are returned to "free storage" when control passes back to the calling r

Subscripted local variables are not automatically assigned storage locations and m

reserved before they can be used. Recall that when an array is reserved , its elements

are automatically initialized to zero.

5. The fact that two locally defined arrays share the same name is purely coincidental. Z is a

1-dimensional, integer local array in routine PROCESS.DATA and a 2-

dimensional, real array in routine PRINTOUT. If the name Z were used in the main

routine, it would be local to it, defined as unsubscripted and real . Confusion, however,

may be reduced by avoiding duplicate names.

6. Unlike some block-structured languages, local variables used in inner (lower level) rou

are not available to outer routines. Variables that are not global are accessible only

routine in which they are declared.

7. Labels are always local. When a name is used as a label, it references a program st

in the routine containing the label. Label names can be duplicated in different rou

without conflict. Labels appearing in one routine are not defined within other routines

transfers cannot be made between routines by means of go to statements.
59

SIMSCRIPT II.5 Programming Language

ded by

act,

 it is

rogram

plicitly

en rou-

s may

that be-

d

al

outine

 values

e rou-

ues to

routine

valuate
8. A subscripted local variable that does not appear in a define statement within a routine

has its dimensionality defined by its first use. That is, even if a routine's normally con-

dition is zero-dimensional, the statement let X(1) = 0 implicitly defines X as one-di-

mensional. However, the array must still be reserved before its first use.

9. Definition statements for local variables placed at the head of a routine are not prece

preamble and followed by end , as are similar statements in a program preamble. In f

normally and define statements can be used anywhere within a routine, although

good practice to place them before any instruction statements.

2.12 Routine Arguments

Global variables provide one mechanism by which values may be communicated between p

routines. A preferred way is through routine arguments. Arguments are values that are ex

transmitted between calling and called routines. By making the transmission of values betwe

tines explicit, rather than using global variables, the logical interaction between these routine

be emphasized, reducing the risk of inadvertent interaction. Arguments represent variables

have as local variables of a called routine, but which may either receive initial values each time the

routine is called, termed given arguments, or may be used as yielded arguments to transmit result

values back to the calling routine. In the case of given arguments, the initial values are supplie

by the calling routine. Numeric yielded arguments are initialized to zero, as for normal loc

variables.

When a routine definition is written, those local variables that are to be arguments of the r

are listed in the routine definition statement. This definition list is termed the formal argument list.

When a routine with arguments is called, the values that are to be used to initialize or receive

from the argument variables are listed in order corresponding to the formal argument list in th

tine definition. The called routine may return values to a calling routine by assigning the val

those of its argument variables defined to be yielded arguments. Those yielded arguments not

assigned a value in the routine retain the initialized values of zero. The general form of a

definition is:

routine name given given argument list yielding yield argument list

Consider, for example, the common square-root calculation discussed above. A routine to e

the square root of a number might be written:
60

Programming Language Concepts

 refer-

trol

ommu-

e argu-

 argu-

ions.

nts

 within a

ich the
routine SQUARE.ROOT given NUMBER yielding SQRT
let SQRT = NUMBER/2.0
let DELTA = SQRT
until DELTA < (0.00001 * SQRT)
do

let SQRT = (SQRT + NUMBER/SQRT)/2.0
let DELTA = NUMBER/SQRT - SQRT
if DELTA is not positive

let DELTA = -DELTA
always

loop
return

end

For simplicity, the problem of zero or negative given values is ignored. This routine may be

enced by any other routine in the program using the statement:

call SQUARE.ROOT given QUANTITY yielding RESULT

where QUANTITY and RESULT are variables, commonly local to the calling routine. When con

enters the routine, the value assigned to QUANTITY in the calling routine is assigned to NUMBER.

When control is returned to the calling routine, the value assigned to SQRT in SQUARE.ROOT is

assigned to the variable RESULT.

Not all routines have both given and yielded arguments. Global variables may be used for c

nication, or perhaps only one-way communication of data is required. Either or both of the given

and yielding clauses may be omitted from the routine definition and from the call statement.

The word given may be replaced by giving, the , or this to improve readability. Alternatively,

the given argument list may be enclosed in parentheses, using only the comma ", " as a separator.

Hence, routine definition alternatives might be:

routine SQUARE.ROOT(NUMBER) yielding SQRT
routine to SQUARE.ROOT this NUMBER yielding RESULT

In a routine definition, the arguments are restricted to unsubscripted variable names. Thes

ments behave as defined local variables within the routine. This restriction does not apply to

ment references in a call statement, which may be subscripted variables or even express

Synonyms for call are perform and now. Thus subprograms might be referenced by stateme

such as:

perform SQUARE.ROOT(QUANTITY(I)) yielding RESULT
call SQUARE.ROOT giving (B**2 - 4*A*C) yielding X
now SQUARE.ROOT this X yielding X
call SQUARE.ROOT given NUMBER yielding SQRT
now PRINTOUT

The same variable name may appear both as a given argument and as a yielded argument

call statement, as in the third example above. There is no ambiguity, as the order in wh
61

SIMSCRIPT II.5 Programming Language

this

ed

 global

bles lo-

ring in

erence

 in the

 should

t refer-

he

erwise,

ide for

n such

. The

quare

 written

ts from

ession.

hat re-

tten in

 defini-
arguments are transmitted and received is clear: at entry to the routine, the given value of X is used

to initialize the local argument NUMBER; at return from the subprogram, the named variable, in

case X, is replaced by the resulting yielded argument, SQRT. Note that the same names may be us

in both the call statement and the routine definition, as in the fourth example above. In the call

statement, the given and yielding arguments refer either to variables local to the routine or to

variables. In the routine, however, these arguments are always taken as definitions of varia

cal to the routine, and thus, within the routine, do not directly reference the variables appea

the call statement.

It is important to note that the variables listed as given or yielded arguments in a routine ref

must match exactly, in number and mode, the arguments listed in the formal argument list

routine definition. No automatic mode conversions, between integer and real , for example,

may be assumed. Obviously, all references to a subprogram in different places in a program

include the same numbers of both given and yielding arguments. In order that any incorrec

ences may be diagnosed at program compilation, it is possible to define, in the program preamble ,

the "correct" numbers of arguments, using a statement of the form:

define name as a routine given i arguments yielding j arguments

More than one routine may be defined in the same statement; a is optional, and the word routines

may be used. The word values is synonymous with arguments , and with and giving with

given . Either or both of the given or yielding phrases may be omitted. If either is omitted t

routine is assumed to have no such arguments. If neither given nor yielding phrases are in-

cluded, compilation checks on argument numbers at each routine reference are omitted. Oth

inconsistent argument numbers will result in error messages. Some implementations prov

additional checks during program execution. Consult the relevant user's guide for options o

checking.

2.13 Routines Used as Functions

A function is a procedure that yields a single result value when applied to some given value

value yielded is termed the result of the function, or the function value. Calculation of the s

root of a given number could be considered to be a function evaluation, and a routine may be

to provide this service. The call statement, however, is a cumbersome way of referencing routines,

which return only a single result value.

When a function is used in a mathematical expression, it indicates that the value that resul

applying the function to the appropriate given values should be used in evaluating the expr

In programming, a function notation provides a convenient way to reference a subprogram t

turns only a single result value. A subprogram that is to be referenced as a function is wri

much the same way as subprograms discussed previously, requiring only minor changes in

tion. The function symbol is the name of the function routine. If the routine SQUARE.ROOT were

defined as a function, it could be referenced with a direct use of the name; as follows:
62

Programming Language Concepts

n

cifying

ferent

places

itted

any of

g a list

ent

te

nc-

nction

quare-
let X = SQUARE.ROOT(NUMBER)

The given argument or arguments, in this case NUMBER, are specified as before with the restrictio

that only the format of an argument list enclosed in parentheses be allowed. Instead of spe

a yielded argument, the function name is used. As a function reference is not apparently dif

from a reference to a subscripted variable, all functions must be defined in the program preamble .

This may be done by a statement of the form:

define name as mode function

Recall that the modes of arguments are not automatically converted. As the function value re

the single yielded argument, its mode must somehow be specified. If the mode word is om

from the definition, the background mode in effect is assumed. The function value may be

the modes associated with a variable. More than one function may be specified by includin

of function names. As the yielded argument can no longer be specified in the formal argum

list of the routine definition, the return statement in the function routine is modified to indica

the value to be returned. This statement is written, within a function routine, as:

return with arithmetic expression

or

return (arithmetic expression)

More than one return statement may appear in any routine, including a function routine. A fu

tion may have several exit points, each returning different values. Consider providing a fu

routine to return the absolute value of a given argument:

function ABSOLUTE(NUMBER)
if NUMBER is negative

return with -NUMBER
otherwise
return with NUMBER

end

As the function mode has been declared, all returned values must be of the same mode.

To demonstrate the convenience of the function notation, the following example shows the s

root subprogram rewritten as a function routine, using, in turn, the ABSOLUTE function just defined:
63

SIMSCRIPT II.5 Programming Language

g the

nction is

xpres-

on eval-

h an ex-

es can

it argu-

 global

 effects.

effect.

tement,

bles

y are in-

ns suf-

r-

t

function SQUARE.ROOT given NUMBER
let SQRT = NUMBER/2.0
let DELTA = SQRT
until DELTA < 0.00001 * SQRT)
do

let SQRT = (SQRT + NUMBER/SQRT)/2.0
let DELTA = ABSOLUTE(NUMBER/SQRT - SQRT)

loop
return with SQRT

end

By incorporating the function reference directly in the logical control phrase and eliminatin

evaluation of the intermediate result, DELTA, this example reduces to:

function SQUARE.ROOT given NUMBER
let SQRT = NUMBER/2.0
until ABSOLUTE(NUMBER/SQRT - SQRT) < (0.00001 * SQRT)

let SQRT = (SQRT + NUMBER/SQRT)/2.0
return WITH SQRT

end

Function evaluation takes the same precedence as subscripted variable evaluation. The fu

evaluated prior to evaluation of the expression in which the function appears. Obviously, e

sions appearing as arguments to the function are independently evaluated before the functi

uation.

2.14 Global and Local Variables, Routines, Functions, and Side Effects

It has been suggested that communication of values between routines is best done throug

plicit argument list. The interactions between a number of routines using many global variabl

be hard to follow, and a single error may have widespread repercussions. The use of explic

ments helps to logically separate the task of a single routine within the entire program. When

variables are used in routines that interact, care must be exercised to prevent unwanted side

Most rigorously, any change in the value of any nonlocal variable may be termed a side

More commonly, the term refers to an unexpected or unforeseen consequence of any sta

usually involving a routine or function call. The practice of explicitly declaring all local varia

to a routine helps avoid the inadvertent modification of any global variables.

2.15 Library Functions

Some functions, such as the square root and absolute value, are used so frequently that the

corporated in the SIMSCRIPT II.5 language. A list of these functions appears in Appendix B. To

help distinguish the use of these functions, the names are formed from mnemonic abbreviatio

fixed with the two characters .f . For example, abs.f returns the absolute value of the given a

gument, sqrt.f returns the square root, and log.e.f returns the natural logarithm. Recall tha
64

Programming Language Concepts

me or

library

of two

m

 How-

enta-

ome

her as

hmetic

t mode

T II.5

within

o a

should

ne.

al, the

IPT

m the

 space

ool by

 may
names defined by the SIMSCRIPT II.5 software are generally of the form letter-period-na

name-period-letter. Examples of the way these functions may be used are:

if abs.f(X-Y) > 1
let Z = log.e.f(Y)
let D = sqrt.f(A**2 + B**2)
for I = 1 to min.f(max.f(A,B), max.f(X,Y,Z))

Following from the earlier discussion of routine arguments, it might be expected that each

function would have a defined number of given arguments. This is true with the exception

functions, max.f and min.f , which return the maximum or minimum value, respectively, fro

any number of given arguments. For uniformity, the function notation is used as described.

ever, not all of the library functions are implemented as routines. Depending on the implem

tion, they may be directly evaluated within the program statements.

Many of the library functions are implementations of widely used mathematical functions. S

others, however, have meanings specific to SIMSCRIPT II.5. These will be described furt

the context requires.

The library functions can be used freely in all computations. Function arguments can be arit

expressions of any complexity (including function names) as long as they are of the correc

and their values conform with the restrictions listed with the function descriptions.

2.16 Using Non-SIMSCRIPT Routines

With some restrictions, routines written in programming languages other than SIMSCRIP

may be used in a SIMSCRIPT II.5 routine. To do so, the routine must be specially defined

the program preamble as:

as a nonsimscript routine

as a fortran routine

By default, agruments to a non-simscript routine are passed by value, while arguments t

fortran routine are passed by reference. The appropriate SIMSCRIPT II.5 user manual

be consulted. Yielded arguments may not be specified for any non-SIMSCRIPT routi

Function values may be returned providing the function mode is correctly defined. In gener

interpretation of error conditions is not well defined when these occur within non-SIMSCR

routines called from SIMSCRIPT II.5.

2.17 Returning Reserved Arrays To Free Storage

When a reserve statement is executed, an amount of storage space determined fro

dimensions is allocated to the array pointers named in the statement. If at any time the

associated with an array is no longer required, it may be returned to the free memory p

executing a release statement naming the array. The total space requirement of a program
65

SIMSCRIPT II.5 Programming Language

e re-re-

d called

 passed

ay as an

eserve

en ar-

assed.

smitted,

s the el-

 be rec-

ode and

owing

tes the

 square,

s-

ase

ment
often be reduced by structuring it so that not all arrays need be reserved concurrently. The release

statement has the general form:

release array-pointer list

Examples are:

release A(*)
release COEFF (*,*), WIDTH (*), DIMENSIONS (J,*)

No access should be attempted to any element of a released array. The array cannot be distinguished

from one that has not been reserved, and an error will result. The array may, of course, b

served with the same dimensionality.

2.18 Array Pointers as Routine Arguments

Thus far, routine arguments have represented the values of variables, or, in the case of given argu-

ments, the values of arithmetic expressions. These values are copied between the calling an

routine, as indicated by the ordering in the argument lists. Such arguments are said to be

between routines by value. The value of a subscripted variable may be used in the same w

unsubscripted variable. The transmission of an array of values is handled differently. To r

and copy entire arrays of values would involve significant inefficiencies. For this reason, wh

rays appear as routine arguments they are passed by reference, that is, a pointer value is p

When an array name appears in an argument list, the value of the array base pointer is tran

rather than the array element values. By using this pointer, the receiving routine can acces

ement values within the array structure. For an array pointer transmitted as an argument to

ognized as such, and to enable the correct accessing of its element values, both the m

dimensionality of the array represented must be defined to the receiving routine. The foll

function routine illustrates the use of an array name as an argument. The function compu

trace of a square matrix, defined as the sum of the diagonal elements. As the matrix must be

it is sufficient to pass one value indicating the number of rows and columns. For example:

function TRACE(MATRIX, SIZE)

define MATRIX as a real, 1-dimensional array

define SIZE as an integer variable

define SUM as a real variable

define I as an integer variable

for I = 1 to SIZE

add MATRIX(I,I) to SUM

return with SUM

end

In this function routine, the argument MATRIX is locally defined as an array. A pointer value is a

signed to it, not by a reserve statement, but by copying the transmitted value of the array b

pointers passed from the calling routine. In this way, the function works with the actual ele
66

Programming Language Concepts

 state-

ace to

ine is

e are

ents of

ge to

 values

se

y

nsions

ving

r to ex-

to pro-

an array

y of the

array.

 array

 the el-
values of the array passed to it. The function routine may be called as shown in the following

ments:

define TABLE as a 2-dimensional array
.
.
reserve TABLE(*,*) as N by N
read TABLE
let VALUE = TRACE(TABLE(*),N)

It is possible to define an array as a local subscripted variable within a routine, allocating sp

it with a reserve statement. However, local variables only have an existence while the rout

the subject of a call from a higher level routine, and that the local variables of a routin

reinitialized to zero values at every new call. If it is desired to subsequently access the elem

an array reserved within a called routine, the array pointer should be included in the list of yielded

arguments, or returned as a function value. If subsequent access is not required, it is good practice

to free the space occupied by the array elements using a release statement, before returning from

the routine. Incidentally, although it might be thought desirable that SIMSCRIPT II.5 arran

automatically release all such local arrays before a return , the facility to freely manipulate array

pointers in programmer-defined structures precludes making general assumptions about the

of locally defined array pointers.

The SIMSCRIPT II.5 system function dim.f returns the dimension of an array pointer. In the ca

of a multidimensional array, given the array base pointer, dim.f returns the dimension of the arra

of row pointers at the first level. These row pointers may, in turn, be given to obtain the dime

of lower levels of the structure. This function is useful in programs that work with arrays ha

varying dimensions by making it unnecessary to save array dimension values for later use, o

plicitly transmit the array bounds as arguments. For example, the following for loop uses the

dim.f function to determine the current dimensions or bounds of the rectangular array TABLE:

for I = 1 to dim.f(TABLE(*,*)),
for J = 1 to dim.f(TABLE(I,*)),

let TABLE(I,J) = I**2 + J**2

Using the dim.f function rather than constants or expressions permits the above statement

cess ragged tables as well as rectangular arrays. The first use of dim.f returns the number of array

rows. The second reference returns the number of columns of each of these rows.

Two important features to remember about arrays used as arguments are (1) the pointer to

is transmitted, rather than the individual element values, and (2) the mode and dimensionalit

array must be declared in the routine. Some examples illustrate these points.

1. A routine adds two two-dimensional arrays together and stores their sum in a third

Note that the result array appears in the list of given arguments because only the

pointer value is passed. The called routine uses this pointer value to directly access
67

SIMSCRIPT II.5 Programming Language

ith the

 by the

ument

routine

nsible
ements in the prereserved array space. Responsibility for reserving this space rests w

calling routine.

Routine definition:

routine ADD.MATRICES given A, B, and C
define A, B, and C as real 2-dimensional arrays
normally mode is integer
for I = 1 to dim.f(A(*,*))

for J = 1 to dim.f(A(I,*))
let C(I,J) = A(I,J) + B(I,J)
return

end

Routine called within a program:

define COST1, COST2, TOTAL.COST as 2-dimensional real arrays
.
.
reserve A(*,*), B(*,*) and C(*,*) as N by M
.
.
call ADD.MATRICES given COST1(*,*), COST2(*,*)
and TOTAL.COST(*,*)

2. As an alternative to the above example, the result array could have been reserved

called routine and its pointer value returned as a yielded argument. This yielded arg

must be defined at the calling program level to be an array. Note that each call to the

reserves space for a new copy of the array. The calling program, therefore, is respo

for managing the release of these multiple space allocations.

Routine definition:

routine ADD.MATRICES given A and B yielding C
define A, B, and C as 2-dimensional real arrays
normally mode is integer
let NROWS = dim.f(A(*,*))
let NCOLS = dim.f(A(1,*))
reserve C as NROWS by NCOLS
for I = 1 to NROWS

for J = 1 to NCOLS
let C(I,J) = A(I,J) + B(I,J)
return

end

Routine called within a program:

define COST1, COST2, TOTAL.COST
as 2-dimensional real arrays
reserve COST1, COST2 as N by M
68

Programming Language Concepts

 up to a

 value

of

ame re-

 used to

rticular

lar ma-

rk is to
.

.
call ADD.MATRICES given COST1(*,*), COST2(*,*)
yielding TOTAL.COST(*,*)
.
.
release TOTAL.COST(*,*)

2.19 Text Mode Variables

To this point, variables have been used to represent integer and real numeric data. The need

can arise to work with text characters. SIMSCRIPT II.5 allows variables to be declared astext

mode. Variables so defined may be used to represent strings of alphanumeric characters

maximum of 32,000 characters.

Text variables may be read from input data, be printed on an output device, or have their

assigned internally in a program. A variety of text manipulations are supported. Declaration

text mode is made in the same way as for other variable modes:

normally mode is text

or

define variable list as text variables

A text mode constant, or text literal, may appear in a program statement, and bears the s

lation to text variables as do numeric constants to integer and real variables. A text literal

is a character string enclosed between quotation marks ("). (Note that the single character "

bracket a literal is different from the two characters '' used to bracket a comment.) Thus a pa

string of characters may be assigned to a text variable as follows:

let text variable = "character string"

Any character included in the complete character set representation supported on a particu

chine, including the blank character, may be included in a text string. The relevant SIMSCRIPT

II.5 user manual may be consulted for a list of character representations. If the quotation ma

appear within a string, it must be specified as two successive quotation marks.

The character string LEWIS CARROLL may be assigned to the text variable AUTHOR by the state-

ment:

let AUTHOR = "LEWIS CARROLL"

This string may be copied to the text variable NAME by the statement:

let NAME = AUTHOR
69

SIMSCRIPT II.5 Programming Language

ing.

f

e literal

 blank

s these

le, if
This second assignment creates a second copy of the of the character string "LEWIS CARROLL",

assigning it to the variable NAME. Each text variable represents a unique copy of a character str

Thus, subsequent assignment of another string to the variable AUTHOR does not affect the value o

NAME.

A character string that contains no characters is termed a null string and is represented by th

"" in text assignments. Character strings may be erased using the erase statement:

erase variable list

where each variable in the list is a text variable. Alternatively, a text variable may be directly

assigned a null value. Thus, the statements:

erase AUTHOR
let AUTHOR = ""

have the same effect. Note that the value of NAME is still "LEWIS CARROLL".

Only text variables or literals may be assigned to another text variable. No automatic conver-

sions takes place between text and any other variable mode .

2.20 Reading and Displaying Text Variables

Text variable names may appear in the variable name list of the read statement:

read variable list

The variables are assigned values from fields in the input data, delimited on either side by

characters or by the beginning of a new input record. Such strings cannot contain blanks, a

would delimit new data fields. This restriction will be discussed more fully later. For examp

TVAR1 and TVAR2 are text variables, the statement:

read TVAR1, TVAR2

will assign the characters ANTIDISESTABLISHMENTARIANISM to TVAR1 and the characters IS to

TVAR2 after reading the following data record:

column number

0 1 2 3 ...

12345678901234567890123456789012...

ANTIDISESTABLISHMENTARIANISM IS

Both numeric and text variables may appear in the variable name list of the same read statement.

As text data may not always be delimited by blank characters, a second more general text vari-

able read statement is supported. The statement takes the form:

read text variable as T *
70

Programming Language Concepts

 leading

ing may

blank

rinted

sitions,

ns are

tement:

ssions

asis,

er in
which reads a variable length text string enclosed by matched delimiters. This form of theread

statement skips to the next nonblank character in the input data, treating this character as a

delimiter, and then reads until the next occurrence of this same character. The character str

begin in any record column position and extend over any number of input records. Any non

character may serve as a delimiter for any individual read . For example, the statement:

read TVAR1, TVAR2 as 2 T *

when reading the following data record:

column number

0 1 2 3 4...

1234567890123456789012345678901234567890...

 /A simple phrase/ 'Two words'

is equivalent to:

let TVAR1 = "A simple phrase"

and

let TVAR2 = "Two words"

A text variable may be included in the variable list of a print statement. The print format in-

formation should contain a field of asterisks denoting the positions to be occupied in the p

line. If the text string to be printed contains more characters than there are allocated print po

only the indicated number of characters will appear in the output. Conversely, if more positio

allocated than there are characters, the unfilled positions will appear as blanks. Thus, the sta

print 1 line with TVAR1, TVAR2 thus

**************** ********

produces the result:

ANTIDISESTABLISH IS

A technique for producing variable-length string output is described in Chapter 3.

2.21 Operations With Text Variables

Although arithmetic operators cannot operate on text mode variables, certain logical expre

can use text variables. The most usual of these is comparison for equality; thus:

if NAME = "LEWIS CARROLL"

Such comparisons between text variables or literals are treated on a character-by-character b

starting from the first character position and proceeding left to right. If two text strings diff
71

SIMSCRIPT II.5 Programming Language

. Com-

 than"

. This is

-

-

 any

ngth.

ment

t

e-

n-
length, the shorter string is considered to be extended with blanks for comparison purposes

parisons are not limited to equality or inequality. However, the result of "less than" or "greater

comparisons depends on the collating sequence of the internal character sequence used

based on the implementation and the SIMSCRIPT II.5 User Guide should be consulted. On all im

plementations, however, the null string compares less than all other strings.

2.21.1 Concatenation: CONCAT.F(text1 , text2 ...textn)

The concat.f function returns a text variable by concatenating the text variables or text ex-

pressions given as arguments. To illustrate the effect, let the text variables STRING1 and

STRING2 be assigned the characters "PIANO" and "FORTE", respectively. The effect of the state

ment:

let LONGNAME = concat.f(STRING1, STRING2)

is to assign the characters "PIANOFORTE" to LONGNAME. Similarly,

let LUNCH = concat.f("HAM", "AND", "EGGS")

assigns "HAMANDEGGS" to LUNCH. The concatenation is in the order of the given arguments. If

argument has a null value, the remaining strings are concatenated normally.

2.21.2 Substring: SUBSTR.F(text , index , length)

The substr.f function provides access to a substring within a text variable. The substring is

specified by two integer values, a start position within the source string, and the substring le

The first character of the string is referenced by an index of 1. If A and B are text variables, then the

statement:

let B = substr.f(A,I,J)

copies J characters, starting from the I th character position in A to the character string B. A remains

unchanged. For example, if A = "SIMSCRIPT II.5" , then:

let B = substr.f(A,4,6)

assigns the characters "SCRIPT" to B.

Unlike most functions, substr.f may be used on the left-hand side of an assignment state

to replace a substring within a text variable. If string A has the value "FOOTBALL", then the

effect of the statement:

let substr.f(A,1,4) = "GOLF"

is to replace the first four characters in A, giving it the value "GOLFBALL" . For either use, the star

position specified must be 1 or greater. The substr.f function may not be used to extract or r

place characters beyond the length of the string, A. If the substring is so specified, only the remai
72

Programming Language Concepts

 by

,

.

2,000

-

ing characters in the string are used. Thus, substr.f(A,I,INF.C) refers to all remaining

characters in the string starting from the I th position.

2.21.3 Pattern Matching: MATCH.F(text , pattern , skip)

The function match.f(A,B,I) searches from left to right for the character pattern defined

text variable B, within the text variable A, after skipping the first I characters of A. If the pattern

is matched, the location of the pattern string within A is returned. If no matching string is found

zero is returned. Both A and B are unchanged. If either A or B is the null string, zero is returned

For example, if NAME is the string "JOHN JOHNSON":

let I = match.f(NAME, "JOHN", 1)

will return 6, as the first character position is skipped in the search.

2.21.4 Length Function: LENGTH.F(text)

A text variable may represent a character string of any length, from zero to a maximum of 3

characters. The LENGTH.L function returns the length of the text variable or text expression giv-

en as an argument. The length of a null or unassigned string is zero.

2.21.5 Case Conversion: UPPER.F(text) and LOWER.F(text)

These functions convert the alphabetic characters of the given text argument to upper case or low

er case, respectively. Other characters are not changed.

2.21.6 String Repetition: REPEAT.F(string ,count)

This REPEAT.F function repeats string (a text variable) count times (where count is an in-

teger), returning a text variable. For example:

repeat.f ("CAMEL", 2)

returns the string "CAMELCAMEL".

2.21.7 Truncation and Expansion: FIXED.F(string ,length)

This FIXED.F function expands a text string to length , where length is an integer, by trun-

cating or space-padding on the right. The new text string is returned. For example:

fixed.f("CAMEL", 3)

returns the string "CAM", while:

fixed.f("DOG", 5)

returns the string "DOG " .
73

SIMSCRIPT II.5 Programming Language

f the

 Strings

or an

aracter

y be

r

r

acter.

efined
2.21.8 Blank Character Elimination: TRIM.F(string , flag)

This function trims leading and/or trailing blanks from text string , according to the value of flag

(an integer variable). Thus:

Flag Action

 -1 Remove leading blanks only

 0 Remove leading and trailing blanks

 +1 Remove trailing blanks only

Thus, for example:

trim.f (" CAT ", 1) yields the string " CAT"

trim.f (" DOG ", -1) yields the string "DOG "

trim.f (" CAT AND DOG ",0) yields the string "CAT AND DOG"

2.21.9 INTEGER to TEXT Conversion ITOT.F(integer)

This function returns a text string representation of its single integer argument. The length o

returned string is determined by the number of digits required to represent the integer value.

representing negative integers are prefixed with a "- ". Thus, for example, if INT = 26 and TVAR

is a text variable:

let TVAR = itot.f(INT)

assigns "26" to TVAR.

2.22 Alpha Variables

As text variables may not be used in arithmetic expressions, SIMSCRIPT II.5 provides f

alpha mode. An example of such a requirement might be the indexing of an array using a ch

subscript. An alpha variable provides for the representation of alphanumeric data which ma

manipulated in a way similar to numeric data.

Earlier implementations of SIMSCRIPT did not support a text mode, and hence did all characte

processing in alpha mode. The number of characters represented by each alpha variable was

machine dependent. Although this interpretation of the alpha mode may still be supported fo

compatibility reasons, alpha variables should now be assumed to be restricted to a single char

Usage that requires multiple-character representation is provided by the text mode, and it is rec-

ommended that text mode be used for character processing where possible. Variables are d

to be alpha in the usual ways:

normally, mode is alpha

or
74

Programming Language Concepts

racter.

s

hen an

e alpha

 must be

er with

ric val-

the

entation

s.

e con-

mber.
define variable list as alpha variables

An alpha variable may contain any character from the character set, including the blank cha

A character value is assigned to an alpha variable by delimiting the character literal with quote

("). If the literal comprises more than one character, the first character is assigned. (W

alpha variable contains more than one character, the number of characters equivalent to th

variable size will be extracted.) For example:

let ALPHAVAR = "A"

The quotation mark is assigned by writing four successive quotation marks (""""). Alpha variables

may be assigned and compared. They may also be used in arithmetic operations, but care

taken that such use is meaningful. It must also be noted that the effect of such use may diff

various implementations, as various internal character representations have different nume

ues. An example of the use of an alpha variable might be the use of alphabetic item codes in

inventory program mentioned earlier:

define ITEM.CODE as an alpha variable
define STOCK as a 1-dimensional integer array
.
.
read ITEM.CODE and QUANTITY
if ITEM.CODE <> "X"

subtract QUANTITY from STOCK(ITEM.CODE)
always
.
.

However, a similar effect may be achived without resorting to such implementation-dependent code.

2.22.1 TEXT to ALPHA Conversion: TTOA.F(text)

The system function ttoa.f returns the first character(s) of the given text variable as an alpha

variable. Although typically only one character is returned, more may be given depending on the implem

and computer option selected. If the null string is given, a blank character(s) is returned.

2.22.2 ALPHA to TEXT Conversion: ATOT.F(alpha)

A complementary function, atot.f , generates a text representation of the given alpha variable.

In general, this is a single character string, but alpha representation may vary on some system

Consult the user's manual.

2.23 Recursive Routines

All SIMSCRIPT II.5 routines are recursive, meaning that they can call upon themselves. Th

cept of recursion is commonly exemplified using a procedure evaluating the factorial of a nu

The factorial of a number is defined by:
75

SIMSCRIPT II.5 Programming Language

 were

 recur-

l. Each

routine

riables

oints in a

eparate

red to

making

rhead.

tine to

alues

al vari-

efined

ith

. Un-

ro-

routine
Factorial(n) = n * (n-1) * (n-2) * ... * (2) * (1)

This recursive function routine may be used to compute the factorial of its given argument:

routine FACTORIAL(N)

if N eq 1

return with 1

otherwise

return with N * FACTORIAL(N-1)

end

The routine calls on itself repeatedly until it has reduced its argument to 1. If this function

called with N = 4 , the factorial would be evaluated in the following steps:

FACTORIAL(4) = 4 * FACTORIAL(3)
 = 4 * (3 * FACTORIAL(2))
 = 4 * (3 * (2 * FACTORIAL(1)))
 = 4 * (3 * (2 * (1)))
 = 24

This may not be an efficient way to compute a factorial, but it does illustrate the concept of a

sive call.

An important consequence of recursion is that local variables are unique to each routine cal

call has a separate "memory" that shares nothing with previous calls except their common

structure. Recall that local variables are reinitialized at every entry to a routine. Global va

are defined across all levels of recursion, as their names represent the same values at all p

program. Using global variables and passing values in argument lists are two ways that s

invocations of a recursive routine can communicate across different levels of recursion.

Program efficiency and inter-routine communication are two reasons why it might be desi

have some routines behave nonrecursively. The mechanism for isolating variables and

them local, not just to a routine but to each call of a routine, involves some computational ove

Isolating local variables of routines between routine calls also makes it impossible for a rou

transmit information from one call to another through a local variable, or to "remember" v

across successive calls. In recursive routines, this can only be accomplished by using glob

ables or explicitly passing values as arguments.

All the local variables of a program, or selected local variables in individual routines, can be d

as saved or recursive . If a variable is saved , it is stored in a memory location associated w

a routine it is local to, but accessible by all references to it from any invocation of this routine

like a recursive variable, a saved variable is not released when control returns to a calling p

gram, and is not reinitialized at each new call, but retains any value assigned to it when the

was last executed. Saved variables are initialized to zero before their first use.
76

Programming Language Concepts

less

all un-

thod for

(K-1)

ed by

.

There are three different kinds of routine variables: arguments, saved variables, and recursive

variables. Arguments are implicitly treated as recursive variables initialized from transmitted

values. They may not be defined as saved .

All local variables in a program, except for routine arguments, may be declared as either saved or

recursive , by using the phrases:

type is saved

or

type is recursive

in the last normally statement of a program preamble, as in:

normally, mode is real, type is saved

Because the last normally statement in the program preamble applies to all local variables un

they are otherwise qualified, this statement sets a background condition that is binding on

qualified variables. If a type phrase is not used, all local variables are treated as recursive .

Within routines, local variables can be declared as saved or recursive in a normally statement

or in define statements. In define statements, use of the words saved or recursive is similar

to use of the property words that define the mode. Examples are:

define VALUE as a real, recursive variable
define QUANTITY as a saved variable
define X,Y and Z as recursive, integer variables

Local arrays may be treated as saved or recursive by making their base pointers saved or

recursive . Thus, write:

define TABLE as a real, saved, 2-dimensional array

Recursion can best be understood with an example. The program below uses Horner's me

evaluation of polynomials. This method has the computational advantage of requiring only 2

arithmetic operations to evaluate a polynomial of order (K-1), which is fewer than are requir

straight-forward evaluation. A polynomial of the form:

A(K) + A(K-1)*X ... + A(1)*X**(K-1)

may be expressed in the recursive form:

A(K) + X*(A(K-1) + ... + A(1)*X**(K-2))

The following brief SIMSCRIPT II.5 routine demonstrates a program for evaluating this form

In the program preamble:

define POLYN as a real function
77

SIMSCRIPT II.5 Programming Language

ucture

ranch"

No node

m the

 are

cursive

vel with-

. The

rage at

llowing
Routine definition:

function POLYN given A, XVAL and K

define A as a 1-dimensional real array
define XVAL as a real variable
define K as an integer variable
if K eq 0

return with 0
otherwise
return with A(K) + XVAL * POLYN(A(*), X, K-1)
end

Notice that the interior call to POLYN uses K-1 as an argument instead of K. To illustrate how the

routine works, the evaluation of the polynomial is described:

3.3x 2 + 2.1x + 9.2 .

Assume that the coefficients 3.3, 2.1 , and 9.2 are stored in an array COEF, in the order COEF(1) ,

COEF(2) , and COEF(3) , respectively. The polynomial is to be evaluated for the value x = 0.5 .

The function is called by the statement:

let VALUE=POLYN(COEF(*), 0.5, 3)

The polynomial is evaluated as:

POLYN(COEF(*), 0.5, 3)
 = 9.2 + 0.5 * POLYN(COEF(*), 0.5, 2)
 = 9.2 + 0.5 * (2.1 + 0.5 * POLYN(COEF(*), 0.5, 1))
 = 9.2 + 0.5 * (2.1 + 0.5 * (3.3 + 0.5 * POLYN(COEF(*), 0.5, 0)))
 = 9.2 + 0.5 * (2.1 + 0.5 * (3.3 + 0.5 * 0.0))

which evaluates to 11.075 .

A commonly used data structure in computing is the "tree" structure. One form of such a str

is a "binary tree," where each node within the tree may have a "left branch" and a "right b

that represents links to other nodes in the tree. One node is chosen to represent the root.

is directly linked to/from more than one other node. Any node may be reached by starting fro

root and taking successive links at each node encountered. At the end of each possible path

"leaf" nodes that have no successor links. Binary trees are well suited to processing with re

routines, since each node in such a tree may be considered as a "root" for a tree at a lower le

in the hierarchy of nodes.

An example of a recursive routine for destroying all the nodes of binary tree is shown below

tree is constructed of two-element, one-dimensional arrays that point to each other. Data sto

the nodes may be disregarded for this example. To illustrate the tree-building process, the fo

program segment forms the root of a binary tree named TREE:
78

Programming Language Concepts

o

ch trees.

e tree,
normally mode is integer
define NOD and NODE as 1-dimensional arrays
reserve NODE(*) as 2
let TREE = NODE(*)
let NODE(*) = 0
reserve NODE(*) as 2
let NOD(*) = TREE
let NOD(1) = NODE(*)
let NODE(*) = 0
reserve NODE(*) as 2
let NOD(2) = NODE(*)
let NODE(*) = 0
:
end

NOD is used as a dummy array name to which a previous NODE pointer is assigned to allow nodes t

connect to the nodes above them in the tree. This is not the most efficient way to process su

The tree constructed by the program above is illustrated in figure 2-6.

Figure 2-6. Tree Construction

A recursive routine to destroy such a tree is shown below. Given the pointer to the root of th

the routine follows all paths in the tree and destroys the nodes on them:

routine DESTROY(NODE)
normally mode is integer
define NODE as a 1-dimensional array
if NODE(*) is not zero,

for BRANCH = 1 to 2
call DESTROY(NODE(BRANCH))

release NODE(*)
always
return

end

TREE

NODE(1) NODE(2)

NODE(1) NODE(2) NODE(1) NODE(2)

et cetera et cetera et cetera et cetera
79

SIMSCRIPT II.5 Programming Language

r is zero,

hether

and this

ough.

not only
This routine, when called by a statement such as call DESTROY(TREE) , calls upon itself as each

node destroys the nodes below it. Because each node either points to a successor node o

the routine can tell whether it has to follow a downward path to destroy successor nodes, or w

it can destroy the node it is working on by releasing it. Perhaps the easiest way to underst

routine is to construct a typical tree, such as that shown in figure 2-7, and follow the logic thr

Figure 2-7. A Binary Tree

By changing one statement, as shown below, the routine can easily be expanded to destroy

binary trees, but those containing limitless branches as well:

routine DESTROY(NODE)
normally mode is integer
define NODE as a 1-dimensional array
if NODE(*) is not zero,

for BRANCH = 1 to dim.f(NODE(*))
call DESTROY(NODE(BRANCH))

release NODE(*)
always
return

end
80

Programming Language Concepts

ches,

ities.

e

y a se-

uence of

laced.

 substi-

. It may

ce, the

 Includ-
Figure 2-8. A Complex Tree

The ability to use the dim.f function makes it easy to allow each node to have several bran

rather than only two. Such a tree might look like figure 2-8.

2.24 Pre-Processing Program Text

In the interests of readability, SIMSCRIPT II.5 provides two program text substitution facil

The first allows a defined sequence of words to be substituted for a single word. The statemnt:

 word to mean sequence of words

means that each occurrence of word in the program text is replaced, before interpretation, b

quence of characters. The word to be replaced may be any name, single character, or seq

characters not containing a blank. However, only clearly identifiable occurrences are rep

Embedded occurrences in other strings are not extracted for replacement. The string to be

tuted may be any sequence of characters or words, delimited by the end of a statement line

contain embedded blanks. Comment text is not affected. This feature provides, for instan

ability to represent the constants that frequently appear in programs as meaningful names.

ing such definitions, for example, as:

define .IDLE.STATUS to mean 0
define .BUSY.STATUS to mean 1
define .DOWNSTREAM to mean 2

allows statements to be written as:

if STATUS.CODE = .BUSY.STATUS
or DIRECTION = .DOWNSTREAM

let STATUS = .IDLE.STATUS

while being interpreted as:
81

SIMSCRIPT II.5 Programming Language

hould

 to these

modi-

 in this

ved for

eadabil-

d into

en used

m of the

 to be

ation.

 word

ted.

tric-

ents

m

.

if STATUS.CODE = 1
or DIRECTION = 2

let STATUS = 0

Defining constants in this symbolic way greatly eases the task of program modification, s

some of these constant values have to be adjusted. Of course, variables could be assigned

constant values with similar effect. However, it is possible for variables to be inadvertently

fied with consequent effect on the meaning. In order to clearly distinguish constants defined

manner from program variables, it is suggested that a unique name construction be reser

those names that are to be substituted. The form used above, which does not detract from r

ity, is to prefix all such names with a period.

Another potential use is in the redefinition of keywords in a program. For instance, the wordspro-

cedure, execute , and finish may be preferred to the SIMSCRIPT II.5 terms routine,

call , and end . Preceding a program with the statements:

define PROCEDURE to mean routine
define EXECUTE to mean call
define FINISH to mean end

allows the program to be written with this redefined vocabulary and then be translate

SIMSCRIPT II.5 vocabulary before compilation.

The scope of the define to mean statement is similar to that of the normally statement. When

used in a program preamble, it extends throughout an entire program unless overridden. Wh

in a routine, it holds (until overridden) for that routine only.

Entire sequences of statements can be generated directly into a program by an extended for

define to mean statement. The extended form allows more than one line of statements

substituted for a particular word, and it offers greater possibilities for macro-instruction gener

The statement can be written in two ways:

 substitute this line for word

and

substitute these i lines for word

In the first statement, the contents of the line following the statement are substituted for the

wherever it appears. In the second statement, the contents of the following i lines are substituted.

As with the define to mean statement, totally blank cards and comments cannot be substitu

Define to mean and substitute statements can be used freely in a program with few res

tions. They can "call on" one another at different levels of substitution. The following statem

show how a series of define to mean and substitute statements can be applied to a progra

statement and used to translate the words of the statement into legal SIMSCRIPT II.5 code
82

Programming Language Concepts

 for ex-

takes

ents ap-

or

b-
substitute these 2 lines for ZZ

set VALUE = B
go to START

define SET to mean let
define B to mean X(1)*Y(1)+1

Program statement:

if VALUE is greater than 0 ZZ

Translation:

ZZ is translated to:
set VALUE = B
go to START

set VALUE = B is translated to

let VALUE = B and then to

let VALUE = X(1)*Y(1)+1

Compiled as:

if VALUE is greater than 0
let VALUE=X(1)*Y(1)+1
go to START

Certain words, such as statement key words, should be redefined with extreme caution. If,

ample, the word A is defined, as in the statement:

define A to mean X

and a define statement such as define LIST as a real array is processed, X will be sub-

stituted for A, and will create the incorrect statement define LIST as X real array .

The effect of define to mean statements can be withdrawn by the statement:

suppress substitution

and reinstated by the statement:

resume substitution

These statements should be placed alone on program statement lines, because substitution

place for an entire line as it is read, and before the contents are interpreted. If other statem

pear on the same record as a suppress substitution statement, substitutions are made f

such statements (if called for) before the suppress command is recognized. To suppress su

stitution for a particular word, the word itself is defined, as in the following example:
83

SIMSCRIPT II.5 Programming Language

d sim-

ive use

 to the

on

s from

s

the
suppress substitution
define X to mean X
resume substitution

If the suppress statement is not used, the current substitution will be made for X before the

define statement is recognized, and X will never be redefined.

Thoughtfully used, these substitution capabilities can add to the readability of a program an

plify the modification of program constants or parameters. Conversely, careless or excess

can render a program almost unreadable, greatly obscuring the logical intent and adding

difficulties of program maintenance.

2.25 More On Changing The Flow of Computation

Although the control structures described in Chapter 1 are sufficient to express any desired directi

of the flow of control, they do not readily suit the case where there are many possible path

which to choose.

An additional control structure which is very useful in these more complex situations is the select

...endselect control block, commonly referred to as the case statement. This construct allow

transfer of control to any one of an arbitrary number of alternatives. The select statement

transfers control to the first case statement with a value corresponding to the value of

expression. If a matching value is not found, execution begins following the default statement,

if specified. A run-time error occurs if there is no match and default is omitted. The general form

of the select structure is:

select case expression

case constant list
statement group

.

.

.
case constant list

statement group
default

statement group
endselect

where:

expression is a valid expression of any mode.

constant list is a list of the form:

value1 [, value 2 , ... , value n]

in which each value i is of the form:
84

Programming Language Concepts

s:

-

e

cution.
constant

or

constant to constant

the mode of expression and each constant must agree, in accordance with the following rule

1. If expression is numeric (integer, real or double), then each constant must be numeric.

2. If expression is alpha or text, then constant must be a literal string delimited by quo

tation marks,

 e.g., "string" .

3. If expression is a subprogram variable, constant must be a subprogram literal (se

paragraph 2.30) delimited by single apostrophes, e.g., 'sin.f' .

Each statement group is a sequence of 0 or more SIMSCRIPT statements.

The following example emulates a simple calculator:

define OPERATION as a text variable
define OPERAND1, OPERAND2 and RESULT as real variables
until OPERATION = "halt"
do

read OPERATION, OPERAND1 AND OPERAND2
select case OPERATION

case "+"
let RESULT = OPERAND1 + OPERAND2

case "-"
let RESULT = OPERAND1 - OPERAND2

case "*"
let RESULT = OPERAND1 * OPERAND2

case "/"
let RESULT = OPERAND1 / OPERAND2

case "halt"
default
print 1 line with OPERATION thus
******** is not a valid operation.

endselect
loop

The cases may be overlapping, in which case the first matching case will be selected for exe

For example:
85

SIMSCRIPT II.5 Programming Language

xit a

oup

nd-

ues are

ested
define LETTER as an alpha variable

.
.
.
select case LETTER

case "A", "E", "I", "O", "U"
print 1 line with LETTER thus
* is a vowel.

case "Y"
print 1 line with LETTER thus
* is strange.

case "A" to "Z"
print 1 line with LETTER thus
* is a consonant.

endselect

Unlike comparable constructs in other languages, it is not necessary to explicit ly e

select...endselect block. Where a case statement begins a group of statements, the gr

is automatically terminated by the next case, default , or endselect statement. Control is

transferred to the statements following the endselect statement. Thus:

case 1
case 2

print 1 line thus
this is a small number

would cause absolutely nothing to happen if the value of the expression is 1. The programmer prob-

ably intended to write:

case 1,2
print 1 line thus
this is a small number

which will print the message for values of both one and two.

The use of the default statement is optional. If included, it must come after all of the correspo

ing case statements. If omitted, a run-time error will result if expression does not match one

of the specified cases.

Select...endselect blocks may be nested within each other, or with if...else...always

and do...loop structures. Care must be taken to ensure that the blocks do not overlap.

2.26 Some Data-Related Logical Values

Two of the system-defined functions supplied in SIMSCRIPT II.5, efield.f and sfield.f ,

have no given arguments. These functions together with some system defined logical val

provided in SIMSCRIPT II.5 to allow a number of properties of input data to be examined or t
86

Programming Language Concepts

-

 input

Some

tart in

 next
mined
during program execution, before the data are read using a free-form read statement. These func

tions and logical values, sometimes called "look-ahead functions," are shown in table 2-4.

Table 2-4. Look-Ahead Functions
__

 Name Value

data End of data indicator: ended or not ended

sfield.f Starting column number of the next data field

efield.f Ending column number of the next data field

mode Mode of the next data field: integer , real , or alpha

card First data field on card indicator: new or not new

__

Some examples illustrate the use of these system variables:

1. Frequently, the logical condition for terminating processing is reaching the end of the

data. This condition may be tested for with logical comparisons of the form:

if data is ended
until data is ended
while data is not ended

2. Sfield.f can be used to distinguish input data records that appear in two formats.

of the records contain data beginning in column 1, while in others the data fields s

column 25. These two record types are to be processed differently. A value for sfield.f

is determined before each new value is read, but the data item itself is not read until aread

statement is executed.

if sfield.f eq 1
read DATA1

else
if sfield.f eq 25

read DATA25
else

skip 1 record
always

always

3. Efield.f may be used in the same way to determine the last column position of the
data field. Using both functions, the number of characters in a data field may be deter
before the field is read and processed.

4. The mode property of a data field may be tested to discriminate between integer and

real numeric data, or any non-numeric data, identified as alpha . A succession of name
87

SIMSCRIPT II.5 Programming Language

 state-

ries,

 data

. The

d look-
fields, each followed by a varying number of numeric values, might be processed by

ments such as:

while data is not ended
until mode is alpha
do

read NUMBER
.
.
loop
stop

The property double is treated as synonymous with real , while text may be used as a

synonym for alpha .

5. Although free-form input in SIMSCRIPT II.5 ignores record columns or record bounda

it is possible to test whether the next data field is positioned at the beginning of a

record. Perhaps this condition might indicate the start of a new batch of data items

condition may be tested for by such logical comparisons as:

if card is not new
until card is new

When there are no further data fields (either none exists or all data have been read an

ahead is impossible), the system variables have the values shown in table 2-5.

Note: The term card is used for historical reasons . It stands for record.
88

Programming Language Concepts

 for

e lengths

 tol-

 and the

Table 2-5. Values for System Variables When Data Are Ended
__

 Name Value

data ENDED

sfield.f 0

efield.f 0

mode ALPHA

card NEW
__

2.27 More Sample SIMSCRIPT II.5 Level 1 Programs

2.27.1 A Data Analysis Program: 1

This example illustrates a use of subscripted variables, with reserve and read statements, and the

use of for loops to control the indexing of subscripted variables.

The program reads a list of N data items into an array. It then goes through the list, computing

each index value the averages of successive overlapping sequences of values, with sequenc

varying from 2 to a maximum of N-1 . These moving averages are compared with an arbitrary

erance value. If they are less than this value, the values of the index, the sequence length,

average are printed.

Program 2-2.
__

main
define LIST as a 1-dimensional array
define I, J, SEQ.LEN and N as integer variables
define TOLERANCE.VALUE, SUM and AVERAGE as real variables
read N
reserve LIST(*) as N
read LIST, TOLERANCE.VALUE
for SEQ.LEN = 1 to N-1

for I = 1 to N-SEQ.LEN
do
let SUM = 0

for J = 0 to SEQ.LEN
add LIST(I+J) to SUM

let AVERAGE = SUM/(SEQ.LEN+1)
if AVERAGE is less than TOLERANCE.VALUE

print 1 line with I, I + SEQ.LEN and AVERAGE thus
ITEMS *** THROUGH *** HAVE AN AVERAGE OF **.***
always
loop
release LIST(*)
stop
end
__
89

SIMSCRIPT II.5 Programming Language

es, this

verages

ed may

uation

t may

hat the

2.27.2 A Data Analysis Program: 2

To illustrate the way in which the logical elements of a program may be separated into routin

example repeats the computations of the previous problem, but instead of computing the a

of the data values, computes the average of a function of the values. As the function to be us

conceivably vary for different sets of data, or under different circumstances, the function eval

is logically partitioned from the main body of the program, and written as a function routine. I

then be both separately tested and altered without having to modify the main routine. Note t

function routine must now be declared within the program preamble.

Program 2-3.
__

preamble
define VALUE as a real function

end
main

define LIST as a 1-dimensional array
define I,J, SEQ.LEN and N as integer variables
define TOLERANCE.VALUE, SUM and AVERAGE as real variables
read N
reserve LIST(*) as N
read LIST
read TOLERANCE.VALUE
for SEQ.LEN = 1 to N-1,

for I = 1 to N-SEQ.LEN
do

let SUM = 0
for J = 0 to SEQ.LEN
add VALUE(LIST(I+J)) to SUM
let AVERAGE = SUM/(SEQ.LEN+1)
if AVERAGE is less than TOLERANCE.VALUE

print 1 line with I, I + SEQ.LEN and AVERAGE thus
ITEMS *** THROUGH *** HAVE AN AVERAGE OF **.***

always
loop
release LIST(*)
stop

end
routine VALUE given VARIABLE

if VARIABLE is less than -1000
return with -1

otherwise
if VARIABLE is greater than 1000

return with 1
otherwise
return with VARIABLE/1000

end
__
90

Programming Language Concepts

r

ds

ed

s,
2.27.3 A Matrix Multiplication Program

Two matrices (double-subscripted variables) are to be read from data records. Matrix A is input row

by row. That is, the values appear in the order A(1,1), A(1,2), ..., A(1,M), A(2,1),

..., A(2,M), A(3,1), ..., A(N,M) . Matrix B appears column by column in the orde

B(1,1), B(2,1) ..., B(S,1), B(1,2), ..., B(S,2), B(1,3), ..., B(R,S) .

The values of the matrix dimensions N, M, R , and S precede the element data. This program rea

the data, checks that multiplication is possible and, if so, multiplies the matrices A and B together

placing the values in matrix C.

For matrix multiplication to be possible, M must equal R. The rules for computation are:

if A has dimensions N, M and

 B has dimensions M, S then

 C has dimensions N, S and the elements of C are computed as:

 M

C(I,K) = Σ A(I,J) * B(J,K)

 j = 1

The program below illustrates the use of the reserve statement with variable dimensions execut

in the body of a program, two forms of read statement formats for inputting subscripted variable

nested for loops, and the use of the list statement.
91

SIMSCRIPT II.5 Programming Language

f multi-

 matrix

 rou-
Program 2-4.
__

main
define A,B and C as real 1-dimensional arrays
define I,J,K,M,N,R and S as integer variables
read N, M, R and S
if M is not equal to R,

print 2 lines thus
MATRIX DIMENSIONS ARE NOT EQUAL,
MULTIPLICATION IMPOSSIBLE

stop
otherwise
reserve A(*,*) as N by M, B(*,*) as R by S, C(*,*) as N by S
read A
for J = 1 to S,

for I = 1 to R,
read B(I,J)

for I = 1 to N,
for K = 1 to S,

for J = 1 to M
add A(I,J) * B(J,K) to C(I,K)

list A,B and C
stop

end
__

2.27.4 A Matrix Multiplication Routine

This program presents the previous program written as a routine. It returns a coded value i

plication is not possible. Unlike the foregoing program, this routine does not assume that the

C is initialized to zero by the calling routine, and an initialization statement is included in the

tine.
92

Programming Language Concepts

n

 end of

onstitute

ould

ch se-
Program 2-5.
__

routine MATRIX.MULTIPLY given A,B and C
yielding CODE

define A, B and C as 2-dimensional real arrays
define CODE as an integer variable
define N, M, R, S, I, J, K as integer variables
let N = dim.f(A(*,*))
let M = dim.f(A(1,*))
if M is not equal to dim.f(B(*,*))

let CODE = 1
return

otherwise
let S = dim.f(B(1,*))
for I = 1 to N,

for K=1 to S
do

let C(I,K) = 0
for J = 1 to M
add A(I,J) * B(J,K) to C(I,K)

loop
return

end

__

This routine might be used in a program by calling on it as:

call MATRIX.MULTIPLY(TABLE1(*,*), TABLE2(*,*), TABLE3(*,*))
yielding FLAG

if FLAG ne 0
print 1 line thus

MATRIX DIMENSIONS INCOMPATIBLE
else
:

2.28 More on Program Format

In general, SIMSCRIPT II.5 program statements may occupy up to 80 character positions oeach

of the source input records. By convention, some systems use a number of positions at the

each program source record for sequence numbering. These sequence numbers do not c

valid SIMSCRIPT II.5 program content, and, should they appear within the first 80 positions, w

give rise to syntax errors during compilation. The compiler may be instructed to ignore su

quence numbering using a statement of the form:

last column is integer constant
93

SIMSCRIPT II.5 Programming Language

ments.

ated as

of

p-

thin a

ments.

les with

 er-

on and

lemen-

ression

ut with

ues are

w

wed

essive

ion
This specifies that columns to the right of the indicated column do not contain program state

These columns appear on all program listings produced during compilation, but are not tre

part of the program text. Each time a last column card is used in a preamble, the number

program statement columns may change. The last last column statement used in a preamble a

plies to all subprograms that follow. This statement may not appear in individual routines wi

program. The simplest preamble, used to specify sequence number columns, is:

preamble
last column is 72

end

This specifies that in all succeeding cards only columns 1 through 72 contain program state

Columns 73 through 80 are listed but ignored during compilation.

2.29 A Useful Output Statement

There are occasions when it is useful to generate clearly labeled values of selected variab

no attempt at explicit formatting. This is particularly helpful when checking for programming

rors, for example.

The list statement prints labeled values of expressions and variables. The form of the statement is:

list variable name or expression list

Explicitly subscripted variables and entire array names may be included in the list. Expressi

array values are printed in standard formats. These formats vary somewhat on different imp

tations.

In general, expression values are printed in rows across a page with the "name" of each exp

beside its value. Thus a request to:

list A, B(1), A*B(1)

might produce the output:

A = 2.000000 B(1) = 3.500000 A*B(1) = 7.000000

If unsubscripted array names appear in the list, all elements of the array are listed in the outp

each element value labeled with its corresponding subscripted array name. As many val

placed on each line as will fit, according to spacing conventions. Such conventions usually allo

the name of the variable justified on the left in a field aligned to a column multiple of 16, follo

by the value of the variable. A minimum of two character positions is allowed between succ

variable fields across a line. Text and alpha variables values are enclosed in double quotat

marks.
94

Programming Language Concepts

der

 nonin-

 scien-

nd 0.1

ted as

lue.

 The

ed to

ay be

the sub-

gh the

igned

rencing

 opera-

within

r. A

routine

e of a
Multiple-subscripted variables, both rectangular and ragged, may be printed using the list state-

ment. Any row in an array that has not yet been reserved by a reserve statement, produces an

output of the form:

array name(i,j,...*) = ***unreserved***

If more than one array is mentioned in a list statement, they are printed successively in the or

in which they appear in the list.

As the spacing conventions must constrain the number of character positions allocated to a

teger number, those having very large or very small values are output in exponent or scaled

tific notation. In this format, the value is represented as a normalized value between 1.0 a

scaled by a power of 10, which may be positive or negative. This exponent is usually indica

E+xx or E-xx, where xx represents the power of 10, immediately suffixed to the normalized va

As a word of caution, the list statement can be misleading in respect of numeric precision.

number of significant figures printed by a list statement cannot be chosen, as in a print state-

ment, to limit the apparent accuracy and thus reflect the true significance, but rather is select

allow a wide range of values to be output. Thus, some interpretation of the printed values m

required.

2.30 Subprogram Variables

Thus far, all references to subprograms have used the defined subprogram name to identify

program to be executed. It is possible, however, to reference a subprogram indirectly, throu

use of a subprogram mode variable. Such a variable, like any other variable type, may be ass

various values during execution of a program. The values that may be assigned are the refe

values of routines within the program. As the only valid use of a subprogram variable is as a ref-

erence within an indirect call, the only operations permitted are assignment and comparison

tions, and the only values that may be assigned or compared are other subprogram variables or

subprogram literal values, or a zero, indicating a null value. A variable is declared as a subpro-

gram mode in the usual way:

 define variable list as a subprogram variable

A subprogram literal is formed by enclosing in single quotes the name of any routine used

the program, or any defined library routine, with some exceptions mentioned late

subprogram variable, which has been assigned a value, may then be used in place of a

name in a normal call statement. The example below demonstrates the assignment and us

subprogram variable:

define RVAR as a subprogram variable
let RVAR = 'DATA.TRANSFORM'
.
.
call RVAR giving DATA(*) yielding VALUE
95

SIMSCRIPT II.5 Programming Language

e in

ogram

-

n time

s, sub-

biguity

bles or

de is

, which

 use of

with
As seen in this example, a subprogram variable can be used instead of an actual routine nam

a call statement. When a subprogram variable appears in a call statement, the effect is the

same as a direct call on the routine named in the assignment to the subprogram variable. This

provides a powerful mechanism for directing the selection of routines to be called during pr

execution.

Subprogram variables can be global or local, saved or recursive , and subscripted or unsub

scripted. They are initialized to zero in the normal way, and should not be used in a call until a

value has been assigned. Obviously, the numbers of arguments passed through a subprogram

variable cannot be checked against any one routine definition in the preamble. Executio

checking, however, may still be carried out.

While subprogram arrays can be defined and values assigned to the subscripted element

scripted elements cannot be used directly to reference a routine. This is because of the am

in the notation used for both subscripts and routine arguments. Any parenthesized varia

expressions following the subprogram variable are interpreted as given arguments to the routine

being referenced.

Subprogram variables can also be used to call functions. The mode of the subprogram variable

must be declared in a statement of the form:

define variable list as a mode subprogram variable

All functions called indirectly through this variable must be of the declared mode. If no mo

declared, the current background mode is assumed.

An indirect function call must be indicated by putting a dollar sign ($) before the subprogram vari-

able name. This is required to distinguish between assignment of values between subprogram

variables and actual function references. If FVAR1 and FVAR2 are declared as subprogram vari-

ables, the statement:

let FVAR2 = FVAR1

assigns to FVAR2 a copy of the value in FVAR1, while:

let VAR = $FVAR1

assigns to VAR a value computed by the function referenced by FVAR1.

Program 2-6 illustrates several of the permissible usages of variables defined as subprogram . The

first example shows a number of routine name literals passed as arguments to a subprogram

in turn calls the selected routine indirectly. The second example is similar, but illustrates the

a subprogram variable array, comparison operations, and the function notation used

subprogram variables.
96

Programming Language Concepts

Program 2-6.
__

main
normally mode is integer
define DATA as a 1-dimensional real array
read N
reserve DATA(*) as N
read DATA
call PROCESS.DATA given 'EXP.F' and DATA(*)
call PROCESS.DATA given 'SQRT.F' and DATA(*)
call PROCESS.DATA given 'LOG.10.F' and DATA(*)
stop

end

routine PROCESS.DATA given FVAR and ARR
define FVAR as a real subprogram variable
define ARR as a 1-dimensional real array
for I = 1 to N,
compute S as the sum, M as the mean and V as the variance

of $FVAR(ARR(I))
print 1 line with S, M and V thus

SUM= **.* MEAN= *.* VARIANCE= *.*
return

end

define FVARR as a 1-dimensional real subprogram array
define FUNCV as a real subprogram variable
.
.
let FVARR(1) = 'DATA.READ.FN'
let FVARR(2) = 'DATA.TRANSFORM.FN'
let FVARR(3) = 'DATA.INVERT.FN'
.
.
for I = 1 to N

with FVARR(I) ne 0
do

let FUNCV = FVARR(I)
let DATA(*) = $FUNCV(DATA(*))

.

.
loop
.
.
call PROGVAR giving 'DATA.PLOT' yielding NULL
.
.
end
97

SIMSCRIPT II.5 Programming Language

-

 com-

ith

scribed
routine PROGVAR given RVAR yielding VALUE
define RVAR as a subprogram variable
define VALUE as an integer variable
if RVAR ne 'DATA.PLOT'

and RVAR ne 'DATA.PRINT'
call RVAR giving DATA(*) yielding VALUE

else
call RVAR giving DATA(*)
let VALUE = 0

always
return

end

__

2.31 The Store Statement

Previous implementations of SIMSCRIPT II.5 offered a store statement which provided for as

signment of variables without any attempt at variable mode conversion. This proved to be a

mon source of error. The store statement is still provided, but it is restricted to use only w

variables of compatible mode. Its effect is identical with that of the let statement, which is rec-

ommended as preferred usage. The store statement is not intended for use with values in the text

mode. All other nonconversion assignments may be achieved by variable equivalencing, de

in Chapter 6.
98

d then

 stated

ed, in

g the

 value

nd for

and

:

3. Input/Output Concepts

3.1 Introduction

This chapter introduces some additional control structures provided by SIMSCRIPT II.5, an

describes in detail the full input and output formatting facilities available in the language.

3.2 A Search Capability

It is often necessary to search among a number of variable values for one satisfying some

condition. The find statement provides a means of specifying some such condition and is us

conjunction with a for control phrase, to search a group of values for the first value meetin

specification. The statement:

for I = 1 to N,
with X(I) * Y(I) greater than LIMIT,
find BIG = the first I

is a compound statement composed of a qualified for phrase and a find statement. The for

phrase steps the variable I through the sequence of values 1 ,2, ..., N ,; the with phrase spec-

ifies that only those values of I for which X(I) * Y(I) is greater than LIMIT are eligible for con-

sideration; the find statement specifies that the repetition is to terminate as soon as such a

is found, assigning this value to the designated variable, BIG. The words the and first are op-

tional after the equal sign. The statements:

find BIG = the first I
find BIG = first I
find BIG = I

are equivalent, and illustrate alternate forms of the basic find statement:

find variable = arithmetic expression

Any variable, subscripted or otherwise, may be designated. When the first index value is fou

which the logical expression in the for phrase is true, the arithmetic expression is evaluated

assigned to the variable. Thus, in the above example the value of the expression I is assigned to the

variable BIG when a value of I is found for which X(I) * Y(I) is greater than LIMIT . As the

search is always terminated at the first suitable value encountered, a backward-iterating for phrase

may be used to find the last such value in a group.

A special form of the if statement may be used in conjunction with the find statement. This

provides for alternative actions to be selected based on the outcome of the search. An if statement

appended to a find statement may test for success or otherwise using the logical conditions

if found
99

ent

.

es, as

marize

puted by

An
or

if none

These logical conditions obviously have no meaning outside the immediate context of a find state-

ment. The following statements search a number of elements of array A for one that matches the

value B, assigning a new element value if no match is found:

for I = 1 to N
with A(I) = B

find the first case
if none

let N = N+1
let A(N) = B

always

More than one for phrase can be used to control a find statement. Also more than one find vari-

able may be assigned in one find statement. This is done by including a list of variable assignm

phrases. The following example illustrates both features:

for I = 1 to N,
for J = 1 to M,

with FN(I) less than FN(J)
find FS(1) = the first I and FS(2) = the first J

In cases where there is no expression to compute, a special form of the find statement can be used

The words the first case replace the variable assignment phrase. The search terminat

before, with the first matching value. The terminating value of the for index variable is available

for subsequent use. Both of the following statements terminate with the same value of I :

for I = 1 to MAX,
with V(I) less than QQ(I),

find the first case

for I = 1 to MAX,
with V(I) less than QQ(I),

find I = the first I

3.3 A Statement for Computing Some Standard Functions of Variables

Rather than selecting a single value satisfying some criterion, it may be desirable to sum

some statistics of a group of values. When these values are stored in arrays, or can be com

some regular iteration, the compute statement facilitates compilation of descriptive statistics.

example of the use of a compute statement is:
100

Programming Language Concepts

om-

as

ord

ne

 or the

t-

s-

of the

 Before

with
for I = 1 to N,
compute

MEANX as the mean,
MAXIMUMX as the maximum of X(I)

Like the find statement, the compute statement contains a list of variables that are set to a c

puted value after iteration. In this case, the values are specified by statistical names, such mean

and maximum . A compute statement has the general form:

compute compute list of arithmetic expression

where compute list is a list of variable and statistical names of the form variable =

statistic name. The optional word the may be omitted before each statistic name, and the w

as may be replaced by the equal sign. A compute statement can be controlled by more than o

for phrase, and these may use logical control phrases to qualify the iteration sequence

selection of individual variables. For example:

for I = 1 to N,
for J = 1 to M,

with LIST(J) greater than zero
compute

MN as the mean of TABLE(I,J) * LIST(J)

When a compute statement appears within a do loop with other statements, calculation of compu

ed statistics, such as mean, takes place at the loop statement. If, for some reason, control is tran

ferred out of the loop, the statistics are undefined. In the following example, computation

indicated statistics is executed at termination of the inner do loop. Within this loop, the values

X(J) are summed, and a count accumulated of the number of elements that form this sum.

statement 4 is executed, these two values are used to compute the mean.

for I = 1 to N,
do

statement1
for J = 1 to M,
do
statement2
compute

MEANX as the mean of X(J)
statement3
loop
statement4

loop

Within the inner loop, the value of MEANX is undefined.

To have a compute statement controlled by several control phrases, a program is written

also phrases, as:
101

SIMSCRIPT II.5 Programming Language

 3-1.

__

n.

he

s-

s-

e

for I = 1 to N,
do

statement1
also

for J = 1 to M,
do

statement2
compute

SUMX as the sum and
MAXX as the maximum of X(I,J)

loop

The names that may appear in the statistical list, and their computations, are shown in table

Table 3-1. Statistical Names Used In The Compute Statement
__

Alternative or
Statistic Abbreviation Computation

NUMBER NUM Number of items selected in the iteration.

SUM Sum of the selected values of the expressio

MEAN AVERAGE,AVG SUM/NUMBER

SUM.OF.SQUARES SQ Sum of squares of the selected values of t

expression.

MEAN.SQUARE MSQ SUM.OF.SQUARES/NUMBER

VARIANCE VAR MEAN.SQUARE - MEAN**2

STD.DEV STD SQRT.F(VARIANCE)

MAXIMUM MAX Largest of the selected values of the expre

sion.

MINIMUM MIN Smallest of the selected values of the expre

sion.

MAXIMUM(e) MAX(e) Value of the index variable (e) where th

maximum was found.

MINIMUM(e) MIN(e) Same as MAX(e) but for minimum.

__

The following example illustrates the use of each of these statistics. Assume that an arrayX in a

program has element values as shown:

X(1) = 4.0 X(2) = 7.3 X(3) = 12.8

X(4) = 0.5 X(5) = 2.2 X(6) = 7.3

and that N has the value 5. Let the program contain the statement:
102

Programming Language Concepts

d for

n made

ta.

 variety

nected
for I = 1 to 6,
with (I < N and X(I) < X(I+1)) or I = N,
compute

NX as the number, SUMX as the sum, NM as the mean,
SSQX as the sum.of.squares, MSQX as the mean.square,
VARX as the variance, SDVX as the std.dev,
MINX as the minimum,
MAXX as the maximum, MINI as the min(I) of X(I)

The above statement iterates the control variable I over the values 1, 2, 3, 4, 5 , and 6, and

selects only those values for inclusion in the compute statement computations for which I < 5

and X(I) < X(I+1) , or for which I equals 5. Thus, it selects X(2) , and X(4) under condition 1

and X(5) under condition 2. For these index numbers, the statistical quantities are compute

the expression X(I) . The computed statistics are:

Computed

Variable Statistic Computation

NX NUMBER 4

SUMX SUM 4.0 + 7.3 + 0.5 + 2.2 = 14.0

NM MEAN 14.0 / 4 = 3.5

SSQX SUM.OF.SQUARES (4.0)2 + (7.3)
2
 + (0.5)

2
 + (2.2)

2
 =

74.38

MSQX MEAN. SQUARE 74.38 / 4 = 18.595

VARX VARIANCE 18.595 - 3.52 = 6.345

SDVX STD.DEV SQRT.F(6.345) = 2.52

MINX MINIMUM 0.5

MAXX MAXIMUM 7.3

MINI MIN(I) 4

3.4 Input/Output Statements

The read, write , and list statements as described so far provide facilities to:

 1. Read data in free form from an input data stream

 2. Display messages and computational results in picture like formats

 3. Generate labeled output data in a standard predefined format. No mention has bee

of any selection capability for the source of input data or the destination of output da

In practice, you may desire to associate an input or output data stream with any one of the

of input and output devices, such as terminals, tape drives, or line printers, which may be con
103

SIMSCRIPT II.5 Programming Language

should

T II.5

ired by

s in op-

ividual

 takes

nd

 in the

 a more

in cer-

be as-

mand

mon

s for

ore, is

mber.

sive,

ay not

evice

rm:

t

ill be
to a computer. A mechanism is also required to specify in detail the formats in which data

be read and written, and a facility to transmit data in internal machine representation.

Although the input/output programming statements provided are similar from one SIMSCRIP

compiler implementation to another, the exact interpretation and additional parameters requ

these statements may vary from machine to machine. This variation is due to the difference

erating system requirements and device characteristics of different computer systems. Ind

SIMSCRIPT II.5 user manuals describe the nature of these differences.

In general, three pieces of information must be specified when an input/output operation

place:

1. A physical device

2. A data or information list

3. The desired data format.

In the statements read, print , and list , a physical device is implied (some default input a

output device), the data list is stated explicitly, and the format is, in the first instance, "free,"

second, a "picture," and in the third, standardized. The statements described here provide

flexible means of specifying this information.

3.4.1 Physical Device Specification

SIMSCRIPT II.5 programs may reference specific data streams using a logical unit number

tain input and output (I/O) statements. Each SIMSCRIPT II.5 logical unit number may then

sociated with a specific device or data file through the computer system job control or com

language. This allows each SIMSCRIPT II.5 program to refer to a file or I/O device in a com

logical manner, postponing the detailed specification of individual file or data characteristic

definition in the appropriate system command language. Each logical unit number, theref

linked to an individual file or specific I/O device through the operating system.

Each file or I/O device that is to be referenced within a program is assigned a logical unit nu

Logical unit numbers in SIMSCRIPT II.5 are integer numbers within the range 1 to 99 inclu

units 98 and 99 being reserved for SIMSCRIPT II.5 system use. Some implementations m

support 99 distinct units. Consult the appropriate user's manual for details. A specific I/O d

or file may be selected as the current input or output unit by executing a statement of the fo

device for input or use unit device for input

and

use device for output or use unit device for output

The word unit may be omitted. The value device may be any arithmetic expression tha

evaluates to a logical unit number. The SIMSCRIPT II.5 logical unit number referenced w
104

Programming Language Concepts

upport

evice,

r-

tem

PT

llation-

fault

e

ents:

nit, as

ticular

ending

 the

letion.

uce an
associated with a particular I/O device through a logical filename, on operating systems that s

such names. This logical filename will take the form simunn , where nn is the logical unit number.

This logical filename may be used to associate the logical unit with some physical file or d

using the execution control commands specific to the operating system used.

By convention, most implementations designate unit 5 as the default input device, usually the te

minal or a card reader, and unit 6 as the default output device, usually the terminal or a sys

printer. If a program does not contain use statements as in level 1 and 2 programs, SIMSCRI

II.5 assumes the default input and output units are to be used for all read, print , and list op-

erations. Note that the assignment of devices to these default logical unit numbers is insta

dependent, and may be altered through system control commands.

Any of the read, print , and list statements may be directed to use units other than the de

input/output units, by executing a use statement before their execution. Each time a use statement

is executed, a global variable named read.v or write.v is assigned the logical unit number of th

designated unit. These two global variables can be used freely in all SIMSCRIPT II.5 statem

if read.v = 5
call SWITCH.UNIT

always

When a use statement is executed, the unit specified becomes the current input or output u

appropriate. This condition remains in effect until altered by a subsequent use statement, speci-

fying that some other unit is now to become the current unit. It is possible to specify that a par

unit be treated as the current unit for the duration of a single input or output statement by app

to the statement a using device phrase. This phrase sets the current input or output unit to

indicated unit during the statement's execution, and returns it to its previous value on comp

Such a facility may be used to direct the flow of exception messages. For example:

use 5 for input
use 6 for output
while data is not ended
do

read A,B,C
call action A,B,C yielding FLAG, RESULT
if FLAG ne 0

print 1 line with A,B,C thus using unit 1
ERROR WITH VALUES ** ** **

else
print 1 line with A,B,C, RESULT thus
RESULT FOR VALUES ** ** ** IS ***.**

always
loop

Here data are accepted from unit 5 , and results of some processing are printed on unit 6 . Any

error conditions, signified by a nonzero flag value returned from the processing routine, prod

exception message on unit 1 .
105

SIMSCRIPT II.5 Programming Language

corre-

n turn,

bols.

t

nded

cords.

onding

 fields

Every

s

e form

ter

ign.

as pos-

e typed

puter

ers

ositive
3.4.2 The Formatted I/O Statements READ and Write

As described in Chapter 1, input and output data streams consist of a sequence of records,

sponding to lines of printed output or lines of data accepted from a terminal. Each record, i

is composed of a sequence of fields. A field is a logically defined group of consecutive sym

In free-form data, a field is delimited by blank characters. In print output statements, an outpu

field position within a printed line may be defined by asterisks. This latter facility may be exte

to provide greater program-directed control over the structuring of both input and output re

A read statement that accepts formatted data has the form:

read variable list as format list

in which each variable value to be read has its input data format field described by a corresp

field descriptor character in a format list. These formats, which are codes describing how the

in the input data stream are composed, are described in the next subsection.

The write statement transfers values from within the computer to specified external media.

write statement is formatted. With the sole exception of the list statement, the programmer i

always required to indicate the arrangement of output data. The write statement looks like the

read statement. Its form is:

write expression list as format list

The indicated expressions, which may simply be variables, are evaluated and printed in th

described by their matching format descriptors. Before illustrating these read and write state-

ments with examples, the format descriptors are defined.

3.4.2.1 I (Integer) Descriptor

A descriptor of the form n I w is used for converting numbers from their internal integer compu

storage representation to an external format, and vice versa. The character I is always followed by

an expression (w), specifying the maximum number of digits in the integer field, including the s

The I can be preceded by a number (n), declaring that the descriptor defines n consecutive identical

data fields. Such formats as 2 I 6 and 14 I 3 define 2 fields of 6 positions and 14 fields of 3

positions, respectively. There must be at least one blank between the fields n, I , w.

When an I format is used for input, it specifies that the full contents of a field w digits wide are to

be stored as the value of a corresponding variable in a read statement. Blank field positions —

leading, embedded, or trailing — are treated as zeros. If a field is unsigned, it is interpreted

itive, although a plus sign can be typed. Except for the sign character, only numbers can b

in a I data field. If w is larger than the maximum number of digits that can be stored in a com

word, only the rightmost, storable digits are used.

On output, an I format places a right-justified integer value in a field of specified width. Numb

larger than the field width are converted to scientific notation (see paragraph 3.4.2.3). P
106

Programming Language Concepts

e high-

al

 in-

e

t.

 in

dis-

umber

xt

teger

s trail-

d for a

e read

ars
hat the

of

rs ac-

rinted
numbers are printed unsigned, while negative numbers have the sign printed to the left of th

est-order digit. Leading zeros are suppressed.

3.4.2.2 D (Decimal) Descriptor

A descriptor of the form n D(a,b) is used for converting numbers from internal to external decim

representation, and vice versa. The a field specifies the number of characters in the data field,

cluding the sign and decimal points. The b field specifies the number of digits to the right of th

decimal point; and the optional n field specifies the number of consecutive values of the forma

When used for input, the D format accepts numbers typed with or without decimal points. If a dec-

imal point is omitted, one is implied before the first digit in the b field. When a decimal point is

present, it overrides the location specified by b. Very large and very small numbers can be input

scientific notation, for when used for input the D and E formats are equivalent.

Used in output statements, D formats describe the precision in which decimal numbers are

played. Numbers that cannot be printed exactly in the specified format are rounded. Every n

output by a D format is printed in a field of a columns: the first column is used for the sign, the ne

a-b-2 columns are for digits, the next column is for the decimal point, and the remaining b columns

are for digits. The sign is printed if a number is negative; otherwise it remains blank. If the in

part of a negative decimal number does not require all the a-b-2 positions allotted to it, the sign is

shifted to the right, next to the high-order digit. Leading zeros are suppressed. If a number ha

ing zeros, as in the number 10.0, the trailing zeros are printed. Trailing zeros are not printe

value of exactly zero.

3.4.2.3 E (Scientific) Descriptor

Extremely large and extremely small numbers, and numbers that vary widely in scale, can b
and written in a constant field width by using an E format. This format is similar to the D format
in that it specifies a field width and a decimal point position by the numbers a and b in the form n
E(a,b), but it differs from the D format in having a scale factor field. The scale factor field appe
to the right of a decimal number and indicates the necessary number of places right or left t
decimal point must be moved to convert the scaled number to its proper form.

The E format is thus equivalent to the D format, plus a scale factor. Numbers read under E format

control are of the general form:

±XXX.XXXE±XX

although some latitude is allowed in writing the scale factor. A positive scale factor, such as E+02

or E 7 , raises the value of a printed number; 24.795E-04 represents an internally stored value

.0024795 .

The E format can be used for both input and output. When used for output, it aligns numbe

cording to the format specification and prints a scale factor indicating the true value of the p

number. All E formatted numbers are a print positions wide, with the first a-4 positions used for
107

SIMSCRIPT II.5 Programming Language

 factor

ontain

ormats,

t. A

rm

ld. The
the number, including its sign and decimal point, and the last four positions used for the scale

E±xx.

E-formatted input data can be written in a variety of ways, as the scale factor may or may not c

a sign or the letter E. The numbers 1.00E+05, 1.0E05, +1.0E 5 , and 1.0E+5 are equivalent

input data representations of the number 100,000 under the input format E(7,1) . As shown below,

either a sign or the letter E must be present to separate the number and scale factor fields.

It must be emphasized again that when values are too large to be printed in their indicated f

data should be displayed in scientific notation, as governed by the following rules:

Field

Width Characters Printed Example: Number=247.538

1 {"E"} E

2 {sign of number} {"E"} +E

3 {sign of number} {"E"} {sign of exponent} +E+

4 {sign of number} {"E"} {sign of exponent} {d} +E+2

d = digit if 0 ≤ exponent ≤ 9, or = * if exponent > = 10

5 {sign of number} {"E"} {sign of exponent} +E+02

{exponent}

6 {sign of number} {digit} {"E"} +2E+02

{sign of exponent} {exponent}

7 {sign of number} {digit} {"."} {"E"} +2.E+02

{sign of exponent} {exponent}

8 {sign of number} {digit} {"."} {digit} +2.4E+02

{"E"} {sign of exponent} {exponent}

9 {sign of number} {digit} {"."} +2.47E+02

or {additional digits} {"E"} +2.475E+02

more {sign of exponent} {exponent} +2.47538E+02

Numbers can be written in scientific notation for free form as well as for format-directed inpu

field of the form: {number} {exponent} is interpreted as a scientific notation input field in free-fo

input statements. No blanks are allowed between the number and exponent parts of the fie

forms of these parts are:

{number}: a real or integer constant

{exponent}: E±xx E is optional

+ is not needed if exponent is positive
108

Programming Language Concepts

d

t

lanks,

by

left-

ach

hed. In

g

fter the

racter,

 corre-

nd
Examples:

1.0067E+10 1.0067+10

9.46755+04 9.46755E4

4.0E1 4.0+1

9.999-6 9.999E-06

5E6 5+6

3.4.2.4 T (Text) Descriptor

A descriptor of the form n T w is used to read and write formatted text from and to an external

medium. The descriptor is similar in form and action to the I descriptor. The variable to be rea

or printed must have been declared as a text variable. Text literals appearing in a write list

must be output using a T format descriptor.

When used for input, the statement reads as a text string the next w characters from the current inpu

record. Any printable character that can be typed on a terminal or input record, including b

will be accepted as part of the string. The input record column position indicator is advanced

the field width.

When used in output statements, the T format displays successive characters, starting from the

most position of a string, and displaying from the leftmost column position within the field. E

character of the string is printed until either the string is exhausted or the end of field is reac

either case, the output record column position indicator is advanced to the end of the field.

In cases where the length of a text variable is not known, or may vary, the entire text variable

may be simply output using the format:

write text variable as t *

which begins writing at the current output column and continues writing until the entire text string

is printed. If the output string will not fit on the remaining space on the output record, the strin

may overflow to one or more subsequent records. The output record column is positioned a

last character written.

3.4.2.5 A (Alphanumeric) Descriptor

Any printable character that can be typed on a terminal or input record, including a blank cha

may be read under an alpha format. The alphanumeric descriptor n A w is similar to the I descrip-

tor in form and action. On input, the content of a specific field is assigned as the value of a

sponding variable in the read list. This variable must have been declared as alpha . The manner

in which characters read are placed within the alpha variable may vary, depending on machine a

alpha implementation. In general, where only one character is represented in each alpha vari-
109

SIMSCRIPT II.5 Programming Language

where

e maxi-

ecified

ed

ith

ar-

ent dec-

 a char-

Because

ions are

artic-

r

ending

ring the

ual

ith few

 format

ly.

scriptor

-

 first in

in col-
able, the first character of the input field will be read. In some earlier implementations, and

an alpha variable may represent more than one character, a number of characters up to th

mum representation size will be read. The column position pointer is advanced by the sp

field width.

When used in output statements, the A format will normally print the single character represent

by the alpha variable in the first column of the output field, padding any further positions w

blank spaces. When more than one character alpha representation is supported, a number of ch

acters, up to either the maximum representation, or the field width, may be printed.

3.4.2.6 C (Computer Representation) Descriptor

Few computers use decimal notation internally. Most use binary coding schemes that repres

imal numbers as sequences of zeros and ones. Generally, a group of binary bits constituting

acter in a number system other than binary or decimal is used as an input/output character.

strings of such numbers are short, they are easy to interpret. Commonly used representat

octal and hexadecimal, for groups of 3 and 4 binary bits, respectively.

The format n C e interprets characters read or written in the unit of the computer on which a p

ular SIMSCRIPT II.5 system is implemented. The field width, e, specifies the number of characte

positions occupied. Each position corresponds to a single octal or hexadecimal symbol, dep

on the particular machine implementation.

3.4.3 Format Lists

Format lists are composed of sequences of format descriptors separated by commas. Du

execution of read and write statements, format lists are scanned from left to right and individ

format descriptors are used as needed to match the variables named in the variable list. W

exceptions, variables being read or expressions being written must agree in mode with their

descriptors. The exceptions are integer and alpha modes that can be used interchangeab

When they are interchanged, the mode of the format descriptor governs. When a format de

is preceded by a repetition character n, n consecutive read and write statements that use format

ted data follow. Some examples of format lists are given below.

1. read X, ANSWER and Y as I 3, I 2, I 2

If one assumes they have data in an input data file, and the above statement — the

a program — starts reading at column 1 of the first input record, the value appearing

umns 1-3 is assigned to X, that in columns 4-5 is assigned to ANSWER, and the value in col-

umns 6-7 is assigned to Y. The data might appear as:

column 0 1 ...

number 12345678901234

160 3 8
110

Programming Language Concepts

y.

e for-

at de-

ard line

teger

1-20,

he

mn

2 is as-

al

hird

value
in which case X = 160, ANSWER = 3 , and Y = 8 ; should it appear as:

column 0 1 ...

number 12345678901234

 -336-9

the result will be X = -3, ANSWER = 36 , and Y = -9 . The data are read sequentiall

The information needed to locate a number and determine its form is contained in th
mat descriptors.

2. read X, ANSWER and Y as I 3, 2 I 2

Here, the format list is the same as example 1 except that the second and third form

scriptors have been combined.

3. write X, ANSWER and Y as I 3, 2 I 2

In this example, the values of the expressions X, ANSWER, and Y, are output in the indicated

format. It will be assumed that the output has been specified to appear on the stand

printer and that this statement is the first to be executed. If the values of X, ANSWER, and

Y are 9, -3 , and 0, respectively, the printed line appears as:

column 0 1 ...

number 12345678901234

 9-3 0

Notice that leading zeros are left blank, but that the rightmost zero in a zero-valued in

is printed.

4. read X,Y,Z as 3 D(10,3)

Three decimal fields are specified, the first in columns 1-10, the second in columns 1

and the third in columns 21-30. Assume that the data are written as:

column 0 1 2 3 ...

number 12345678901234567890123456789012...

 126.345 -18.62 768954346

The first data field is assigned to X and the decimal point is, as expected, in column 7. T

second data field is assigned to Y. Here the decimal point is not where expected, in colu

17. Instead, the written number overrides the stated format, and so the value -18.6

signed to Y. A characteristic of the D format is that it may be so overridden if a decim

point appears explicitly within a field. If no decimal point is written, as occurs in the t

data field, its location is assumed from the format. In the above example, the

768954.346 is assigned to Z.
111

SIMSCRIPT II.5 Programming Language

lting

 range

this

erted
5. read X as D(8,2)

Such a data item might be written as:

column 0 1 ...

number 12345678901234

 16.5E 2

The written decimal point overrides the format. The scale factor multiplies the resu
number by 10**2 so that the value 1650 is assigned to X. The flexibility of the decimal

format is shown in the following statement that defines a data record so that a large

of numbers can be accommodated:

6. read X(1), X(2), X(3), X(4), X(5) as 5 D(10,2)

A data record may appear as:

column 0 1 2 3 4 5...

number 12345678901234567890123456789012345678901234567890...

 41.25 19.22E-03 4537992 -167.1

in which case X(1) = 41.25, X(2) = 0.01922, X(3) = 45379.92, X(4) =

0.00 , and X(5) = - 167.1 .

7. write A,B,C,D,E as 2 I 4, D(10,3), E(9,1), I 6

This statement defines output formats for five expressions, A to E . Assume that A and B

are integer variables, both having the value 9, C is a real variable having the value

19.2 , D is a real variable with the current value 8.25 , and E is an integer variable with

the value -1863976 . The output will be:

column 0 1 2 3 4

number 1234567890123456789012345678901234567890123456789

 9 9 19.200 8.3E+00-2E+06

The output of E illustrates the action taken when a value is too large for its field. In

instance, a seven-digit integer could not be printed in a six-digit field, and was conv

to a six-character scientific representation. The actual value -1.86397x10 6 was rounded

to a value that could be printed (-2x10 6) and would retain the most significance.

8. read NAMES(1), NAMES(2), NAMES(3) as 3 T 10

Assuming that the array NAMES has been declared as text , the above statement will read

three successive 10-character fields assigning 10-character text strings to the variables

NAMES(1), NAMES(2) , and NAMES(3). Thus:
112

Programming Language Concepts

:

column 0 1 2 3

number 1234567890123456789012345678901234567

JOHNSON EDWARD JOE

9. These character strings may now be printed under different formats:

write NAMES(3), NAMES(1), NAMES(2) as T *, T 10, T 2

will produce the output:

column 0 1 2 3

number 123456789012345678901234567890

JOEJOHNSON ED

10. Assuming MACHINE and TCODE have been defined as text variables and TEMP and

TOLERANCE as integer variables:

read MACHINE, TEMP, TCODE, TOLERANCE as T 10, I 5, T 1, I 9

will read:

column 0 1 2 3

number 123456789012345678901234567890

 FORGE 3K 05

and assign "FORGE" to MACHINE, 3 to TEMP, "K" to TCODE, and 5 to TOLERANCE.

11. Let ALPHA.VAR1, ALPHA.VAR2 and ALPHA.VAR3 be alpha variables. The statement

read ALPHA.VAR1, ALPHA.VAR2, ALPHA.VAR3 as 3 A 1

after reading the following input data, will assign the values a, b, c to the three vari-

ables, respectively:

column 0 1

number 1234567890123456

abc

The output statement:

write ALPHA.VAR1, ALPHA.VAR2, ALPHA.VAR3 as B 1, 3 A 4

will now produce:

column 0 1 2

number 12345678901234567890

a b c
113

SIMSCRIPT II.5 Programming Language

g

 so in-

ut point-

put and

spersed

e

utput

 n.

in as-
The above examples have assumed that each new read or write statement starts at the beginnin

of a new data record or line. This need not always occur. All read and write statements operate

on a continuous string of characters and only skip to a new data record or output line when

structed. Thus, the two statements:

read X as I 5

and

read Y as D(10,2)

read successive fields from the same data record. Often, of course, data are split between data

records, or must be read from noncontiguous parts of the same data record. The current inp

er and current output pointer are variables that point to the last referenced columns in the in

output data streams. They can be advanced by the statements:

 input record

or

start new output record

and

start new page

as previously described, and also by five non-numeric formats. These formats can be inter

among data formats, or they can appear alone in read and write statements. Examples of the us

of these formats are given following their description.

3.4.3.1 B (Beginning Column) Descriptor

This format is used to specify the position in which the first character of an item of input or o

data is found or displayed. The format B n positions the current input/output device at column

When several B format descriptors are used within a format list, they do not have to appear

cending numeric order. For instance, the format:

B 47, I 10, B 5, D(6,3), B 57, D(7,3), B 20, I 4

prints a line of the following form:

 col 5 col 20 col 47 col 57

 D(6,3) I4 I10 D(7,3)

______XX.XXX___...____XXXX___...__XXXXXXXXXX__...__XXX.XXX
114

Programming Language Concepts

cords by

 the

ns are

ut data

-

rs,

 can be

ed

 input/

ed

vices

are es-

crip-

 excep-

n, as is

by other

ar-

quired,
3.4.3.2 S (Skip Column) Descriptor

Spaces may be skipped between output items, or columns may be skipped on input data re

specifying, through the S n format, that n spaces are to be skipped before reading or printing

next item of data. Skipped positions are left blank on output, while data in skipped positio

ignored on input.

3.4.3.3 / (Skip to New Record) Descriptor

Format descriptors described above have presented conventions for locating and laying o

within input/output records. There is an implicit understanding that each format list refers to a sin

gle input data record or printed line of output. Input/output records change only when a start

new input record or start new output line statement is executed. Unless this occu

statements continue to read from the same record or to print on the same line. A record

changed within a format list, however, by using a / format descriptor. This descriptor may be us

repeatedly within a format list. Each time it is encountered, it skips a record on the current

output unit.

3.4.3.4 + (Transmit Buffer) Descriptor

This format descriptor is analogous to the / format, with the exception that the record is transmitt

to the device without being followed by a hardware new line or end of record indicator. For de

that support it, this allows construction of same-line interactive dialogues and use of hardw

cape sequences. When used with devices that do not have necessary capabilities, the + descriptor

is handled as / .

3.4.3.5 * (Skip to a New Page) Descriptor

This format descriptor is analogous to the / format. It ejects a page on a line printer.

3.4.3.6 " " (Character String) Descriptor

Literal alphanumeric data can be included in output formats using a character string format des

tor. All characters included between quotation marks are printed as they appear, with one

tion. Each pair of quotation marks inside the quotation marks is mapped to a single quotatio

the case with other string constants. The spacing of the character string can be specified

format descriptors such as B, S , and / , as well as by blanks within the character string. The ch

acter string, however, cannot exceed the length of a program text line. If a long string is re

it must be split into two strings.

3.4.3.7 Examples

Some examples of formatted read and write statements are shown below.
115

SIMSCRIPT II.5 Programming Language

the

inter

Values

 fol-

ariable

ead in

ormat,

uffer,

riting

output

er and

 values

ritten.

 a
1. read IVAR and JVAR as I 5, /, I 5

A value for IVAR is read from the first five columns following the present location of

current input pointer for the current input unit. A value for JVAR is read from columns 1-

5 of the record following.

2. read IVAR and JVAR as B 1, I 5, /, I 5

The current input pointer is returned to the first column of the current record. If the po

is greater than 1, a new record is not selected; instead, the pointer is moved back.

for IVAR and JVAR are then read from the first five columns of this record and the one

lowing.

3. read IVAR, JVAR, KVAR, as 3 D(10,2), /

The above statement establishes a "record-oriented" input format. Each group of 3 v

values is contained on a different record. After one group is read, a new record is r
preparation for the next group.

4. write A,B,C,D,E,F as I 5, S 50, I 5, /,/,/,/, 4 D(10,4)

This statement writes two integer variables spaced 50 columns apart in an integer f

concludes this record, bringing the current output pointer to the head of the output b

skips three records, and writes four decimal values on a second record.

5. write N and AVERAGE as "Of", I 3, " To Date, The Average Is ",D(6,2)

Two values embedded in character strings are written from the above statement. If w

occurs on a line printer and the current output pointer is at the beginning of a line, the

looks as follows for N=97 and AVERAGE = 53.287 :

Of 97 To Date, The Average Is 53.29

6. read A(1),B(2),A(3),A(4),A(5) as B 5, I 10, D(7,3), /, B 20, 3 I 5

This statement begins in column 5 of the current input unit, reads two values in integ

decimal formats, respectively, and then starts a new record and reads three integer

starting in column 20.

7. write as *,/,/,/,/

The statement starts a new output page and skips four lines. No output values are w

3.4.4 Controlled READ and WRITE Statements

It is commonly required to read a number of subscripted variable values under the control offor

statement, as in:
116

Programming Language Concepts

es are

ied by

data

yte data

olumns

 61.

he indi-

tten as:

wing

e fol-

e

t point-

er-

ts, as-

d of the

ilable in

sed to

al log
for I = 1 to N, read A(I)

Here, a free-form read reads a sequence of values across the current input record. If the valu

packed, however, with no blanks between them, the individual data fields cannot be identif

the free-form read . An alternative might be to write:

for I = 1 to N, read A(I) as I 4

This form may be used if the values of A(I) are spaced across entire records. If, however, the

are arranged so that values are contained only in columns 1 through 60 of successive 80-b

records, the above statement will read through column 60 and attempt to take values from c

61 through 80. The read must be directed to skip to a new input record upon reaching column

An expression enclosed in parentheses, placed before a format list, repeats that format list t

cated number of times and then skips to a new record. The statement above should be wri

for I = 1 to N, read A(I) as (15)I 4

If N = 12 and four numbers are to be read per record from columns 1 through 24, the follo

statements read 12 values from 3 records:

start new record

for I = 1 to N, read A(I) as (4)I 6

This form may also be used if groups of variables with different formats are in a record. Th

lowing statement reads four pairs of data fields in the format I 6,D(6,2) from each data record

until 2*N values have been read:

for I = 1 to N, read A(I), B(I) as (4) I 6, D(6,2)

Such a repetition facility can be used with both read and write statements, but it can only b

used in statements controlled by for phrases. This particular form of the read statement assumes

that input starts at the beginning of a data (record), which explains the start new record state-

ment in the foregoing example. The statement can terminate, of course, with the current inpu

er positioned in the middle of a record, depending on the format used.

Similar rules apply to the print and list statements, as well as to all input/output operations p

formed by the SIMSCRIPT II.5 system. Output is printed wherever the current pointer poin

suming it is at the head of a record. After output, the system positions the pointer at the hea

next record.

3.4.5 Variable Formats

The use of format descriptors containing expressions as well as constants is one feature ava

read and write statements that has not been discussed. Arithmetic expressions can be u

control field widths in formats for data-layout purposes. For instance, a curve of the natur

function, using * as a graphical character, is generated by the statement:
117

SIMSCRIPT II.5 Programming Language

rm — a

m par-

 file of

 records

for I = I to 100, write as B LOG.E.F(I),"*",/

Table 3-2 indicates where expressions can be used in format descriptors and states their fo

feature that allows formats to be constructed during program execution, freeing programs fro

ticular data forms. Constants defining a format can be read in, perhaps in free form, before a

data records to specify the form in which the data appear. If a program reads in sets of data

that are grouped three items to a record with the first item being integer and the balance real ,

the initialization routine of the program could contain the free-form read statement:

read C1, C2, C3, C4, C5

and the program could contain the formatted read statement:

read ALPHA, BETA, GAMMA as B C1, I C2, S C3, 2 D(C4,C5)

and the input data stream might look like:

column 0 1 2 3 ...

number 12345678901234567890123456789012345678...

 6 4 10 5 2

 342 16.25 1.5

 -10 0.5 73.4

Table 3-2. Format Descriptor Forms
__

Format Descriptor General Form

Integer field i I e

Decimal field i D(e,e)

Scientific field i E(e,e)

Starting column B e

Space skip S e

Text field i T e or i T *

Alpha field i A e

Computer representation field i C e

NOTE: i is an integer constant which defaults to 1 if omitted. e is an arithmetic expression.

118

Programming Language Concepts

erating

e. As

 of the

 II.5

y-

er than

of the

. The

e data

ile

chine or

me as-

 phys-

 File

:

3.5 Miscellaneous Input/Output Statements and Facilities

3.5.1 Logical File Assignment: The OPEN Statement

Physical device or data characteristics, specified by execution control commands to the op

system, are associated with SIMSCRIPT II.5 logical unit numbers through a logical file nam

mentioned previously, this is usually constructed from the logical unit number to give a name

form SIMUnn.

To allow the specification of device or file characteristics within a program, the SIMSCRIPT

language supports an open statement. The open statement provides a means of explicitly specif

ing a logical filename and some of the associated data characteristics at program level rath

at execution command level. Consult the SIMSCRIPT II.5 user manual for specific details

parameters.

The general form of the statement is:

open unit device for input (or output), data characteristics

where device is an arithmetic expression evaluating to the logical unit number. The clause for

input or for output designates whether the device is to be used as an input or output device

word for is optional. The data characteristics may describe required characteristics of th

stream. An example of the use is:

open unit 2 for output, file name is "OUTFILE"

use 2 for output

which will open a file, referred to in the future as unit 2 , using the logical name "OUTFILE". This

logical file name must be a text variable. If the file name is not specified, the default logical f

name, simu02 , is created as described above.

Many file and I/O device data characteristics may be specified at program level in the open state-

ment. Some of these are common across machines, while some are particular to one ma

language implementation. In general, however, the characteristics consist of logical filena

signment and file format and file-type description.

File format parameters contain information on how the file is structured internally. The basic

ical unit of the data file is the record, which usually corresponds to a line of input or output.

format parameters that may usually be specified are the recordsize , or length of each record, and

whether this size is fixed or indicates the maximum of variable length records. For example

open unit 2 for output,

file name is "OUTFILE", recordsize = 80, fixed

assigns unit 2 , in the output mode, to a file or device whose logical filename is "OUTFILE",

which is composed of 80-character fixed length records.
119

SIMSCRIPT II.5 Programming Language

e link

rating

ened

y"

 free-

h the

tered

d the

f

tem

-of-file

n

 facility
After all input or output to a unit has been completed and the unit is no longer required, th

between the SIMSCRIPT II.5 logical unit and the physical device, as controlled by the ope

system, may be removed by closing the unit. This is achieved by a statement of the form:

 close unit device

If the device is the current input or output unit, then that unit (read.v or write.v) is reset to its

default value. Note that at the completion of a SIMSCRIPT II.5 program, all files used or op

during the course of the program run will be closed automatically by SIMSCRIPT II.5.

3.5.2 End-of-File Conditions

Whenever a read statement is executed, there is the possibility of reading data from an "empt

file or reaching the end of the data file, which is referred to as an end-of-file condition. The

form read statement, as previously noted, provides a check for an end-of-file condition throug

statement if data is ended . A similar check is needed for formatted I/O.

A SIMSCRIPT II.5 system-defined variable, eof.v , is maintained for each logical input unit. A

reference to eof.v applies always to the value of the current logical unit, set by use . This variable

is initialized to zero when a unit is first referenced. When an end-of-file condition is encoun

by a read statement, the SIMSCRIPT II.5 system refers to the eof.v variable for direction. If

eof.v is still equal to zero, encountering the end-of-file condition is considered an error, an

program terminates with an error message. If, however, under program control, the eof.v vari-

able has previously been assigned the value 1, the variables in the read list are assigned values o

zero, the eof.v variable is set to 2, and control returns to the statement following the read . In

other words, setting the value of eof.v to 1 is considered a message to the SIMSCRIPT II.5 sys

to the effect, "Do not terminate the program; return zero values and indicate that the end

marker has been encountered." By testing eof.v after a read statement, the program logic ca

determine whether the statement read true data or encountered an end-of-file marker. This

can be used in the following ways:

1. As an end of data signal:

use unit 1 for input
let eof.v = 1
.
.
while eof.v ne 2,
do

read Z as I 2
add Z to SUM
add 1 to COUNTER

loop
write COUNTER, SUM/COUNTER as "The Average of", I 4,
"Items Processed Is", D(6,2)
stop
end
120

Programming Language Concepts

 in

ation,

CII or

n

puters

nternal

y the
2. To transfer control to an error-diagnostic routine rather than terminate:

use unit 1 for input
let eof.v = 1
.
.
read X,Y,Z
if eof.v = 2

call ERROR.PRINTOUT
else
.
.
always

3.5.3 Repositioning Files

A disk or tape file may be repositioned to its starting position by the statement:

 rewind d

The words unit is optional after rewind . After a unit has been rewound, it must be mentioned

a use statement before it can be read from or written on again, as is the case with the close state-

ment. A rewind command before a unit has been "used" is ignored.

3.5.4 Input/Output of Nondecimal Information

When an external file or I/O device is used with normal SIMSCRIPT II.5 read and write free-

form or formatted I/O statements, the file will usually be a "character"-type file.

All data written or read from the file are converted from their internal computer represent

called binary , to an external media form, usually one of the character representations, AS

EBCDIC. The normal read free-form, print , and list statements perform this conversio

automatically on all I/O operations. When data are used only for transmission between com

or are saved for subsequent reuse in a program, they may be saved directly in their i

representation to improve efficiency. Variables are transferred in this binary format b

statements:

read variable list

and

write variable list

where a current unit is implied, or through the statements:

read variable list as binary using d
121

SIMSCRIPT II.5 Programming Language

-

t unit,

atting.

to

r

f each

ol com-

or

fers,

ta

uffer.
and

write variable list as binary using d

where a unit d is specified.

Any variable name may be included in the variable list. Only the real equivalent of double pre-

cision variables, however, will be transmitted. Double variables may be transferred with full pre

cision using the statements:

read variable list as double binary

and

write variable list as double binary

Binary input and output statements may not be mixed with, or used on the same input/outpu

as any free-form and formatted-type statements, with the exception of record boundary form

The start new statements and the formats write or read as / are permitted with binary I/O

on most implementations. In all other cases, a SIMSCRIPT II.5 file usage error results if binary

is mixed with other I/O types.

If the language implementation supports an open statement, it may be indicated, that the file is

be used only for binary data by appending the word binary to the list of file characteristics. Fo

example:

open unit 20 for output, binary, name is "BINDATA"

Correspondingly, declaring the parameter formatted indicates non-binary mode data transfer.

If the I/O mode is not defined while being opened, the mode is defined by the first usage.

3.6 Internal Editing of Data

The SIMSCRIPT II.5 system maintains separate data buffers for each logical unit. The size o

buffer depends on the associated I/O device characteristics, and is usually set by job contr

mands or by default, but may also be determined by open statement parameters. All data, read

written, are transferred through these buffers. Both an input pointer (rcolumn.v) and an output

pointer (wcolumn.v) associated with the current input and output units, point, within these buf

to the last accessed character, being reset when a / format is encountered or when a physical da

transfer is forced by reaching the end of the buffer.

Individual character positions in the current output buffer may be accessed using the alpha func-

tion out.f . Out.f(1) refers to the first character and out.f(10) to the tenth character. The

out.f function normally returns a single character alpha variable.

It is possible to edit output data by inserting alphanumeric or numeric data directly into the b

When a new record is begun, by either a start new statement or a / format descriptor, the buffer

is emptied and filled as the ensuing formats dictate. Thus, the statement:
122

Programming Language Concepts

o that

e state-

 writ-

t digit

riable,

put
write X as /, "The Buffer Contains", I 3, " Characters"

empties the buffer and inserts the characters "The Buffer Contains " in character positions 1

through 19, the value of X in positions 20 through 22, and the characters "Characters " in positions

23 through 33. Assuming a buffer length of 132, the buffer could be edited, for example, s

blank positions in the text, indicated here by underscores, are replaced by periods, by th

ments:

for I = 1 to 131,
until out.f(I)="_" and out.f(I+1)="_"

do
if out.f(I) = "_"

let out.f(I) = "."
always

loop

Wcolumn.v points to the last character written into the buffer, so the loop condition could be

ten:

for I = 1 to wcolumn.v,
do

If numbers representing dollar amounts are written, dollar signs ($) can be put before the firs

of each number in a similar way:

for I = 1 to wcolumn.v,
do

if out.f(I) = "_" and out.f(I+1) ne "_"
let out.f(I) = "$"

always
loop

A special internal buffer called the buffer may be used for data editing using read and write

statements. The length of this special buffer is specified by setting a system global va

buffer.v , before its first use. If buffer.v is not set, it is assigned a default value of 132. In

or output operations are directed to use the buffer in the usual way:

use the buffer for input

and

use the buffer for output

or the statements:

write variable list as format list using the buffer

and

read variable list as format list using the buffer
123

SIMSCRIPT II.5 Programming Language

o-

s. On

re

A sim-

ets

esired.

ogram-

nts

rinting

 reports"

e gen-

 of
The examples below illustrate how the buffer may be used for variable mode conversion.

1. In this example, a text string containing numeric character fields is written to the

buffer and then read in free form to assign values a list of integer variables.

write as /, "11 12 13 14 15" using the buffer
read V1,V2,V3,V4,V5 using the buffer

Note that / clears the buffer and sets the current output column pointer to its first p

sition.

The buffer column pointer is arranged to be dynamically reset on read/write transition

the transition from a write to a read using the buffer, the column pointer is reset befo

the variables are read so the first free-form read starts at the beginning of the buffer.

ilar transition from a read to a write using the buffer blanks the entire buffer and res

the column pointer.

2. Alpha variables, ACODE(1), ACODE(2), ACODE(3) , for example, might be written and

then reread as a text variable as below:

write ACODE(1), ACODE(2), ACODE(1), ACODE(3) as 4 A 1
using the buffer
read NEW.TEXT as T 4 using the buffer

If ACODE(1)="C", ACODE(2)="A" , and ACODE(3)="I" , then NEW.TEXT will be

assigned the text string "CACI" .

3.7 Writing Formatted Reports

The print and write statements may be used to display messages and variable values as d

Using these statements to produce lengthy reports, however, can involve much tedious pr

ming. This section adds two phrases to the print statement and introduces two control stateme

that provide a report-generator capability.

These features permit a programmer to specify the layout of printed results, to control the p

of headings and titles, to eject pages between various report sections, and to arrange "wide

on standard-width paper. Figure 3-1 below illustrates the kind of complex reports that can b

erated.

The statement begin report marks the start of a report section, within which various kinds

control can be exercised. A report section, like a routine, is terminated by an end statement. The

statements:

begin report
for I = 1 to N,

print 1 line with I, X(I) as follows
** **.***

end
124

Programming Language Concepts

report

gram

ll other

atement

in an
illustrate a simple report section that merely marks off a controlled output statement. That

section prints N lines containing two values each. If the output report is to be labeled, the pro

can be written as:

begin report
print 1 line as follows

I X(I)
for I = 1 to N,

print 1 line with I, X(I) as follows
** **.***

end

Figure 3-1. Report Using Row and Column Repetition

A heading is printed above the N lines of output that identify the displayed values. If N is large and

the output continues on more than one page, only the results on the first page are labeled. A

pages are untitled.

A heading section may be defined within a report section so that titles are printed and any necessary

computation performed whenever a page is ejected. A heading section is started by the st

begin heading and ended by the statement end . All statements between a begin heading and

its matching end are executed whenever a page is ejected by an output statement with

enclosing report section, but after the heading section itself.

PAGE 1 PAGE 3

PAGE 2 PAGE 4

1 2 3 450

1 2 3 450

51 52100

51 52100
1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

8
9
10
11
12
125

SIMSCRIPT II.5 Programming Language

hereafter

 the num-

itted

t

ear

y vary

g writ-

ues

s output.
To title all pages of output on the foregoing example, the program can be written as:

begin report
begin heading

print 1 line as follows
I X(I)

end '' HEADING SECTION
for I = 1 TO N,

print 1 line with I, X(I) as follows
** **.***

end '' REPORT SECTION

The statements in a heading section are executed the first time they are encountered and t

every time a page is changed. Pages are changed whenever the current line count exceeds

ber of printed lines a page can contain. Two system-defined variables line.v and lines.v , main-

tained for each logical output unit, hold the values of the current line count and the perm

number of lines per page, respectively. Line.v is initialized to 1 when an output device is firs

used. It is stepped from 1 to the current maximum value, specified by lines.v , each time a new

line is printed. You may change lines.v at any time to vary the number of lines that may app

on each output page. The SIMSCRIPT II.5 system usually sets lines.v = 55 for the default

output unit, and for units selected for print output, at the start of program execution. This ma

on different SIMSCRIPT II.5 implementations.

Pages are numbered sequentially, starting from 1, with the number of the page currently bein

ten contained in a system variable page.v . As with line.v , a separate count of page.v is kept

for each output device. Page.v may be reset at any time. When this is done, numbering contin

in sequence from the new value. Page.v and line.v always refer to the current output unit. A

unit should be selected with a use statement before any explicit reference to these variables.

Page changing can be disabled at any time by setting lines.v = 0 .

Within a heading section, the statement:

if page is first

may be used to select statements to be executed only on the first page of a report section'

The following program illustrates one way of using the report facilities described thus far.
126

Programming Language Concepts

ge,
Program 3-1.
__

'' Generate a Table of Mat hematical Functions on a Separate Output Unit.
'' Program Reads Number of Lines per Page, Number of Table
'' Entries and Output Unit on which Results to be Displayed.
preamble

normally mode is integer
end

main
read PAGE.SIZE, TABLE.SIZE, REPORT.UNIT
call DISPLAY(PAGE.SIZE, TABLE.SIZE, REPORT.UNIT)
stop

end

routine DISPLAY(NO.LINES, TSIZE, UNIT.NO)
use UNIT.NO for output
let page.v = 1
let lines.v = NO.LINES
begin report

begin heading
if page is first

print 1 line as follows
Tabulation of Mathematical Functions
skip 3 output lines

always
print 1 line with page.v as follows

Page No. **
skip 2 output lines
print 1 line as follows
I SQRT(I) I SQ LOG(I)
skip 1 output line

end '' HEADING SECTION
for J = 1 to TSIZE,

print 1 line with J, SQRT.F(REAL.F(J)), J**2, LOG.10.F(RE AL.F(J))
as follows
** **.** **** *.***

end '' REPORT SECTION
return

end '' ROUTINE DISPLAY
__

In its MAIN routine, this program reads in control data and passes these data to the DISPLAY routine

that uses them in its REPORT section. PAGE.SIZE is used to indicate the number of lines per pa

TABLE.SIZE the number of entries in the Mathematical Table, and REPORT.UNIT the output unit

on which the report is to be produced.
127

SIMSCRIPT II.5 Programming Language

 set-

 the

ading

er,

ill

d

 this ex-

 far, is
Within the routine DISPLAY, an output unit is selected, the first page of the report is set to 1 by

ting page.v to 1, and its lines.v are set to the number of lines per page required. Within

report section, skip statements are used to separate heading information.

If the sequence of values read by this program is 50 100 7 , a report will be printed on unit 7 ,

which will display the values j , √j , j 2 , and log(j) for j = 1, 2, ..., 100 on three pages.

Assuming that printing starts at the top of the first page, this page will start with the he

"Tabulation of Mathematical Functions, " the page number, the heading I SQRT(I) I

SQ LOG(I) , and values for j = 1, 2, ..., 41 . The second page will contain the page numb

the heading I SQRT(I) I SQ LOG(I) , and values for j = 42, 43, ..., 86 . The third page

will resemble the second, except that it will include values for j = 87, 88, ... 100 .

The sequence of input values 20 40 8 will produce a report similar to the first, except that it w

display the values for j = 1, 2, ..., 40 on pages that contain only 20 lines. The heading

"Tabulation of Mathematical Functions " will be printed on the current page, renumbere

1, of output unit 8 .

Whenever it is necessary to begin each report section on a new page, as might be done in

ample, the begin report statement can be written as:

begin report on a new page

which ejects a page on the current output device unless the current page has no text (line.v = 1 ,

wcolumn.v = 0). This prevents blank pages from being ejected between report sections.

The structure of a "typical" report-generating program, using the statements described thus

illustrated below. The end statements are inserted for clarity.

begin report on a new page
.
program statements

.
begin heading
.
if page is first
.
always

.
skip N lines

.
end '' HEADING

.
more program statements

.
end '' REPORT
128

Programming Language Concepts

f con-

one that

 one

ment

s an

c-

e

le—re-

igure

re print-

ce for

 and is

tes

e-
Print statements appear in heading and report sections, and usually are controlled by for or

while statements in the part of the report section labeled "program statements." The flow o

trol in a report section like the one which appears on this page is as follows:

1. Execute statements between begin report and begin heading , if any

2. Execute statements in the heading section, if any

3. Execute statements between end ''HEADING and end ''REPORT if any, executing state-

ments in the heading section every time a page is changed.

These statements are adequate for many reports. A report for which they are not suited is

must print more than 80 columns of information per line. Adding the word double to a print

statement in the following way:

print I double lines with expression list as follows

specifies that 2i , rather than i , format lines follow that are to be read in pairs and interpreted as

format line 160 columns long. To fill an entire line on a printer 132 columns wide, write a state

such as:

print 1 double line as follows

AAAAAAAAAAAAA...................................AAAAAA

AAAAAAAAA................AAAAAAAAA

The first format record has an A typed in each of its 80 columns. The second format record ha

A typed in its first 52 columns. "Double width" print statements are not restricted to report se

tions. Any print statement can be expanded to double width. If the last column statement is

used, the first format record is scanned up to the specified column, instead of column 80.

The inclusion of an optional clause in the begin report and print statements adds one mor

important report-generation feature. Figure 3-1 shows the kind of report the clauses hand

ports that have rows of data with more items in each row than a single page can contain.

In preparing this type of report, a series of pages is printed with different column indices. In F

3-1, pages 1 and 2 are printed with column indices ranging from 1 to 50, and pages 3 and 4 a

ed with column indices ranging from 51 to 100. This feature, specifying an iteration sequen

column indices and having pages printed on a wide page, is known as column repetition,

specified by an optional clause in the begin report statement:

begin report printing for, in groups of e per page

The word for represents a for, while, or until statement, perhaps qualified, that genera

column indices. The arithmetic expression e specifies the number of indices in this iteration s

quence to be used on each page. Thus, the statement:

begin report printing

for I = 1 to 50, in groups of 10 per page
129

SIMSCRIPT II.5 Programming Language

. The

 of
specifies that five sets of column indices will be used for five executions of a report section

report section will be executed first with I = 1, 2, 3, 4, 5, 6, 7, 8, 9 ,and 10; second

with I = 11, 12, ..., 20; ... ; and fifth with I = 41, 42, ..., 50 .

The groups of iteration values are used in a print statement by a clause specifying that a group

values are to be printed using the indices generated by a preceding begin report statement. The

following example illustrates one such use:

begin report printing
for J = 1 to 25, in groups of 5 per page
begin heading

print 1 line with a group of J fields as follows
* * * * *
skip 1 output line

end '' OF HEADING
for I = 1 to 6,

print 1 line with a group of X(I,J) fields as follows
** ** ** ** **

end '' OF REPORT

This program generates five pages of output. Page 1 uses the first five values of J . A heading dis-

plays the values of J , and a row repetition statement prints the values of X(I,J) for those values

of J and I = 1, 2, 3, 4, 5, 6 . Figure 3-2 illustrates how such a page might appear.

Figure 3-2. Column Repetition, Page 1

Figure 3-3, page 2 looks exactly like page 1 in form, but uses the second five values of J to select

values for display.

1 2 3 4 5
** ** ** ** **
** ** ** ** **

** ** ** ** **
** ** ** ** **
** ** ** ** **
130

Programming Language Concepts

t

ce

ing the

t be

x

 mode.
Figure 3-3. Column Repetition, Page 2

Pages 3, 4, and 5 are similar, with page 3 using J = 11, ..., 15 , and page 4 using J = 16,

..., 20 , etc.

The index values are computed entirely within this version of the print statement. They are no

individually accessible in any other statement and should not be referenced outside this context.

The phrase a group of .. fields in a print statement notifies the compiler that a sequen

of index values generated for the enclosing column repetition block is to be used in comput

output fields. As shown above, one format must be provided for each of the fields in the column

repetition group. If the begin report statement specifies groups of six, then six formats mus

provided in each print statement containing a a group of ... fields clause. For example,

the previous displays can be better labeled by using the statement:

for I = 1 to 6,

print 1 line with I,

and a group of X(I,J) fields as follows

* ** ** ** ** **

Several values can be alternated within a a group of ... fields clause, each using the inde

values. For example, the previous program might want to display both X(I,J) and Y(I,J) as fol-

lows:

for I = 1 to 6,

print 1 line with I,

and a group of X(I,J), Y(I,J) fields as follows

* ** *.* ** *.* ** *.* ** *.* ** *.*

A format must be given for each output value, of course. All repeated formats must agree in

It is not possible to write:

print 1 line with a group of I fields thus

6 7 8 9 10
** ** ** ** **
** ** ** ** **
** ** ** ** **
** ** ** ** **
** ** ** ** **
131

SIMSCRIPT II.5 Programming Language

x-

is

up size
and have the format line be:

* *.* * *.* *

All repeated formats need not be identical (e.g., * and **), but they must be of the same mode.

If a controlling for phrase in a begin report statement is empty (produces no values), for e

ample:

for I = 1 to 4, with X(I) > 0,

when no X(I) is greater than 0, the entire report section headed by this statement is skipped.

If it is not necessary that each set of column repetition groups start on a new page, the per page

clause may be omitted from the begin report statement. The following report section uses th

feature to display a matrix containing more columns than can be put on one line:

for I = 1 to N,
do

print 1 line with I as follows
ROW **
begin report printing

for J = 1 to M, in groups of 24
print 1 line with a group of X(I,J) fields as follows
*

end '' OF REPORT
skip 2 lines

loop

Such a program produces a report that, for M = 50 , looks like figure 3-4.

Figure 3-4. An Example of Column Repetition

Note: The total number of column indices generated need not be an even multiple of the gro

(e.g., 50 and 24 above).

ROW 1
* *
* *

* *

ROW 2

* *
* *
* *
132

Programming Language Concepts

 using

-

al

eated

e used,

ta

 have

ecifica-

t gen-

m
A final feature makes it possible to include row, as well as column, summarizations, in reports

the column repetition feature. This is done by adding a clause to the print statement that suppress

es a part of the output for each line, until all column repetition data have been printed. A typic

use of this feature is illustrated as follows:

If M = 30 , three sets of column indices will be generated; the above format line will be rep

three times, on three separate pages. Only on the last page, however, will the last format b

and the value SUMX(I) printed. The suppressing clause specifies that the printing of any da

formatted to appear from column 70 onward is to be inhibited until all the column index values

been used. This applies both to data and and to any text literals appearing in the format sp
tion. The three pages printed by the above statements are shown in figure 3-5.

The following program segment illustrates the skeleton of the report section of a program tha

erates the report shown in figure 3-5. The report produces a table of shipment amounts fro120

BASES to 60 DEPOTS, together with totals for each BASE and DEPOT and a grand total of all ship-

ments, to produce an output report on double-width paper.

begin report printing
 for J = 1 to M, in groups of 10 per page
 print 1 line with a group of X(I,J) fields, SUMX(I)
 suppressing from column 70 as follows
 * * * * * * * * * * ****
end '' OF REPORT

 Column 70
133

SIMSCRIPT II.5 Programming Language
Figure 3-5. An Example of Format Suppression

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * ****

Page 1

Page 2

Page 3
134

Programming Language Concepts

Program 3-2.
__

preamble
normally mode is integer
define SHIPMENT as a 2-dimensional array
define BTOTAL, DTOTAL as 1-dimensional arrays

.

.
end

main
.
.
reserve SHIPMENT(*,*) as 120 by 60
reserve BTOTAL(*) as 120
reserve DTOTAL(*) as 60

.

.
use 6 for output
let page.v = 1
begin report on a new page

printing for DEPOT = 1 to 60
in groups of 24 per page
begin heading

print 1 double line with page.v as follows
Page *
print 1 line as follows
Depot to Base Shipments
skip 1 output line
print 1 double line

with a group of DEPOT fields
suppressing from column 91 thus

 DEPOT **
** **** TOTAL

print 1 line as follows
BASE

end '' HEADING SECTION
for BASE=1 to 120
print 1 double line
with BASE, a group of SHIPMENT(BASE,DEPOT) fields, BTOTAL(BASE)
suppressing from column 92 as follows

 ** *
* ***

skip 1 output line
print 1 double line
with a group of DTOTAL(DEPOT) fields, GRAND.TOTAL
suppressing from column 92 as follows
135

SIMSCRIPT II.5 Programming Language

rcised

u-

his

ine

 to

y be

y

 of the
TOTAL **
** ***

end '' REPORT SECTION
stop
end
__

3.7.1 Page Heading Control

Two further variables, maintained for each output unit, allow page heading control to be exe

throughout a program, rather than just within report sections. One of these variables, heading.v ,

is an example of the use of a subprogram variable. If the name of a user-written page titling ro

tine is assigned to the heading.v variable for any unit, control will be automatically passed to t

routine as every new page is begun. This is done by statements such as:

use 2 for output
let heading.v = 'TITLE.ROUTINE'

A routine of the name TITLE.ROUTINE must, of course, be included in the program. This rout

may contain any desired print or write statements. Routine names may be assigned

heading.v at any time. Different units may each have their own titling routines. Titling ma

suppressed by assigning a value of zero to the appropriate heading.v variable. A second

variable, also maintained for each output unit, is pagecol.v . If this has a nonzero value, for an

unit, it is taken to specify the starting column on the first line of each page where the value

current page count, page.v , is to be printed in the format PAGE **** .
136

ns and

he data

g. This

RIPT

 defini-

eed for

rams

ions.

ne and

, defi-

, at-

 special

rm use-

ilar to a

tion or

y name

cripted

d social

ved as

-1.
4. Modelling Concepts

4.1 Introduction

In Chapter 1, a programming language was presented as a means of describing both instructio

the data on which they operate. The description of data items has been limited to naming t

items, specifying modes, and, in the case of arrays, describing some simple data structurin

chapter describes the additional data-structuring facilities and commands provided by SIMSC

II.5 and illustrates their potential use. These data structures are designed to aid in problem

tion, particularly in the areas of simulation and modelling.

The provision of enhanced data-structuring facilities is necessary for two reasons: (1) the n

more organizational structure than simple arrays afford, and (2) the lack of clarity of prog

written within the descriptive limits of variable name and subscript expression convent

SIMSCRIPT II.5 provides needed structure and narrative clarity through statements that defi

manipulate entities, attributes, and sets.

This chapter is organized into three parts: definition, organization, and manipulation. First

nitions are provided for the three constituents of the SIMSCRIPT II.5 world view: entities

tributes, and sets. Next the relationships between these constituents are discussed, with

attention to how they are organized. Finally, statements that use these constituents to perfo

ful functions are presented.

4.2 Entities and Attributes

An entity is a structured data item that represents some element of a modelled system. Sim

subscripted variable. It may have more than a single value to define a particular configura

state of the entity. Unlike subscripted variables, the attributes of entities are referenced b

rather than by a subscript number, enhancing readability and model description. Using subs

variables, a collection of ten workers having the attributes of age, number of dependents, an

security number might be represented in SIMSCRIPT II.5 by a two-dimensional array reser

follows:

reserve WORKER as 3 by 10

with the understanding that WORKER(1,4) represents the age of the fourth worker, WORKER(3,6)

the social security number of the sixth worker, etc., according to the layout shown in figure 4
137

t:

vari-

 this

very

ese at-

al form:

d

adable

entity
Figure 4-1. Storage of Attributes in a Two-dimensional Array

The entity and attribute structuring permits an entity type, WORKER, to be defined by the statemen

every WORKER has an AGE, a NUMBER.OF.DEPENDENTS
and a SOCIAL.SECURITY.NUMBER

A particular entity of this type may be specified by the value of an implicitly declared global

able called WORKER, associated with this entity type, and the attribute values associated with

particular instance of a WORKER may be accessed by references such as:

AGE(WORKER)

and

SOCIAL.SECURITY.NUMBER(WORKER)

Thus, the every statement may define a class of entities, each having similar properties. E

WORKER entity, of which there may be many, has the same attributes; the actual values of th

tributes may differ for each.

Entities and their attributes are declared in a program preamble by statements of the gener

every entity name has an attribute name list

Entity and attribute names follow the same naming convention as variables and routines, aneach

variable, entity, attribute, and routine name must be unique. To assist in the creation of re

programs, the words a, the , and some can be used in place of an, as in:

every WORKER has an AGE, some DEPENDENTS and a
SOCIAL.SECURITY.NUMBER

In general, these entity declarations implicitly state the ordering of the attributes within the

structure. The data structure associated with each instance of a WORKER entity may be pictured as

shown in figure 4-2.

1 2 3 4 5 6 7 8 9 10

AGE 1

DEPENDENTS 2

SOC.SEC.NO. 3
138

Modelling Concepts

higher

rrays in

, but

 in sets

roduced

s and

ie, the

he com-

 indi-

ents:

in the

ther, it

member-

o-
Figure 4-2. Order of Storage of the Attributes of an Entity

4.3 Sets

Entities and their attributes allow some structuring of related data. Sets, in turn, provide a

level of structuring of these data. Sets are organized collections of entities. Sets are like a

that each of the entity elements of which they are composed may be identified and manipulated

in contrast with the static structuring imposed on array elements, the organization of entities

may be dynamic and changeable. The set concept and the underlying mechanism are int

here by way of an example.

Consider the following situation: Over the years, residents of a community join various club

societies. As residents are born, grow up, remain in or move out of the community, and d

club memberships change. To model the relationships that exist between the members of t

munity, both over time and at particular instants of time, requires some way of grouping the

vidual society and club members together. Such groupings might be defined by the statem

every COMMUNITY owns a MASONS,

and a BOY.SCOUTS

every MAN may belong to the MASONS,

and the BOY.SCOUTS

The first statement declares that each entity of the class COMMUNITY owns a set called MASONS and

a set called BOY.SCOUTS. Each of these sets corresponds to a logical grouping of residents

community. This statement does not specify which residents belong to the particular sets; ra

establishes a system of set pointers and set attributes for the owner entities that enable set

ships to be constructed. For each COMMUNITY entity, the attributes shown in figure 4-3 are aut

matically defined to exist.

WORKER

value of AGE

value of DEPENDENTS

value of SOCIAL.SECURITY.NUMBER
139

SIMSCRIPT II.5 Programming Language

sets.

 sets.

making

ing with

ment,

4-4 for

 set.

 those

f pre-

In figure

he
Figure 4-3. Automatically-defined Attributes of COMMUNITY Entities

The attributes starting with F. are set pointers that point to the first member of the respective

The attributes starting with L. are set pointers that point to the last member of the respective

The set members, as we shall see, point to one another, defining their interrelationships and

the connection between the set owner and the set members complete. The attributes start

N. maintain the number of entities in each set.

The second statement declares that each entity of the class MAN may belong to sets called MASONS

and BOY.SCOUTS. It is important to note that membership is declared as possible in this state

but not mandatory. This statement automatically defines the set attributes shown in figure

member entities.

Figure 4-4. Automatically-defined Attributes for Members of the Class MAN

The attributes starting with P. are set pointers pointing to the predecessor entity in the indicated

Those starting with S. are set pointers pointing to the successor entity in the indicated set, and

starting with M. indicate whether an entity is currently a member of the set. The concepts o

decessor and successor, as well as first and last, can be best explained by an illustration.

4-5 the entity COMMUNITY owns one set called MASONS. The members of the set are entities of t

class MAN. The entity-set relationships are defined by the statements:

COMMUNITY

F.MASONS

L.MASONS

N.MASONS

F.BOY.SCOUTS

L.BOY.SCOUTS

N.BOY.SCOUTS

MAN

P.MASONS

S.MASONS

M.MASONS

P.BOY.SCOUTS

S.BOY.SCOUTS

M.BOY.SCOUTS
140

Modelling Concepts

 point-

ies

or

ber re-

quired

ent:
every COMMUNITY owns some MASONS
every MAN may belong to the MASONS

The entity structures shown contain the automatically-generated ownership and membership

ers F.MASONS, L.MASONS, N.MASONS, P.MASONS, S.MASONS , and M.MASONS.

Figure 4-5. Owner-member Set Relationships

The set owner, the entity named COMMUNITY, has two attributes that point to the member entit

that are logically first and last in the set MASONS. It also has an N.MASONS attribute, which in this

case is 4. The member entities, here called MAN1, MAN2, MAN3 , and MAN4, have two attributes

that point to the members of the set that logically precede and succeed them. Thus, F.MASONS in

COMMUNITY points to the entity structure of MAN1, indicating that it is the first entity (logically) in

the set MASONS. The pointer P.MASONS of MAN1, points nowhere (has a zero value), as MAN1 has

no predecessor in MASONS. Its S.MASONS pointer, however, points to MAN2, which logically

follows it in MASONS. As shown, P.MASONS of MAN2 points back to its predecessor, MAN1. The

same is true of MAN3. MAN4, as the last member of MASONS, differs somewhat. It has no success

(S.MASON = 0), and is pointed to directly by L.MASONS, the last-in-set pointer of COMMUNITY.

Each MAN also has an M.MASONS attribute which is non-zero since each MAN is a member of the

set MASONS.

The items to note from this example are:

1. A set is made up of entities that point to one another, thereby expressing their mem

lationships.

2. First-in-set and last-in-set pointers connect a set's owner to its member entities.

3. A specific entity can own or belong to any number of sets as long as it has the re

pointer attributes. For example, the entity MAN might own the set CHILDREN whose mem-

bers are also entities of the type MAN. These relationships might be defined by the statem

every MAN may belong to the MASONS,

own some CHILDREN, and belong to the CHILDREN

COMMUNITY

F.MASONS

L.MASONS

N.MASONS

MAN1

P.MASONS

S.MASONS

M.MASONS

MAN2

P.MASONS

S.MASONS

M.MASONS

MAN3

P.MASONS

S.MASONS

M.MASONS

MAN4

P.MASONS

S.MASONS

M.MASONS
141

SIMSCRIPT II.5 Programming Language

The

 have the
Figure 4-6 illustrates a collection of MAN entities having one possible relationship to each other.

relationships expressed in figure 4-6 are:

1. COMMUNITY owns the set MASONS whose members are MAN1, MAN3, MAN4 , and MAN5.

2. MAN1 owns a set CHILDREN whose members are MAN2, MAN6 , and MAN5.

3. MAN2 owns a set CHILDREN whose single member is MAN4.

These relationships are depicted in figure 4-7.

Figure 4-6. Set Relationships

An entity's attributes and set relationships can be declared in one or more every statements using

attribute name clauses, set ownership clauses, and set-membership clauses. The clauses

form:

attribute clause has attribute name list

or have attribute name list

MAN1 MAN2 MAN3 MAN4 MAN5 MAN6

COMMUNITY

F.MASONS

L.MASONS

MASONS
MAN1 CHILDREN
MAN2 CHILDREN

P.MASONS

S.MASONS

F.CHILDREN

P.CHILDREN

S.CHILDREN

L.CHILDREN
142

Modelling Concepts

om-

e of the
set-ownership clause owns set name list

or own set name list

set-membership clause belongs to set name list

or belong to set name list

Figure 4-7. Set Relationships

When more than one clause is used in an every statement, adjacent clauses are separated by c

mas. If desired, a clause can be preceded by the words may or can . Some examples are:

every PERSON has list, owns list and may belong to list

every CITY owns list and has list

every CAR has list, and may own list

The items in an attribute name or set name list must be separated by both a comma and on

words a, an, the , or some. For example:

MAN1

MASONS

MAN3

MAN2 MAN6 MAN5

MAN4

MAN1 CHILDREN

MAN2 CHILDREN
143

SIMSCRIPT II.5 Programming Language

 unique.

e

mes im-

refix-

se data

rary or

ent enti-

ties

ted dur-

 pointer

 iden-
every PERSON has a NAME, and an ADDRESS,

owns some CHILDREN

and may belong to the MASONS, a CHURCH, and a FAMILY

every X has a P, a Q, a R and an A

Set names should follow the same naming conventions as entities and attributes and must be

Recall the guidelines on variable naming given in Chapter 1. It may now be apparent why car

should be taken in assigning names of the form letter-dot-name, as the declaration of set na

plicitly defines a number of attribute names, made up from the set name by just this form of p

ing.

An every statement defines a data structure. The next several paragraphs explain how the

structures are created and used, and the items within them are given further definition.

4.4 Temporary Entities

An every statement defines the structure of a class of entities. Entity classes can be tempo

permanent. This paragraph describes temporary entities. Paragraph 4.5 discusses perman

ties.

When the statement:

temporary entities

appears before a collection of every statements in a preamble, it declares that all following enti

are temporary. This means that storage is allocated to entities individually as they are crea

ing the course of program execution. Individual entity records are provided for each temporary en-

tity when a create statement is encountered. The form is:

create entity name called variable

A create statement allocates space in memory for the entity representation and assigns a

to this space to the indicated variable. Each entity is a unique and distinct individual that is

tified by its pointer . As long as the variables into which these pointer values are placed are distinct,

the identity of individual entities is preserved. For example:

Entity definition in a preamble:

temporary entities
every SHIP has a NAME and a TONNAGE

Create statements in a program:

create SHIP called VESSEL
create SHIP called V(I)

These two create statements assign pointers to distinct copies of the SHIP entity structure to the

variables VESSEL and V(I) . Figure 4-8 provides an illustration.
144

Modelling Concepts

the

obal

n:

 used in

xpres-
Figure 4-8. Entity Creation

If desired, the words a or an can be used after create to improve readability, as in:

create a SHIP called QUEEN.MARY

create an EVENT called BIRTH

If no variable is specified in a called clause, the entity identification number is assigned to

global variable with the same name as the entity class. Recall that the every statement implicitly

declares a global pointer variable with the same name as the entity class. The statement:

create a SHIP

allocates space for a SHIP entity, and assigns the pointer value to the automatically defined gl

variable named SHIP . It is interpreted as if written:

create a SHIP called SHIP

The attributes of a particular instance of a temporary entity are referenced using the notatio

attribute name(identification number)

as in:

NAME(VESSEL)

and:

TONNAGE(QUEEN.MARY)

Because attribute references refer to locations in memory, like variable names, they can be

the same way that variables are used — in input/output lists and in logical and arithmetic e

sions. For example:

VESSEL

V(I)

NAME

TONNAGE

TONNAGE

NAME
145

SIMSCRIPT II.5 Programming Language

s

e

nd data

o longer

 that is

possible

ss. The
preamble
normally,mode is integer
temporary entities

every SHIP has an AGE and a TONNAGE
define V as 1-dimensional array

end

main
read N
reserve V as N
for I = 1 to N
do

create a SHIP called V(I)
read AGE (V(I)), TONNAGE (V(I))

loop
read YEARS
for I = 1 to N

with AGE(V(I)) less than YEARS
add TONNAGE(V(I)) to SUM.TONS

print 1 line with YEARS, SUM.TONS thus
Total tonnage of ships less than ** years old is ******

end

In this program, N temporary entities of the class SHIP are created and their identifying pointer

stored in the subscripted variables V(1), V(2), ..., V(N) . The attributes of these entities ar

then accessed in read , with , and add statements.

The assignment of memory space to entity structures is much like the assignment of pointer a

words to arrays as they are reserved. Similarly, entities can be released when they are n

needed. The statement:

 destroy entity name called variable

uses the value of the identifying pointer stored in the indicated variable to indicate the space

to be released. When destroyed, the space is returned to the pool of unused memory for

reuse. The words the or this can be used before the entity name, if desired, as in:

destroy the SHIP called VESSEL

and

destroy this SHIP called V(I)

If the pointer variable name is omitted as in:

destroy entity name

the statement uses the pointer value in the global variable that has the name of the entity cla

statement is interpreted as if written:
146

Modelling Concepts

larations

iable
tement.
rticular

 arrays.
lobal

nt
f
 as in:

tic
For

n.

etween

s

destroy entity name called entity name

4.5 Permanent Entities

Permanent entities are defined in much the same way as temporary entities, but these dec

must be preceded by the statement:

permanent entities

Entities declared as permanent are stored collectively rather than in individually identif
records. The entire group of permanent entities of a given class is created by a single sta
The attributes of the entities in the group are stored as indexed arrays. The attributes for a pa
entity are accessed by effectively selecting a common index for all the associated attribute
The number of entities in a particular entity group is maintained in an implicitly declared g
variable called N. entity . The attribute arrays are allocated by a create statement of a different
form than that used for temporary entities. Given the preamble declaration:

permanent entities

every HOME has an ADDRESS and an AREA

the number of HOME entities to exist may be set by assigning a value to N.HOME by a read or let

statement. The statement:

create each HOME

allocates arrays for all the attributes of the N.HOME entities of the class by executing the stateme
reserve ADDRESS and AREA as N.HOME . The words every and all can be used in place o
each . Several permanent entities can be created together by naming a list of entity names,

create every HOME, HOTEL and RESTAURANT

which is of the general form:

create permanent entity name list

As an alternative to assigning a value to N. entity before permanent entity creation, an arithme
expression can be used in the create statement to indicate the size of the attribute arrays.
example, the following statements are equivalent:

let N.HOME = 5
create every HOME

create every HOME(5)

When the second form is used, N. entity is thereafter set to the value of the parenthesized expressio

Permanent entities are not referred to by a pointer value, but by an index value that varies b
1 and N.entity . Thus we speak of the attributes of each HOME as ADDRESS(1), ADDRESS(2),

..., ADDRESS(5), AREA(1), AREA(2), ..., AREA(5) . The layout of these attributes i
shown in figure 4-9.
147

SIMSCRIPT II.5 Programming Language

tities, to

be de-

tement
Figure 4-9. Attribute Storage of Permanent Entities

The program of paragraph 4.4 is repeated here, using permanent rather than temporary en

illustrate the difference in how they are defined and used:

preamble
normally, mode is integer
permanent entities

every SHIP has an AGE and a TONNAGE
end

main
read N.SHIP
create every SHIP
for I = 1 to N.SHIP

read AGE(I), TONNAGE(I)
read YEARS
for I = 1 to N.SHIP

with AGE(I) less than YEARS
add TONNAGE(I) to SUM.TONS

print 1 line with YEARS, SUM.TONS thus
Total tonnage of ships less than ** years old is ******

end

Unlike temporary entities, permanent entities cannot be destroyed individually. They can

stroyed collectively, as in:

destroy each SHIP

or
destroy every HOME

All attributes of permanent entities are thus released at the same time.

Like temporary entities, permanent entities have global variables defined for them. Each sta

of the form:

every entity name has...

implicitly includes the effect of a statement:

ADDRESS AREA

1 1

2 2

3 3

4 4

5 5
148

Modelling Concepts

 to

s, but

 indexed
e of 1 is
d
dition
m

 a pro-

e-

em-de-

, as in:

, must
define entity name as an integer variable

4.6 System Attributes

To provide consistency in usage, it is convenient to be able to declare attributes as belonging the

system , rather than to a particular entity. These attributes appear much like global variable

with some differences. Attributes of the system are declared by statements of the form:

the system has attribute name list

For most purposes, the statements:

the system has an X and a Y

and:

 define X and Y as variables

are equivalent. Because there is only one "system," references to system attributes are not
or subscripted, as are references to attributes of permanent and temporary entities. A valu
assigned to the variable X by the statement let X = 1 , whether X is defined as in the first or secon
example above. System attributes will be subscripted if the background dimensionality con
at the time of their declaration is greater than zero. X is declared to be a two-dimensional syste
attribute by the statements:

normally, dimension is 2
the system has an X

The convenience of system attributes derives mainly from their use as pointers that enable
gram as a whole to own sets. The statement:

the system owns a QUEUE

specifies that a program contains two system attributes named F.QUEUE and L.QUEUE that point to

the first and last entities belonging to a set named QUEUE. Several system-owned sets can be d

fined at one time by the statement:

the system owns set name list

If a background dimensionality, other than zero, is declared, the effect is to define any syst

fined attributes, including any set pointers, as arrays rather than as unsubscripted variables

normally dimension is 2
the system owns a TABLE and has a MATRIX

Subscripted system attributes, both explicitly declared and any implicitly defined set pointers

be reserved before they can be used. To use the system set TABLE and the system array MATRIX,

defined above, a statement such as:
149

SIMSCRIPT II.5 Programming Language

 any of

eclared

e

licitly,

n

erved as

e

fied in

.

 reserve F.TABLE, L.TABLE, N.TABLE and MATRIX as N by M

must be executed.

4.7 Attribute Definitions: Mode and Dimensionality

Attributes of the system, and of permanent and temporary entities, may be declared to have

the modes associated with variables. As with any global or local variables, modes can be d

by default, using normally statements, and explicitly, using define statements. Set pointers ar

automatically declared to be of integer mode.

Permanent and temporary entity declarations define the dimensionality of their attributes imp

making additional definitions unnecessary. The statement:

every PERSON has an AGE

declares that AGE has a single subscript, a pointer value if PERSON is declared as temporary, or a

index value if PERSON is permanent. The notation AGE(PERSON), meaning AGE of PERSON,

provides for this subscript. System attributes, on the other hand, must be declared and res

explained in paragraph 4.6.

The rules for assigning modes and dimensionalities to attributes are straight forward.

Mode:

1. The current "background mode" is assigned to all attributes specified in every and the

system statements except for automatically-generated set pointers.

2. Define statements following every and the system statements can redefine attribut

modes.

Dimensionality:

1. The current "background dimensionality" is assigned to all attributes and sets speci
the system statements.

2. Every statements specify the dimensionality of the attributes and sets listed in them

The following preamble illustrates each of these rules.
150

Modelling Concepts

ent

g

d

-

s

class

y

o-

s

t.
preamble
normally dimension is 2

the system has an EXCESS
define EXCESS as an integer array

normally dimension is 0, mode is real
the system has a VALUE and owns a COLLECTION

permanent entities
every SAMPLE belongs to the COLLECTION

and has a PRICE and a NAME
temporary entities

every POINT has an IDENTITY and a
COLLECT.TIME

define NAME and IDENTITY as text variables

This preamble defines five system attributes, one of which is real -valued (VALUE) , one of which

is a base pointer for a two-dimensional array (EXCESS) whose elements are integer -valued, one

of which is an integer counter for set members (N.COLLECTION) , and two of which are set

pointers (F.COLLECTION and L.COLLECTION). The preamble also defines a class of perman

entities (SAMPLE) and a class of temporary entities (POINT). Each entity of type SAMPLE has two

set pointer attributes (P.COLLECTION and S.COLLECTION), an integer set membership fla

(M.COLLECTION), a real attribute (PRICE), and a text attribute (NAME). These attributes are store

as one-dimensional arrays, of dimension N.SAMPLE. Each entity of type POINT has a text at-

tribute (IDENTITY) and a real attribute (COLLECT.TIME). These attributes are stored in individ

ual locations within the temporary entity structures.

Figure 4-10 illustrates the storage of the attributes of the N.SAMPLE permanent entities of the clas

SAMPLE. Figure 4-11 illustrates the layout of an entity record for a temporary entity of the

POINT. Figure 4-12 shows the arrangement in memory of the system attributes VALUE, EXCESS,

F.COLLECTION, L.COLLECTION , and N.COLLECTION.

4.8 Sets: Their Declaration and Use

Sets are declared in every statements when their owner and member entities are defined. Ever

set must have an owner, either an entity or the system , and can have either permanent or temp

rary entities as members, but not both.

Sets named in every statements have the following properties:

1. Owner entities have first and last-in-set pointers named F. set and L. set .

2. Member entities have predecessor and successor pointers named P. set and S. set .

3. Set members are ranked on a first-in, first-out basis when they are put in a set.

4. Each member entity has a membership named M. set that is a non-zero value if an entity i

in the set, and zero if it is not. Note that M.set is non-zero if an entity is in any set with

the given name. A non-zero value does not guarantee the entity is in one specific se
151

SIMSCRIPT II.5 Programming Language

f
5. Each owner entity has a counter attribute named N.set whose value is the number o

member entities currently in the set.

Figure 4-10. Storage of Attributes of a Permanent Entity

Figure 4-11. Storage of Attributes of a Temporary Entity

Figure 4-12. Storage of System Attributes and Set Pointers

SAMPLE
base pointers 1 2 . . .

N.SAMPLE

P.COLLECTION . . .

S.COLLECTION . . .

M.COLLECTION . . .

PRICE . . .

NAME . . .

IDENTITY

COLLECT.TIME

VALUE

EXCESS (base pointer)

F.COLLECTION

L.COLLECTION

Row pointers
INTEGER data values
152

Modelling Concepts

s

e-

ointers

-

 are ex-

erships

ips

, as

It must
In general, all set owner and member attributes are treated as integer -valued and have name

formed by prefixing a letter and a period to the set name. The declarations:

permanent entities

every CITY owns a CLUB

temporary entities

every RESIDENT may belong to the CLUB

define three attributes for the owner entity of CLUB and three attributes for its member entities. B

cause CITY is a permanent entity, its owner attributes are stored as three arrays, with base p

F.CLUB(*), L.CLUB(*) , and N.CLUB(*). RESIDENT , being a temporary entity, has its mem

ber attributes, P.CLUB, S.CLUB , and M.CLUB, stored in locations within each individual entity.

Every program commences execution with empty sets. As a program proceeds, statements

ecuted that file entities in sets, examine sets, and remove entities from sets. Set memb

change dynamically when file and remove statements alter set pointers, changing relationsh

that affect set membership and set ranking. The file statement has two basic forms:

1a. file arithmetic expression first in set

1b. file arithmetic expression last in set

2a. file arithmetic expression

before arithmetic expression in set

2b. file arithmetic expression

after arithmetic expression in set

The words first or last are optional. When both are omitted, file last is implied; the state-

ments:

file arithmetic expression last in set

and

file arithmetic expression in set

are equivalent.

In each of the forms, the words the or this are optional before the expression or the set name

in:

file the BIRD in the NEST
file this JOB first in this QUEUE
file MYDOG after YOURDOG in the KENNEL

Used in this context, each arithmetic expression must evaluate to an entity identifying value.

be either the pointer value addressing a temporary entity, obtained from a previous create state-

ment, or an integer number indexing one of the N.entity permanent entities of a specific type.
153

SIMSCRIPT II.5 Programming Language

ling is

ner and

ent and

he sit-

uation.

s in

owner
In case 1 above, the indicated item is filed at the head (tail) of the set. In 2, the position of fi

specified relative to some entity already in the set. The actions that take place when a file first

statement is executed are illustrated by two examples. The examples use a set whose ow

member entities are both temporary, but they can as well be both permanent, or one perman

one temporary. The set and the entities are defined by the statements:

temporary entities
every FARM owns a KENNEL
every DOG has a LICENSE

and belongs to some KENNEL

The two illustrations are included in the program segment shown below. We first consider t

uation before and after the first dog is filed in a kennel. Later we examine a subsequent sit

Assume a FARM has been created whose identifying value is stored in the global variable FARM.

This could have been done by the statement create a FARM .

Program segment:

read NUMBER.OF.DOGS
for I = 1 to NUMBER.OF.DOGS
do

create a DOG
read LICENSE(DOG)
file DOG first in KENNEL(FARM)

loop

The entity FARM is shown in figure 4-13a. After the first dog is created, its entity will appear a

figure 4-13b.

 A: B:

Figure 4-13. Entity Structures for FARM and DOG

At this point the variables F.KENNEL, L.KENNEL, N.KENNEL, P.KENNEL, S.KENNEL , and

M.KENNEL are all zero, indicating that KENNEL(FARM) is empty and DOG is not in some KENNEL.

A M.KENNEL is equal to 0.

After the file statement is executed, the entity records are as shown in figure 4-14. The

entity FARM points to the member entity DOG, which, being the only entity in KENNEL(FARM), is

FARM DOG

F.KENNEL LICENSE

L.KENNEL P.KENNEL

N.KENNEL S.KENNEL

M.KENNEL
154

Modelling Concepts

n-

-15.

e first

int-

deces-

g their

fer-
both first and last. Because DOG is alone in KENNEL(FARM), it has no predecessor or successor e

tities.

Figure 4-14. Entity Records

After the second DOG is created and filed, the entity records take the form shown in figure 4

With two members in the set, the first and last pointers lead to different entity records. Th

entity, pointed to by F.KENNEL(FARM) , points ahead to the second entity with its successor po

er. The second entity points back at the first entity with its predecessor pointer. Both the pre

sor pointer of the first entity and the successor pointer of the last entity are zero, indicatin

respective roles.

Figure 4-15. Entity Records

An important point to note is that the global variable DOG now points to the second DOG created.

The entity record of the first DOG created can only be accessed through the pointers to it, L.KEN-

NEL(FARM) and S.KENNEL(DOG). These pointers illustrate the general form of an attribute re

ence:

attribute (entity identification)

FARM

F.KENNEL

L.KENNEL

N.KENNEL

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL

DOG

1 2 3

0

0

<>0
1

FARM

F.KENNEL

L.KENNEL

N.KENNEL

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL

1 2 3

0

<>0

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

0

248

DOG

2

155

SIMSCRIPT II.5 Programming Language

entity

s

s

ional

of

 figure

me

state-

le
Because an entity identification can itself be an attribute, as in the case of a pointer, nested

references can be made, as in:

S.KENNEL(F.KENNEL(FARM))

which reads as "the successor of the first in KENNEL of FARM" and has the same value a

S.KENNEL(DOG) because F.KENNEL(FARM) = DOG . Any level of entity nesting is possible a

long as all nested expressions evaluate to entity identifiers.

When a third DOG is created and filed, the entity records are as shown in figure 4-16. Addit

creations and filings are analogous.

A file last statement has an effect similar to file first , but operates on the opposite end

a set. If our example program segment were written with the statement file DOG last in

KENNEL(FARM), after executing three creates and files the entity records would appear as in

4-17.

The file before and file after statements are described with a different example. Assu

the entity record organization shown in figure 4-18 was created by the following program

ments:

create a DOG called MYDOG

file MYDOG first in KENNEL(FARM)

create a DOG called YOURDOG

file YOURDOG first in KENNEL(FARM)

The statements:

create a DOG

file the DOG after YOURDOG in KENNEL(FARM)

insert the entity record for the newly created DOG after the entity record pointed to by the variab

FIDO. The resulting entity record organization is shown in figure 4-19.
156

Modelling Concepts

e.

.

first

is as-

19,

 a
Figure 4-16. Entity Records

Entities are removed from sets by remove statements. Two basic forms of removal are possibl

1a. remove first variable from set

1b. remove last variable from set

2. remove arithmetic expression from set

The word the is optional after remove , as is either of the words the and this before the set name

In addition, either of the words this or above can be used before the expression in form (2).

A remove first or remove last statement removes from a set the entity pointed to by the

or last pointer attribute of the set owner. The identification number of the removed entity

signed to the variable in the remove statement. For instance, in the situation shown in figure 4-

the statement:

remove the first HOUND from KENNEL(FARM)

removes the first entity (MYDOG) from KENNEL(FARM), makes the second entity first, and puts

pointer to MYDOG in HOUND. The attribute values of MYDOG, which now can also be called HOUND,

FARM

F.KENNEL

L.KENNEL

N.KENNEL

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL

1 2 3

0

<>0

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

248

3

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

0

567

DOG
157

SIMSCRIPT II.5 Programming Language

re
are unchanged except for M.KENNEL which is now 0. Although MYDOG is no longer in

KENNEL(FARM), its attribute S.KENNEL still points to DOG. In set membership, pointer values a

meaningless once an entity is removed from a set. If the variable name MYDOG were replaced by

DOG in figure 4-18, this figure would show the organization of KENNEL(FARM) after MYDOG had

been removed from figure 4-19.

Figure 4-17. Entity Records

FARM

F.KENNEL

L.KENNEL

N.KENNEL

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL

1 2 3

0

<>0

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

248

3

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

0

567

DOG
158

Modelling Concepts

inates

en-

state-

sion is

 in its

er-

 As
Figure 4-18. A Set with Two Members

If an attempt is made to remove the first or last member from an empty set, the program term

with an error message.

A remove specific entity statement extracts a particular entity from a set. The entity id

tification number is given by the arithmetic expression. Referring again to figure 4-19, the

ment:

remove this DOG from KENNEL(FARM)

converts the set shown in that figure to the set shown in figure 4-18. If the arithmetic expres

not an identification number of an entity currently in the set (signaled by a non-zero value

membership attribute), the program terminates with an error message.

The presence of a membership attribute in an entity permits both error checking (cannot file Y after

X because X is not in the set; cannot remove X because X is not in the set; cannot destroy X if it is a

member of some sets; cannot file X in a set if it is already in it) and questioning about set memb

ship. The logical expressions:

arithmetic expression is in set

and

arithmetic expression is not in set

can be used in if statements and with clauses to take actions conditional on set membership.

options, the words the and this can precede the arithmetic expression, and the words a, an,

the , or some the set name. Examples are:

if MYDOG is not in some KENNEL,

FARM

F.KENNEL

L.KENNEL

N.KENNEL

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL

1 2 3

0
<>0

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

248

2

MY DOG

YOUR DOG

0

159

SIMSCRIPT II.5 Programming Language

 to

ber-

 logical
or

with this DOG in a KENNEL,

In these statements, the set name KENNEL cannot be subscripted. It is impossible for an entity

belong to more than one set of a given class at a time. A DOG can belong to KENNEL(FARM) or

KENNEL(HOUSE), but not to both simultaneously. A membership attribute signals only mem

ship of a named set, not specific owner-membership details.

Figure 4-19. A Set with Three Members

Each set's first pointer is used to determine whether or not a specific set has members. The

expressions:

set is empty

and

set is not empty

are available. As with the preceding expressions, the words the and this are allowed before the

set name to improve readability. Using the is not empty and is empty logical expressions,

one can write statements such as:

FARM

F.KENNEL

L.KENNEL

N.KENNEL

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL

0

<>0

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

3

MY DOG

YOUR DOG

0

LICENSE

P.KENNEL

S.KENNEL

M.KENNEL <>0

 DOG

160

Modelling Concepts

at is,

fined

r than

ending

ociated

egins

-

ame

-

l

t-

tion.

ermissi-

ing
if KENNEL(FARM) is not empty,
remove the first DOG from KENNEL(FARM)

else

and

if SEX(PERSON) = "MALE"
and FAMILY(PERSON) is empty,

call BACHELOR.ACTION given PERSON
else

The sets pictured in all preceding illustrations rank on a first-in, first-out, priority scheme. Th

file last is the default condition. Other rankings are possible. For example, in a set de

by the declarations:

every COUNTRY owns an ARMY
every PRIVATE has a HEIGHT and a WEIGHT

and belongs to an ARMY

it might be desirable to rank the various privates in the army sets by weight or height, rathe

by the order in which they entered the set. Furthermore, this ranking may be desired in asc

or descending order. This can be done by including a set definition statement after the every state-

ments that first mention a set and after any attribute definition statements that might be ass

with the every statement. A set definition statement, like an attribute definition statement, b

with define . The following statements define the set ARMY as being, respectively, ranked in de

scending order by the HEIGHT attribute of the entities in it; ranked in ascending order by the s

attribute; ranked in descending order by the WEIGHT attribute of the entities in it; ranked in de

scending order by the HEIGHT attributes, and, for those entities whose HEIGHT attributes have equa

value, ranked in ascending order by their WEIGHT attributes.

1. ARMY as a set by high HEIGHT

2. define ARMY as a set by low HEIGHT

3. define ARMY as a set ranked by WEIGHT

4. define ARMY as a set ranked by high HEIGHT,then by low WEIGHT.

Example 3 shows that omission of the words high or low implies high . Example 4 shows how

rankings can be cascaded, one after another, by then by clauses to resolve ties when ranking a

tributes are equal. As many then by clauses can be used as are needed in any given applica

A comma must precede each then by clause.

Because ranked sets are defined with respect to ranking values of their members, it is not p

ble to use file before or file after in such sets since doing so would destroy the rank

concept.
161

SIMSCRIPT II.5 Programming Language

nding

 used,

hip and

ers, and

lations,

designed

ginning

ny or all

set at-

te is

ents

tomat-

cept of

ring the
If a set is to be ranked only by entry time of entities into it, a short form can be used. Depe

on whether the ranking gives highest priority to the earliest or latest arrival, the define statement

is written as:

define ARMY as a fifo set

or

define ARMY as a lifo set

If the first form is used, entities are stored on a first-in, first-out basis. If the second form is

entities are stored on a last-in, first-out basis.

All the statements described thus far assume that every set has a full complement of owners

membership attributes, that is, that both first and last, predecessor and successor point

counter and membership attributes are defined. To perform all of the available set manipu

they must all be present. When set needs are more modest, sets with fewer pointers can be

with a gain in efficiency.

In some cases, not all of the automatically defined set pointers are needed. This is true in FIFO - and

LIFO -defined sets, where entities are never inserted in the middle of a set, but only at the be

or end. A FIFO set need have only first, last, and successor pointers. A LIFO set need have only

first and successor pointers. FIFO and LIFO set organizations are shown in figure 4-20.

A clause can be appended to a set declaration statement to delete unused set attributes. A

of the three owner-entity and three member-entity attributes may be deleted. If the first-in-

tribute is deleted, the is empty logical expression cannot be used. If the membership attribu

deleted, the is in set logical expression cannot be used. Table 4-2 below defines the statem

that cannot be used when certain set attributes are deleted.

The deletion clause is of the form:

 without attribute list attributes

The attribute list consists of one or more of the letters F, L, P, S, N , and M. The presence of a

letter indicates that the attribute formed by prefixing it and a period to the set name is not au

ically generated. For example, the following statement defines a LIFO set:

define ARRIVALS as a LIFO set without L,P,N
and M attributes

Note that although it is possible to delete all attributes, doing so completely destroys the con

a set. The programmer is cautioned against deleting set attributes without carefully conside

consequences.

When required, two or more sets having the same properties can be declared in the same define

statement. A list of set names can appear after the word define , and the word sets used instead

of set .
162

Modelling Concepts
Figure 4-20. FIFO and LIFO Set Organizations

FIFO set LIFO set

Owner Entity Owner Entity

Member Entities Member Entities

S. 0

S. 0

S.

S.

S.

S.

S.

S.

F. F.

..

.
.
.

.

FILE adds
to this end.

REMOVE takes
from this end.

L.

FILE adds
to this end.

REMOVE takes
from this end.
163

SIMSCRIPT II.5 Programming Language

s the

 of ar-

st entity

s,

 takes

ted.
4.9 Entity Control Phrases

Two forms of the for statement make it possible to step through collections of entities, just a

for v = E1 to E2 by E3 statement makes it possible to step through successive elements

rays. One form deals exclusively with permanent entities and the other deals with sets.

Permanent entities, having their attributes stored as arrays, are indexed sequentially. The fir

of the permanent entity class AUTO has index 1, the second 2, ..., and the nth N.AUTO. To step

through a sequence of index numbers from 1 to N.entity for a particular permanent entity clas

use the control phrases:

for each entity

or

for each entity called variable

The first form is equivalent to the statement for entity = 1 to N. entity , where entity is

the global variable with the same name as the entity class. Thus, the statement for each AUTO

is interpreted as for AUTO = 1 to N.AUTO . The words every and all may be used in place

of each , if desired.

The second form above is interpreted as for variable = 1 to N.entity , where the variable

named in the called phrase, instead of the global variable with the same name as the entity,

on the sequential index values. This variable can be global or local, and cannot be subscrip

These control phrases may be combined as desired with other for, with, unless, while , and

until control phrases.

The following statements illustrate a typical permanent entity for phrase application.

Program preamble:

permanent entities
every MALE has an AGE and a SALARY

Main program:

read N.MALE
create every MALE
for every MALE, read AGE(MALE), SALARY(MALE)

:
for every MALE with AGE(MALE) ge 21
do

add SALARY(MALE) to SUM
add 1 to N

loop
:

164

Modelling Concepts

ot to

m

s some

 associ-

les

:

ughout

mbers;

 class,

ment that

porary

ing the

lled by
Experience has shown that some programmers prefer to write for each JOB , rather than for I

= 1 to N.JOB even if JOB has not been defined as a permanent entity. That is, they prefer n

make up a local variable name (I in this instance) just to step through a sequence of values fro1

to N (N.JOB in this instance), but would rather use a name that is easy to remember and ha

meaning. To facilitate this, the phrase:

 include entity name list

can be appended to a permanent entities statement, as in:

permanent entities include ADULT, COUNTRY and FISH

This phrase defines the listed names as permanent entities, without attributes, but with the

ated global variables entity and N.entity . The above statement defines the global variab

ADULT, N.ADULT, COUNTRY, N.COUNTRY, FISH , and N.FISH and permits such phrases as

for every ADULT
for each COUNTRY

and

for all FISH

to be used. The following short example illustrates why this might be a useful shorthand.

Program preamble:

permanent entities include ELEMENT

Main program:

read N.ELEMENT
reserve LIST(*) as N.ELEMENT
for each ELEMENT, let LIST(ELEMENT) = 1

It should be clear that such a statement is impossible for temporary entities. Scattered thro

memory, rather than stored sequentially, temporary entities cannot be indexed by ordinal nu

they can only be pointed to by set pointers. To process all the temporary entities of a given

the entities must be stored in a set as they are created, and must be processed by a state

deals with the set. This statement, which by its nature deals with both permanent and tem

entities, has two basic forms:

1. for each variable of set

2a. for each variable from arithmetic expression of set

2b. for each variable after arithmetic expression of set

Form 1 selects entities that are members of an indicated set, in order of their ranking, assign

entity pointer values to the named variable. If the set is empty, all of the statements contro
165

SIMSCRIPT II.5 Programming Language

nnot be

ember

er that

 words

 that

ample.

 passed
the for statement are bypassed. The control variable can be either local or global, and ca

subscripted. Form 2a does the same task as form 1, except that it starts with the set m

identified by the indicated expression. Form 2b is similar to 2a, but starts with the set memb

follows the identified member. If the identified member is not in the set (denoted by a 0 in its

membership attribute), the program terminates with an error message. In both 1 and 2, the

every and all can be used instead of each , and the words in , on, and at used as synonyms for

of .

To step backward through a set, the phrase:

in reverse order

is placed after the set name. Set control can range from simple statements such as:

for every JOB in QUEUE

to complicated statements such as:

for all FISH after MINNOW(I) in POND in reverse order

Many variations of for statements are possible. In the following illustrations, we assume

permanent entities with identification numbers 1, 2, 3, 4, 5 , and 6 are filed in a set in the order

of 1, 3, 2, 4, 6, 5 . They may have arrived in this order and been stored as FIFO , or they may

have been ranked on some attribute value. The method of ranking is not important in this ex

Table 4-1 shows different control statements and indicates the sequence of entities that are

on to the controlled statements by each. The entities are filed in a set named FILE . The local variable

J is used within the control loop for the selected entity index numbers.

Table 4-2 lists the set attributes that are required for the different set operations described.
166

Modelling Concepts
Table 4-1. Illustrative Set Control Statements

Control Statement Identification Number Sequence

for each j in file 1 3 2 4 6 5

for each j from 4 in file 4 6 5

for each j after 4 in file 6 5

for each j in file in reverse
order

5 6 4 2 3 1

for each j in file after 4 in file
in reverse order

4 2 3 1

for each j in file until j=3 2 3 1

for each j in file in reverse
order until j=3

5 6 4 2

for each j from 2 in file until
j=6

2 4

for each j in file with j ≠ 5 1 3 2 4 6
167

SIMSCRIPT II.5 Programming Language

e the

ble that

ty types

ertain

" oper-
4-10. Common Attributes

An entity is characterized by its attributes. The attributes with which it is declared determin

values it can hold and the relationships it can have with other entities. Sometimes it is desira

more than one entity type be able to have some characteristics in common, although the enti

may be different in other ways. By declaring that a number of different entity types have c

common attributes, it becomes possible to treat them all in the same way for some "generic

ations. An example of such a common attribute declaration is:

every TANKER has a SPEED, a CARGO,
and belongs to the HARBOR.SET
every TUG has a SPEED
and belongs to the HARBOR.SET

Table 4-2. Required Set Attributes

Statement
Attributes Required

F L P S M N

file in a ranked set x x

file first x x

file last x x x

file before x x x

file after x x

remove first x x

remove last x x x x

remove specific x x x

is empty x

is in set x

Automatic checking† x

for each V in set x x

for each V in set in rev. x x

for each v from W in set x

for each V from W in set in rev. x

for each V after W in set x

for each V after W in set in rev. x

† Following sections describe automatic set diagnostics performed only when a
membership attribute is included.
168

Modelling Concepts

t

 are, of

d sets

 as de-
Because SPEED is an attribute common to both TANKER and TUG, it is possible to use a statemen

such as:

if SPEED(SHIP) is not zero

without regard to whether SHIP is a pointer to an instance of TANKER or a TUG.

When temporary entities belong to common sets or own common sets, their set pointers

course, common attributes. It becomes possible to write:

for each SHIP in HARBOR.SET
with SPEED(SHIP) not zero

do
.
.
.

—so the harbor master can track all the ships steaming around in the harbor.

Under certain SIMSCRIPT II.5 implementations, it is sufficient to name common attributes an

in every statements, as shown. Other implementations require the use of "word numbers"

scribed in the relevant user's manuals. The above declarations could be rewritten as:

every TANKER has a SPEED in word 1,
a CARGO, and belongs to the HARBOR.SET
and has a P.HARBOR.SET in word 2,
and a S.HARBOR.SET in word 3,
and a M.HARBOR.SET in word 4

every TUG has a SPEED in word 1,
and belongs to the HARBOR.SET
and has a P.HARBOR.SET in word 2,
and a S.HARBOR.SET in word 3,
and a M.HARBOR.SET in word 4

The entity structures of TANKER and TUG would look like figure 4-21.
169

SIMSCRIPT II.5 Programming Language

e

e which

on set.

s to at-

ibutes

ntities

defines
Figure 4-21. Entity Structures for TANKER and TUG

Word numbers are described in detail in Chapter 6.

Care should be taken not to reference CARGO with a pointer which could be identifying an instanc

of a TUG entity. Thus:

for each SHIP in HARBOR.SET

with CARGO(SHIP) greater than 100

.

.

would be incorrect if there were, in fact, any TUG entities in the HARBOR.SET. Clearly TUG entities

do not have any CARGO.

In general, where common sets are used, it is good practice to declare a common attribut

can serve to discriminate between the different entity types sharing membership of a comm

Recall that in the context of permanent entities, attribute references are actually reference

tribute arrays. Multiple definition of such an array is not permitted. Hence, permanent attr

cannot be declared as common.

4.11 Compound Entities

At times it is convenient for several entities jointly to have attributes and own sets. Such e

are called compound entities. Statements such as:

permanent entities

every MAN and WOMAN owns a FAMILY and has

a BANK.ACCOUNT

every CITY, COUNTY, STATE has a CENSUS

every MODEL, COLOR, YEAR, MFG has a SALES.VOLUME

define compound entities composed of 2, 3, and 4 permanent entities, respectively. The first

four two-dimensional arrays: F.FAMILY, L.FAMILY, N.FAMILY , and BANK.ACCOUNT, each di-

mensioned as N.MAN BY N.WOMAN. The second defines a three-dimensional array CENSUS dimen-

TANKER TUG

word 1 SPEED SPEED

word 2 P.HARBOR.SET P.HARBOR.SET

word 3 S.HARBOR.SET S.HARBOR.SET

word 4 M.HARBOR.SET M.HARBOR.SET

word 5 CARGO
170

Modelling Concepts

y

if-

usly in

clared

ble:

porary

es. Set

ttributes

 a

cripting

no in-

 by the

eated.
sioned as N.CITY BY N.COUNTY BY N.STATE . The third defines a four-dimensional arra

dimensioned in a similar way. Compound entities are defined by statements of the form:

every compound entity name list has attribute name list
and owns set name list.

As in the case of individual entity definitions, has and owns clauses can appear in the same or d

ferent statements. The word have can be used for has and own for owns. By definition, the indi-

vidual entities of which compound entities are composed must exist. If a compound entity MAN AND

WOMAN is declared, there must be an entity type MAN and an entity type WOMAN.

A compound entity name list consists of entity names that have either been declared previo

every or include statements, or, by their presence in a compound entity declaration, are de

as entities of the type specified in the current background condition, that is, by the last permanent

entities or temporary entities statement. Three kinds of compound entities are possi

those composed exclusively of permanent entities; those composed exclusively of tem

entities; and those composed of both permanent and temporary entities.

Members of sets owned by compound entities can be either permanent or temporary entiti

membership is declared as usual. Moreover, "compound sets" can have any of their six set a

deleted and be defined as FIFO, LIFO , or ranked . The following statements might appear in

program in conjunction with the first declaration above:

temporary entities
every CHILD belongs to a FAMILY and has an AGE

define FAMILY as a set ranked by AGE
without N and M attributes

Attributes of compound entities and sets owned by compound entities are subscripted. Subs

takes place in the order in which compound entities are defined. Thus, in the statements:

let BANK.ACCOUNT(I,J) = 1000
file this CHILD in FAMILY(MAN,WOMAN)

the variables I and MAN can range from 1 to N.MAN, and the variables J and WOMAN can range from

1 to N.WOMAN. Compound entities cannot belong to sets. In fact, compound entities have

dependent existence, but rather define the existence of compound attributes, subscripted

named component entities.

Arrays are allocated to "permanent" compound entities when their individual entities are cr

They need not be created together, although they usually are. Given the declarations:

permanent entities
every MAN has a JOB and a SALARY
every WOMAN owns some INVESTMENTS
171

SIMSCRIPT II.5 Programming Language

d

e refer-

. For

o men-

ei-

me a

 sub-

e or set-

r in the

e enti-

ts fol-
every MAN and WOMAN owns a FAMILY and has a
BANK.ACCOUNT

the statement:

create each MAN and WOMAN

reserves arrays for the attributes of MAN and WOMAN and the compound entity MAN, WOMAN. The

create statement is in fact interpreted as several reserve statements:

reserve JOB(*) and SALARY(*) as N.MAN
reserve F.INVESTMENTS(*),L.INVESTMENTS(*) and

N.INVESTMENTS(*) as N.WOMAN
reserve F.FAMILY(*,*),L.FAMILY(*,*), N.FAMILY(*,*) and

BANK.ACCOUNT(*,*) as N.MAN by N.WOMAN

Attributes of permanent compound entities can be released in the normal way with a destroy

each statement such as:

destroy each MAN and WOMAN

4.12 Implied Subscripts

Preceding sections described how attributes are defined and illustrated their use. Examples showe

that attributes resemble subscripted variables when they appear in programs. Every attribut

ence is of the form:

attribute name(entity identification)

For attributes of individual entities, the entity identification is either an index or a pointer value

attributes of compound entities, the entity identification is a list of index or pointer values.

The automatic definition of global variables with the same names as declared entities was als

tioned. It was seen that in the context of create, destroy, and for each , where no variable

was explicitly named, the name of the appropriate global variable was understood.

Because all attributes of permanent or temporary entities are declared in the program preamble,

ther explicitly, or implicitly by declaring set membership or ownership, it is possible to assu

default or implied subscript if one is omitted from an attribute or set reference. The implied

script used is the variable having the same name as the entity associated with the attribut

referenced. In the case of compound entities, subscripts are implied in the order they appea

defining every statement. For obvious reasons, common attributes, shared by more than on

ty, cannot have implied subscripts. Some examples of entity definitions and implied subscrip

low.
172

Modelling Concepts

t value

rpreted

 global

 while
1. Declaration:

permanent entities
every PERSON has an AGE

Use:

let AGE = 1

is interpreted as:

let AGE(PERSON) = 1

Whenever the attribute AGE appears without an entity reference, the variable PERSON is used as the

index value. There is always a global variable associated with each entity class, PERSON in this

case. It is possible, within a routine, to define a of the same name, in which case the curren

of this local variable is used as the implicit subscript. That is, any unsubscripted use is inte

as shown above. If a local variable exists, then, consistently, it takes precedence over the

name. The practice of declaring such local variables allows implicit subscripting to be used

minimizing the danger of side effects.

2. Declaration:

temporary entities
every SHIP owns some CARGO
every CONSIGNMENT belongs to a CARGO

Use:

create a SHIP
.
.
create a CONSIGNMENT
file CONSIGNMENT in CARGO
.
.

which is interpreted as:

create a CONSIGNMENT called CONSIGNMENT
file CONSIGNMENT in CARGO(SHIP)

3. Declaration:

permanent entities
every CITY,STATE has a POPULATION

Use:

let POPULATION = 400000

interpreted as:
173

SIMSCRIPT II.5 Programming Language

in a free-

-form

put.

ficult

nored

me to

 attri-

amples

s does

a-

their
let POPULATION(CITY,STATE) = 400000

let POPULATION(NEW.YORK) = 8000000

interpreted as:

let POPULATION(NEW.YORK,STATE) = 8000000

Note that because attributes are stored as arrays, and the use of the unsubscripted name

form read implies input of the entire attribute array, when implied subscripts are used in free

read statements to reference attributes of permanent entities, the entire attribute array is in

Although implicit subscripting may be convenient, the absence of subscripting renders it dif

to distinguish attributes from simple variables. Recalling that periods following a name are ig

by the SIMSCRIPT II.5 compiler, a commonly-used notation is to append two periods to a na

indicate an implied subscript. This is purely a programming convention, used to distinguish

butes. It has no effect on the interpretation of the statements. It will be used in subsequent ex

to make clear when implicit subscripting is being used.

4-13 Displaying Attribute Values

Specific attribute values can be output by conventional print and write statements. An attribute

reference appearing in an output list calls for the retrieval and display of a single value, just a

a subscripted variable or function reference. Some examples of attributes used in print and

write statements are:

print 1 line with POPULATION(STATE) as follows
POPULATION IS ********

write I, INDEX(I), NAME(INDEX(I)) as /, 2 I 5, T *

for each CARROT in BUNCH,
write LENGTH(CARROT) as I 4

Implied subscripts can be used in print and formatted write statements, as well as in comput

tional statements. Attributes declared by the statement:

permanent entities
every BOOK has a PAGE.COUNT, a SUBJECT and an

AUTHOR

can be displayed by the statement:

for every BOOK,
write PAGE.COUNT.., SUBJECT.. and AUTHOR..

as I 4, 2 T 12

The list statement can be used to display all the attributes of an entity without writing all

names. Three forms are available:
174

Modelling Concepts

ed for

laying

in the

 is that

ntity

ng the

d set.

t-

mon

and in
1. list attributes of entity called expression

displays the attributes of the particular entity referenced. The statement can be us

both permanent and temporary entities. The format used is that employed for disp

values of expressions or unsubscripted variables. A short form:

list attributes of entity

displays the attributes of the entity whose index or identification number is contained

global variable with the same name as the entity.

2. list attributes of each entity

displays the attributes of all the entities in a permanent entity class. The format used

employed in listing one-dimensional arrays. If only one attribute of a permanent e

class is to be printed, it must be done by referencing the pointer to the array containi

attribute values, for example, by a statement of the form:

list attribute

3. list attributes of each entity in set

displays the attributes of all the entities, permanent or temporary, filed in an indicate

Because the attribute labeling is generated only for the entity class named, the labeled ou

put is only meaningful for sets containing one class of entity. Attributes other than com

attributes, of entities of other classes filed in the set, may be displayed incorrectly,

some cases, such as text mode attributes, may cause conversion errors.

List statements of type 2. and 3. can be modified by with , unless , while , and until phrases.

The use of each of these statement forms is illustrated in the following examples.

Entity and set declaration:

permanent entities
every COUNTRY owns a FLEET
every SHIP has a NAME, belongs to a FLEET

and owns a CREW
temporary entities
every SAILOR has a SERIAL.NO, a RATING, a SKILL

and belongs to a CREW

Use of list statements:

1. remove the first SAILOR from CREW(VESSEL)
list attributes of SAILOR

2. for each SAILOR in CREW(SHIP) with RATING.. greater than 4,

find PERSON = THE FIRST SAILOR
list attributes of SAILOR called PERSON
175

SIMSCRIPT II.5 Programming Language

You can

 refor-

s. Note

3. read N.COUNTRY and N.SHIP
create each COUNTRY and SHIP
list attributes of each COUNTRY

4. list attributes of each SAILOR in CREW(QUEEN.MARY)

5. list attributes of SHIP called 4

4.14 Some Sample Programs

The programs in this paragraph illustrate the concepts and statements described above.

follow them closely and identify the features used in each one. As a useful exercise you can

mulate and reprogram the examples using different concepts and statements.

4.14.1 An Inventory Control Example

This simple model processes two transaction types — orders for goods and reception of new stock.

The data associated with each are transaction type, an item code number, and a quantity. As this

business deals with a fixed range of items, these may be modelled using permanent entitie

the extensive reliance on implicit subscripting throughout.

Program 4-1.
__

preamble
normally mode is integer
permanent entities

every ITEM has an ITEM.NAME
a REORDER.POINT,
a CONTROL.LEVEL,
a STOCK.LEVEL,
a DUE.IN,
a DUE.OUT

define ITEM.NAME as a text variable
end

main
define TRANSACTION as a text variable
read N.ITEM
create each ITEM
for each ITEM

read ITEM.NAME(ITEM), REORDER.POINT(ITEM),
CONTROL.LEVEL(ITEM), STOCK.LEVEL(ITEM),
DUE.IN(ITEM), DUE.OUT(ITEM)

until data is ended
do

read TRANSACTION, ITEM, QUANTITY
if TRANSACTION = "ORDER"
176

Modelling Concepts

e i

tomers,
if STOCK.LEVEL.. > QUANTITY
subtract QUANTITY from STOCK.LEVEL..

else
add (QUANTITY - STOCK.LEVEL..) to DUE.OUT..

always
if (STOCK.LEVEL.. + DUE.IN..) < REORDER.POINT..

let ORDER=CONTROL.LEVEL..+DUE.OUT..-DUE.IN..-
STOCK.LEVEL..

add ORDER to DUE.IN..
print 1 line with ORDER, ITEM, ITEM.NAME.. thus

ORDER **** UNITS OF STOCK NO. ** DESCR. ************
always

else '' RECEPTION
subtract QUANTITY from DUE.IN..

if DUE.OUT.. > QUANTITY
subtract QUANTITY from DUE.OUT..

else
add (QUANTITY - DUE.OUT..) to STOCK.LEVEL..
let DUE.OUT.. = 0

always
loop
list attributes of each ITEM

end

__

As an exercise, this model may be elaborated on to identify each customer by amending thnput

data and generating a shipment notice for each order, keeping track of backorders for cus

and shipping backorders according to some rational policy.
177

SIMSCRIPT II.5 Programming Language

4.14.2 A Data Analysis Application

Program 4-2.
__

preamble
permanent entities

every COUNTY has a NAME and a STATE
every YEAR has a NATIONAL.GNP, and a RC.PRICE.RC
every COUNTY,YEAR has a POPULATION, a LOCAL.GNP,

and a LOCAL.GNP.PERCAPITA
every YEAR,CAR has a NATIONAL.SALES, a PRICE,

and a SALES.GNP.RC
every COUNTY,YEAR,CAR has a LOCAL.SALES,

and a LOCAL.SALES.PERCAPITA
define LOCAL.GNP.PERCAPITA, LOCAL.SALES.PERCAPITA

as real variables
define NAME, STATE as text variables

end

main
read N.COUNTY, N.YEAR, N.CAR
create every COUNTY, YEAR and CAR
for every COUNTY,
do

read NAME(COUNTY) and STATE(COUNTY)
for every YEAR,

read POPULATION(COUNTY,YEAR), LOCAL.GNP(COUNTY,YEAR)
loop
for every YEAR,
do

read NATIONAL.GNP(YEAR)
for every CAR,

read NATIONAL.SALES(YEAR,CAR) and PRICE(YEAR,CAR)
loop
for every COUNTY, for every YEAR, for every CAR

read LOCAL.SALES(COUNTY,YEAR,CAR)
for every COUNTY, for every YEAR,
do

let LOCAL.GNP.PERCAPITA = LOCAL.GNP/POPULATION
for every CAR,

let LOCAL.SALES.PERCAPITA = LOCAL.SALES/POPULATION
loop
for every CAR, for every YEAR,
do

for every COUNTY,
do

compute A = sum, B = sum.of.squares of
 LOCAL.GNP.PERCAPITA

compute C = sum of LOCAL.SALES.PERCAPITA
178

Modelling Concepts

utes re-
compute D = sum of LOCAL.GNP.PERCAPITA *
LOCAL.SALES.PERCAPITA

loop
let SALES.GNP.RC = (N.COUNTY*D - A*C) / (N.COUNTY*B - A**2)

loop
for every YEAR,
do

for every CAR
do

compute A = sum, B = ssq of PRICE
compute C = sum of SALES.GNP.RC
compute D = sum of PRICE*SALES.GNP.RC

loop
let RC.PRICE.RC= (N.CAR*D - A*C)/(N.CAR*B - A**2)

loop
list SALES.GNP.RC, RC.PRICE.RC and NATIONAL.GNP
stop

end

__

This program reads data on auto sales and prices for different population units, and comp

gression coefficients that allow the following graphs to be drawn (figure 4-22).
179

SIMSCRIPT II.5 Programming Language

 individ-
Figure 4-22. Display of Result Produced by Data Analysis Program

Ensure that you understand the computations the program performs and the reason why the

ual loops are written as they are. Rewrite the program to make it more efficient.

LOCAL.GNP.PERCAPITA
LO

C
A

L.
S

A
LE

S
.P

E
R

C
A

P
IT

A

NOTE: Each point
represents a county.

for a given year and car

PRICE

NOTE: Each point
represents a car.

for a given year

S
A

LE
S

.G
N

P
.R

C

180

Modelling Concepts

 an at-

e array

trate
4.14.3 An Analysis of Prime Numbers

Program 4-3.
__

preamble
normally mode is integer
the system owns the PRIMESET
temporary entities

every PRIME has a VALUE and belongs to the PRIMESET
end

main
read N
for I = 2 to N,
do ''CREATE PRIME NUMBERS

for each PRIME in PRIMESET
with MOD.F(I, VALUE) eq 0

find the first case
if none

create a PRIME
let VALUE.. = I
file PRIME in PRIMESET

always
loop
for each I of PRIMESET

with S.PRIMESET(I) ne 0
compute MAX = the max(I) of VALUE(S.PRIMESET(I)) - VALUE(I)

print 2 lines with N.PRIMES, VALUE(MAX),
VALUE(S.PRIMESET(MAX)) thus

MAXIMUM GAP AMONG THE FIRST **** PRIMES
OCCURS BETWEEN **** AND ****

stop
end

__

4.14.4 Dynamic Definition and Use of Attributes

Because the notation for subscripting array elements is the same as that used for entity attributes,

there are obvious difficulties in attempting to directly reference elements of an array that is

tribute of a temporary entity. In fact, this cannot be done. It is possible, however, to associat

attributes with entities, through some explicit programming. The following statements illus

how to create, use, and destroy array attributes.
181

SIMSCRIPT II.5 Programming Language
Declaration:

preamble
temporary entities

every ENTITY has an ARRAY
define ARRAY as an integer variable
define DUMMY as a 2-dimensional array

end

Creation:

create an ENTITY
reserve DUMMY(*,*) as 3 by N
let ARRAY(ENTITY) = DUMMY(*,*)
let DUMMY(*,*) = 0

Use:

file ENTITY in SET
.
.
remove the last ENTITY from the SET
let DUMMY(*,*) = ARRAY(ENTITY)
for J = 1 to DIM.F(DUMMY(I,*)),

read DUMMY (I,J)

Destruction:

remove ENTITY from SET
let DUMMY(*,*) = ARRAY(ENTITY)
release DUMMY
destroy ENTITY
182

ing lan-

 Level

ion of

e-event

l tool

incipal

uage,

ts

ior as it

ems in

her than

ceptual-

eration,

 check-

t opera-

t they

 a way

tem be-

urs, the

ling the

hat the

 activ-

ems are

eping

 activ-

s, and

ortant
5. Discrete Simulation Concepts

5.1 Introduction

Chapters 1 through 4 of this book described the features of a general-purpose programm

guage which provides for the high-level description of data structures and their manipulation.

5 of SIMSCRIPT II.5 provides concepts and language features for application in the simulat

discrete systems. This chapter assumes familiarity with the aims and techniques of discret

simulation. It describes the features by which SIMSCRIPT II.5 provides a uniquely powerfu

for aiding such systems study. The topic is described in a number of current texts. The pr

text, which develops the principles of simulation using SIMSCRIPT II.5 as the modelling lang

is Building Simulation Models with SIMSCRIPT II.5, by E. C. Russell, published by CACI Produc

Company.

Simulation, as described here, is the use of a numeric model of a system to study its behav

operates over time. Discrete-event simulation deals specifically with modelling of those syst

which the system state is deemed to change instantaneously at discrete points in time, rat

continuously. This chapter presents language concepts and features designed to aid in con

izing such systems and in modelling them in a computer program.

5.2 Describing a System Model

The basic components of a dynamic system are activities. The analysis of a supermarket op

for example, might yield such activities as the selection of merchandise by a customer, or the

ing out of goods for a customer, among others that deal with different aspects of supermarke

tions. Two important characteristics of activities are: (1) that they take time, and (2) tha

(potentially) change the state of a system.

When constructing a simulation model, the activities must be identified and represented in

that enables the model, when operating, to reproduce the time-dependent behavior of the sys

ing simulated. That is, the activities must be modelled in such a way that, when each occ

system state changes in the proper way. This imposes requirements for (1) correctly model

characteristics of activities, and for (2) sequencing the simulated execution of activities, so t

order of performance of activities within a model corresponds to the order in which the same

ities occur in the real system.

The concepts embodied in Levels 1 through 4 are the essence of activity descriptions. Syst

described (modelled) in SIMSCRIPT II.5 in the language of entities, attributes, and sets. Ke

track of simulated time and organizing the execution of subprograms through which system

ities are represented are the essential functions provided by Level 5.

An activity within a system is bounded by two instantaneous events: when the activity start

when it stops. Thus, the event is the simplest component of an activity description. The imp
183

stanta-

 Any

g or end

 spec-

 event

ystem

inating

PT II.5

 second

ation of

differ-

time an

omprise

ately fol-

cing al-

-event

 simu-

s, tech-

dology

 under-
properties of an event are: (1) it occurs at some instant of time, and (2) the occurrence is in

neous. Figure 5-1 illustrates an activity delimited by two events.

Figure 5-1. An Activity Delimited by Two Events

To model an activity, using events, those events that delimit the activity must be identified.

necessary tests and conditional or unconditional state changes associated with the beginnin

of the activity may be specified for each of these events. The duration of the activity may be

ified by scheduling the start event for a certain instant in simulated time, followed by the stop

scheduled for some later time. When the initial event is called into activation, it alters the s

state in the specified manner. It may indeed be responsible for scheduling the activity term

event. After these state changes are performed, control is passed back to the SIMSCRI

scheduling mechanism. After the apparent passage of the appropriate simulation time, the

event, the stop event, is executed, performing the state-changes associated with the termin

the activity. Either of these events may involve the scheduling of further events, perhaps of

ent types, at suitable intervals in simulation time.

The changes in a system that occur when an activity starts or stops, i.e., in the instant of

activity begins or ends, are associated with events rather than activities. As these events c

all significant system state-changes, the passage of time between events need not be accur

lowed. Rather the passage of simulation time is driven by the sequence of events, advan

ways to the time of the next significant event. This is the crucial difference between discrete

and continuous-time simulation. In discrete-event simulation, state-changes take place at specified

points in time at which interactions between system components occur. In continuous-time

lation, interactions and state-changes take place continuously. To model continuous change

niques such as numeric integration must be employed. The choice of simulation metho

depends on the characteristics of the system under study, and the way in which it must be

stood.

machining activity
activity start activity end

start machining.
'start event' at time t1

stop machining.
'stop event' at time t2
184

Discrete Simulation Concepts

ctivities

ay be

ts oc-

nts.

imit its

ch an

ring of

dering

lated

uence of

process

 logic

cribed

 of the

s con-

anizes

porally

ure is

wing

ulate

utine

 the

 start at
Some activities have no apparent duration and may be modelled as single events. Such a

might represent, for example, the preparation of a report, issued periodically. Activities m

thought of as occupying zero simulation time if no interactions with other system componen

cur, and the activity duration is short enough not to affect the timing of other activities or eve

Frequently, however, it is found that an activity comprises events other than those that del

duration. It may interact with other activities, causing or suffering interruptions or delays. Su

activity may be better represented by a collection of related events with some logical orde

their sequencing. Even a simple activity may be thought of as two events, with the logical or

that it must start sometime before it can stop. In SIMSCRIPT II.5, such a collection of re

events may be represented by a process. A process may be viewed as a collection or seq

related events separated in time. The previous activity may be elaborated to illustrate the

concept by including some extra, but related, events (see figure 5-2).

Figure 5-2. A Process May Be Considered to be Comprised of a Sequence of

Events Occurring in Time

To model activities in SIMSCRIPT II.5, the significant events in the life of the system and the

of their interactions must be identified. Subprograms can be written, using the previously-des

data structures to model the physical components of the system, and incorporating the logic

event interactions. The more complex activities are conveniently modelled using the proces

cept to collect related events. SIMSCRIPT II.5 then provides a timing mechanism, which org

execution of these subprograms, managing any interactions, so as to order the events in a tem

correct sequence.

While it has not been pointed out explicitly why the normal main-routine-subprogram struct

not adequate for the simulation task, it is not difficult to see why this is so. Consider the follo

situation: A simulation model has one kind of entity — call it a PERSON — that performs one kind

of activity — call it a JOB. Let the job activity be delimited by the two events START.JOB and

END.JOB. Routines are written to describe the logic of both events. Should it be desired to sim

two people performing such a job concurrently, the simulation must execute the ro

START.JOB for each PERSON. Now, if two events should occur when the simulation time has

same value, they can be thought of as happening simultaneously. If the two people are to

machining process

start machining.
 at time t1

stop machining

change tools
t2 t3
operator intervention

turning boring

at time tN
185

SIMSCRIPT II.5 Programming Language

quential

ed

assed.

 with

strate

subpro-

s as-

to

-

ily de-

ss (a

ion).
the same time, these programs must be executed simultaneously; that is, in parallel. On a se

computer, this is, of course, impossible.

Within the event START.JOB, the event END.JOB will be scheduled to occur after some estimat

job performance delay time. When the event END.JOB occurs for the first PERSON, the simulation

clock will be advanced to some higher value. That is, it will indicate that simulated time has p

But this advancement of the clock is not correct, as the event START.JOB for the second PERSON

cannot yet have been executed. Therefore, some mechanism, other than call , is required to indi-

cate that END.JOB is to be executed only after all events that have lower clock times associated

them have been executed.

The alternative provided by the SIMSCRIPT II.5 system is to schedule an event for occurrence

in future simulated time. In figure 5-3 two jobs are started and ended at different times to illu

the concepts of event occurrence and event scheduling. Table 5-1 lists the order in which

grams representing the START.JOB and END.JOB events of figure 5-3 must be executed.

In a SIMSCRIPT II.5 simulation model, the logic of any state-changes and activity interaction

sociated with an event are described in an event routine. Several related events with the logic

indicate their ordering in time may be incorporated in a process routine, to describe an entire ac

tivity. The timing mechanism for both event and process routines is similar. It is more eas

scribed initially for events, which may be thought of as the limiting case of a simple proce

single event delimits both the beginning and end of an activity that has no perceptible durat

Figure 5-3a. Two Overlapping Activites

Job1 activity
Job2 activity

Simulated time
START.JOB1

START.JOB2

END.JOB1

END.JOB2
186

Discrete Simulation Concepts

ord

e

s by a
Figure 5-3b. Two Nested Activities

Figure 5-3c.Two Activities with a Common Event Time

5.2.1 Event Declaration

A routine is declared to be an event routine rather than a callable subprogram by use of the w

event rather than routine in the routine definition. The flow of control within an event routin

behaves in the ordinary way, in that control is passed to the start of the event and leave

return statement. Typical event routine declaration statements are:

event ARRIVAL given LOCATION and ALTITUDE
event DEPARTING(DESTINATION)
event ALLOCATION(SUM, PERSON1, PERSON2)

Table 5.1. Figure 5-3 Event Order

Time Figure 5-3a. Figure 5-3b. Figure 5-3c.

START.JOB1 START.JOB1 START.JOB1 
START.JOB2  in parallel
 

START.JOB2 START.JOB2

END.JOB1 END.JOB2 END.JOB1

END.JOB2 END.JOB1 END.JOB2

Job1 activity
Job2 activity

Simulated time
START.JOB1

START.JOB2
END.JOB1

END.JOB2

Simulated time
START.JOB1

START.JOB2

END.JOB1

END.JOB2
187

SIMSCRIPT II.5 Programming Language

ved as

o which

nd pro-

ss there

n event

at has

t

ribute.

the ap-

d-

ts need

maining

is

and

 These

. Event

he state-

rary

are de-

hapter

ce at-

ation,

tes or

se, the
These event routine definitions are similar to routine definitions; values appear to be recei

input arguments, described in any of the normal forms. Events cannot have yielding arguments

because they are not called directly from other subprograms and, hence, have no place t

these values may be returned. The way in which argument values are transmitted to event a

cess routines will be discussed later. The general form of an event routine definition is:

event name (optional input argument list)

5.2.2 Event Notices

There may be a number of different event types or event classes in a program. For each cla

may be many instances at different times. Associated with each instance of each class is a

notice, used to maintain information about the event. An event notice is a temporary entity th

five special predefined attributes. One of these attributes, time.a , contains the simulation time a

which the event is to occur. An event notice is filed in a future events set, ranked on this att

The SIMSCRIPT II.5 timing routine is responsible for successively removing event notices from

the future events set, updating the apparent simulation time and initiating the execution of

propriate event routine. Another attribute, eunit.a , concerns the way in which the event is sche

uled, for instance, whether it is scheduled from data external to the program. External even

not, for the present, be considered specially. They are discussed in a later section. The re

attributes are those required for membership in the future events set; as the name of this set ev.s ,

the attribute names p.ev.s, s.ev.s , and m.ev.s , represent the predecessor, successor,

membership attributes.

Event notices may, like any other temporary entity, have additional user-defined attributes.

may be either variables or functions, and may denote ownership or membership of other sets

notices, however, must be declared separately from nonevent notice entities. The event notice

statement is used in the preamble to declare an event and any user-defined attributes. T

ment:

event notices

when placed before a group of every statements, denotes that event notices rather than tempo

or permanent entity declarations follow. The special attributes required by an event notice

fined automatically. They must not be redefined, and they must not be equivalenced (see C

6 for a discussion of equivalencing). For this reason, the explicit placement of event noti

tributes is restricted, usually within the first five entity words. This depends on the implement

and the appropriate user manual should be consulted.

Commonly, event notices have only the specially defined attributes and no additional attribu

set pointers. They are used only to trigger events within simulated time. When this is the ca

phrase:

 event notice name list
188

Discrete Simulation Concepts

es,

ed for

e order

n of the

t

s

 event
may simply be added to the event notices statement to identify the names listed as event nam

indicating that associated event notices requiring system-defined attributes are to be defin

them. Such events might be declared by a preamble statement:

preamble

event notices include ARRIVAL, and WEEKLY.REPORT

every JOB.OVER has a NEXT.JOB and owns some PEOPLE

The layout of the event notice entities might then appear as shown in figure 5-4. Note that th

that the predefined attributes take within the event notice is implementation-dependent.

Figure 5-4. Possible Layout of Event Notice Entities

5.2.3 Process Declaration

A routine is declared to be a process routine in a similar manner, but the word process must

be substituted in the routine definition. For example:

 process ALLOCATE.TRAIN given NO.OF.CARS, DESTINATION

The general form of the process routine declaration statement is:

process name (optional input argument list)

Associated with every declared process is an entity called a process notice. The constructio

process notice is similar to an event notice, being filed in the same way in the future events seev.s ,

but it has some extra predefined attributes that have meaning only for a process.

Each process routine must be declared in the processes section of the preamble. Proces

declarations are otherwise identical to event declarations. All the conventions for defining

ARRIVAL WEEKLY.REPORT JOB.OVER

TIME.A TIME.A TIME.A

EUNIT.A EUNIT.A EUNIT.A predefined attributes

P.EV.S P.EV.S P.EV.S

S.EV.S S.EV.S S.EV.S

M.EV.S M.EV.S M.EV.S

NEXT.JOB

F.PEOPLE user-defined attributes

L.PEOPLE

N.PEOPLE
189

SIMSCRIPT II.5 Programming Language

process

, or

 to both

 routines

ent set.

d to

It may

d previ-

word
notices or temporary entities apply. Like event notices, processes and the corresponding

notices may be defined using the every statement, if user defined attributes are to be declared

with the include phrase, if no user attributes are defined. For example:

processes MACHINE.JOB, CHECK.JOB
every ALLOCATE.TRAIN has a NO.OF.CARS, a DESTINATION

In general, characteristics attributed to events or processes may be taken to apply equally

unless stated otherwise.

5.2.4 Scheduling Events and Processes

Process and event notices may be filed in the future events set, scheduling their associated

for activation at specific instants in future simulation time, using a schedule statement, which has

the general form:

schedule an event at time expression

or

 a process at time expression

This statement creates an event or process notice, sets its time.a attribute (the time for which it is

to be scheduled) to the value of the time expression and files the notice in the appropriate ev

The time expression must evaluate to a real variable or constant. The words activate, re-

schedule , and cause are all synonyms for schedule . The word schedule is commonly used

in conjunction with events and activate with processes. These statements are interprete

mean:

activate a process called variable at time expression

and

schedule an event called variable at time expression

where process is the name of the process routine variable associated with the entity class.

be seen that this is similar to the usage of create and destroy for entities. A schedule state-

ment may be written with an explicit variable name, as in:

schedule an ARRIVAL called RUSH.ORDER at time expression

If an event or process notice already exists (as a temporary entity, it may have been create

ously), a schedule statement may specify that it be filed in the future events set using the

this rather than an:

schedule this event called variable at time expression
190

Discrete Simulation Concepts

vent

atement

 event.

y also

ents use

r exam-

olving

 or with

cess no-

rocess

ey first

nt notice

n

be as-

 subset

re

irst ap-

r-
The word this inhibits creation of a new entity. The pointer value identifying the particular e

notice, which must be of class entity, is assumed to be stored in the named variable. The st

form:

schedule this event at time expression

obviously uses the pointer value currently held in the variable having the same name as the

A global variable of this name, of course, is always defined, although a local redefinition ma

exist.

Several variations of these statement forms are permitted. The words a and an are synonyms, as

are the words this, the , and the above . Examples are:

schedule an ARRIVAL at time expression
schedule the above ARRIVAL called RUSH at time expression
schedule this ARRIVAL at time expression

The first statement creates an event notice before scheduling. The second and third statem

event notices of type arrival, whose identification numbers are stored in RUSH and ARRIVAL, re-

spectively.

5.2.5 Processes and Events Scheduled for the Same Time

It can happen that several different processes or events are scheduled for the same time; fo

ple, the arrival of one job, the completion of another, and the preparation of a report. Res

these conflicts is important in situations where events or processes interact with each other

entities in the model. A statement of the form:

priority order is process or event name list

imposes a priority ordering on the processes and events named, so that in cases where pro

tices of different kinds have the same event time, the process notice of the higher-priority p

type is selected first. The assigned priority is determined by order of appearance in the priority

name list. The first process named is given the highest priority. If no priority statement appears

in a program, the priority of events and processes are determined by the order in which th

appear in preamble declarations.

The priority of a process is associated with the process class. The class of a process or eve

is assigned one of the values 1, 2, 3 ... according to either its declared priority or declaratio

order. Three different processes, for example, declared without priority in the preamble, will

signed the classes 1, 2, and 3, respectively, in the order in which they are declared. If only a

of the processes or events declared are listed in a priority statement, the remaining processes a

given lower priority than the ones listed, and are ranked among themselves in the order of f

pearance in declarations. A global variable, events.v , has as its value the total number of diffe

ent process and event classes declared.
191

SIMSCRIPT II.5 Programming Language

 to occur

y have

these

 a “first

al pri-

d. Al-

mulation

cess

that have

t of tie-

ssary.

 pro-

ed-
It is, of course, possible to have more than one process or event of the same kind scheduled

at the same or different times in the future. For example, a machine-shop simulation ma

many indentical machining activities in progress concurrently. Completion of two or more of

may be scheduled to occur at exactly the same time. If this happens, the timing routine uses

scheduled-first occurs” rule to “break the tie.” The order in which simultaneous events of equ

ority are executed is determined by the sequence in which they were previously schedule

though several events can appear to take place at the same instant in simulated time (the si

clock has the same value during the execution of each), there are often good reasons for wanting to

impose a priority ordering. This may be done by specifying the break ties statement:

break process/event name ties by high attribute name

or

break process/event name ties by low attribute name

which gives priority to the process with the high (low) attribute value when two or more prop

notices of the same type have the same process time. The attributes are, of course, ones

been defined in every statements for the process named. In cases where more than one se

breaking attributes are needed, clauses of the form:

, then by high attribute name

or

, then by low attibute name

can be added to the break ties statement. As many such clauses may be added as are nece

Processes defined by the statements:

process
every DISPATCH has a VALUE, a DUE.DATE and a PRIORITY

might have ties resolved among competing process notices by statements such as:

1. break DISPATCH ties by high PRIORITY

2. break DISPATCH ties by high PRIORITY, then by low DUE.DATE

3. break DISPATCH ties by high VALUE, then by LOW PRIORITY,
then by high DUE.DATE

In statement 1, among DISPATCH processes scheduled to occur at the same simulated time, the

cess notice with the largest PRIORITY attribute will occur first. In 2, among process notices sch
uled to occur at the same simulated time and having identical PRIORITY values, the notice with the

smallest DUE.DATE will occur first; and similarly for 3 and other variations.
192

Discrete Simulation Concepts

n of

 state-

ystem

he ini-

overall

the

he tim-

comprise

ost im-

e indi-

 timing

d. This

his hap-

ually in-

 events

hod, of

rou-

 fact a

 a simu-

h event

ent

ay be al-
5.3 The Simulation Mechanism

A SIMSCRIPT II.5 simulation is controlled by the timing routine that organizes the executio

event and process routines in simulated time. Every simulation program must contain the

ment:

start simulation

which passes control of further program execution to this timing routine. In order to set the s

in motion, the model must have been initialized by previously executed statements, defining t

tial state of the system and scheduling one or more initial events or process activities. The

outline of a SIMSCRIPT II.5 simulation model will generally have the form:

declarations
initialization of system variables, entities and sets
scheduling of initializing processes and events

start simulation
terminating control statements

The statement start simulation passes control to the simulation timing mechanism. For

purpose of explaining the simulation mechanism, events and event notices are considered. T

ing mechanism for a process behaves in the same way, but a process may be considered to

a sequence of events occurring over a period of time. The timing mechanism removes the m

minent event notice from the future events set, updates the simulation time to the event tim

cated, and passes control to the routine for this event. Upon completion of this event, the

routine again turns to the future events set to determine the next event routine to be execute

sequencing continues until all event notices in the future events set are exhausted. When t

pens, control is returned to the statement directly after the start simulation statement. It must

be remembered that statements executed during event and process routines may be contin

teracting with the future events set, dynamically scheduling further events.

As long as there are events to be executed, the timing routine, initiated by the start simulation

statement, is in control. The common way to end a simulation is to cease scheduling future

and let the timing mechanism exhaust the contents of the future events set. Another met

course, is to halt all execution, using a stop statement within some scheduled event or process

tine.

The future events set, shown in figure 5-5, in which event and process notices are filed, is in

singly subscripted set. Each subscript value denotes a different process or event class. In

lation declared to have six different event classes, there are six "parallel" event sets. Eac

class has a global variable, i. event , associated with it, denoting the subscript value of the ev

class. These values are assigned, usually, by order of declaration of event classes, but m

tered by priority statements.
193

SIMSCRIPT II.5 Programming Language

 fu-

ed by

nt

nt,
Figure 5-5. The Future Events Set Organization

A system-defined global variable, events.v , has as its value the number of event classes. The

ture events set is named ev.s , denoting “events set.” The first- and last-in-set attributes f.ev.s

and l.ev.s , are defined as one-dimensional attributes of the system, and are dimension

events.v . The attributes p.ev.s., s.ev.s , and m.ev.s are, of course, attibibutes of the eve

and process notice entities. The routines FF and RS ared defined for the set. Scheduling an eve

. . .

TIME.A

EUNIT.A

P.

S.

M.EV.S 1 1

1 1

. . .L.EV.S

0 0 0

0 0

0

F.EV.S
194

Discrete Simulation Concepts

or

r at the

 in order

ture

lasses

et,

vent

gnificant

efined

 The

nce to

e

ed by

,

e of

the time

e

 This

ecomes

an

ic time

. If the
then, causes an event notice of the appropriate class to be filed and ranked on its time.a attribute

in the set corresponding to its class, usually by the routine t.ev.s that is the standard file first rou-

tine for the set ev.s . Events named in break ties statements are filed by a special routine f

that event class. Each time control passes to the timing routine, at the start of simulation o

completion of any event, the next event to be executed is selected by searching the even sets

of priority, as indicated by i.event values, and taking the one that has the lowest value of fu

time, time.a . In the case of ties, the first one selected is taken. Thus, priority across event c

is determined by the i.event ordering. Priority within a class is determined by ranking within s

which in turn depends either on filing order or, if specified, on break ties filing. When an e

notice is selected and removed from the future events set, this event represents the next si

time instant in the life of the system. The simmulation time that is maintained in a system-d

global variaable, time.v , is advanced, therefore, to take on the value of its time.a attribute. An-

other global variable, event.v , is set to reflect the class of the event about to be executed.

number of event or process notices filed in an event class at any time is available by refere

(i.event). Although this has the name of the standard N. set attribute, and is used in the sam

way, it is, for considerations of efficiency, implemented as a system function.

5.3.1 The Simulation Clock

Throughout the progress of a simulation, the current value of simulated time is maintain

SIMSCRIPT II.5 in a double global variable named time.v . Before the start of simulation

time.v is zero. From then on, time.v increases, by discrete jumps, representing the passag

time between events. Each time a notice is selected from the future events set, the value of

attribute of the selected process, time.a , is used to update time.v . It can happen that the valu

of time.v remains the same before and after the updating, and all events that occur while time.v

is constant appear to happen simultaneously. The phrase:

at time expression

used in a schedule statement, states when, in future simulated time, the event is to occur.

expression is real -valued. It is the value that is stored in the time.a attribute of the process or

event notice, that is compared against other event times during event selection, and that b

time.v when an event is selected for execution. An absolute time is always specified in at

phrase. The phrase:

at 0.00

might be used to schedule an event that is to initiate the simulation. An incremental form:

at time.v + 1.5

states that the event is to occur at the current simulation time plus 1.5 time units. If the bas

unit is interpreted as hours, the phrase may be read, "in one and one-half hours from now"
195

SIMSCRIPT II.5 Programming Language

icrosec-

inutes,

se time

even

f

easure-

ert ab-

 this

within

ity, or

s illus-

s:

ming

led time.
basic time unit is interpreted as microseconds, the phrase reads as, "in one and one-half m

onds from now."

Many simulations represent activities in real time, where the time units commonly used are m

hours, and days. Some standard conversion factors allow SIMSCRIPT II.5 to recognize the

units. The standard units of time.v are presumed to mean days (e.g., 1.47 is one and forty-s

one-hundredths days). The phrases:

in arithmetic expression days
in arithmetic expression minutes
in arithmetic expression hours

are understood to mean that the named event is to occur at time.v plus the specified number o

days, hours, or minutes. The word units can be used instead of days , and the word after sub-

stituted for in . Conversions are made by taking the units of time.v as days and using two, real

mode, conversion variables, hours.v and minutes.v , initialized by the SIMSCRIPT II.5 system

to 24 and 60, respectively. These values may be changed at any time to reflect a different m

ment of simulated time.

If time is to be simulated in units of days, hours, and minutes, it can be convenient to reconv

solute values of time.v to these units. Three system functions described in table 5-2 provide

capability. A simulation time of zero is assumed to correspond to the start of the first hour

the first day of a week.

These functions may be useful in displaying results of a simulation, tracing simulation activ

in imposing realistic constraints on the execution of events in simulated time. Two example

trate these uses:

1. A check to allow arrival events to occur only on weekdays or a Saturday:

if WEEKDAY.F(time.v) greater than 6,
reschedule this ARRIVAL at TRUNC.F(time.v)+1

always

2. A process trace statement put at the head of a process routine:

write WEEKDAY.F(time.v), HOUR.F(time.v) and MINUTE.F(time.v) as
"MACHINING ACTIVITY STARTS ON DAY", I 2,
"AT TIME", I 2, ":", I 2, /

A third kind of event scheduling uses the word now (or next , its synonym) in statements such a

schedule an ARRIVAL now

Processes or events scheduled with a now phrase occur as soon as control passes back to the ti

routine. They precede any scheduled processes or events that may have the same schedu

If two or more are scheduled to occur now, they are ranked on their priority if they are of differ-
196

Discrete Simulation Concepts

s if

o-

 negates

e-

y tem-

 filed

igned to

and also

in

efined

are ini-
ent classes, on their break ties attributes, if these are specified, or on a first-in, first-out basi

no break ties attributes have been specified.

Corresponding to the schedule statement is a cancel statement, which removes a specified pr

cess or event notice from its future events set, before it has been selected for execution. This

the action of the schedule statement that filed the event notice. It is written:

cancel this process/event

and

cancel this event called variable

As usual, the first form is interpreted as:

cancel this event called event

The words the or the above can be substituted for this when necessary. The event notice r

moved is not automatically destroyed. If required, it may be explicitly destroyed, as may an

porary entity. An attempt to cancel an event that has not been scheduled, and is therefore not

in the future event set, terminates the program with an error message.

5.3.2 Assigning Event and Process Attributes

If an event or process notice is declared to have user-defined attributes, values may be ass

these in two ways: through standard attribute (entity) references in assignment statements,

within a schedule statement specifying the notice. Recall that a statement such as:

schedule an event given expression list at time expression

uses the time expression to set time.a (event) attribute. It will also assign the values given

the expression list to successive attributes of the event notice, starting with the first user-d

attribute. If fewer expressions are listed than there are attributes, the remaining attributes

Table 5-2. Time Conversion Functions

Name Argument
Function

Mode
Function
Values

Examples

weekday.f REAL time
expression

integer 1 - 7
day of current week

weekday.f(5.32)
= 6

hour.f REAL time
expression

integer 0 - 23
hour of current day

hour.f(5.32) = 7

minute.f REAL time
expression

integer 0 - 59
minute of current
hour

minute.f(5.32)
= 40
197

SIMSCRIPT II.5 Programming Language

 zero.

tion of

ng and

o event

es with-

ed, and

ss has a

ess no-

s. The

al vari-

e exe-

e event

e value

ariable,

aintained

ntly

may be

be made

e case
tialized to zero. If no expression list appears, all, if any, user-defined attributes are set to

Thus, the preamble definition:

processes
every SERVICE has a SERVER, a CUSTOMER,

and may own a TRANSACTION.SET

followed in some routine by the statement:

schedule a SERVICE giving TELLER(N) and F.QUEUE at time expression

assigns the values of TELLER(N) and F.QUEUE to the attributes SERVER and CUSTOMER, respec-

tively, but leaves the set-ownership attributes set to zero. Following the conventional nota

the call statement, a number of argument list forms may be used: the word given may be used,

or the argument list enclosed in parentheses. No yielded phrase may be used. Examples are:

schedule an ARRIVAL giving ORIGIN now
reschedule this SERVICE giving A and B in 2 days

As these attributes are initialized at the time of scheduling, their values are unchanged by fili

removing them from the future event set. Thus, they provide a means for passing values t

and process routines. There are some difficulties, however, attached to accessing these valu

in the routines. Upon entry to an event routine, the associated event notice is usually destroy

so the attributes are no longer accessible. This is not the case for process notices. A proce

lifetime associated with the duration of an activity, whereas an event is instantaneous. Proc

tices are not automatically destroyed until completion of all activity represented by the proces

automatic destruction of an event notice is suppressed by appending the phrase saving the

event notice to the event routine definition, as in:

event ARRIVAL saving the event notice

In this way, the attributes can be accessed within the event routine, or even later. The glob

able with the name of the event is set by the timing routine to the event notice pointer befor

cution of the event routine is initiated, and so may be used to subscript the attributes. Th

notice may be later destroyed as for any temporary entity. Care should be taken not to alter th

of this variable, by schedule statements, for example, until all attributes have been accessed, or

before using it in destroying the event notice. It must not, of course, be redefined as a local v

as this makes access to the global value impossible. In the case of processes, a system-m

global variable, process.v , holds at all times either a pointer to the process notice of the curre

executing process, or a zero value if no process routine is executing. Thus, this variable

used within a process routine or within subprograms called from a process routine, to access the at-

tributes of the associated process notice. Such a subprogram can test process.v to determine

whether, in this instance, it has been called from a process or a nonprocess routine.

A second way in which the values of attributes passed to an event or a process routine may

available is to define a list of given arguments to the routine. At entry to the routine, and in th
198

Discrete Simulation Concepts

ssigned,

g argu-

tributes

 names.

nt usage

-

n infor-

finition

e

 should

ecome

e events

r filing

or pro-

rocess
of events, before the event notice is destroyed, the values of the user-defined attributes are a

in order, to these local argument variables. Only as many attributes as have correspondin

ment positions are copied. Specification of more arguments than there are user-defined at

has no meaning, and is not permitted. Care must be taken in selecting these argument

Should they be chosen as identical with the declared attribute names, then the local argume

will always take precedence, rendering subsequent access to the entity attributes themselves impos

sible. This may be of significance in the process case, where the process notice must retai

mation across the sequence of events within the process activity. The above event routine de

could be written as:

event ARRIVAL given ORIGIN

where the now local argument ORIGIN will be initialized from the attribute value specified at th

time of scheduling.

Event notices that have not been destroyed may be reused, as in a case when the word this is re-

quired in the scheduling statement, avoiding the creation of a new event notice entity. Care

be taken, if this is done, that event notices be used only in appropriate event classes. It will b

apparent that this is the mechanism by which processes may represent more than one of th

within an activity. The following examples demonstrate some of these points.

1. Accessing the attributes of a saved event notice. The event notice entity is saved fo

in a user-defined set:

event DEPARTURE(NAME, DESTINATION) saving the event notice
let DEPARTURE.TIME(DEPARTURE) = time.v
add 1 to PASSENGER.LIST(DESTINATION(DEPARTURE))
file DEPARTURE in DEPARTURES.SET
return

end

2. Event notice reused to schedule another similar event. A separate entity is created f

gram-defined manipulations:

event ARRIVAL given NAME, ORIGIN saving the event notice
define NAME, ORIGIN as text variables
create a JOB
let IDENTITY(JOB) = NAME
let PLACE(JOB) = LOCATION
file JOB in LIST.OF.JOBS
reschedule this ARRIVAL("WALDO", "ALASKA") in 5 days
return

end

3. A simple instantaneous process routine which behaves like an event. Note that the p

notice is not destroyed until exit from the routine and so the attribute IDENT may be access-

ed from within the routine.
199

SIMSCRIPT II.5 Programming Language

e event

ct the

n stated

tivity, in

by the

f simu-

lation, a

e or a

halt the

k in the

on

s notice

he two

n time.

ated by

assages

st be

 an au-
process TASK
write IDENT(TASK), time.v as

/, "TASK: ", T 10, "STARTED AT: " D(4,2),/
activate a COMPLETION giving IDENT(TASK) in 2 days
return

end

The important points to remember about process and event activation are:

1. Time.v is set to the time.a attribute at activation

2. A global variable with the same name as the event or process is given the value of th

or process notice pointer. The attributes may be accessed through this variable.

3. In the case of events only, the event notice is destroyed unless a saving phrase is used, and

4. When the return statement is executed, control passes to the timing routine to sele

next process.

5.3.3 Process Interactions

Up to now, processes have not appeared to differ greatly from events. However, it has bee

that processes may represent an activity that has a duration in simulated time. Such an ac

its simplest form, has two delimiting events. The start event of the activity is represented

initiation of the process routine. The terminating event must take place after some lapse o

lated time. In the simple case, this lapse of time can be estimated. In an event-based simu

terminating event would be scheduled at this interval in the future. Within a process routin

subroutine called from a process routine, however, either of two statements may be used to

process execution for a given lapse of simulation time. These statements are:

work time-expression

and

wait time-expression

The effect of these statements is to file the process notice associated with the process bac

future events set, after adjusting the time.a attribute to indicate the future time at which executi

of the process routine should resume. When simulation time has advanced so that the proces

becomes again eligible for execution, this execution is resumed at the statement following thework

or wait . Other events and activities may, of course, be executed during the time lapse. T

statements differ only in the status attributed to the process during the passing of simulatio

This status is recorded in a special attribute of the process notice, where it may be interrog

any other executing routine. These statements allow for the representation of determined p

of simulation time during an activity. The time to spend in a waiting or working state mu

known when the statement is executed. The time to carry out a specified machining task on
200

Discrete Simulation Concepts

and an

chining

e activity

ay de-

process

oth-

n to con-

rd

 in

r vessel:

wever,

 to be

tate.

 that the

that is,

ine

ule
tomatic tool, for example, may be estimated from dimensions and material of the workpiece

activity accordingly set to work for this time.

There are cases when the time lapse depends on the interaction of other activities. If the ma

task demands that the machine be reset, say, by operator intervention at some stage, then th

must delay when this point in the process is reached until an operator is available, which m

pend on concurrent activities within the machine shop. To represent this circumstance, a

routine may suspend its own activity to continue only on an explicit command issued by some

er event or process routine, naming the suspended process. Reactivation causes executio

tinue at the statement following the suspend statement. The statement is simply the wo

suspend , optionally followed by the the word process . The suspended status is also recorded

the process notice status attribute. The following example indicates that execution of the SHIP pro-

cess cannot continue until a berth becomes free, which depends on the departure of anothe

process SHIP
.
.
if BERTH.STATUS not equal to .EMPTY

file SHIP in BERTH.QUEUE
suspend

always

Some other process, which may be a concurrent execution of the SHIP process, but representing

another ship, might include the statements:

if BERTH.QUEUE is not EMPTY
remove first SHIP from BERTH.QUEUE
reactivate this SHIP now

else
let BERTH.STATUS = .EMPTY

always
.
.

5.3.4 Interrupting and Resuming a Process

Only a process that is executing may suspend itself. Any executing process, or routine, ho

may interrupt another process that is active but not executing (i.e., while the process

interrupted is in a wait or work state). The interrupted process is placed in an interrupted s

When this happens, the process notice is removed from the future events set, and the time

process would have remained in the work or wait state is recorded in the time.a attribute of the

interrupted process notice. An interrupted process may be returned to the active state,

replaced in the future events set, by a resume command issued by any other process or rout

naming the interrupted process. The time.a attribute at the time of resumption is used to sched

the end of the work or wait state. It is incremented by the current time.v before being used as

a ranking attribute for filing.
201

SIMSCRIPT II.5 Programming Language

t entry,

process

 process

d in the

routine

e.

rou-

 timing

ly in the

rocess-

restrict

ly within

ould be

cess rou-

orted by

urrent

for reac-

utomatic

esses to

nt-

 order

ttributes
A process routine has three code segments in addition to those of an event routine. At firs

an initializing segment calls a set-up routine that allocates storage space for saving the

environment (the given arguments and local variables). Subsequent re-entries restore the

environment from this save area. The address of this recursive storage area is maintaine

rsa.a attribute of the process notice. The second additional code segment calls a library

that saves the local environment each time the process is delayed or suspended by a wait/work/

request/suspend . Whenever this occurs, execution control is returned to the timing routin

Finally, when a process executes a return statement, the recursive save area for this process

tine invocation is released, the process notice is destroyed, and control is transferred to the

routine.

The various process interaction and control statements described above have meaning on

context of process routines. Although events and other routines may interrupt and resume p

es, they may not themselves work, wait, or suspend. Some implementations of SIMSCRIPT

these last statements to process routines only. Some others allow them to be used effective

the process context, but at a subprogram level lower than that of a calling process. Care sh

taken that such commands are issued only when the subprogram has been called from a pro

tine at the highest level.

5.3.5 Processes and Resources

The previous sections have described possible process routine interactions that are supp

SIMSCRIPT II.5. The most common reason for such interactions is competition among conc

processes for some limited resources. This is often why processes must suspend and wait

tivation by others. SIMSCRIPT II.5 provides a resource modelling facility. Included in the re-

source concept are the automatic queuing of processes for unavailable resources and their a

reactivation when the required resources becomes available. Special statements allow proc

request and relinquish specific resources.

Resources are declared in the resources section of the preamble. A resource is, in fact, represe

ed as a permanent entity, but with some predefined attributes:

U.resource specifies the number of units of this resource currently available.

Each resource also has the owner attributes for maintaining two sets:

Q.resource is the set of processes currently waiting (queued) for this resource.

X.resource is the set of processes currently using (executing with) this resource.

Additional user-defined attributes may be specified, as for any permanent entity. However, in

that the required attributes be defined, the resources heading must precede any every statement

that defines a resource with special attributes. Resources that require only the predefined a
202

Discrete Simulation Concepts

PT

ple is a

urces,

single

be spe-

f

e airport

ce may

ircraft

s

he pro-

-

may be specified in the optional include phrase. As resources are maintained in SIMSCRI

II.5 as permanent entities, they must be created before they can be used.

The simplest form of a resource consists of a single unit of a single resource type. An exam

single-runway airport representation. This may be declared and created by the statements:

Preamble:

 resources include RUNWAY

Program:

create every RUNWAY(1)

let U.RUNWAY(1) = 1

There is only one valid index value, 1 , for the entity. The "units" attribute for this index is also 1.

There is only one type of runway, and there is only one of them. To expand to multiple reso

there are two alternatives. The choice depends on the structure of the model:

1. Add more identical units of the resource. These are identical. They all serve from a

queue.

2. Add more resource elements. These may each have different properties, they must

cifically requested, and there may be different numbers of each available.

The first case may be illustrated by the example of a bank with three tellers:

create every TELLER(1)
let U.TELLER(1) = 3

To a bank customer, there is only one type of resource, TELLER(1) . There are, however, three o

them and any one will satisfy a request for service. To illustrate the second case, suppose th

expands to three runways, only one of which may take jet aircraft. In this case, the resour

be created as:

create every RUNWAY(2)
let U.RUNWAY(1) = 1 '' FOR ANY AIRCRAFT
let U.RUNWAY(2) = 2 '' LIGHT AIRCRAFT ONLY

Now, aircraft requesting a runway resource must be specific as to the runway type. Light a

may request either, basing their choice, perhaps, on examination of both U.RUNWAY(i) values. Jet

aircraft may request only RUNWAY(1).

5.3.6 Requesting and Relinquishing Resources

A process requests a quantity of any given resource using a request statement. The effect is a

follows. If the requested quantity of the resource is available, it is given to the process, and t

cess continues execution at the statement following the request statement. If the requested quan
203

SIMSCRIPT II.5 Programming Language

 waiting

s

-

ot, the

 at re-

 1. It is

t

ed from

ailable

inated.

llowing

rce

 for, or

ire sev-

 this

g

s

tity is not available, the process is put in a passive state and filed in the queue of processes

for the particular resource.

An optional with priority expression may be added to the request statement. The queue i

ranked on high priority . If the phrase is not present, the priority is treated as zero. An op

tional comma may be placed before the with priority phrase. Examples of the request state-

ment are:

request 1 WORKER(2) with priority 2
request 2 MACHINE(JOB.TYPE)
request 3 UNITS OF MATERIAL with priority 5

As the resource name is in fact a permanent entity name, it should be subscripted. If it is n

variable of the same name is used as an implicit subscript. This variable is initialized to 1

source creation, but care should be taken if it is subsequently altered, by for each resource

statements, for example. Note that some implementations use an implicit subscript value of

recommended that explicit subscripting be used in all cases.

A process that has requested some units of a resource may relinquish some number of these, bu

not necessarily all it has. The number of units of the resource being relinquished is added to the

total quantity available. If any processes are queued awaiting the resource, they are scann

the front of the queue. Each is reactivated, with a corresponding reduction in the quantity of av

units of resource, until one is found whose request cannot be satisfied. The scan is then term

The process relinquishing the resource continues execution at the statement immediately fo

the relinquish statement. The relinquish statements corresponding to the above resou

request statements would be:

relinquish 1 WORKER(2)
relinquish 2 MACHINE(JOB.TYPE)
relinquish 3 UNITS OF MATERIAL

By way of explanation, it was stated that processes may be filed in queues, either waiting

executing with, resources. This is not quite correct. Since a process may, in practice, requ

eral resources concurrently, a special temporary entity (qc.e) is created at each request for a re-

source. It is these qc.e entities that are filed both in the set of resources associated with

process, (process), and also in either of the sets x.resource or q.resource , depending on

whether the request has or has not been satisfied. Each qc.e also has a pointer attribute (who.a)

pointing to the process notice of the requesting process. The attributes of the qc.e entity are shown

in table 5-3. The q.resource set is ranked by high pty.a , thus permitting preemptive queuin

prior to allocation of resources. The q.resource and x.resource pointers are equivalenced, a

a process is either queuing or executing with any given resource.
204

Discrete Simulation Concepts

ular

estroy

t sub-

s no-

5.3.7 Process Notice: Additional Attributes

The process notice has all the standard event attributes (time.a, eunit.a, s.ev.s, m.ev.s).

In addition the following attributes are defined:

Rsa.a : A pointer to the recursive save area for the process.

Sta.a : The current state of the process.

Passive (0)

Active (1)

Suspended (2)

Interrupted (3)

Sta.a may briefly take other (implementation specific) values to indicate partic

transitional states. For instance, a value of 4 could indicate that the process is to d

itself.

Ipc.a : Corresponds to I.event . The process class attribute has the value of the event se

script for process notices of this class. This value is initialized when the proces

tice is created.

F.rs.s :Attribute for owning a set of resources.

For example, the following process declarations:

preamble
processes

include DESIGN, TEST
every CREATION has a SCHEDULE and owns some MATERIALS

Table 5-3. Attributes of QC.E Entity

Attribute Description

who.a The process pointer

qty.a Integer Number of Resource units

pty.a Integer Priority of request

p.rs.s

s.rs.s

p.q.resource or P.X. resource

s.q.rsource or S.X resource
205

SIMSCRIPT II.5 Programming Language

he pro-

rased
will create process notices that have the attributes shown in figure 5-6. The exact layout of t

cess notice is, as for event notices, implementation-specific.

A process notice may be destroyed, as may any temporary entity, using a destroy statement. Be-

fore specifying a destroy statement for a process that is in a suspend ed or interrupt ed state,

consideration should be given to the following points:

1. Resources owned by the process are not automatically relinquished

2. Local text variables of the process and any active subroutines are not automatically e

3. The storage of the rsa.a array is not automatically released.
206

Discrete Simulation Concepts

event

 study

duling

resent-

h

ons to be

nner in

an the
Figure 5-6. Attributes of Process Notices Created by Process Declarations

Above

5.3.8 External Processes and Events

A common validation technique used in simulation modelling is to exercise a model using

data derived from a record of events occurring in the system under study. This is termed trace-driv-

en simulation. Alternatively, a collection of projected event times may, of course, be used to

the behavior of a modelled system.

To support this technique, SIMSCRIPT II.5 provides a mechanism by which, rather than sche

events using statements within a program, they may be scheduled directly from event times p

ed as an input data stream.

It is possible for processes and events to belong to one or both of two categories: internal or

endogenous as has so far been described, and external or exogenous , as described here. Eac

class of external events or processes has, as usual, an associated routine describing acti

taken upon its occurrence. The difference between the two event categories lies in the ma

which the event is scheduled. (Note that the term "event" may be taken here to also me

initiating event of a process.)

Events may be triggered from external input data by declaring them to be external events or

processes in a statement of the form:

DESIGN TEST creation

time.a time.a time.a

eunit.a eunit.a eunit.a

predefined
attributes

p.ev.s p.ev.s p.ev.s

s.ev.s s.ev.s s.ev.s

m.ev.s m.ev.s m.ev.s

sta.a sta.a sta.a

ipc.a ipc.a ipc.a

rsa.a rsa.a rsa.a

f.rs.s f.rs.s f.rs.s

schedule

user-defined
attributes

f.materials

l.materials

n.materials
207

SIMSCRIPT II.5 Programming Language

ade

ad from

ot trig-

xternal

teger

 before

tatement

d in the

rocess-

 these

rticular

y exter-

 that the

units.

of

s

le state-

s initial-
external processes are process name list

or

external processes are event name list

When an event name appears in an external process statement in the preamble, provision is m

to create a new event notice each time an input data record containing the event name is re

the external data. This event notice is identical in form with those already described.

One of the predefined attributes in a process or event notice, eunit.a , records the unit number of

the input device on which information about this event is input. For events and processes n

gered externally, this attribute remains zero. The logical unit numbers of devices on which e

event data are to be input are declared in a statement of the form:

external process units are device list

or

external event units are device list

The words process and event are synonymous in this case. Devices may be specified as in

constants or as variables. If variables are used, they must be initialized to valid unit numbers

the start of simulation. If external events have been declared but no external units statement

appears, the standard input unit is assumed to be a source of external event data. If such a s

does appear, and the standard input unit is also to be used for event data, it must be include

list of external units.

A simulation program having the processes TASK and REPORT might contain the following state-

ments in its preamble:

external processes are TASK and REPORT

external process units are DAILY.TASKS, WEEKLY.TASKS and 5

These statements indicate that the SIMSCRIPT II.5 system must be prepared to trigger the p

es TASK and REPORT from external data, and that three input devices are to be used to input

data. These may be indicated mnemonically as being associated with information about pa

events. However, the SIMSCRIPT II.5 system attaches no significance to these names. An

nal event may be triggered by data read from any of the declared external units.

External events and processes may be included in priority statements, declaring their priority

over other events and processes, whether internally scheduled or externally triggered. Note

priorities are associated with the events or processes, and not in any way with the external

Events or processes that are declared to be external can be given priority over other classes

events but cannot be ranked among themselves by a break ties statement. No ranking attribute

are assigned values by external triggering, as may be done by giving arguments in a schedu

ment. Even if some instances of the event class are internally scheduled and have attribute
208

Discrete Simulation Concepts

erved

se ways

within

mpares

each of

e time at

nt data

 process

: the op-

rmat of

ech-

xternal

e record.

nit from

 decla-

filed in

are filed
ized, they must compete with the externally triggered event notices on a first-come, first-s

basis.

Since an event or process routine can be activated in either of two ways, and each of the

provides a different source of data for the routine, a logical expression is provided for use

such a routine to determine how this instance of the routine was initiated. The expression co

the keyword process or event with either of the property words internal or external and

yields a true or false result. The form of the expression is:

process is property or process is not property

and

event is property or event is not property

as in the statements:

if process is internal,
read NAME and DESTINATION as B 20, (2) I 10
always

and

if event is external and data is ended,
stop
otherwise

5.3.9 Triggering Processes and Events Externally

Events are triggered externally by event data records appearing in chronological order on

the external input devices. Such a data record contains the name of an event or process, th

which it is to occur, and, optionally, data to be read by the event or process routine. The eve

records are read one at a time, their information recognized and deciphered, and event or

notices created for the events or processes indicated. This paragraph deals with two issues

erations performed by SIMSCRIPT II.5 when external process records are read and the fo

the external data records.

When a start simulation statement is recognized, the first task performed by the timing m

anism is to read information about the first event on each of the external units. When an e

data record is read, the event class is recognized and the event time computed from data on th

An event or process notice is created, and the scheduled event time and the number of the u

which the data record was read are stored in the time.a and eunit.a attributes of the notice. If

the event notice has been declared with user-defined attributes, it conforms to the preamble

ration. However, none of the user-defined attributes is assigned values. The notice is then

the future events set corresponding to its class. Internally and externally generated notices

together. They are distinguished by the eunit.a attribute. A coded value of eunit.a , usually

zero, denotes that a notice has been internally scheduled.
209

SIMSCRIPT II.5 Programming Language

ata for

bol is

ptional

ese data

f event

s for a

er

or pro-

 or

xternal

ll three

ly.

e set to

e done
The format of an external data record is:

1. Process or event name, e.g., REPORT

2. Process activation time in any of three formats

3. Data for the process (optional)

4. Mark.v delimiting character (normally "* ")

The name and activation time are read in free form from the external data record. Optional d

the event or process routine may be in any programmer-defined format. A delimiting sym

used by the system to advance properly from one set of external data to the next. As the o

data may span more than one physical record, and a routine may possibly leave some of th

unread, the SIMSCRIPT II.5 system must have a way of advancing to the start of a new set o

or process data when signaled by the timing routine. The SIMSCRIPT II.5 system searche

delimiting character that matches the value of a global variable named mark.v . This is an alpha

variable, which by default is an asterisk, "* ", but which may be assigned a different value und

program control. This delimiter must terminate each set of external data, triggering an event

cess.

5.3.10 Time and Date Expressions in External Data

There are three formats in which event times can be stated. The first is decimal time units

format . In this format, time is specified as a real -valued decimal number such as 0.0, 15.56,

20.0. The number is interpreted as the absolute time at which the event triggered by the e

data record is to occur. In the second format, day-hour-minute format , three integer num-

bers specify the day, hour of the day, and minute of the hour at which the event is to occur. A

numbers must be present. Sample times and their interpretation are:

0 0 0 representing the start of simulation

0 12 30 12:30 in the afternoon of the first day

2 10 37 10:37 in the morning of the third day

Hours are numbered from 0 to 23 and minutes from 0 to 59. In the third format, calendar time

format , the day is expressed as a calendar date, and the hour and minute of the hour asinteger

numbers. For example:

1/15/82 4 30 represents 4:30 in the morning on January 15, l982

Using the calendar date format, the year can be expressed as 1982 or as 82. If the form XX is used,

19XX is assumed. Years after 1999 and before 1900 must therefore be expressed complete

Before the calendar format can be used, the calendar date of the start of simulation must b

provide an origin against which calendar time specifications can be compared. This must b
210

Discrete Simulation Concepts

rou-

s and

sumes

ours).

ulation

 that the

s. For
before the start simulation statement is executed. The origin is set by a call to a library

tine. The arguments to this routine are as shown below:

call origin.r(integer month expression, integer day expression,
integer year expression)

Because simulation time is maintained in time.v and saved in the time.a attribute of event and

process notices as a real number, conversions must be made between calendar specification

the SIMSCRIPT II.5 internal representation. The algorithm that performs this conversion as

the origin date is a Monday, and that simulation starts at the beginning of that day (00.00 h

Time.v is always set to zero at the start of simulation.

Four functions are provided to convert year, month, and day expressions into cumulative sim

times and vice versa. These functions are described in table 5-4. The examples assume

origin time has been set to July 1, 1982, by the call:

call origin.r(7, 1, 82)

These functions may be used directly within statements to convert from calendar format time

example:

schedule a DEPART at date.f(MONTH, DAY, YEAR) + SERVICE.TIME

Sample external event data records, containing no optional data, are:

SERVICE 1/15/80 05 35 *

ARRIVAL 14 05 35 *

DEPART 476.2 *

Table 5.4 Calendar Date Conversion Functions

Name Arguments
Function

Mode
Function
Values

Example

date.f 3 INTEGER
expressions

INTEGER current simulation
day
month, day, year

date.f(7,15,82) =
14

year.f REAL time
expression

INTEGER current year year.f(476.2) =
1983

month.f REAL time
expression

INTEGER 1-12 current month month.f(476.2) = 10

day.f REAL time
expression

INTEGER 1-31
day of current
month

day.f(476.2) = 21
211

SIMSCRIPT II.5 Programming Language

e timing

e,

matted

the ex-

ine. For

 timing

n state-

 process

t set of

s over it

5

When an externally triggered event or process is eventually selected as the current one by th

routine, the number of the unit from which the scheduling data was read is assigned to read.v , the

current input pointer. Rcolumn.v is positioned to read the first column after the activation tim

and control is passed to the event or process routine. In this routine, then, free-form or for

read statements can be used to read any optional data, following the activation time data in

ternal data record. In this way event related data may be passed to this instance of the rout

example:

external processes are SERVICE
.
.
process SERVICE

define CUSTOMER.NAME as a text variable
read CUSTOMER.NAME
.
.
return

end

External event data card:

When an externally triggered instance of a event or process routine first returns control to the

routine (recall that this may happen more than once for a process, through process interactio

ments), any remaining optional data fields present must be skipped in the data stream until mark.v

is encountered, signifying the next set of external process or event data. In no case should a

or event routine attempt to read more data than are written for it, that is, pass into the nex

external data. When a routine reads fewer data than are provided, the programmer can pas

by searching for and moving to the next mark.v symbol, or leave this task to the SIMSCRIPT II.

system.

column number

0 1 2 3 4 5

12345678901234567890123456789012345678901234567890

SERVICE 525.30 JOHNSON *

 data field read mark.v character

position of rcolumn.v when timing routine

transfers to event ARRIVAL
212

Discrete Simulation Concepts

-

al data

rvice

edicted

, and

it are

 the

d

ese can

r it may

s shown
External process data may only be coded in printable form. Binary mode may not be used for ex

ternal process and event data.

The following routine demonstrates an externally triggered process that reads some extern

and executes a work statement. In this example, at process reactivation, the true duration of se

is computed (the process could possibly have been interrupted) and compared with the pr

service time:

process UNLOAD
read ID(UNLOAD) and SERVICE.TIME(UNLOAD)
let START.TIME(UNLOAD) = time.v
work SERVICE.TIME(UNLOAD) days
let DURATION = time.v - START.TIME(UNLOAD)
let OVERRUN=DURATION-SERVICE.TIME(UNLOAD)
print 1 line with ID(UNLOAD), OVERRUN thus

OVERRUN FOR ** WAS ***.*** DAYS
return

end

The important facts to remember about externally triggered events and processes are:

1. Time.v is, as usual, set to the process activation time

2. Read.v is set to the number of the unit on which the triggering data were encountered

which may have further data for the process routine

3. Rcolumn.v is positioned to read the first column after the time data

4. When control returns to the timing routine, data fields on the current external un

skipped until a mark.v delimiter is found, and the data following are used to schedule

next external process from that input unit. Read.v reverts to the standard input unit, an

the timing routine then proceeds in the normal way to select the next event.

If a process may be triggered both internally and externally, and has arguments specified, th

only be initialized if the process has been internally scheduled. The routine can test whethe

expect the attribute values to be set, or whether it should accept data from the external unit a

here:

process UNLOAD given ID and SERVICE.TIME
if process is external

read ID and SERVICE.TIME
always
let START.TIME(UNLOAD) = time.v
work SERVICE.TIME days
let DURATION = time.v - START.TIME(UNLOAD)
let OVERRUN = DURATION - SERVICE.TIME
print 1 line with ID, OVERRUN thus

OVERRUN FOR ** WAS ***.*** DAYS
return

end
213

SIMSCRIPT II.5 Programming Language

ss notice

 inter-

ochas-

odel-

ction

g from

ng

. The

 vary on

andom

m-

the se-

leasing

ction.

e:
Comparing this example with the previous one, note that ID and SERVICE.TIME have been de-

clared as arguments. These names now refer to the local argument values, not the proce

attributes, although they may be initialized from these attributes if the process is scheduled

nally. Thus, the names are not subscripted in this version.

5.4 Modelling Statistical Phenomena

As simulation is essentially a tool for drawing statistical inferences about the operations of st

tic systems, it is essential that a simulation modelling language should provide facilities for m

ling statistical phenomena.

The principal mechanism of the SIMSCRIPT II.5 statistical sampling feature is the fun

random.f , which generates a stream of pseudorandom numbers between 0 and 1. Startin

an initial value, random.f generates successive real numbers that can be used in decision-maki

statements or as data in other statistical calculations. The numbers generated by random.f are

statistically independent of one another. A multiplicative congruence algorithm is used

parameters are dependent on characteristics of internal numeric representations, which may

different machines.

Random.f has one argument, an index number that selects one of several independent r

number streams. Random.f(1) samples from random number stream 1, random.f(5) from

random number stream 5, etc. All SIMSCRIPT II.5 programs are initialized with 10 random nu

ber streams. The starting numbers for these streams are contained in the integer system array.

Traditionally, the first number in a pseudorandom number sequence is called the seed of

quence. As pseudorandom numbers are generated, new values are assigned to seed.v , so that it

contains the current seed expressed in integer form.

Should more streams be needed, a programmer can override the default condition by re

seed.v and specifying his or her own array size, as in:

main
release seed.v(*)
read ARRAY.DIM
reserve seed.v(*) as ARRAY.DIM
read seed.v

end

The random.f function may be referenced in logical or assignment operations, as for any fun

At each reference, a new number from a pseudorandom sequence is returned. For exampl
214

Discrete Simulation Concepts

 vari-

e of the

mples

uments

ach time

 the in-

rrect

le 5-5.

ic vari-

eri-

 use can

d activ-

etween
1. if random.f(1) less than TRANSITION.PROBABILITY

let COUNT = COUNT + 1
always

2. for each CONTESTANT,

do
if random.f(CONTESTANT) greater than FINISH,

file CONTESTANT in POSSIBLE.WINNER
always
add 1 to STEPS(CONTESTANTS)

loop

Random.f can be viewed in two ways — as generating uniformly distributed pseudorandom

ables between 0 and 1 or as generating probabilities. The above examples illustrate the us

function in the probability sense.

SIMSCRIPT II.5 provides twelve functions for generating independent, pseudorandom sa

from commonly encountered statistical distributions. Each of these functions has as its arg

the parameters that describe the distribution and a pseudorandom number stream index. E

one of these functions is invoked, one or more pseudorandom numbers are generated from

dicated stream, using random.f , and an appropriate transformation is made to produce the co

sampling distribution. The functions, the arguments, and their properties are described in tab

If the stream number, i, is negative in any of these function calls, a quantity called an antithet

ate, 1 - random.f(abs.f(i)) , is generated. Antithetic variates are used in simulation exp

ments to reduce the variance of estimates of simulation-generated data. Discussions of their

be found in most simulation texts.

These statistical functions are often used with simulation models to generate event times an

ity durations. Some examples illustrate their use.

1. An activity generator process schedules task processes, assuming that the time b

successive task initiations is an exponentially distributed quantity with mean time of MEAN

days. For example:

process GENERATOR
until time.v gt TIME.LIMIT
do

activate a TASK now
wait exponential.f(MEAN, 1) days

loop
return

end
215

SIMSCRIPT II.5 Programming Language

f

Table 5-5. Statistical Distribution Functions

Name Arguments
Function

Mode
Function Value

beta.f e1, e 2, i

REAL, REAL,
INTEGER

REAL Generates a beta-distributed REAL number with

 e1 = power of x ,

 e2 = power of (1 - x) using stream i

binomial.f i 1, e, i 2
INTEGER,
REAL,
INTEGER

INTEGER Generates the INTEGER number of successes in

i 1 independent trials, each having probability o

success using stream i 2 .

erlang.f e, i 1, i 2
REAL
INTEGER
REAL

REAL Generates an Erlang distributed REAL number

with mean = e and k = i 1 using stream i 2.

exponential.f e, i
REAL,
INTEGER

REAL Generates an exponentially distributed REAL

number with mean = e using stream i.

gamma.f e1, e 2, i

REAL,REAL,
INTEGER

REAL Generates a gamma-distributed REAL number

with mean = 1 and k = e 2 using stream i .

log.normal.f e1, e 2, i

REAL,REAL,
INTEGER

REAL Generates a log normally distributed REAL num-
ber with mean = e1 and standard deviation = e2
using stream i.

normal.f e1, e 2, i

REAL,REAL,
INTEGER

REAL Generates a normally distributed REAL number
with mean =e1 and standard deviation = e2 us-
ing stream i .

poisson.f e, i
REAL,
INTEGER

INTEGER Generates a Poisson-distributed INTEGER num-

ber with mean = e using stream i .

randi.f i 1, i 2, i 3
INTEGER,
INTEGER,
INTEGER

INTEGER Generates an INTEGER number uniformly dis-
tributed between i 1 and i 2 inclusive using
stream i 3.

triang.f e1, e 2, e 3,

i
REAL,REAL,
REAL,
INTEGER

REAL Generates a triangularly distributed REAL num-
ber with minimum = e1, mode = e 2, and maxi-
mum = e3 using stream i .

uniform.f e1, e 2, i

REAL,REAL,
INTEGER

REAL Generates a uniformly distributed REAL number

between e1 and e2 using stream i .
216

Discrete Simulation Concepts

s-
 num-
2. Although similar to the previous example, the TASK process now has a given argument a
sumed to have a Poisson distribution with a mean of 5. Note that two separate random
ber streams are to be used in sampling the distributions:

process GENERATOR
until time.v gt TIME.LIMIT
do

let NUMBER = poisson.f(5.0, 1)
activate a TASK giving NUMBER now
wait exponential.f(MEAN, 2) days

loop
return

end

3. Evaluation of PI (π):

In a rectangular coordinate system (figure 5-7), the equation of a circle is:

i
2
 + j

2
 = r

2

that is, any point (i,j) with i ≤ r and j ≤ r and i
2
 + j

2
 ≤ r

2
 lies inside a circle of radius r. The

area of the circle is πr
2
. A square of side 2r has an area = 4r

2
. The ratio of the area of the

circle to the area of the square is πr
2
/4r

2
 = π/4.

weibull.f e1, e 2, i

REAL,REAL,
INTEGER

REAL Generates a Weibull-distributed REAL number
with shape parameter = e 1 and scale parameter =
e2 using stream i .

Table 5-5. Statistical Distribution Functions - Continued

Name Arguments
Function

Mode
Function Value
217

SIMSCRIPT II.5 Programming Language

with-

 ap-

hen

 0 and
Figure 5-7. A Rectangular Coordinates System

If we generate N points (i,j) within the square in a random fashion, some of the points will fall

in the circle, and some will not. In fact, the proportion of those falling within the circle will be

proximately π/4 of all the points. If M is the total number of those that fall within the circle, t

M/N is approximately equal to π/4. We can estimate the value of π as 4M/N. The accuracy of this

estimate improves as N increases, and is proportional to √N.

The program shown below uses the function uniform.f to generate points (i,j) that are random-

ly distributed within a square of side R. It does this by generating random numbers between

R and assigning them in pairs to i and j .

Each such point (i,j) lies somewhere inside the square. If i 2 + j 2 ≤ r 2, the point also lies within

the circle, and 1 is added to M to record this fact. This procedure is repeated N times. Each time, a

different i and j are generated and used to determine if the point (i,j) lies within the circle. At

the end of N point generations, the approximation to π is printed.

main
normally mode is real
define HIT, I and NO.SAMPLES as integer variables
read RADIUS and NO.SAMPLES
let RADSQ = RADIUS**2
let HIT = 0
for I = 1 to NO.SAMPLES,
do

let XSAMPLE = uniform.f(0.0, RADIUS, 1)
let YSAMPLE = uniform.f(0.0, RADIUS, 1)
if XSAMPLE**2 + YSAMPLE**2 le RADSQ, '' within circle

add 1 to HIT
always

loop
let APPROX.PI = 4 * HIT/NO.SAMPLES
print 1 line with NO.SAMPLES, APPROX.PI as follows
THE ESTIMATED VALUE OF PI AFTER *** SAMPLES IS *.*****

stop
end

j

r

i

r

r

r

r

218

Discrete Simulation Concepts

ctions,

pling

selects

ility val-

he

n done

iated

Sam-

amples
When a sampling distribution cannot be characterized by one of the statistical sampling fun

declarations can be given that define table look-up sampling variables. A table look-up sam

variable has a list of possible numeric values together with their associated probabilities. It

a sample value by generating a random number and matching it against the possible probab

ues. Table look-up variables, hereafter called random variables, are declared in statements of t

form:

the system has a name random step variable

or

every entity has a name random linear variable

Such random variables must be declared as attributes, either of some entity or of the system .

The first form states that sampling is done from a real - or integer -valued sampling distribution

in a steplike manner. The second states that sampling is performed with linear interpolatio

between real sample values. The following illustrations describe how this is done.

Assume that a random variable, or attribute, has the sampling distribution in table 5-6 assoc

with it. Note that the cumulative probabilities in the left-hand column range from 0.0 to 1.0.

pling is performed by generating a probability value using random.f(1) , matching it with a value
in column 1, and selecting an appropriate value from column 2. Since samples from random.f are

always between 0.0 and 1.0, and are uniformly distributed between these extremes, the s

drawn from column 2 will be chosen randomly.

Table 5-6. Sampling Distribution (Example)

Cummulative Probability Sample Value

0.00
0.10
0.20
0.25
0.38
0.45
0.60
0.77
0.90
0.99
1.00

 0.0

 1.0

 2.5

 3.0

 9.0

11.8

20.9

30.0

33.3

50.0

66.7
219

SIMSCRIPT II.5 Programming Language

a val-

rned

a val-

pping

-

5.4.1 Random Step Variables

If the sampling variable is defined by the statement:

the system has a SAMPLE random step variable

sampling is done as follows in the statement let X = SAMPLE :

1. A random number is drawn from random.f(1)

2. This random number is compared with successive cumulative probability values until

ue is found that equals or exceeds it

3. The column 2 value (table 5-6) associated with this cumulative probability value is retu

as the value of the sample. Examples are:

If the random number drawn is 0.20, SAMPLE = 2.5

If the random number drawn is 0.45, SAMPLE = 11.8

If the random number drawn is 0.65, SAMPLE = 30.0

If the random number drawn is 0.95, SAMPLE = 50.0

5.4.2 Random Linear Variables

Random variables defined as step can be either integer - or real -valued. If the sampling vari-

able is defined by the statement:

the system has a SAMPLE random linear variable

sampling is done as follows:

1. A random number is drawn from random.f(1)

2. This random number is compared with successive cumulative probability values until

ue is found that equals or exceeds it

3. Interpolation is done between the column 2 value (table 5-6) associated with the sto

cumulative probability value and the column 2 value preceding it. If i represents the index

of the stopping probability, C(i) the probability, and V(i) the sample value, the interpo

lation formula is:

SAMPLE = V(i-1) + random.f - C(i-1) [V(i) - v(i-1)]

C(i) - C(i-1)

Examples are:

If the random number drawn is 0.20, SAMPLE = 2.5

If the random number drawn is 0.45, SAMPLE = 11.8

If the random number drawn is 0.65, SAMPLE = 23.6
220

Discrete Simulation Concepts

e in the

 spec-

ber

number

enever

 When-

PT II.5

tion.

ype of

ial
If the random number drawn is 0.95, SAMPLE = 42.6

Random values defined as linear can only be real -valued. Interpolations are done in real

arithmetic, and the accuracy is determined by the machine representation. Rounding is don

above examples for illustration only.

If the mode of random variables does not agree with the background mode, the mode must be

ified in a define statement. This define statement may also be used to specify a random num

stream other than the default stream (number 1). On some implementations, this stream

may be declared to be a variable, which must evaluate to the number of a valid stream, wh

used.

Example:

Define SAMPLE as a random attribute of an entity JOB. The values of SAMPLE are real . Sampling

is done using linear interpolation and random stream 6.

every JOB has a SAMPLE random linear variable
define SAMPLE as a real, stream 6 variable

Sampling is always automatic. That is, a random variable behaves as a right-hand function.

ever a random variable appears, a routine that performs sampling is executed. SIMSCRI

generates these routines using random number stream 1 unless otherwise specified.

5.4.3 Programmer-Defined Random Variables

If the you require a type of sampling other than step or linear, you must omit the words step or

linear from the definition of the random variables and provide your own sampling func

Three system functions are provided for sampling (table 5-7). They correspond to the t

lookup previously described.

Because of the special storage assigned to random variable sample values and probabilities, spec

input treatment is necessary. When a variable defined as random appears in a free-form read state-

ment, the following occurs:

1. Pairs of free-form data values are read until a mark.v character appears.

Table 5-7. System Sampling Functions

Function Mode Arguments Description

istep.f integer v,e Returns a random sample from table v using stream

e.

lin.f real v,e Returns a random sample from table v using inter-

polation and stream e.

rstep.f real v,e Returns a random sample from table v using stream

e.
221

SIMSCRIPT II.5 Programming Language

 sample

il-

c-

 1.0.

a-

with an

e pairs
2. The first of each pair is assumed to be a probability. The second is assumed to be a

value.

3. A system-defined, three-attribute entity, random.e , is created for each pair. The probab

ity value is assigned to its first attribute, prob.a . The sample value is assigned to its se

ond attribute, referred to as ivalue.a if the variable is integer , or rvalue.a if the

variable is real .

4. The entities are filed in a set having the same name as the random variable. The third at-

tribute in each random.e record is a pointer named s.variable .

5. Occupies the space declared for the random variable or attribute.

Input probabilities can be cumulative or individual. If cumulative, the last probability must be

If individual, they must sum to 1.0. All random variables have their probabilities stored cumul

tively. If any probability appears as less than 0 or greater than 1, the program terminates

error message.

The following examples illustrate how random variables are defined and used.

Definition:

the system has a RANDVAR random step variable
define RANDVAR as an integer variable

Input statement:

read RANDVAR

Input data:

0.1 10 0.2 25 0.35 40 0.55 100 0.8 150 1.0 200 *

The sampling probabilities are expressed cumulatively in six pairs of sampling values. Thes

are stored in six entities in a set named RANDVAR.

Storage of RANDVAR sample values is shown in figure 5-8.
222

Discrete Simulation Concepts

 as the

nent

n-

d

s as the

mples.

o

 with-

ata col-

text can
Figure 5-8. Storage of RANDVAR Sample Values

Use of the random variable:

let NEXT.VALUE = RANDVAR
if RANDVAR greater than LIMIT,
.
.

If the input data had the form:

0.1 10 0.1 25 0.15 40 0.2 100 0.25 150 0.2 200 *

the data would be stored in the same form. Individual probability values are accumulated

data are read.

Random variables cannot appear in any other form of read statement, because input of a random

variable "value" obviously means something special. If RANDVAR is an attribute of a perma

entity, one can say read RANDVAR(I) but not read RANDVAR, because the latter statement is i

terpreted as a free-form array read statement. Only a single random variable data list can be rea
at one time. If RANDVAR is an attribute of a temporary entity, read RANDVAR is interpreted as read

RANDVAR(entity) , using implied subscripting.

5.5 Simulation Analysis

The principal outputs of simulation experiments are statistical measurements. Such quantitie

average length of a waiting line and the percentage of idle time of a machine are typical exa

Two features, accumulate and tally , provided in SIMSCRIPT II.5, allow such information t

be gathered during a simulation run, without requiring any other explicit action to be specified

in the program. These two preamble statements can instruct the compiler that automatic d

lection and analysis are to be performed at appropriate places in a program. The program

RANDVAR 0.1 0.2 0.35

10 25 40

0.55 0.8 1.0

100 150 200

0

223

SIMSCRIPT II.5 Programming Language

ent of

er

lue, ap-

 a tem-

s

ariable

ted

nt is

mes

f

rs
remain clear of any explicit statements which might obscure the logic of the model. A statem

the form:

tally compute list of name

performs computations similar to those of the compute statement, but in a global manner, ov

time, rather than locally to an instance of its use. Each time the named variable changes va

propriate actions are taken to collect the statistics requested in the compute list. Name may be the

name of an unsubscripted global variable, unsubscripted system attribute, or an attribute of

porary, permanent, or permanent compound entity. If name is an attribute of a permanent entity, a

many variables are reserved to store the statistical counters as there are elements of name. If name

is an attribute of a temporary entity, each entity record is generated with statistical counter-v

attributes. Name cannot be a function attribute, a random variable, or a dimensioned array.

Some examples illustrate the use of the tally statement and the attributes and functions genera

by it.

1. Use of tally with an unsubscripted global variable:

Preamble:

preamble
define TIME as a real variable
.
.
tally MEAN.TIME as the mean,
and VAR.TIME as the variance of TIME
.
.

Preamble generates:

(a) A statistics-gathering function routine, which is called whenever an assignme

made to TIME anywhere in the program. The function counts the number of ti

TIME changes value, and records the sum and sum of squares of the values oTIME.

(b) Global variables [A.1, A.2, A.3] to record the number, sum , and

sum.of.squares of TIME for the computations of mean and variance .

(c) Functions MEAN.TIME and VAR.TIME which use the values of the global counte

to compute mean and variance whenever they are referenced.

The tally variables may be used in statements such as:

print 1 line with MEAN.TIME AND VAR.TIME as follows
MEAN = **.*** VARIANCE = ***.***
if (VAR.TIME/MEAN.TIME) le TOLERANCE
.
.

224

Discrete Simulation Concepts

f the

te

h

 the
2. Use of tally with an attribute of a permanent entity:

Preamble:

preamble
permanent entities

every PERSON has some CASH.IN.POCKET
.
.
tally AVERAGE.CASH as the mean

 and MAX.CASH as the maximum of CASH.IN.POCKET
.
.

Preamble generates:

(a) A statistics-gathering function routine with one argument, the index number o

referenced entity.

(b) Attributes for the sum and number for each entity. These are permanent attribu

arrays with N.PERSON elements.

(c) A function AVERAGE.CASH to compute mean from sum and number .

(d) Attribute MAX.CASH for each entity. MAX.CASH is a permanent attribute array wit

N.PERSON elements.

The tally may be used in statements such as:

for each PERSON,
list AVERAGE.CASH(PERSON) and

MAX.CASH(PERSON)
for each PERSON,

compute MEAN.CASH as the mean of
 AVERAGE.CASH(PERSON)

3. Use of tally with an attribute of a temporary entity:

Preamble:

preamble
temporary entities

every JOB has a NUMBER.OF.OPERATIONS
.
.

tally TOTAL as the sum of NUMBER.OF.OPERATIONS
.
.

Preamble generates:

(a) A statistics-gathering function routine with one argument, the pointer to

referenced entity.
225

SIMSCRIPT II.5 Programming Language

ion cal-

which

mmer

ify one

-

(b) An additional attribute named TOTAL for the temporary entity JOB.

The tally variables may be used in statements such as:

for each JOB in QUEUE(MACHINE),
do

if TOTAL(JOB) le MAX.ALLOWED,
remove the JOB from QUEUE(MACHINE)
perform NEXT.JOB given JOB

always
loop

Statistical computations of a different sort are made when the word accumulate replaces tally .

These calculations introduce simulation time into the average, variance, and standard deviat

culations, weighting the collected observations by the apparent length of simulation time for

these values have held. Table 5-8 compares the tally and accumulate computations. To be con-

cise, some additional notation must be defined:

T
L

The simulated time at which an accumulated variable was set to its current value

T
0

The simulated time at which accumulation starts

Accumulate and tally statements cannot both be declared for the same variable. A progra

must decide whether a variable is time-dependent or not, normally a simple task, and spec

or the other. An illustration of the use of the accumulate statement is given in the following ex

ample.

preamble
permanent entities

every MACHINE has a STATUS, a
PROCESSING.SPEED and owns a QUEUE

temporary entities
every JOB has a VALUE and belongs to a QUEUE

accumulate AVG.QUEUE as the mean
and MAX.QUEUE as the maximum of N.QUEUE

accumulate MACHINE.STATE as the mean of STATUS
end
226

Discrete Simulation Concepts
Figure 5-9. A Sample Time-Series

Table 5-8. Tally and Accumulate Computations

Statistic Tally Accumulate

NUMBER N N

SUM ∑X ∑X*(TIME.V - T
L
)

SUM.OF.SQUARES ∑X
2

∑X
2
*(TIME.V - T

L
)

MEAN SUM/NUMBER SUM/(TIME.V - T
0
)

MEAN.SQUARE SUM.OF.SQUARES/
NUMBER

SUM.OF.SQUARES/(TIME.V - T
0
)

VARIANCE MEAN.SQUARE -MEAN**2
MEAN.SQUARE - MEAN**2

STD.DEV SQRT.F(VARIANCE)
SQRT.F(VARIANCE)

MAXIMUM Largest X Largest X

MINIMUM Smallest X Smallest X

2 4 6 8 10 12 14 16 180

1

2

3

4

5

Simulated time in decimal days

N
um

be
r

in
 Q

U
E

U
E

(1
):

N
.Q

U
E

U
E

(1
)

1
.2

18
.0

17
.1

14
.1

12
.4

11
.2

8.
3

3.
0

6.
1

4.
6

8.
0

227

SIMSCRIPT II.5 Programming Language

in

in

s

s, and

mber of

to-

s, over
The sums in table 5-9 are maintained for the computation of AVG.QUEUE(1). If, at simulated time

11.2 (time.v=11.2), AVG.QUEUE(1) appears in a statement such as list AVG.QUEUE(1) ,

it is computed from table 5-9 data as 31.0/11.2=2.77 . That is, the average number of jobs

QUEUE(1) from time.v=0 to time.v=11.2 is 2.77 . If at some time between changes

N.QUEUE(1) , say at time.v=0 , a value for AVG.QUEUE(1) is requested, it is computed a

[16.5+5(10-8.3)]/10=2.5 by the function AVG.QUEUE.

More complete information on the values attained by tallied global variables, system attribute

attributes of permanent entities can be obtained by requesting a frequency count of the nu

times a variable takes on specified ranges of values. Statements of the form:

tally name1 (r1 to r2 by r3) as the histogram of name2

define an array name1 with (r2 - r1)/r3 + 1 elements, one for each element of name2, plus an ad-

ditional element for overflows. If name2 is the name of a permanent attribute, an array of his

grams will be defined. The interval between r2 and r1 is divided into classes r3 units wide. If a

sample falls between r1 and r1 + r3 , the value of the element name1(1) is incremented by 1. If

it falls between r1 + r3 and r1 + 2r3 , name1(2) is incremented, and so forth.

Thus, the average value of a variable, and the distribution of values it takes at different time

the duration of a simulation run, may be requested by preamble statements such as:

Table 5-9. Accumulate Computations

N.QUEUE

(1)

Time Value
Began

(2)

Time Value
Ended

(3)

Increment

(4)=(3)-(2)

Area

(5)=(1)*(4)

Sum

(5)

0 0 1.2 1.2 0 0

1 1.2 3.0 1.8 1.8 1.8

3 3.0 4.6 1.6 4.8 6.6

2 4.6 6.1 1.5 3.0 9.6

3 6.1 8.0 1.9 5.7 15.3

4 8.0 8.3 0.3 1.2 16.5

5 8.3 11.2 2.9 14.5 31.0

2 11.2 12.4 1.2 2.4 33.4

1 12.4 14.1 1.7 1.7 35.1

0 14.1 17.1 3.0 0 35.1

1 17.1 18.0 0.9 0.9 36.0
228

Discrete Simulation Concepts

r

ually

er case,

t refer-

he dis-

gram

 the lat-

t in the

ion of

e

 proper

t

hine can
preamble

define VALUE as a real variable

tally AVERAGE as the mean and

FREQUENCY(0 to 100 by 5) as the histogram of value

Whenever VALUE changes, observations are summed to provide data for computing AVERAGE, and

counts are made in 21 interval counters that indicate the number of times VALUE is between 0 and

5, 5 and 10, 10 and 15, etc. If a value is less than r1 , it is counted in the first cell. If equal to o

greater than r2 , it is counted in the last cell. The range specifications of the histogram are us

defined as constants, but in some implementations may be defined as variables. In the latt

the range variables must be assigned meaningful values before the monitored variable is firs

enced.

The histogram array may be displayed, as a subscripted array, in any of the normal ways. T

play formatting has the responsibility for labelling the individual element values of the histo

array. Note that histograms cannot be compiled for attributes of temporary entities because

ter may not have subscripted attributes.

Histograms are defined differently for variables that appear in accumulate statements. What is

of interest is not how many times values within a given range appear, but the total time spen

different ranges of values during a simulation run. This allows, for instance, for the calculat

state probabilities. Consider the following example:

preamble
permanent entities

every MACHINE has a STATUS, and owns a QUEUE
.
.

accumulate MEANQ as the mean of N.QUEUE
accumulate STATE.PROBS(0 to 2 by 1)

as the histogram of status
' ' POSSIBLE VALUES OF STATUS ARE:
' ' STATUS = 0 MACHINE IDLE
' ' STATUS = 1 MACHINE IDLE BUT COMMITTED
' ' STATUS = 2 MACHINE ENGAGED

.

.
end

As simulation proceeds, the value of STATUS changes for the different machines. Each tim

STATUS changes, the length of time the machine was in that particular state is added to the

element of the array STATE.PROBS. Since MACHINE is a permanent entity, and STATUS is

therefore a one-dimensional attribute array, STATE.PROBS is a two-dimensional array. The firs

dimension is N.MACHINE and the second is 3, derived as ((2-0)/1 + 1).

The percentage time, and therefore the state probabilities, spent in each state by each mac

be obtained by:
229

SIMSCRIPT II.5 Programming Language

used

ents of

tement

us-

lation
for each MACHINE,
print 1 line with

STATE.PROBS(MACHINE,1)/time.v,
STATE.PROBS(MACHINE,2)/time.v,
STATE.PROBS(MACHINE,3)/time.v as follows

PROBABILITIES OF BEING IN STATES 0, 1 AND 2 ARE *.**, *.**, *.**

and adaptive decisions can be made within a model by such statements as:

if STATE.PROBS(1,1)/time.v < STATE.PROBS(2,1)/time.v,
call ACTION(1)

else
.
.

Each tally or accumulate statement also generates a routine for reinitializing the counters

in calculating its statistical quantities. These routines can be invoked at any time by statem

the form:

reset the totals of variable list

Thus, the declarations of the above preamble make the following statements possible:

reset totals of N.QUEUE(MACHINE)
reset totals of STATUS(5)
reset totals of N.QUEUE(5) and STATUS(5)
for each MACHINE,
reset totals of N.QUEUE(MACHINE)

In cases where both periodic and cumulative statistics are required, the tally, accumulate , and

reset statements can be qualified so that multiple statistical counters are used. The sta

forms are:

tally variable as the name1 statistics of name2
tally variable(n to n by n) as the name1 histogram of name2
accumulate variable as the name1 statistics of name2
accumulate variable(n to n by n) as the name1 histogram

of name2
reset name1 totals of name2

Daily, weekly, and cumulative statistics for N.QUEUE in the above preamble could be requested

ing qualified names as shown below:

accumulate
DMEANQ as the daily mean,
WMEANQ as the weekly mean and
MEANQ as the overall mean of N.QUEUE

Periodic events could then print the relevant statistics at daily and weekly intervals in simu

time, resetting only the appropriate counters by using the qualifiers in the statements:
230

Discrete Simulation Concepts

ociated

cifica-

fer-

logic in

 passed

s cannot

 return

d as an

nts of a

 called

aintained

mpu-

iable is

 the fol-
reset the daily totals of N.QUEUE
reset the weekly totals of N.QUEUE

or

reset the daily and weekly totals of N.QUEUE

If a reset statement does not specify one of the declared qualifying names, all counters ass

with the relevant variable are reinitialized. Where variables are used in histogram range spe

tions, they should be only altered following a reset statement, and before any subsequent re

ence to the monitored variable.

It should be noted that the compiler can only generate the necessary statistics-gathering

those cases where values are referenced using their globally known names. If a variable is

to a routine as an argument, where it is referenced by another name, the appropriate action

be taken. If it is returned as a yielded argument, of course, the changes will be noted upon

from the routine. An exception, however, is the case where an array base pointer is passe

argument. As such pointers effectively pass the array values by reference, the actual eleme

monitored array may be referenced under a different name, that of the local argument of the

routine. Such usage cannot be detected by the compiler and, hence, no statistics can be m

for these references.

A final note on statistics-gathering concerns the minimization of storage requirements for co

tations of statistical quantities. It may happen that the statistics of changes to a program var

required, but the actual value of the variable is not needed for any other purpose. Consider

lowing example:

preamble
.
.
temporary entities

every JOB belongs to a QUEUE,
has a DUE.DATE and an OVERRUN

.

.
tally AVG.LATE as the mean of OVERRUN

end

process JOB.STATS
.
.
for each JOB in QUEUE
let OVERRUN = DUE.DATE(JOB) - time.v
.
.

If the logic of the program does not require the value of OVERRUN for any other purpose than to

compute the average, it is possible to perform these tally computations on OVERRUN without its
231

SIMSCRIPT II.5 Programming Language

e

ns on

ories:

tected

, where

ing the

r com-

natory

roduces

amble

 global

nsion-

pts are

spelled

iables,

 and oth-

s only

e state-

repara-

s as set

, the re-

titling

ts in

 II.5
value being stored. This alternative provides the convenience of tally and accumulate

specifications without wasting entity storage space by storing unnecessary information. Declar

OVERRUN as a dummy variable in the preamble declaration:

define OVERRUN as a dummy variable

This declaration saves one location in each JOB entity created. Such savings, resulting from dummy

specifications, can be significant in models requiring a large number of statistical computatio

many entities.

Any preamble-defined variables and attributes can be declared as dummy, but these should only be

used for tally or accumulate purposes.

5.6 Model Verification and Debugging

Even carefully prepared programs are rarely error-free. Errors in a program fall into two categ

syntactic errors and logical errors. Errors in the syntax of SIMSCRIPT II.5 programs are de

and reported by the language compiler. Error and warning messages are displayed, referring

appropriate, to the program statement line where the error was detected, and usually identify

incorrect word or symbol. Such errors may then be corrected and the program resubmitted fo

pilation. A listing of the error messages produced by the compiler, together with an expla

message for each, is contained in each SIMSCRIPT II.5 user's manual. The compiler also p

a numbered listing of the statements within each program section compiled, including the pre

section. Following this listing of each section is a cross-reference listing that names each

and local variable, entity type, and subprogram referenced, specifying for each its mode, dime

ality, and the line numbers in which references appear. Variables used as implicit subscri

included in this cross-reference. Careful examination of the cross-reference can identify mis

variable names, which may otherwise by default be taken as declarations of new local var

references to undeclared functions, which may be taken as references to subscripted arrays,

er typographical errors in program preparation.

If syntax errors are detected within subprograms (but not within the preamble section), it i

necessary to recompile those incorrect routines, preceding them with a copy of the preambl

ments as input to the compiler. This feature of separate routine compilation facilitates the p

tion of large programs containing many routines.

Recall that some special routines may be generated by the compiler to perform such task

management, entity creation, and statistics gathering. If the preamble has not been altered

dundant regeneration of these routines may be suppressed by prefixing the word old to the pream-

ble definition. In addition, even the compiled listing of this preamble may be suppressed by

it very old preamble in the definition.

Alternatively, we should explain that certain statements and programming construc

SIMSCRIPT II.5 are implemented by generating a number of additional SIMSCRIPT
232

Discrete Simulation Concepts

pecial

erated

bject

erve to

f some

an be

ecific

les pro-

come

hat are

er from

lement-

n must

endent

ingful

 pro-

 the cur-

ing to

 listed

iation

at, are

me and

output

ually in-

outine

ted

mech-

output.

isting

 in con-

ential

ip and
statements (unseen in the normal listing) which are then interpreted by the compiler. A s

compilation option may be specified that allows these statements, and any compiler-gen

routines, to be included in the program listing. It is also possible to obtain a listing of the o

code generated by the compiler. Although these listings are not normally of use, they can s

determine the precise actions specified and thus prove helpful in pinpointing the source o

complex errors.

Eventually all routines in a program will have been compiled without error. These routines c

submitted, with any required data, for execution. The SIMSCRIPT II.5 user's manual for a sp

implementation should be consulted for details on the management of the object code modu

duced by the compiler and their linking and execution. Errors in program logic may then be

apparent, either by the abnormal termination of the program or by the production of results t

deemed incorrect.

The possible reasons for abnormal termination are many and varied. They may arise eith

error conditions detected by the operating system of the machine on which the system is imp

ed or those detected by the SIMSCRIPT II.5 system. In the first case, the action to be take

be determined by the operating system response to the error condition, which may be indep

of the SIMSCRIPT II.5 system.

When the SIMSCRIPT II.5 system detects an error condition, it endeavors to supply mean

information that will help you to identify and correct the source of error. An error message is

duced that describes the reason for termination. A traceback is also produced, which names

rently executing subprogram, usually identifying the line of program source text correspond

the error location, and lists any arguments and local variable values. This information is then

for each subprogram in the hierarchy of such subprograms, leading back to the program init

in the main routine.

The precise format of this traceback, and the options that may be selected to vary its form

implementation dependent. Consult the user's manual. In general, variables are listed by na

mode, and their values interpreted in a meaningful way. A report on the status of any input/

devices, the current contents of the future events set, and memory usage statistics are us

cluded.

On completing the error traceback report, the SIMSCRIPT II.5 system attempts to call a r

with the predefined name snap.r . If you have included a routine of this name, it will be execu

at this point. This routine may include any valid SIMSCRIPT II.5 statements and provides a

anism by which a specially written routine may be added to augment the normal traceback

Snap.r may also be written to produce additional information on the status of a program, by l

the contents of selected global variables. Examine the program status at the time of error,

junction with an up-to-date program listing. This will often identify an error in program logic.

Many of the SIMSCRIPT II.5 implementations provide for comprehensive checking and pot

error detection: array subscript bound checking, invalid entity referencing, set membersh
233

SIMSCRIPT II.5 Programming Language

ompila-

 is crit-

mplex

cation

ndeed,

ination

on.

cessing,

ng pro-

esses

m and

alues

T II.5

alter-

in the

eled

ion, by

s to be

ut gen-

ecom-

ng no

n moni-

be

These

ce in
ownership checking, and so forth. These checks may usually be suppressed by selecting c

tion options for well-tested programs, at some gain in execution speed. Unless performance

ically important, however, it may prove worthwhile to retain these checks. Rarely can a co

program claim to be fully tested, and this checking proves most valuable in the early identifi

of errors.

Should the traceback and error reporting prove inadequate to determine the error source, or i

should the error be manifest through incorrect program output, rather than by any error term

action, there are several programming aids that can help to track the progress of computati

The most common error situation is that data values are known before one stage of the pro

but the results of the data manipulation appear incorrect at a later stage. Simulation modelli

vides a particularly difficult case, where the ordering of many interacting computational proc

may not be clearly determined. In such circumstances, it is usually helpful to rerun the progra

incorporate a number of additional display actions which more closely follow the changing v

of the key variables. Thus, the section of program logic in error may be isolated. SIMSCRIP

provides a number of ways by which additional display output may be obtained with minimal

ation to the program text.

The most direct way is to include extra display statements at chosen significant points with

logic. The use of list statements minimizes the programming required to obtain clearly lab

output. The traceback output may also be requested at any point, without any error condit

including the statements:

trace

or

trace using device

The use of left- and right-hand monitoring routines enables all references to selected variable

noted. Their values may be checked, modified if necessary, and any required display outp

erated. By including a single preamble declaration, together with the monitoring routines, at r

pilation, almost any variable, with some restrictions, may be selected for monitoring, requiri

change to its referencing within the program. These changes may be easily reversed whe

toring is no longer required.

Two checking statements, before and after , which may be included in the preamble, may

used to monitor a number of the more complex operations performed in SIMSCRIPT II.5.

statements name programmer-supplied routines, which are to be called before or after the spec-

ified operations. These operations are after creating or before destroying named entities,

and filing in or removing from named sets. As the future events set is of special importan

simulation modelling, two special forms of these statements, using the words scheduling or

canceling , apply to certain of the operations on this set.
234

Discrete Simulation Concepts

trans-

 argu-

e user-

e sim-

t

rt, and

 to
To use before or after tracing, routines having the same number of input arguments as are

mitted for the operation being monitored are written and included with the program. These

ments will be used to pass entity pointers or index values, and any required subscripts, to th

supplied checking routines.

Suppose, for example, during the validation of a simulation model, it is desired to display th

ulation times at which any SHIP entities are filed in a BERTH.SET. The statements to do this migh

be:

Preamble:

permanent entities
every HARBOR may own a BERTH.SET
.
.

temporary entities
every SHIP has a TONNAGE

and may belong to a BERTH.SET
.
.

before filing in BERTH.SET call CHECK
.
.

Routine:

routine CHECK given SHIP, SUB1
define SHIP and SUB1 as integer variables
list time.v, attributes of SHIP, SUB1
return

end

As shown, the routine must be written to accept the correct number of set subscripts. BERTH.SET,

here, is one-dimensional and the dimension identifies the owning HARBOR. As in the case of mon-

itored variables, these calls may be added to or removed from a program, with minimal effo

require no modification to any existing program routines.

Table 5-10 lists the variations of the before and after statements, with the arguments passed

the routines called.
235

SIMSCRIPT II.5 Programming Language

ments,

, under

riable,

efore

pri-

 pointer

may be

ecisely

n deter-

-

e same

ant have

 be pro-

ues

 memo

s

lation

t
In some implementations the entity identifier passed for a remove first or remove last has a

zero value.

Removals from the events set by the timing routine may not be monitored by the above state

as these are not done in the usual way. SIMSCRIPT II.5 does provide a mechanism by which

program control, the activation of events or processes may be monitored. A subprogram va

between.v , may be assigned the name of a routine which will then be called immediately b

each new activation of a process or event routine. At the time that the between.v routine is called,

the simulation time, time.v , will already have advanced to the time.a attribute of the selected

event or process notice, the global variable event.v has been updated to the event or process

ority class, and the global variable of the same name as the event or process type holds the

to the event or process notice, allowing the attributes to be referenced. This event tracing

inhibited at any time by resetting between.v to zero.

5.7 Synchronous Variables

Recall that it is possible for two or more process interactions or events to be scheduled for pr

the same instant in simulation time. The order of activation of the associated routines is the

mined from the class or priority of each, while the value of time.v remains constant. This oper

ation, however, may not prove satisfactory if two or more of these routines must access th

variable. If it is modified by the first, this modified value is the one accessed by the second. What

is required is a mechanism by which such values appear unchanged until all events at an inst

been completed, and the simulation time has been advanced. Such a mechanism may

grammed, using the between.v feature. In the following example, we assume that the val

which may be accessed by "parallel interactions" are elements of a one-dimensional array. A

entity is created, through left-hand monitoring of these values (discussed in paragraph 6.10), for

each assignment to any value. A routine called through the between.v variable updates the value

appropriately, using an equivalenced name to inhibit monitoring, at the first change in simu

Table 5-10. Before and After Arguments

Operation Before After

creating an entity (not allowed) Entity identifier

destroying an entity Entity identifier (not allowed)

scheduling an event Entity identifier, time Entity identifier, time

canceling an event Entity identifier Entity identifier

filing in a set Entity identifier, set subscripts Entity identifier, set subscripts

removing from a set Entity identifier, set subscripts Entity identifier, set subscripts

Note: In file before and file after statements, the identifier of the second named entity is no
passed as an argument.
236

Discrete Simulation Concepts

-

d as re-
time. A local saved variable is used in this routine to record the value of time.v , allowing an ad-

vance in time to be detected.

preamble
the system owns a SYNCH.SET

and has a (XARR, YARR)
define XARR as a 1-dimensional array monitored on the left
define YARR as a 1-dimensional array
temporary entities

every MEMO has a VALUE and an INDEX
and belongs to the SYNCH.SET

define INDEX as an integer variable
end

main
let between.v = 'SYNCH.RTN'
.
.
start simulation

end

left routine XARR(SUBSCRIPT)
define SUBSCRIPT as an integer variable
enter with ASG.VAL
create a MEMO
let INDEX(MEMO) = SUBSCRIPT
let VALUE(MEMO) = ASG.VAL
file MEMO in SYNCH.SET
return

end

routine SYNCH.RTN
define SAV.TIME as a saved variable
if SAV.TIME ne time.v

let SAV.TIME = time.v
for each MEMO in SYNCH.SET
do

remove MEMO from SYNCH.SET
let YARR(INDEX(MEMO)) = ASG.VAL(MEMO)
destroy MEMO

loop
always
return

end

A statement such as let XARR(1) = XARR(1) + 1 does not appear to have any effect until sim

ulation time advances. This example merely demonstrates the principle. It may be extende

quired.
237

SIMSCRIPT II.5 Programming Language

ity-at-

n con-

 sim-

nter has

e num-

job con-

ugh the

center.

eue of

, mea-

op. Ex-

act of

nal job

d, and
5.8 Simulation Example

The example described in this paragraph is designed to illustrate the SIMSCRIPT II.5 ent

tribute-set structure in a natural problem setting. For a complete development of simulatio

cepts and modelling techniques, refer to Building Simulation Models with SIMSCRIPT II.5, by E.

C. Russell.

5.8.1 A Sample Model

To illustrate the naturalness, readability, and power of SIMSCRIPT II.5, we shall now model a

ple job shop that operates as follows.

There are any number of machines clustered in groups called production centers. Each ce

different machines, but within a center, machines are identical. The number of centers and th

ber of machines within centers will not change during a simulation run.

Jobs are orders that come into the shop from outside at times provided as input data. Each

sists of a sequence of tasks to be performed by specified machines. The routing of jobs thro

shop and the processing time at each machine, are specified as input data.

After a job is processed by one machine group, it is routed to the next required production

It is put into process at once if there is a machine available. Otherwise, it is put into the qu

jobs waiting for a machine in that center.

The purpose of the study is to evaluate the performance of the shop for a particular workload

suring the delays experienced by jobs at each machine group, and overall delays in the sh

periments which might typically be conducted with such a model include: evaluating the imp

reconfiguring the machines in the shop, deciding whether the system could handle additio

types, considering whether reordering the tasks for certain jobs would improve turnaroun

studying the effect of different workloads.
238

Discrete Simulation Concepts

.

e

Production Centers

First Job

Index 1 2 3 4 5 6 7 8

Type Press Saw Lathe Mill Shaper Grinder Welder Drill

Number
of
Machines

1 3 2 1 1 1 1 2

0 Arrival Time

Routing set of
tasks for this
job

Task Mean

Center Index

Press Saw Shaper Welder Lathe

1 2 5 7 3

0.5 1.0 0.5 2.0 1.0

The machines are modeled as a single resource comprising several production centers
Each center has a number of units representing its number of identical machines. The
sequence of tasks for each job is represented as a set of temporary entities called th
routing set.

Machine Type

Time

Task Production
239

SIMSCRIPT II.5 Programming Language

s and
1 preamble
2 normally mode is integer
3
4 resources
5 every PRODUCTION.CENTER has a MACHINE.TYPE
6 define MACHINE.TYPE as a text variable
7
8 processes
9 every JOB has an ARRIVAL.TIME
10 and owns a ROUTING.SET
11 define ARRIVAL.TIME as a real variable
12
13 temporary entities
14 every task has
15 a TASK.DOER
16 a TASK.DURATION
17 and belongs to a ROUTING.SET
18 define TASK.DURATION as a real variable
19 define TASK.DOER as an integer variable
20
21 define ROUTING.SET as a fifo set
22
23 external events are JOBINIT and ANALYSIS
24 external event unit is 1
25
26 define CYCLE.TIME as a real variable
27
28 accumulate AVG.QUEUE.LENGTH as the average
29 of N.Q.PRODUCTION.CENTER
30
31 tally AVG.CYCLE.TIME as the average,
32 and NO.OF.JOBS.COMPLETED as the number of CYCLE.TIME
33
34 define LAST.REPORT.DATE as a real variable
35
36 end

The Preamble contains the destination of the objects involved in the simulation — its processe
resources, its entities, attributes, and sets, and the required statistics.

Jobs passing through the shop are modelled by the JOB process.

The route each job follows through the shop is defined by an ordered list of TASK’s called the
ROUTING.SET. Each TASK is a temporary entity with attributes defining the required machine (DOER)
and processing time (DURATION).

Desired statistics are specified non-procedurally, with accumulate and tally statements .
240

Discrete Simulation Concepts

 and
duc-
1 main
2 use 1 for input
3 read N.PRODUCTION.CENTER
4
5 create every PRODUCTION.CENTER
6
7 for each PRODUCTION.CENTER do
8 read MACHINE.TYPE(PRODUCTION.CENTER)
9 U.PRODUCTION.CENTER(PRODUCTION.CENTER)
10 loop
11
12 start simulation
13
14 stop
15 end

This routine sets up the production center data structure. The number of production centers is read
the centers are created. The type and number of machines for each center is then read until all pro
tion centers have been defined.

Simulation then begins with the first job arrival . . . JOB.INIT .

Number of production centers {8

Type and numberPRESS 1 SAW 3 LATHE 2 MILL 1
of each machineSHAPER 1 GRINDER 1 WELDER 1 DRILL 2



Data read by MAIN
241

SIMSCRIPT II.5 Programming Language

242

 are read.
he vali-

1 event JOBINIT
2 define MACHINE.NAME as a text variable
3
4 create A JOB
5 let ARRIVAL.TIME.. = TIME.V
6
7 read MACHINE.NAME
8 until MACHINE.NAME = “$” DO
9 create a TASK
10 read TASK.DURATION..
11
12 for each PRODUCTION.CENTER
13 with machine.type(production.center) eq machine.name
14 find the first case
15 if found
16 let TASK.DOER(TASK) = PRODCUTION.CENTER
17 file the task in the ROUTING.SET
18 else
19 write MACHINE.NAME as /, “NO FACILITIES FOR :”, T *
20 destroy the TASK
21 always
22 read MACHINE.NAME
23 loop
24
25 activate this JOB now
26
27 end

This event sets up the job data structure.

The first job arrives at time 0. The job’s required machines and associated processing times
As the machine names are read, they are validated against the production center names. T
dated task is then filed into the job’s routing set.

The JOB process is activated.

First job arrives { JOBINIT 0 0 00
at time 0.

Routing and processing{PRESS 0.5 SAW 1.0 SHAPER 0.5 WELDER 2.0 LATHE 1.0 $ *

times for this job

JOBINIT 0 0 00
 SAW 1.0 LATHE 4.00 GRINDER 0.5 SHAPER 2.0$ *

 Second and subsequentJOBINIT 0 0 30
 jobs with arrival  DRILL 1. SHAPER 1.00 LATHE 2.0 SHAPER 2.0 MILL 1.00 $ *
 times, routing and JOBINIT 0 2 30
 processing times.  SAW 1.0 WELDER 1.00 DRILL 0.5 LATHE 1.5 MILL 2.00 $
*

Data read by JOBINIT

Discrete Simulation Concepts

a

er

cess
1 process JOB
2 define TASK, REQUIRED as integer variables
3
4 until ROUTING.SET is empty
5 do
6 remove the first TASK from the ROUTING.SET
7 request 1 units of PRODUCTION.CENTER(TASK.DOER(TASK))
8 work TASK.DURATION.. HOURS
9 relinquish 1 units of PRODCUTION.CENTER(TASK.DOER(TASK))
10 destroy the TASK
11 loop
12
13 let CYCLE.TIME = TIME.V - ARRIVAL.TIME
14
15 end

This process models the complete life cycle of a job through the shop.

UNTIL Processing of this JOB is to continue until its ROUTING.SET is empty.

REMOVE The first TASK in the set is removed for processing.

REQUEST A MACHINE of type indicated by TASK.DOER is requested.

Execution of the requesting JOB process is suspended, if necessary, until
MACHINE becomes available. While a particular JOB process is suspended,
other processes, including other instances of JOB process, will run using other
machines.

As no priorities are specified, a first-in-first-out discipline is provided whenev
more than one suspended process is waiting for the same type of resource.

Work on this JOB continues only when its MACHINE becomes available.

WORK The JOB delays itself for a set time to model actual processing by a MACHINE.

RELINQUISH The MACHINE is made available for other jobs.

DESTROY Since this operation is complete, the TASK entity is destroyed.

LOOP Mark end of UNTIL loop.

Numeric results are gathered “on the fly” by accumulate and tally statements contained in
the Preamble. The final computation, is the total time, including delays, that it took to pro
this job.
243

SIMSCRIPT II.5 Programming Language

alysis
tics
1 event ANALYSIS
2 print 1 line thus

E X A M P L E J O B S H O P S I M U L A T I O N
3
4 skip 2 output lines
5 print 1 line with LAST.REPORT.DATE * HOURS.V,
6 TIME.V * HOURS.V thus

REPORTING PERIOD ***.* HRS. TO ***.* HRS.
7
8 skip 1 output line
9 print 2 lines with NO.OF.JOBS.COMPLETED,
10 AVG.CYCLE.TIME * HOURS.V thus

JOBS COMPLETED DURING PERIOD : ***
AVERAGE COMPLETION TIME : *.** HRS.

11
12 call DETAILED.REPORT
13 let LAST.REPORT.DATE = TIME.V
14 reset totals of CYCLE.TIME
15 for each PRODUCTION.CENTER
16 reset totals of N.Q.PRODUCTION.CENTER
17
18 end

This event is initiated at times specified in the input data shown below.

It prints the report heading, and three lines of statistics as shown on the sample report. An
then calls DETAILED REPORT, for completion of the report. The last few lines reset the statis
for the next reporting time.

Two requests for  ANALYSIS 0 8 0
 analysis and reports.  ANALYSIS 1 0 0

 One request at 8 hours 
 and the other at 1 day.

Format of time is
days hours minutes (d h m)

Data read by ANALYSIS
244

Discrete Simulation Concepts
1 routine DETAILED.REPORT
2 define GRAND.AVERAGE as a real variable
3 skip 1 output line
4 print 1 line thus

AVERAGE NUMBER OF JOBS WAITING FOR EACH PRODUCTION CENTER :
5
6 SKIP 1 OUTPUT LINE
7 PRINT 1 LINE THUS

MACHINE CENTER AVERAGE QUEUE
8
9 skip 1 output line
10 for each PRODUCTION.CENTER
11 do
12 print 1 line with MACHINE.TYPE.., AVG.QUEUE.LENGTH
13 thus

****************************** **.**
14
15 compute GRAND.AVERAGE as the average of AVG.QUEUE.LENGTH
16 loop
17 skip 1 output line
18 print 1 line with GRAND.AVERAGE thus

OVERALL AVERAGE QUEUE LENGTH : **.**
19
20 end

This routine is called by event ANALYSIS to output the table of machine groups and queue
lengths shown on the sample report below.

E X A M P L E J O B S H O P S I M U L A T I O N

REPORTING PERIOD 0.0 HRS. TO 8.0 HRS.

JOBS COMPLETED DURING PERIOD : 2

AVERAGE COMPLETION TIME : 6.50 HRS.

AVERAGE NUMBER OF JOBS WAITING FOR EACH PRODUCTION CENTER :

MACHINE CENTER AVERAGE QUEUE

PRESS 0.0
SAW 0.0
LATHE 0.0
MILL 0.0
SHAPER .25
GRINDER 0.0
WELDER .19
DRILL 0.0

OVERALL AVERAGE QUEUE LENGTH : .05

Sample report

Report requested after 8 hours of simulation
245

SIMSCRIPT II.5 Programming Language

can be

y

 group,

into the

ks. Each

. Task

elected

he se-
There are many other ways to formulate the job shop model. A more realistic approach

found in the book, Building Simulation Models with SIMSCRIPT II.5. In that version, there are an

number of machines clustered in groups. Each group has different machines but within a

machines are identical. Instead of having a routing associated with each job that comes

shop, there are a number of job prototypes. Each job prototype consists of a sequence of tas

task comprising the prototype has a specified machine group and mean task completion time

completion times are sampled from exponential distributions using the given mean.

Each job arrives according to a Poisson process, at which time its job prototype is randomly s

according to a statistical distribution provided as input data. Each job is routed through t

quence of machine groups needed to do its selected prototype's tasks.

The output report from that simulation is as follows.
246

Discrete Simulation Concepts
E X A M P L E J O B S H O P S I M U L A T I O N

THE JOB TYPE DESCRIPTIONS
JOB NAME FIRST

TASK SEQUENCE
MACHINE MEAN TIME
CASTING_UNITS 2.08
PLANES .58
LATHES .33
POLISHING MACHINES 1.00

JOB NAME SECOND
TASK SEQUENCE

MACHINE MEAN TIME
SHAPERS 1.75
DRILL_PRESSES 1.50
LATHES 1.08

JOB NAME THIRD
TASK SEQUENCE

MACHINE MEAN TIME
CASTING_UNITS 3.92
SHAPERS 4.17
DRILL_PRESSES .83
PLANES .50
POLISHING_MACHINES .42

THE JOBS WERE DISTRIBUTED AS FOLLOWS:
NAME PROBABILITY
FIRST .241
SECOND .681
THIRD 1.000

RESULTS AFTER 40.01 HOURS OF CONTINUOUS OPERATION
JOB TYPE NO. COMPLETED AVERAGE DELAY

(HOURS)
FIRST 51 .18
SECOND 94 .32
THIRD 47 .18

DEPARTMENT INFORMATION

NAME NO. OF MACHINES UTILIZATION AVG. NO. OF JOBS MAXIMUM
IN BACKLOG BACKLOG

CASTING UNITS 14 .57 .01 2
LATHES 5 .60 .47 6
PLANES 4 .38 .04 2
DRILL_PRESSES 8 .59 .39 8
SHAPERS 16 .73 1.24 13
POLISHING_MACHINES 4 .44 .06 2

Sample Report
Job shop model from “Building Simulation Models with SIMSCRIPT II.5
247

SIMSCRIPT II.5 Programming Language
248

t-time

number

nsion

or the

ements
 pointer,

ase of a

 to

n array

ith great

nter, as

ocated

ys. In

er of a

a one-

 for the

e base

d in an

n the

he
6. Advanced Topics

6.1 Introduction

This chapter describes a variety of SIMSCRIPT II.5 features which need not concern the firs

user, but which an experienced programmer may find of interest.

6.2 Programmer-Defined Array Structures: Pointer Variables

We stated previously that the allocation of storage space to an array is determined from the

of elements, or in the case of multidimensional arrays, from the product of the array dime

bounds. Although true in principle, this statement is a simplification. The storage allocation f

elements of a one-dimensional array, for example, is determined from both the number of el
and the declared mode of the array. Associated with this storage allocation is an array base

which holds the address in the computer memory of the allocated storage space. In the c

one-dimensional array named X, the associated base pointer is named X(*) . Recall this usage in

the reserve statement. The function of the reserve statement is to allocate computer storage

an array and assign the internal location of this storage as the value of the base pointer. A
base pointer is internally represented in a way similar to an integer variable. It can be manipu-

lated as an integer variable. However, this is generally unnecessary and should be done w

care and full appreciation of the internal array representation.

A one-dimensional array X, allocated storage by the statement:

reserve X(*) as 10

is structured as a contiguous group of memory locations, pointed to by the array base poi

shown in figure 6-1. The base pointer itself is not contiguous with the array storage, but is all

storage in the same way as an integer variable.

A two-dimensional array was introduced conceptually as an array of one-dimensional arra

fact, this is precisely how a two-dimensional array is internally represented. The base point

two-dimensional array points not directly to the doubly subscripted variable elements, but to

dimensional array of pointers. Each element of this pointer array serves as a base pointer

one-dimensional array representing an entire row of the two-dimensional array. Note that th

pointer itself and the array of row pointers are all pointer type variables, and therefore store

integer -like form. The representation of the fully subscripted variable elements depends o

declared mode of the array. A two-dimensional array X, which has been allocated storage by t

statement:

reserve X(*,*) as 5 by 3

is stored as shown in figure 6-2.
249

point-

 array

te-

bscript

g any

lement

to right.
Figure 6-1. One-dimensional Array X with Its Base Pointer

A three-dimensional array is structured similarly. The base pointer points to an array of row

ers, each of which points to an array of column pointers, each of which, in turn, points to an

of element variables. A three-dimensional array X , which has been allocated storage by the sta

ment:

reserve X(*,*,*) as 5 by 3 by 2

is stored as shown in figure 6-3. Every element reference with at least one asterisk in its su

list is a pointer. Every fully subscripted element reference, that is, with no asterisk occupyin

subscript position, is a reference to a single element variable. In internally evaluating an e

reference, pointers are cascaded from one dimension to another, using subscripts from left

Figure 6-2. Base Pointers in a Two-Dimensional Array

ELEMENTS
 X(1)

 X(2)
BASE POINTER  X(3)

X(*)  X(4)

 X(5)

 X(6)

 X(7)

 X(8)

 X(9)

 X(10)

ELEMENTS

 X(1,1)

 X(1,2)

 X(1,3)

 X(2,1)
ROW POINTERS  X(2,2)

 X(1,*)  X(2,3)
BASE POINTER  X(2,*)

X(*,*)  X(3,*)  X(3,1)

 X(4,*)  X(3,2)

 X(5,*)  X(3,3)

 X(4,1)

 X(4,2)

 X(4,3)

 X(5,1)

 X(5,2)

 X(5,3)
250

Advanced Topics

es. Ar-

les)

plicitly.

nsider-

inters

ements

otation
An appreciation of these internal structures is not essential to the use of subscripted variabl

rays are allocated storage using the reserve statement, and array elements (subscripted variab

are referenced by previously described methods. Pointer words need not be mentioned ex

Also, the manner in which rows and columns of arrays are linked need not be taken into co

ation.

An understanding of array representation, however, together with the ability to manipulate po

as variables, permits the construction of arbitrary data structures suited to the specific requir

of different problems. Such pointer manipulation may be accomplished using the asterisk n

described above in SIMSCRIPT II.5 statements.

Figure 6-3. Base Pointers in a Three-Dimensional Array

COLUMN

POINTER

ELEMENTS

 X(1,1,*)  X(1,1,1)
 X(1,2,*)  X(1,1,2)
 X(1,3,*) 

 X(1,2,1)
 X(2,1,*)  X(1,2,2)
 X(2,2,*) 
 X(2,3,*)  X(1,3,1)

 X(1,3,2)
ROW POINTER  X(3,1,*) 

 X(1,*,*)  X(3,2,*)  X(2,1,1)
BASE POINTER  X(2,*,*)  X(3,3,*)  x(2,1,2)

X(*,*,*)  X(3,*,*) 
 X(4,*,*)  X(4,1,*)  X(2,2,1)
 X(5,*,*)  X(4,2,*)  X(2,2,2)

 X(4,3,*) 
 X(2,3,1)

 X(5,1,*)  X(2,3,2)
 X(5,2,*) 
 X(5,3,*)  X(3,1,1)

 X(3,1,2)

 X(3,2,1)
 X(3,2,2)

 X(3,3,1)
 X(3,3,2)

 X(4,1,1)
 X(4,1,2)

 X(4,2,1)
 X(4,2,2)

 X(4,3,1)
 X(4,3,2)

 X(5,1,1)
 X(5,1,2)

 X(5,2,1)
 X(5,2,2)

 X(5,3,1)
 X(5,3,2)


251

SIMSCRIPT II.5 Programming Language

 num-

inter, to

ructure

. The

 each

 only

xample,

ed ar-

cess-

ogram

in (b).
The utility and application of this feature are best described in a series of examples.

1. It can be used to construct a "ragged table," a two-dimensional array with a different

ber of elements in each row. The construction follows:

(a) Set up a base pointer and an array of row pointers:

reserve TABLE(*,*) as 5 by *

This statement assigns an array of five elements, each of which contains an unassigned po

the base pointer TABLE(*,*) . The asterisk in the array assignment clause 5 by * indicates that

only pointers, not data values, are to be stored. After execution of this statement, the st

shown in figure 6-4 exists in memory. The base pointer points to the array of row pointers

row pointers do not yet point to anything because arrays have not been assigned to them.

Figure 6-4. Memory Structure After Reserve Statement

(b) Assign data arrays to each of the row pointers. A dimension must be given for

row, by reading a data value for each row. For example:

for I = 1 to 5,
do

read D
reserve TABLE(I,*) as D

loop

The reserve statement assigns an array of D elements to each of the row pointers TABLE(I,*) ,

as I varies from 1 to 5. If the values of D read are 4, 2, 6, 1 , and 3, respectively, the final ragged

table structure appears as shown in figure 6-5.

The ragged array TABLE(I,J) may be used in the same way as any rectangular array, with the

restriction that care must be taken not to reference a nonexistent array element, as, for e

TABLE(4,3) in figure 6-5.

2. The pointer mechanism may be used to make the processing of multiple-dimension

rays more efficient, eliminating the recomputation of unchanging subscripts when pro

ing elements of a single dimension in some regular fashion. For example, the pr

segment described in (a) below can be made more efficient by rewriting it as shown

ROW POINTERS
 TABLE(1,*)

BASE POINTER  TABLE(2,*)
TABLE(*,*)  TABLE(3,*)

 TABLE(4,*)
 TABLE(5,*)
252

Advanced Topics

of

er.

eserved
n the

array
n-
. This
nstanc-
to zero
may be
low il-

 of a

 level,

 con-

 6-7.
(a) for I = 1 to 10, read CUBE(J+7,K+L,I)

(b) let DUMMY(*) = CUBE(J+7,K+L,*)

for I=1 to 10, read DUMMY(I)

where DUMMY has been defined as a one-dimensional array, of the same mode as CUBE, but has not

been reserved. The revised statement eliminates the need for recomputing the subscripts CUBE

not affected by the for loop every time a new element is accessed. Little additional memory space

is taken, for the array DUMMY never has more space allocated than is needed for its base point

Figure 6-5. Memory Structure After Assignment of Data Arrays to Row Pointers

3. It has already been stated that once an array has been reserved, it cannot be r
again. The SIMSCRIPT II.5 system ignores instructions to reserve an array whe
pointer to the array already has a value. When a program is first initialized, all
pointers are zero, making the first reserve possible. After this, the presence of a no
zero value in a pointer variable dictates whether or not a reserve will be executed
makes it possible to use a reserve statement more than once to reserve multiple i
es of an array by saving the value of the array base pointer and then resetting it
before the second and subsequent reserves. Any specific instance of the array
accessed by restoring the value of the appropriate base pointer. The example be
lustrates how such a mechanism can be employed:

A program is to be developed to store genealogical information in the form

family tree. Such a tree has an individual at its apex, his parents at the next

his parents' parents below that, and so on. Figure 6-6 illustrates a family tree

taining four levels of genealogical information.

This information can be stored in a rectangular array, as depicted in figure

While simple enough to do, there is a waste of computer memory because of all the

empty cells.

DATA ELEMENTS
 TABLE(1,1)
 TABLE(1,2)
 TABLE(1,3)

 TABLE(1,4)

 TABLE(2,1)
 TABLE(2,2)

ROW POINTERS 
 TABLE(1,*)  TABLE(3,1)

BASE POINTER  TABLE(2,*)  TABLE(3,2)
 TABLE(*,*)  TABLE(3,*)  TABLE(3,3)

 TABLE(4,*)  TABLE(3,4)
 TABLE(5,*)  TABLE(3,5)

 TABLE(3,6)

{ TABLE(4,1)

 TABLE(5,1)
 TABLE(5,2)
 TABLE(5,3)
253

SIMSCRIPT II.5 Programming Language

ore

w how

rs.
A more memory-conserving storage scheme is shown in figure 6-8. No m

computer words are allocated than there are data to store. Our task is to sho

this scheme can be programmed and used with the technique of array pointe

Figure 6-6. Family Tree

Figure 6-7. Family Tree Stored in a Rectangular Array

Figure 6-8. Family Tree Stored in a Ragged Table

In the following program, the data of each level are stored in an array TREE. At level one, TREE has

one element; at level two, two elements; at level three, four elements; ...; and at level N, 2N-1 el-

ements. The array pointers for the N arrays are stored in a list called LEVEL, which has N elements,

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

INDIVIDUAL...

PARENTS.................................

GRANDPARENTS...

GREAT-
GRANDPARENTS

1

2 3

3 5 6 7

4 9 10 11 12 13 14 15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15
254

Advanced Topics

and the

 records

 pro-

9. To
one for each level of the genealogical tree. Assume that the number of levels in the tree

names (coded as integer numbers) of the family members arranged in proper order on data

are given. A tree with the family data suitably arranged is first constructed using the following

gram:

preamble
normally mode is integer
define LEVEL and TREE as 1-dimensional arrays

end
read N '' Number of levels
reserve LEVEL(*) as N
for I = 1 to N,
do

reserve TREE(*) as 2**(I-1)
read TREE
let LEVEL(I) = TREE(*)
let TREE(*) = 0

loop
stop
end

For N = 4 , the memory structure at the end of program execution looks as shown in figure 6-

print out a person's Kth-level ancestors, write:

read K
let TREE(*) = LEVEL(K)
for I = 1 to 2**(K-1)

print 1 line with TREE(I) as follows
Ancestor is **

To pick out specific ancestors, the tree can be searched until a matching code is found:

read CODE
for I = 1 to N,
do

let TREE(*) = LEVEL(I)
for J = 1 to 2**(I-1)
do

if TREE(J) equals CODE
print 1 line with CODE, J and I as follows

Ancestor ** found in position * of level *
stop
otherwise

loop
loop
print 1 line with CODE as follows
UNABLE TO FIND AN ANCESTOR WITH THE CODE **
stop
end
255

SIMSCRIPT II.5 Programming Language

25

imple-

anip-

nstruct

ices can

s can

asterisk

r arrays

k, (i.e.,

ntains

bsequent

gful to

inters,

w any

llowing
This example resembles example (1) above, but the "ragged table" structure is explicitly

mented using one-dimensional arrays to further illustrate the way in which pointers may be m

ulated.

An understanding of the use of pointer variables, then, enhances a programmer's ability to co

and use data structures. There are many potential applications: For example, rows of matr

be interchanged by simply changing pointer values. Large matrices with many identical row

be compressed by arranging several pointers to point to the same array row.

Figure 6-9. Memory Structure for Family Tree, N = 4

It may now be appreciated that the reserve statement may be restated as:

reserve pointer list as array description

where a pointer list consists of a list of array or array row base pointers, having at least one

in their subscript list, and an array description describes the size and content of the array o

being reserved and pointed to. If an array description does not contain a notational asteris

the phrase by * is not used), an array of data elements is reserved. If an array description co

a notational asterisk, the asterisk indicates that pointer words are being reserved and that su

reserve statements will be used to allocate data arrays to these words. It is only meanin

have a single notational asterisk in an array description, as this is sufficient to indicate that po

not data, are being allocated at this level of the array dimensionality. This asterisk must follo

constants and expressions that define the dimensions of previous subscript positions. The fo

reserve statements illustrate these concepts:

reserve ARRAY(*,*) as 5 by 7

(Allocates a 5 by 7 data array.)

reserve ARRAY(*,*) as 6 by *

(Allocates six pointer variables.)

1

2

3

4

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

LEVEL TREE
6

Advanced Topics

 function

ion.

 been

 sub-

e label

ar sim-

on a la-

bels

pted la-

bscript-

bscript

 Thus,

efined.

scripted

ith

 error

ram con-

te-
reserve ARRAY(*) as 6 by *

(Similar to above. ARRAY(*,*) is understood.)

reserve ARRAY(1,*) as 12

(Allocates twelve data elements to a pointer variable.)

reserve X(*),Y(*) and Z(*) as N, TABLE(J,*) as N+8

(Recall that several pointers can be assigned storage space of the same dimension and

(pointers or data), and that several array reservations can be made in the same reserve state-

ment. Each pointer is, of course, assigned a separate block of storage.)

As shown in the fourth example above, a base pointer can be written as X(*) regardless of the de-

clared dimensionality of the array. For instance, if X is defined as three-dimensional, X(*) is inter-

preted as X(*,*,*) . Although convenient, this does little to elucidate the logic of the operat

In general, it is recommended that the full notation be used.

6.3 Still More on Changing the Flow of Computation

A variety of methods for directing the flow of control during program execution have already

presented. Additional power to direct the control flow is provided by allowing labels to be

scripted. A label name is subscripted in the same way as a variable, that is, by suffixing th

with a subscript expression enclosed in parentheses. Although labels used in this way appe

ilar to subscripted variables, there are some differences. The number of subscripts allowed

bel name is limited to one. A reserve statement is not used with subscripted labels; rather, la

carrying specific integer subscript values are defined in place, in the same way as unsubscri

bels. If any occurrence of a label is subscripted, all references to this label name must be su

ed. Although all subscripted labels must be defined with positive integer constants in their su

positions, it is unnecessary for the subscripts to start with 1, or for them to be consecutive.

LABEL(4) can be defined without having LABEL(1), LABEL(2) , or LABEL(3) appear in the

program. Control, however, should be transferred only to subscripted labels that have been d

The general form of a subscripted label go to statement is:

go to label(arithmetic expression)

As in other forms of the go to statement, the word to is optional. When a subscripted go to

statement is executed, control is transferred to the statement prefixed by the label name sub

by the integer value of the expression in the go to statement. If no label has been defined w

this subscript value, an undefined transfer will occur, usually terminating execution with an

message. Thus, care must be exercised when using this statement. For example, in a prog

taining the subscripted labels A(1), A(2) , and A(3) , the programmer must ensure that the sta

ment go to A(I) is not executed when the value of I is not 1, 2 or 3. The following statements,

emulating the functions of a simple calculator, demonstrate the use of subscripted labels:
257

SIMSCRIPT II.5 Programming Language

indicat-

d as a

bitrari-

ust be

 be con-

 listed,

el

 of

ithin

osition.

 called

ntified,

ls.

several
define OPCODE as an integer variable
read OPERAND1, OPERAND2, OPCODE
go to OP.LABEL(OPCODE)

'OP.LABEL(1)' let RESULT = OPERAND1 + OPERAND2
go to PRINT

'OP.LABEL(2)' let RESULT = OPERAND1 - OPERAND2
go to PRINT

'OP.LABEL(3)' let RESULT = OPERAND1 * OPERAND2
go to PRINT

'OP.LABEL(4)' let RESULT = OPERAND1 / OPERAND2
go to PRINT

'PRINT' print 1 line with RESULT thus
RESULT IS: *******.******

The read statement accepts two numeric operands and an integer value in the range 1 to 4

ing the operations addition, subtraction, multiplication, and division. This integer code is use

label subscript to select the appropriate transfer. The maximum subscript value allowed is ar

ly limited to 3000. As an internal table (dimensioned by the largest subscript value used) m

generated, the use of widely ranging subscripts can lead to inefficiencies.

When the number of possible transfers is small, and the indexing values can be chosen to

tiguous from 1, an alternative construct may be useful. The possible transfer labels may be

in order, within a go to statement. If label1, label2, label3, ..., labeln represent

statement labels, and E represents an arithmetic expression, a statement of the form:

go to label1 or label2 or ... or labeln per E

evaluates e (rounding if it is real valued) and transfers program control to label1 if E=1, to

label2 if E=2, ..., to labeln if E=n. That is, control is transferred to the label in the first lab

position, or the second label position, or the nth label position, according to the computed value

the expression E. Again, illegal transfers, where E lies outside the range 1 to n, cause abnormal

program termination in most SIMSCRIPT II.5 implementations. Any label names defined w

the program may be included in the list, and any name may be repeated in more than one p

The label names in the list must be separated by the word or , or by a comma. The word to is op-

tional. Typical computed go to statements are:

go to ACCOUNT.ONE or ACCOUNT.TWO per CUSTOMER

go to READ.AGAIN, WINDUP, CONTINUE or HALT per

INSTRUCTION

Two or more distinct label names may be used to identify the same statement. They are

equivalent labels. The use of equivalent labels, together with the computed go to statement, may

be useful during program development, when the logical paths in the program have been ide

but not all segments have been fully coded. The go to statement may list all the segment labe

A number of these may reference the same statement. The use of a computed go to is shown in

the following example, which is an alternative to the previous example. It can be seen that
258

Advanced Topics

d in the

d be

 trans-

 the de-

mmer

ol flow

 make
additional functions are planned, but not yet developed. The code for these may be adde

appropriate places without modifying the go to statement.

go to ADD,SUB,MULT,DIV,EXP,SIN,COS,TAN,LOG per OPCODE
'ADD' let RESULT = OPERAND1 + OPERAND2

go to PRINT
'SUB' let RESULT = OPERAND1 - OPERAND2

go to PRINT
'MULT' let RESULT = OPERAND1 * OPERAND2

go to PRINT
'DIV' let RESULT = OPERAND1 / OPERAND2

go to PRINT
'PRINT' print 1 line with RESULT thus

RESULT IS : *******.******
go to NEXT
.
.

'EXP'
'SIN'
'COS'
'TAN'
'LOG'

print 1 line thus
THIS OPERATION NOT YET IMPLEMENTED
go to NEXT

Although the above constructs provide great flexibility in directing control flow, they shoul

used carefully. Not all illegal transfers may be detected as such, possibly allowing undesired

fers with strange side effects. The relevant user's manual should be consulted to determine

gree to which transfers are checked in a particular implementation. Alternatively, the progra

may explicitly check the index value before it is used in the go to statement.

Under some circumstances, it may be desirable to write sections of a program in which contr

may be explicitly directed without the need to uniquely define statement labels. In order to

local changes in the flow of computation, several statements are provided.

The jump ahead statement transfers control to the first here statement that follows it. The jump

back statement transfers control to the first here statement that precedes it. Several jump state-

ments can refer to the same here statement, as in the following example:
259

SIMSCRIPT II.5 Programming Language

ith the

ritten

ed.

om-

o share

nges of

everal

uring
read DATA
if DATA > 10

add DATA to DATA.GT.10
jump ahead

otherwise
if DATA > 5

add DATA to DATA.GT.5
jump ahead

otherwise
add DATA to DATA.LS.5

here

The usefulness of this label-free capability becomes particularly apparent when coupled w

text substitution feature of SIMSCRIPT II.5. Consider the following example of a program w

for interactive terminal execution:

preamble
normally mode is integer
substitute these 7 lines for INPUT

here if mode is not integer
print 1 line thus
PLEASE USE NUMERIC VALUE
skip 1 field
jump back

otherwise
read
.
.

end

main
input LAMBDA
.
.
input MU
.
.

Each substitution for input contains a label-free jump when the program text is fully expand

6.4 Attribute Definitions: Packing and Equivalence

It has been assumed thus far that all data values are stored individually in separate and distinct c

puter locations. Occasionally, to minimize storage space requirements, it may be desirable t

storage locations between more than one variable. This may be done in two ways: If the ra

values of the variables are limited in magnitude, a single location may be divided between s

variables. If certain variables are known to be of importance only at nonconcurrent times d
260

Advanced Topics

e com-

it posi-

d in the

 names

 packed

 reason

 neither

e data

cutable

acking

these

ms. In

expect-

ttribute

ng ap-

and to

cking

py the

6 are

ctions

cking

 fac-

T II.5

d

g a

e same

lapping

t appear

ded
program execution, they may share a common location. Locations in computer memory ar

monly referred to as "words". The size of each, usually a measure of the size in binary dig

tions, is termed the "wordlength."

When a word is divided between more than one data value, the values are said to be packe

word. When a data location is so defined that it may be referenced by different names, the

are said to be equivalent. SIMSCRIPT II.5 offers facilities for packing integer and alpha data

and for equivalencing any attribute values, with some restrictions.

Subscripted system attributes, and attributes of temporary and permanent entities, can be

and equivalenced. Unsubscripted system attributes can only be equivalenced. This is one

for defining certain values as system attributes, rather than as global variables, which can be

packed nor equivalenced.

The SIMSCRIPT II.5 system uses programmer-specified packing factors to store and retriev

values. The fact that data are packed is reflected in a program's preamble but not in its exe

statements. A programmer operates at all times on a logical level, for example, AGE(PERSON); and

the SIMSCRIPT II.5 system determines how AGE(PERSON) is physically represented. Owing to

inherent differences between computer systems, it is impossible to implement all forms of p

and equivalencing in an identical manner on all SIMSCRIPT II.5 implementations. Use of

features, therefore, may adversely affect the portability of programs between different syste

general, with the decreasing limitations on memory capacity apparent on most systems, it is

ed that such system-dependent usage may be avoided.

Attribute packing is specified by attaching a packing factor enclosed in parentheses to an a

name. Three types of packing are available: field, bit, and intrapacking. Field and bit packi

ply to all subscripted attributes. Intrapacking applies only to subscripted system attributes

attributes of permanent entities.

Using field and bit packing, data fields can be laid out within computer words. The field-pa

notation (1/2), for example, specifies that the attribute value to which it is attached is to occu

first half of a computer word. The bit-packing notation (1-16) specifies that bits 1 through 1

to be used to store an attribute value. Because computers differ in word size and in instru

available to access parts of words, it is impossible to specify all the possible field- and bit-pa

factors available in different SIMSCRIPT II.5 implementations. Table 6-1 shows the packing

tors available on typical 32-bit word-length machines. Consult the appropriate SIMSCRIP

user’s manual to determine the packing supported on a particular machine.

Attribute names are processed as they appear in every statements. Normally, they are allocate

successive words within an entity structure. Attribute equivalence may be specified by enclosin

list of attribute names within parentheses. All attributes within parentheses are assigned to th

word. If two such attributes have the same packing factors, their names are synonyms. Over

packing factors can also be specified. Attributes enclosed in equivalencing parentheses mus

in a list without the separators a, an , or the . The parenthesized list must, however, be prece
261

SIMSCRIPT II.5 Programming Language

ctors
by one of these words. The following examples illustrate the use of field- and bit-packing fa

for attributes of temporary entities.

temporary entities

1. Declaration:

every PERSON has an AGE and a NAME

Entity structure:

2. Declaration:

every PERSON has an (AGE(1/2) and NAME(2/2))

Entity structure:

Table 6-1. Field and Bit-Packing Factors for Common 32-Bit Machines

Field-Packing Factor Attribute Value Placement

1/2 first half of computer word

2/2 second half of computer word

1/4 first quarter of computer word

2/4 second quarter of computer word

3/4 third quarter of computer word

4/4 fourth quarter of computer word

Bit-Packing Factor Attribute Value Placement
bits n through m inclusive

n-m 1≤n≤32
1≤m≤32
n≤m

AGE

NAME

AGE NAME
262

Advanced Topics
3. Declaration:

every PERSON has an AGE(1/4), a NAME and a SEX(1/4)

Entity structure:

4. Declaration (assuming 32-bit word):

every PERSON has an (AGE(1-8) and NAME(9-32))

Entity structure:

bit positions 1 9 32

5. Declaration:

every PART has a (LEFT.VALUE(1/2), RIGHT.VALUE(1/2),

TOTAL.VALUE)

Entity structure:

TOTAL.VALUE

6. Declaration:

every PERSON has an (AGE(1/4), NAME(2/4),
WEIGHT(17-32)) and owns a FAMILY

Entity structure:

 1 9 17 32

AGE unused

NAME

SEX unused

AGE NAME

LEFT.VALUE RIGHT.VALUE

 AGE NAME WEIGHT

F.FAMILY

L.FAMILY

N.FAMILY
263

SIMSCRIPT II.5 Programming Language

utes
7. Declaration:

every PERSON has an AGE(1/4), owns a FAMILY, has a
(NAME(2/4) and WEIGHT (2/2))

Entity structure:

Field and bit packing of integer attributes of permanent entities and subscripted system attrib

places two or more attributes in each element of the same array. The declaration:

permanent entities
every HOUSE has an (ADDRESS(1/2), and ZIP(2/2))

places similarly indexed values of ADDRESS and ZIP in the same location.

This preamble declaration allows the executable statement create every HOUSE(5) to allocate

storage as shown in figure 6-10.

Figure 6-10. Entity Storage

More than one set of attributes, of course, may be packed in a single every statement; for example:

every SHIP has a (TONNAGE(1/2), CAPACITY(2/2)),
a (DESTINATION(1/2), HOME.PORT(2/2))

This statement pairs the attributes TONNAGE and CAPACITY and the attributes DESTINATION and

HOME.PORT within the elements of two attribute arrays. Some additional examples follow.

normally mode is integer

permanent entities

AGE

NAME WEIGHT

F.FAMILY

L.FAMILY

N.FAMILY

ADDRESS(1) ZIP(1) element 1

ADDRESS(2) ZIP(2) element 2

ADDRESS(3) ZIP(3) element 3

ADDRESS(4) ZIP(4) element 4

ADDRESS(5) ZIP(5) element 5
264

Advanced Topics
1. Declaration:

every TRUCK has a LOAD and a HEIGHT

Attribute arrays:

LOAD and HEIGHT are separate arrays.

2. Declaration:

every TRUCK has a (LOAD, WEIGHT)

Attribute arrays:

LOAD and WEIGHT refer to the same data array.

3. Declaration:

every TRUCK has a (LOAD(1/2), HEIGHT(2/2))

LOAD element 1 HEIGHT

element 2

. . .

. . .

. . .

element N.TRUCK

LOAD element 1 HEIGHT

element 2

. .

. .

. .

element N.TRUCK
265

SIMSCRIPT II.5 Programming Language

y.
Attribute arrays:

LOAD is stored in the left, and HEIGHT in the right half of each element within the data arra

System attributes:

(1) Declaration:

normally dimension is 0
the system has a HIGH and a LOW

Attributes:

(2) Declaration:

normally dimension is 1
the system has a HIGH and a LOW

Attributes:

(3) Declaration:

normally mode is integer, dimension is 1
the system has a (HIGH, LOW)

LOAD element 1 HEIGHT

element 2

. . .

. . .

. . .

element N.TRUCK

HIGH LOW

HIGH element 1 1 LOW

element 2 2

. . . .

. . . .

. . . .

word N M
266

Advanced Topics

ecause

ray. The

s of per-

 to

is com-
Attributes:

HIGH and LOW are synonyms. Both are pointers to the same attribute array. This is an array b

the background dimensionality is set to 1.

(4) Declaration:

normally mode is integer, dimension is 1
the system has a (HIGH(1/4), LOW(2/2))

Attributes:

The elements of the attribute arrays are packed in the same locations as of a shared data ar

second quarter of each data word is unused.

Intrapacking is used to compress array storage of subscripted system attributes and attribute

manent entities. The intrapacking notation (*/2) specifies that two distinct element values are

be packed in each storage location. That is, the array in which the elements are stored

pressed. For example, the declarations:

normally dimension is 1
the system has a LIST(*/2)

and the statement reserve LIST(*) as 10 specifies and allocates storage to LIST as shown in

figure 6-11.

HIGH LOW

. .

. .

. .

word N

HIGH word 1 unused LOW

word 2

. .

. .

. .

word N
267

SIMSCRIPT II.5 Programming Language

nly; the

. Ta-

er im-
Figure 6-11. Array Storage

When a system attribute is multidimensional, packing takes place at the data-storage level o

array pointer words are unpacked. Thus the statements:

normally dimension is 2
the system has a LIST(*/2)

and

reserve LIST(*,*) as 3 by 4

specify and allocate storage to LIST as shown in figure 6-12.

As with field and bit packing, intrapacking specifications depend on computer implementation

ble 6-2 shows permissible intrapacking factors for common 32-bit wordlength machines. Oth

plementations have their permissible factors specified in the implementation manuals.

Figure 6-12. Array Storage

base pointer of
LIST

word 1 LIST(1) LIST(2)

word 2 LIST(3) LIST(4)

word 3 LIST(5) LIST(6)

word 4 LIST(7) LIST(8)

word 5 LIST(9) LIST(10)

LIST(1,1) LIST(1,2) word 1

Base Pointer LIST(1,3) LIST(1,4) word 2

LIST(2,1) LIST(2,2) word n

LIST(2,3) LIST(2,4) word n+1

LIST(3,1) LIST(3,1) word m

LIST(3,3) LIST(3,4) word m+1

Row Pointers Attribute values
268

Advanced Topics

nce in

sible,

ure by

s

Attributes are usually assigned locations within the entity structure in order of their appeara

an every statement, taking any explicit equivalencing and packing into account. It is also pos

however, to specify exactly where an attribute is to be placed within a temporary entity struct

following its declaration with the clause in word i , where i is an integer constant, as in example

1. and 2. below.

1. Declaration:

temporary entities
every PERSON owns a FAMILY, has an AGE in word 1,

and has a HEIGHT

Entity structure:

It may be seen that AGE now occupies the first location.

2. Declaration:

every PERSON has an (AGE(1/4),SEX(2/4),HEIGHT(2/2))
in word 1 and a DEBT in word 2

Entity structure:

Table 6-2. Intrpacking Factors for Common 32-Bit Machines

Intrapacking Factor
 Attribute Value

Placement

(*/2) 2 values per word

(*/4) 4 values per word

word 1 AGE

word 2 HEIGHT

word 3 F.FAMILY

word 4 L.FAMILY

word 5 N.FAMILY

word 1 AGE SEX HEIGHT

word 2 DEBT
269

SIMSCRIPT II.5 Programming Language

tly as-

ould be

ing be

ivalenc-

of dif-

er

age

r effect

e

ntities,

 time.

 Con-

ncing.

ported

3.

 The

r

n

e.

r

e

This can provide a second method of equivalencing attributes: If two attributes are explici

signed to the same word number within an entity structure, they are equivalenced. Care sh

taken that this is not done inadvertently. Some implementations insist that such equivalenc

recognized by enclosing the attribute names in parentheses, as is done when explicitly equ

ing an attribute group. In addition, there are certain restrictions on equivalencing attributes

ferent modes. In general, for example, text mode variables may not be equivalenced with oth

modes because of the way text is implemented through pointer values. Any inconsistent us

of these pointers could give rise to serious errors.

Attributes of permanent entities and system attributes are not assigned to words, but a simila

is achieved by using the clause in array i , where i is an integer constant. This array may b

thought of as comprising the structure of the system entity.

In certain implementations, such explicit assignment, either for temporary or permanent e

may be recognized by the compilation process, leading to efficiencies at program execution

It may also affect the requirements for independent compilation of the routines in a program.

sult the appropriate user manual for implementing specific details of packing and equivale

Obviously, the use of these features may give rise to problems if a program is to be trans

across different systems.

The results of packing, equivalence, and word and array specification are shown in table 6-

The every statement optionally permits detailed specification of the attributes of an entity.

use of packing factors, equivalence parentheses, and word and array clauses gives a programme

a good deal of control over the allocation of computer storage.

Table 6-3. Attribute Specifications

Specification Assignment

No packing, equivalence, or word or array specifi-
cation

Attributes assigned to separate words or arrays i

the order of their appearance in preamble

Word or array specification Attributes are assigned to specified words or array

locations. Remaining attributes assigned as abov

Equivalence specification Specified attributes assigned to the same word o

array

Packing specification Field and bit packing used to place more than on

attribute within a computer word

Intrapacking used to compress storage for arrays
270

Advanced Topics

and not

routine

 must be

ents as

cripted

wo-di-

ocated to

ns have

te:

 of the
6.5 Attribute Definitions: Functions

When defined by statements of the form:

the system has an attribute name function
every entity name has an attribute name function

a system attribute or an attribute of a permanent or temporary entity is treated as a function

as a variable. Any reference to such a function attribute is in effect a reference to a function

with the same name. That is, a subprogram having the same name as the declared attribute

included as one of the program routines. The routine must have the same number of argum

the declared or implied dimensionality of the attribute, that is, no arguments for an unsubs

system attribute, one argument for a temporary or permanent entity, two arguments for a t

mensional system attribute, etc.

Function attributes, because they are computational procedures, have no storage space all

them. Declarations of attributes as functions interspersed between other attribute declaratio

no effect, therefore, on storage allocation of attributes to arrays or entity records. To illustra

Declaration:

every AUTO has a FUEL FUNCTION, a CONSUMPTION.RATE,
a FUEL.CAPACITY and a DEPARTURE.TIME

Entity structure:

Assume the function attribute, FUEL, is defined by the following routine:

routine FUEL(AUTO)
return with FUEL.CAPACITY(AUTO) -

(TIME - DEPARTURE.TIME(AUTO)) *
CONSUMPTION.RATE(AUTO)

end

Assuming that the value of the current time is maintained in a global variable, TIME, the amount of

fuel currently remaining in a particular auto is calculated at each apparent attribute reference

type:

let AMOUNT = FUEL(AUTO)

As the variable TIME changes, the reported value of FUEL(AUTO) changes.

word 1 CONSUMPTION.RATE

word 2 FUEL.CAPACITY

word 3 DEPARTURE.TIME
271

SIMSCRIPT II.5 Programming Language

s of con-

s, de-

nt and

. The

func-

can (and

pound

nts and

tion:

-

Function attributes have a number of uses: they can be used, as above, to determine value

tinuously changing quantities; to perform complex calculations; to provide optional attribute

scribed in a later example, and to perform monitoring and other operations. For example:

Declaration:

every CONSUMER has a CREDIT.RATING FUNCTION,
a BANK.BALANCE, a DEBT.TOTAL,
a MORTGAGE.PAYMENT, a NUMBER.OF.DEPENDENTS
and a SALARY

Function attribute definition:

routine CREDIT.RATING(CONSUMER)
if SALARY(CONSUMER) - MORTGAGE.PAYMENT(CONSUMER)

or ... more conditions
return with 0

otherwise
return with 1

end

Program statement:

if CREDIT.RATING(CUSTOMER) eq 0
call ACTION1 giving CUSTOMER

else
.
.

6.6 Compound Entities Involving Temporary Entities

Compound entities composed exclusively of temporary entities, or of mixtures of permane

temporary entities, look the same as "permanent" compound entities but function differently

difference lies in the fact that all attributes of "mixed" or "temporary" compound entities are

tions. They have no storage allocated to them. They cannot be created or destroyed, as

indeed must) the entities of which they are composed. A routine must be written for each com

attribute (including any set pointers) of this type that accepts the attribute indices as argume

returns a single value as the attribute value (which may be a set pointer). Thus, the declara

every JOB,MAN has an INFLUENCE FUNCTION

where JOB and MAN are temporary entities, defines INFLUENCE as a function having the back

ground mode. This function can be further defined, as in:

define INFLUENCE as a real FUNCTION

if necessary. When a statement such as:

let T = TIME * INFLUENCE(JOB,MAN)
272

Advanced Topics

filed

atter

ompari-

as rank-

nking
is executed, the routine INFLUENCE is called with the arguments JOB and MAN — two pointer values

identifying temporary entities. The routine then might perform the following as:

function INFLUENCE(I,J)
define I and J as integer values
if PRIORITY(I) > PM

and STATUS(J) > 5M
return with (STATUS((J)/5M) * (PRIORITY(I)/PM))

otherwise
return with 1

end

returning the apparent attribute value.

6.7 Two Illustrations of Set Ranking by Function Attributes

As described in paragraph 4.8, sets are normally ranked on either the order in which entities are

in them (FIFO and LIFO) or on the values of some attributes of their member entities. In the l

case, although cascading can be used to resolve ties, only simple single-attribute ranking c

sons can be made. Complex ranking comparisons can be devised using function attributes

ing variables. Program 6-1 illustrates how a function attribute can be used to define a ra

variable that is the weighted average of several attribute values.
273

SIMSCRIPT II.5 Programming Language

s

time a

t

 an at-

ing in
Program 6-1.
__

preamble
temporary entities

every JOB has a LABOR.COST, a MATERIAL.COST,
an OVERHEAD, a PROFIT, a RANKING FUNCTION
and belongs to a QUEUE

permanent entities
every MACHINE owns a QUEUE

define QUEUE as a set ranked by high RANKING
end

main
read N.MACHINE
create every MACHINE
until data is ended
do

create a JOB
read LABOR.COST.., MATERIAL.COST.., OVERHEAD.., PROFIT..

and MACHINE..
file JOB in QUEUE(MACHINE)

.

.
remove JOB from QUEUE(MACHINE)

.

.
loop
.

end

routine RANKING given JOB
define JOB as an integer variable
return with (LABOR.COST..*2 + MATERIAL.COST..*3

+ OVERHEAD.. + PROFIT..*4) / 10.0
end

__

The preamble defines RANKING as a function attribute of JOB and as the attribute by which job

are to be ranked when they are filed in a QUEUE set owned by some MACHINE. The routine

RANKING provides a procedure for computing a ranking value. The routine is invoked each

JOB is filed. It is used to compute a ranking value for the JOB being filed, and for all the jobs agains

which this job's ranking value must be compared in order to insert it properly.

A somewhat more complex use of a function attribute is found in Program 6-2, which uses

tribute of the first member of a set owned by an entity as the ranking value for that entity's fil

another set.
274

Advanced Topics

y need

or ex-

 When it

ributes

red in a

ple,

ill
Program 6-2.
__

preamble
temporary entities

every JOB has a VALUE, a RANKING.FUNCTION, owns a
ROUTING, and belongs to a QUEUE

every PATH has an ORIGIN, a DESTINATION, a DISTANCE,
and belongs to a ROUTING

permanent entities
every MACHINE owns a QUEUE

define QUEUE as a set ranked by high RANKING
define ROUTING as a set ranked by low DISTANCE
define RANKING as an integer function
end

routine RANKING(J)
define J as an integer variable
return with ORIGIN(F.ROUTING(J))
end

__

6.8 Using “Optional” Attributes

In certain situations involving the processing of large amounts of data, the programmer ma

to define entities with a large number of attributes, many of which, however, are constant. F

ample, in census data records the code n/a (not applicable) may appear in several places.

is desired to conserve the amount of space allocated to individual entity records, function att

may be used to define "optional attributes." These are actually represented by entities sto

special set only if their values differ from specified default values. Thus, in the following exam

if the optional attribute RAPID.TRANSIT is other than zero for a particular city, a record for it w

appear in that city's optional attribute set. Otherwise, the value of RAPID.TRANSIT would be found

in the default list (DEFAULT(1)=0) .

The following declarations and programs show how to set up and use optional attributes.
275

SIMSCRIPT II.5 Programming Language
Declarations:

preamble
temporary entities

every CITY has a NAME, a POPULATION, a STATE,
an OPTIONAL FUNCTION, and owns an OPTIONSET

every OPTION has a VALUE and a CODE and
belongs to some OPTIONSET

define NAME and STATE as text variables
define WHICH as a variable
define DEFAULT as a 1-dimensional array
.
.

end

Function attribute definition:

function OPTIONAL(J)
define OPT and J as integer variables
for each OPT in OPTIONSET(J),

with CODE(OPT) = WHICH,
find the first case
if found,

return with VALUE(OPT)
otherwise
return with DEFAULT(WHICH)

end

Program initialization to set up optional attribute structure:

main
.
.
read N
reserve DEFAULT(*) as N
read DEFAULT "LIST OF DEFAULT VALUES"
.
.
create a CITY
until mode is alpha,
do

create an OPTION
read CODE and VALUE
file OPTION in OPTIONSET

loop
.
.

end
276

Advanced Topics

ptional
Program statements that employ optional attributes:

let WHICH = 1 ‘’INDICATING THE FIRST OPTIONAL ATTRIBUTE
let X = OPTIONAL(CITY)

If an entity CITY has an entity filed in its OPTIONS set with a CODE value of 1, X is set to the

VALUE of the entity. If an entity CITY has no such entity filed in OPTIONS, X is set to

DEFAULT(1) .

The program can be made even more straightforward if functions are used to define the o

attributes themselves. If RAPID.TRANSIT is an optional attribute of CITY , it can be defined and

used by the following statements:

define RAPID.TRANSIT as an integer function
routine RAPID.TRANSIT(CITY)

define CITY as an integer variable
let WHICH = 1
return with OPTIONAL(CITY)

end

The diagram in figure 6-13 shows the record structures for a temporary entity of the type CITY that

has several "normal attributes" and several "optional attributes."

Figure 6-13. Record Structure

CITY 67 000 000
F.OPTIONS 1 1 is the code for

RAPID.TRANSIT
L.OPTIONS P.OPTIONS
N.OPTIONS S.OPTIONS
NAME
POPULATION 3 500 000
STATE 4 4 is the code for

 EDUCATION.EXPENSE
P.OPTIONS
S.OPTIONS

.
DEFAULT .

1 0 .
2 0 257 532 000
3 100 57 57 is the code for

MUNICPAL.DEBT
. . P.OPTIONS
. . S.OPTIONS
. .

97 200
98 10
99 4510

100 -1
277

SIMSCRIPT II.5 Programming Language

rogram

divid-

ded set

d their

ntity

re being

For in-

 be per-

 used to

m only

e-
6.9 Deletion of Set Routines

Certain routines are automatically generated for each defined set during the processing of a p

preamble. Sets declared as FIFO (explicitly or implicitly), LIFO , or ranked require different rou-

tines to perform their filing and removing operations. Each generated routine is tailored to in

ual program specifications reflecting such operations as set attribute deletions and casca

rankings.

The most generally defined set, an unranked one declared as either FIFO or LIFO , has seven rou-

tines generated for it. Four are for filing and three for removing. The routines are named an

functions stated in table 6-4.

A set declared by the statement:

define QUEUE as a FIFO set

thus has seven routines, T.QUEUE, U.QUEUE, ..., Z.QUEUE generated for it.

Ranked sets, by their definition, do not permit filing first, last, or before or after a specific e

without attention to the specified set ranking. Hence, ranked sets generate four routines, the

only one file routine.

In addition, certain set operations are impossible if specific set attributes are not present.

stance, "filing before" is impossible in a LIFO set if the predecessor attribute has been deleted.

Table 6-5 shows the set attributes that must be present for the indicated set operations to

formed. Because all set attributes are not required for all set operations, table 6-5 can be

determine which attributes to delete in order to save memory space. For example, if a progra

files and removes first, the set attributes L and P can be deleted without penalty. If they are not d

leted, the generated programs keep track of and update them anyway.

 Table 6-4. Set Manipulation Routines

Routine
Generated

Name
Function

File first T.set Files an entity first or ranked

File last U. set Files an entity last

File before V. set Files an entity before a specified entity

File after W.set Files an entity after a specified entity

Remove first X. set Removes the first entity

Remove last Y. set Removes the last entity

Remove specific Z. set Removes a specified entity
278

Advanced Topics

s, shown

vide his

ssible.

and

e

from a

se of
The generation of specific set routines can also be suppressed to conserve memory space when their

associated operations are not used in a program. To do so, a list of the set operation code

in table 6-5, is attached to a define set statement in the following form:

,without set operation code list routines

The comma is optional. A typical program might contain the statement:

define QUEUE as a FIFO set without P and N
attributes and without FB, FA and RS routines

In unusual cases, where the programmer wants to use set-type statements but wants to pro

own set operation routines, all seven routines can be deleted. The codes F and R delete the four file

and three remove routines, respectively. A complete range of set specifications is thus po

Mere mention of a set name in every statements calls for all three set attributes for the owner

member entities and all seven set routines. Additional definition in a define set statement can

selectively delete set attributes and set routines. The extreme statement:

define set as a set without F,L,P,S,M and N
attributes without F and R routines

removes all mechanisms that make set operations possible.

6.10 Left-Handed Functions

Functions are normally used in a "right-handed" manner. That is, they are referenced as on th

right-hand side of an assignment operator, where they return a single value computed

number of given arguments. An example of a right-handed SIMSCRIPT II.5 function is the u

Table 6-5. Set Operation-Set Attribute Relationships

Set Operation
Mneumonic

Set Name Prefix
Required Set

Attribute

FF T. F,S

FL U. F,L,S

FB V. F,S,P

FA W. F,S

RF X. F,S

RL Y. F,L,S,P

RS Z. F,S,P
279

SIMSCRIPT II.5 Programming Language

hin a

g one.

te-

pute a

anded

all the

rms:

,

e word

-

n it is

l state-

 value

named

hin the

t can

am 6-3
substr.f to provide a copy of an embedded character string from a specified position wit

source text string.

Defining a function as "left-handed" indicates that it receives a value, rather than computin

SIMSCRIPT II.5 also allows the function substr.f to be used in a left-handed manner. The sta

ment:

let substr.f(STRING,1,3) = "ABC"

replaces the first three character positions in the text variable STRING. The substr.f function

appears to receive, rather than return, a value.

Any function can be defined to be used in both a right- and a left-handed manner. To com

value, the right-handed version of the function is called. When a reference is made in a left-h

manner, that is, to store a value, the left-handed version is called.

No new concepts or statements are involved in the definition of right-handed functions, for

functions dealt with thus far have been right-handed. All of the by-now-familiar declarative fo

function name given argument
function name (argument list)

indicate that the statements that follow, up to the statement end , define a computational process

hence, a right-handed function. In programs that use both right-and left-handed functions, th

right may be put before function , but this is optional.

A left-handed function is headed by one of the forms of the routine statement shown above, pre

ceded by the word left , as in:

left function ACCESS given I and J

and

left function ALLOCATE

In addition to the usual mechanism for transmitting input argument values to a function whe

called, a left-handed function must have a way of receiving a right-hand-side value. A specia

ment of the form:

enter with variable

must be the first executable statement in every left-handed function. It specifies that the

"computed on the right" and thus transmitted to the left-handed function is to be stored in the

variable, which can be local or global, unsubscripted, subscripted, or an attribute, for use wit

function. From there on, a left-handed function functions exactly like any other function. I

store the value, perform computations with it, execute input-output statements, etc. Progr

illustrates the definition and use of right- and left-handed functions.
280

Advanced Topics

act,

ith. In

ta.

The computations within the main routine seem to deal with simple subscripted variables. In f

the surrounding functions and the preamble declarations define the data structures dealt w

this sense, the program is independent of the structure used for storing and analyzing its da

Program 6-3.
__

preamble
the system owns the DATASET
temporary entities

every SAMPLE has a VALUE,
and belongs to the DATASET

define X as a real function
define VALUE as a real function

end

main
read N

for I = 1 to N,
read X(I)

for I = 1 to N-1,
with X(I) less than 2 * X(I+1)

compute M = avg, V = variance, K = number of X(I)**2
list K,M,V

stop
end

right function X(I)
define I,J,S as integer variables
if I greater than N.DATASET

print 1 line with I thus
MEMBER *** OF COLLECTION X DOES NOT EXIST

stop
otherwise
let S = F.DATASET
for J = 1 to I-1,

let S = S.DATASET(S)
return with VALUE(S)

end

left function X(I)
define I,J,S as integer variables
define A as a real variable
enter with A

if N.DATASET less than I-1,
print 1 line with I,N.DATASET thus

TRYING TO CHANGE THE ***TH OF ONLY *** VALUES
stop

otherwise
281

SIMSCRIPT II.5 Programming Language

tines as-

words.

.

ociated

ents re-

ode and

 and

ed (or

func-

hether
if I eq N.DATASET+1
create a SAMPLE called S
file S last in DATASET

else
let S = F.DATASET
for J = 1 to I-1,

let S = S.DATASET(S)
always
let VALUE(S) = A
return

end

__

6.11 Monitored Variables

Thus far, program names representing data values have had either memory locations or rou

sociated with them. Names defined as variables referred to values stored in computer

Names defined as functions referred to values computed or stored by associated programs

A new data type, a monitored variable, has both a storage location and a function routine ass

with it. The statements required to define and use monitored variables parallel the statem

quired to define variables and functions and to implement left-handed functions.

Any variable, array, or attribute is defined as monitored by a statement of the form:

define name as a variable monitored on the left

or

define name as a variable monitored on the right

or

define name as a variable monitored on the right and left

The word the before right and left is optional.

Because monitored variables have data values as well as routines associated with them, m

dimensionality declarations can also be included, as in:

define X as a real, 2-dimensional array monitored
on left and right

Monitoring on the right and on the left is obtained through function routines similar to right-

left-handed functions. If a variable is declared as monitored on the right (or left), a right-hand

left-handed) monitoring routine must be provided. A routine is able to perform a monitoring

tion by the inclusion of one new executable statement. The statement differs, depending on w

the routine is right- or left-handed.
282

Advanced Topics

ypical

nitial

g rou-

 with

e to a

riable

u-

ribute,

f the

re to

iated
The task of a right-handed function routine is to return a data value to a calling program. A t

right-handed function (not performing a monitoring task) is:

function EXAMPLE(I,J)
.
.

statements using I and J
.
.

return with expression
end

The function name (EXAMPLE) represents a subprogram name. The argument list transmits i

values for I and J from a calling program to EXAMPLE, and the return with statement returns a

computed value to the calling program.

If EXAMPLE is declared as a monitored variable, its name refers to both data and a monitorin

tine. EXAMPLE(K,5) is both a legitimate subscripted variable reference and a call on a routine

arguments K and 5. The additional statement needed to convert a normal right-handed routin

right-handed monitoring routine fetches the data value associated with the monitored va

name, and makes it accessible to a named variable within the routine. The statement is:

move to variable

The program:

function EXAMPLE(I,J)
move to Q
.
.
statements using I,J, and Q
.
.
return with expression

end

starts out by assigning the value of EXAMPLE(I,J) to Q, which then can be used freely in the ro

tine. The move statement variable can be local or global, unsubscripted or subscripted, an att

or even a left-handed function.

Except for defining EXAMPLE as being monitored, no other change is made in the rest o

program. EXAMPLE is reserved and used in the normal way; all data references a

EXAMPLE(I,J) , as though it were a simple subscripted variable.

Used for left-handed monitoring, the move statement must assign a value to the data cell assoc

with a monitored variable. The statement that does this is of the form:
283

SIMSCRIPT II.5 Programming Language

me and

g

d a

diting,

 body

 under-

e pro-

nsional

tine be-

lization

 value

-moni-
move from arithmetic expression

The value of the arithmetic expression is stored in the variable referenced by the routine na

its arguments, if any. For example, EXAMPLE(I,J) . The form of a typical left-handed monitorin

routine is:

left function EXAMPLE(I,J)
enter with Q
.
.
statements using I,Q
.

.
move from expression

end

A value is transmitted to the function by the enter statement, computations are performed, an

value is assigned to the monitored variable by the move statement.

The following short programs use monitored variables in several different ways for data e

where the monitored variable feature provides two important benefits: (1) It keeps the main

of the program clear of data-checking and message printing statements, making it easier to

stand; and (2) Conversion of the program to remove the editing feature can be accomplished by

changing only one preamble statement and discarding two routines, with the main body of th

gram text unchanged. However, the program must be recompiled.

This program first reads successive sets of data representing subscript values for a two-dime

array and the associated data value. The subscripts are checked by the left-monitoring rou

fore values are assigned. Default values are computed for any unassigned values. The initia

data are delimited by a single non-numeric field, and followed by query data, requesting the

identified by two given subscripts. These subscripts are also checked, this time by the right

toring routine.
284

Advanced Topics

Program 6-4.
__

preamble
normally, mode is integer
define DATA as a real, 2-dimensional array

monitored on the right and the left
define M and N as variables

end

main
read N and M ''THE ARRAY BOUNDS
reserve DATA(*) as N by M ''RESERVE THE ARRAY
until mode is alpha,

read I,J,DATA(I,J)
for I = 1 to N,

for J = 1 to M
do ''ASSIGN DEFAULT VALUES

if DATA(I,J) eq 0
if J greater than I

let DATA(I,J) = 1
else

let DATA(I,J) = -1
always

always
loop

skip one field ''THE ALPHA DELIMITER
until mode is alpha
do

read I,J
print 1 line with I,J,DATA(I,J) like this

THE VALUE OF DATA(**,**) IS ****.**
loop
stop

end

function DATA(L,K)
define VALUE as a real variable
''THE FETCHING OF THE VALUE DATA(L,K) IS INHIBITED
''UNTIL THE SUBSCRIPTS ARE VERIFIED

if L less than 1
or L greater than N
or K less than 1
or K greater than M
print 1 line with L,K thus
INVALID SUBSCRIPTS *** AND ***

stop
otherwise
move to VALUE ''THE VALUE OF DATA(L,K) IS FETCHED
return with VALUE

end
285

SIMSCRIPT II.5 Programming Language

left routine DATA(L,K)
define VALUE as a real variable
enter with VALUE
''DON'T CHANGE THE VALUE OF DATA(L,K)
''IF SUBSCRIPTS ARE OUT OF BOUNDS
if L less than 1

or L greater than N
or K less than 1
or K greater than M
print 1 line with L,K thus

INVALID SUBSCRIPTS *** AND ***
else

move from VALUE ''TO DATA(L,K)
always
return

end

2. Monitored variables used for data transformation:

Program 6-5.
__

preamble
permanent entities

every SERIES owns a GRAPH
temporary entities

every SAMPLE has an XVAL and a YVAL
and belongs to a GRAPH

define XVAL and YVAL as real variables
monitored on the right

define GRAPH as a set ranked by high YVAL,
without M attribute,
without FB,FA,FL and RS routines

normally, mode is integer
end
286

Advanced Topics
main
read N.SERIES
create every SERIES
for each SERIES,
do

read N
also for I = 1 to N
do

create a SAMPLE
read XVAL and YVAL
file SAMPLE in GRAPH

loop
for each SERIES,
call PLOT.GRAPH

stop
end

routine PLOT.GRAPH
''ASSUME XVAL BETWEEN 0 AND 132
''ASSUME YVAL BETWEEN 0 AND LINES.V-4
start new page
print 1 line with SERIES as follows
PLOT OF SERIES NUMBER **
for each I in GRAPH

compute X as the maximum of XVAL(I)
print 2 lines with X, YVAL(F.GRAPH) thus
X RANGE IS 0 TO ***.*
Y RANGE IS 0 TO **.*
skip 1 output line
for each I in GRAPH
do

if I ne F.GRAPH
skip trunc.f(YVAL(I)) - trunc.f(YVAL(P.GRAPH(I)))

output lines
always
write as B TRUNC.F(XVAL(I))+1,"*"

loop
return

end

''MONITOR ROUTINES CONVERT DATA VALUES BEFORE THEY ARE PLOTTED
''CONVERSION IS OUTSIDE THE PLOTTING ROUTINE
function XVAL(I)

define V as a real variable
move to V
return with log.e.f(V) ''FOR EXAMPLE

end

function YVAL(I)
define V as a real variable
287

SIMSCRIPT II.5 Programming Language

ithout

need be

gener-

resents

utes, are
move to V
return with V**2 ''FOR EXAMPLE

end

The monitoring routines deliver transformed values of the attributes to the plotting routine w

changing their values in memory. As there are no left-handed monitoring routines, XVAL and YVAL

are stored as they are read. To change the transformations, only the monitoring routines

altered. main and PLOT.GRAPH stay the same.

6.12 Implementation Details for the TALLY Statement

The program preamble generates any required attributes and routines for each tally statement. A

left-handed monitoring routine is always generated for each tallied variable. The number of

ated attributes and other routines varies with the statistical quantities specified. Table 6-6 p

the cases in which additional routines and attributes are generated.

From these examples it can be seen that certain counters, defined as variables or as attrib

required for the statistical computations. These counters are listed in table 6-7.

Table 6-6. Tally Actions

Statistical Quantity Tally Action

number Uses name in tally list. Attribute generated if mean, variance,

std.dev , mean.square, minimum or maximum requested and

number not requested.

sum Uses name in tally list. Attribute generated if mean, variance or

std.dev requested and sum not requested.

mean Function with name in tally list generated.

sum.of.squares Uses name in tally list. Attribute generated if mean.square,

variance or std.dev requested and sum.of.squares not requested.

mean.square Function with name in tally list generated.

variance Function with name in tally list generated.

std.dev Function with name in tally list generated.

maximum Uses name in tally list.

mimimum Uses name in tally list.
288

Advanced Topics
Table 6-7. Counters Required for Tally Statements

Statistic Counters

number N, the number of samples

sum SXi, the sum of sample values

sum.of.squares SX
2
, the sum of squares of the sample values

mean SXi, N

variance
SXi, SX

2
, N

std.dev SXi, SX
2
, N

maximum M, the value of the largest sample and N

minimum M, the value of the smallest sample and N
289

SIMSCRIPT II.5 Programming Language
290

Appendix A. Format Conventions Used In
Print Statments

Value & Typical Formats Display Results Examples

Integer

* (a) Print an integer value. Print 1 line with J thus

The value of J is***

**

(b) If the expression is not in-

teger-valued, print a

rounded integer value by

adding + or - 0.5 to the val-

ue of the expression, de-

pending on its sign, and

truncating the result.

(c) Print as many digits as

possible to the left, upto

the next nonconsecutive *

or textual character, treat-

ing the rightmost as the

low-order position; if

space not sufficient, use

scientific notation.

(d) Only the position of the

rightmost digit must be

shown.

prints, for j = 3

The value of J is 3

or prints, for J = 9.7

 The value of J is 10

or prints, for J = -97.6

The value of J is -98

Decimal

. (a) Print a decimal value; Print 1 l ine wi th X

thus

The value of X is *.**
291

**.* (b) Treat the integer part as
(c) and (d) above;

prints the line

The value of X is 3.25

*.**

.

***.

.**

(c) Round the decimal part to

the number of digits speci-

fied by asterisks to the

right of the decimal point.

An expression is rounded

in the nth decimal place by

adding 0.5*10** (-n) and

truncating at the nth deci-

mal place.

(d) If trailing decimal digits

are zero, print them.

(e) Print a rounded integer be-

tween 0 and 1

(f) Print a fractional value be-

tween 0 and 1

if X = 3.4545 ; the conver-

sion for printing is 3.2495 +

0.005 = 3.245 ⇒3.25 . The

value of X, as stored in the

computer is unchanged.

If the format is *.***, 3.5

prints as 3.500

3.257 prints as 3. in the for-

mat **.

Fr a c. f (3. 2 57) p r i nt s

as.257 in the format .***

Scientific

........

at least 8 consecutive periods

(a) Print a number in the form
decimal number E+XX

(b) the value of the computed

expression is decimal

number *10**+XX;

(c) 0 ≤ | decimal number | < 10

Using the format

the value 3726.257 is printed

as 3.7E+03

Using format

i t wou ld be p r i nte d as

3.7263E+03

Value & Typical Formats Display Results Examples
292

Appendix A. Format Conventions Used In Print Statments
Text

* (a) Print a text value If NAME has the value
"JOHN" ,

***** (b) Print text characters, left-

justified, up to the number

of print positions.

(c) If the value has fewer char-

acters, complete the field

with blanks.

Print 1 line with NAME

thus

PUPIL'S NAME IS ******

prints:
PUPIL'S NAME IS JOHN

Alpha

* (a)Print an alpha value, left-

justified in the field.

If CODE has the value "K",

Print 1 line with CODE

thus DESTINATION CODE

IS **

**** (b) If the alpha variable repre-

sents more than one char-

acter, print as many as are

indicated, using blanks to

complete the field as re-

quired.

prints:

DESTINATION CODE IS K

Value & Typical Formats Display Results Examples
293

SIMSCRIPT II.5 Programming Language
294

ion.

n;

,

tri-
Appendix B. Functions and Routines

B.1 Functions

Function Function

Mnenonic Arguments Mode Description

abs.f e Mode of e Returns the absolute value of the express

and.f e
1
,e

2
Integer Logical product of e

1
and e

2
.

arccos.f e Real Computes the arc cosine of a real expressio

-1 > e > 1.

arcsin.f e Real Computes the arc sine of a real expression

-1 > e > 1.

arctan.f e
1
,e

2
Real Computes the arc tangent of e

1
/e

2
; (e

1
,e

2
) ≠

(0,0).

atot.f e Text Converts an alpha expression to a text value.

beta.f e
1
,e

2
,e

3
Real Returns a random sample from a beta dis

bution.

e
1
 = power of x, real

e
2
 = power of (1-x), real; e

1
 > 0

e
3
 = random number stream, integer
295

al

iv-

u-

-

y

Function Function

Mnenonic Arguments Mode Description

binomial.f e
1
,e

2
,e

3
Integer Returns a random sample from a binomi

distribution.

e
1
 = number of trials, integer

e
2
 = probability of success, real

e
3
 = random number stream, integer

concat.f a,b... Text Concatenates any number of text strings

to produce a single text string.

cos.f e Real Computes the cosine of a real expression g

en in radians.

date.f e
1
,e

2
,e

3
Real Converts a calendar date to cumulative sim

lation time, based on values given to

origin.r .

e
1
 = month, integer

e
2
 = day, integer

e
3
 = year, integer

day.f e Integer Converts simulation time to the day portion

based on values given to origin.r .

e = cumulative simulation time, real

dim.f v(*) Integer Returns the number of elements pointed to b

the pointer variable v, in the dimension of the

array v.
296

Appendix B. Functions and Routines

ri-

-

n.
Function Function

Mnenonic Arguments Mode Description

div.f e
1
,e

2
Integer Returns the truncated value of (e

1
/e

2
).

e
1
 = dividend, integer

e
2
 = divisor, integer;

 e ≠ 0

efield.f none Integer Returns the ending column of the next data

field to be read by a read free-form state-

ment. May affect file position.

erlang.f e
1
,e

2
,e

3
Real Returns a sample value from an Erlang dist

bution.

e
1
 = mean, real

e
2
 = k, integer

e
3
 = random number stream, integer

exp.f e Real Computes exp.c to the e
th

 power; e must be

real.

exponential.f e
1
,e

2
Real Returns a random sample from an exponen

tial distribution.

e
1
 = mean, real

e
2
 = random number stream, integer

fixed.f s,e Text Expands or truncates a text string to a given

length.

s = string, text

e = length, integer

frac.f e Real Returns the fractional portion of a real expressio
297

SIMSCRIPT II.5 Programming Language

u-

-

er-

Function Function

Mnenonic Arguments Mode Description

gamma.f e
1
,e

2
,e

3
Real Returns a random sample from a gamma distrib

tion.

e
1
 = mean, real

e
2
 = k, real

e
3
 = random number stream, integer

hour.f e Integer Converts event time to the hour portion.

e = cumulative event time, real

int.f e Integer Returns the rounded integer portion of a real ex

pression.

istep.f v,e Integer Returns a random sample from a look-up table

without interpolation.

v = variable that points to the look-up table.

e = random number stream, integer

itoa.f e Alpha Converts an integer expression to an alphanum

ic value (one digit only).

itot.f e Text Converts an integer expression to a text value.

length.f a Integer Returns the length of a text variable in charac-

ters.

lin.f v,e Real Returns a random sample from a look-up table,

using linear interpolation.

v = variable that points to the look-up table

e = random number stream, integer
298

Appendix B. Functions and Routines

.

-

-

a

Function Function

Mnenonic Arguments Mode Description

line.f e Integer Yields the line number currently being executed

e = process notice pointer

log.e.f e Real Computes the natural logarithm of a real expres

sion; e > 0.

log.normal.f e
1
,e

2
,e

3
Real Returns a random sample from a log normal dis

tribution.

e
1
 = mean, real

e
2
 = standard deviation

e
3
 = random number stream, integer

log.10.f e Real Computes log of a real expression.

lor.f e
1
,e

2
Integer Logical sum of e

1
 and e

2
.

lower.f s Text Converts letters in a text string to lower case.

match.f s
1
,s

2
,e Integer Returns the location of a text substring with

text string or 0 if not found.

s
1
 = source, text

s
2
 = pattern to be matched, text

e = number of characters of source to be

skipped, integer

max.f e
1
,e

2
,...,e

n
Real if any e; Returns the value of the largest e

i
. real; if none, in-

teger
299

SIMSCRIPT II.5 Programming Language

r

s-

-

d
Function Function

Mnenonic Arguments Mode Description

min.f e
1
,e

2
,...,e

n
Real if any Returns the value of smallest e

i
. e; real; if none,

integer

minute.f e Integer Converts event time to the minute portion.

e = cumulative event time, real

mod.f e
1
,e

2
Real if either ei; Computes a remainder as real; if none, intege

real; if none, e = trunc.f (e
1
/e

2
)*e

2
;

integer e
2
≠ 0.

month.f e Integer Converts simulation time to month portion

based on values given to origin.r .

e = cumulative simulation time, real

nday.f e Integer Converts event time to the day portion.

e = cumulative event time, real

normal.f e
1
,e

2
,e

3
Real Returns a random sample from a normal di

tribution.

e
1 = mean, real

e
2 = standard deviation, real

e
3
 = random number stream, integer

out.f e Alpha Sets or returns the e
th alphabetic character in-

the current output buffer; e must yield an in

teger value; e > 0; both right and left-hande

function.
300

Appendix B. Functions and Routines

is-

e.

Function Function

Mnenonic Arguments Mode Description

poisson.f e
1
,e

2
Integer Returns a random sample from a Poisson d

tribution.

e
1
 = mean, real

e
2
 = random number stream, integer

randi.f e
1
,e

2
,e

3
Integer Returns a random sample uniformly distrib-

uted between a range of values.

e
1
 = beginning value, integer

e
2
 = ending value, integer

e
3
 = random number stream, integer

random.f e Real Returns a pseudorandom number between

zero and one.

e = random number stream, integer

real.f e Real Converts an integer expression to a real valu

repeat.f s,e Text Repeats a string e times.

s = string, text

e = integer

rstep.f v,e Real Returns a random sample from a look-up table.

v = variable that points to the look-up table

e = random number stream, integer

sfield.f none Integer Returns the starting column of the next data

field to be read by a read free-form state-

ment. May affect file position.
301

SIMSCRIPT II.5 Programming Language

n

.

n-

on
Function Function

Mnenonic Arguments Mode Description

shl.f e
1
,e

2
Integer Shift e

1
 left e

2
 positions. Vacated positions

are filled with zeros.

shr.f e
1
,e

2
Integer Shift e

1
 right e

2
 positions. Vacated positions

are filled with zeros.

sign.f e Integer Indicates the sign of a real expression.

1 if e > 0

0 if e = 0

-1 if e < 0

sin.f e Real Computes the sine of a real expression give

in radians.

sqrt.f e Real Computes the square root of a real expres-

sion; e > 0.

substr.f s,e1,e2 Text Sets or returns a substring of a text value;

both a left-handed and right-handed function

In the left-handed usage, s must be an unmo

itored variable.

s = string, text

e
1
 = position, integer

e
2
 = length, integer

tan.f e Real Computes the tangent of a real expressi

given in radians.
302

Appendix B. Functions and Routines

.

l

o

-

e.
Function Function

Mnenonic Arguments Mode Description

trang.f e
1
,e

2
,e

3
,e

4
Real Returns a value from a triangular distribution

e1 = distribution minimum, real

e2 = mean of distribution, real

e3 = distribution maximum, real

e4 = random number stream, integer

trim.f s,e Text Trims leading and/or trailing blanks from a

string.

s = string, text

e = flag, where

-1 = trim leading blanks

0 = trim leading and trailing blanks

+1 = trim trailing blanks

trunc.f e Integer Returns the truncated integer value of a rea

expression.

ttoa.f e Alpha Converts first character of text expression t

alpha.

uniform.f e
1
,e

2
,e

3
Real Returns a uniformly distributed random sam

ple between a range of values.

e
1
 = beginning value, real

e
2
 = ending value, real

e
3
 = random number stream, integer

upper.f s Text Converts letters in a text string to upper-cas
303

SIMSCRIPT II.5 Programming Language

.

i-

Function Function

Mnenonic Arguments Mode Description

weekday.f e Integer Converts event time to the weekday portion

e = cumulative event time, real

weibull.f e
1
,e

2
,e

3
Real Returns a sample value from a Weibull distr

bution.

e
1
 = scale parameter, real

e
2
 = shape parameter, real

e
3
 = random number stream, integer

xor.f e
1
,e

2
Integer Logical difference of e

1
 and e

2
.

year.f e Integer Converts simulation time to the year portion

based on values given to origin.r .

e = cumulative simulation time, real
304

Appendix B. Functions and Routines

 is

r is
B.2 Routines

Routine

Mnemonic Arguments Description

date.r d,t Returns the current date and time in text mode. For-
mat of the returned value is system-dependent.

d = date, text

t = time, text

origin.r m,d,y Establishes an origin time when the calendar format
used.

m = month, integer

d = day, integer

y = year, integer

snap.r none User-supplied routine called when an execution erro

detected.

time.r none Controls simulation timing and selects events.
305

SIMSCRIPT II.5 Programming Language
306

 used

onal

p-

own in

a cer-

e made

s avail-

y a ver-

rate the

et en-

mple,

n a list.

 >

n
Appendix C. SIMSCRIPT Reference Syntax

C.1 Basic Constructs

The notation employed in describing SIMSCRIPT II.5 is an improved version of conventions

in several computer programming language descriptions. In the following pages:

1. Words in lower case bold letters denote required statement keywords, as well as opti

words or phrases used either for clarity or used as an optional feature.

2. Primitives are shown in lower case italics and denote words for which values must be su

plied, unless denoted as optional.

3. Metavariables, such as expressions, selection clauses (defined below), etc., are sh

lower case italics also. Again, actual expressions must be supplied.

4. A statement is a combination of keywords, primitives, and metavariables that follow

tain pattern called the syntax of the statement.

5. Brackets [] and braces { } denote choices. When brackets appear, a choice may b

from the options indicated. When braces appear, a choice must be made. The item

able for selection appear within the brackets or braces separated from one another b

tical bar |. When the choice can be repeated, a symbol (or symbols) that must sepa

items in that list of choices is written immediately after the right-hand brace or brack

closed in angles. For example:

{ A | B } < , >

represents a sequence of any number of As and Bs separated by commas. For exa

A, A, B, A, B

whereas:

{ A } < , >

is equivalent to:

A [,A] [,A] ... [,A]

6. The null separator < > is used to indicate that no symbol need separate the items i

An example of { A | B } < > might be AABAB...A. The choice represented by { A } <

is equivalent to A[A] [A]...[A].

7. A list separator symbol can itself be complex, involving choices and repetitions, as i

{ A | B } < AND | OR >. An instance might be:

A AND B OR B OR A
307

lanks,

ame is

ntexts:

defined

 special

otation
8. Plural keywords ending in S such as variables or lines, can be written in singular form as
variable or line when called for by the grammar of a statement.

C.2 Primitives

Integer: Sequence of digits delimited by blanks, special characters, or an end of record.

Name: Any sequence of letters and digits containing at least one letter and delimited by b

special characters, or an end of record.

Special names: The syntax of special names is the same as name. However, each special n

required in the context specified.

Each of the following names must be defined in the program preamble before use in other co

attribute name

event name

permanent entity name

process name

qualifier name

resource name

set name

temporary entity name

Routine name, while not necessarily defined in the preamble, must correspond to a user-

routine.

Word :{ integer

| name

| number

| special character

| string

}

Words must be separated from each other by one or more blanks unless one of them is a

character. Periods (.) are ignored between words and at the end of statements.

Comments can be inserted between any two words in a program by enclosing them in qu

marks ('') formed by two consecutive apostrophes. The right-hand set of quotes is not necessary if

the comment is the last item on the line.
308

Appendix C. SIMSCRIPT Reference Syntax

 expres-
C.3 Metavariables

In order to compress the syntax description of the statements, several commonly repeated

sions, or metavariables, are defined here rather than at each permissible usage.

arithmetic expression: = [+ | -] { (expression)

| number

| subprogram constant

| string constant

| [$] variable

} < + | - | * | / | ** >

array reference: = ([expression] < , > { * } < , >)

comma: = { , | and |, and }

for phrase:

for { name { back from | = } expression to expression [by expression]

| { each | all | every }

{ permanent entity name | resource name [called variable]

| name [{ from | after } expression]

{ of | in | on | at } set name [subscript]

[in reverse order]

}

}

} [,] [selection clause | termination clause] < >

format:
309

SIMSCRIPT II.5 Programming Language
format
1
 = { B expression | S expression | / }

format
2
 = { format

1
, | integer A expression

| integer C expression

| integer I expression

| integer D (expression, expression)

| integer E (expression, expression)

| integer T expression | integer T *

}

logical expression:

{ { (logical expression)

| expression { [is] relational operator expression } < >

| expression [is][not] { positive | negative | zero }

| mode [is][not] { real | integer | alpha | text }

| data [is][not] ended

| card [is][not] new

| page [is][not] first

| [the | this] set name [subscript] is [not] empty

| [the | this] expression is [not]

in [a | an | the | some] set name

| { event | process } is [not]

{ internal | endogenous

| external | exogenous

}

} [is] { true | false }

} { and | or }
310

Appendix C. SIMSCRIPT Reference Syntax
number: = { integer | .integer | integer [.integer] }

program label: = ' { name | number } '

relational operator:

{ { = | eq | equals | equal to }

| { ¬ = | <> | ne | not equal to }

| { < | ls | lt | less than }

| { > | gr | gt | greater than }

| { < = | le | not greater than | no greater than }

| { > = | ge | not less than | no less than }

}

selection clause:

{ with

| [except] when

| unless

} logical expression [,]

string constant: = " { name | number | blank } <> "

special character: = { (|) | + | - | # | / | ** | $ }

subscript: = ({ expression } < , >)

subprogram constant: = { ' routine name ' }
311

SIMSCRIPT II.5 Programming Language
termination clause: = { while | until } logical expression [,]

variable: = name [subscript | array reference]

C.4 The Statement Syntax

{ accumulate|tally }

{ name { = | as } [the] [qualifier name]

{ average | avg | mean

| sum

| number | num

| variance | var

| std.dev | std

| sum.of.squares | ssq

| mean.square | msq

| minimum | min

| maximum | max

}

| name ({ name | [+ | -] number } to { name | [+ | -] number }

by { name | number })

{ as | = } [the] [qualifier name] histogram

} < comma > of name

Specifies automatic data collection and analysis.

{ activate | cause | reactivate | schedule | reschedule }

{ a | an | the [above] | this }

{ process name | event name } [called variable]

[{ given | giving } { expression } < comma >

| (expression } < comma >)

]

312

Appendix C. SIMSCRIPT Reference Syntax

 state-

s-
{ at expression

| now | next

| { in | after } expression { units | days | hours | minutes }

}

Creates (for a or an) and places an event or process notice in the pending list in proper chronological

order.

add expression to variable

Adds the value of expression to the value of the variable variable.

after - See before.

[also] { for | termination clause }

[for | termination clause | selection clause] < >

do [this | the following]

Logical phrases control the execution of statements that follow them. When more than one

ment is to be controlled, the words do and loop must bracket the statements. Multiple control phra

es terminating control on the same loop statement are preceded by the word also.

always - See if.

{ before | after }

{ { creating | destroying } < comma >

[a | an | the | any] temporary entity name

| { filing | removing } < comma >

[in | from] { a | an | the | any } set name

| { activating | causing | canceling | interrupting | scheduling } < comma >

[a | an | the | any] § process name | event name }

} call routine name
313

SIMSCRIPT II.5 Programming Language

s to the

es.
Specifies a call to the named routine whenever the indicated statement is executed. Input

routine (automatically supplied) are:

BEFORE AFTER

__

create not allowed entity identifier

destroy entity identifier not allowed

file entity identifier, subscripts entity identifier, subscripts

remove entity identifier, subscripts entity identifier, subscripts

activate entity identifier, time entity identifier, time

cause entity identifier, time entity identifier, time

schedule entity identifier, time entity identifier, time

cancel entity identifier entity identifier

interrupt entity identifier entity identifier

__

begin heading

Marks the beginning of a heading section within a report section.

begin report [on a new page] [printing for , in groups of integer

[per page]]

Marks the beginning of a report section with optional new page and column repetition featur

break { event name | process name } ties { by | on } [high | low]

attribute name } < comma then >

Establishes the priority order within a process or event class in case of time-tie.
314

Appendix C. SIMSCRIPT Reference Syntax
{ call | perform | now } routine name

[{ given | giving | the | this } { expression } < comma >

| ({ expression } < comma >)] [yielding { variable } < comma >]

Invokes a routine used as a procedure.

cancel [the [above] | this] event name [called variable]

Removes a scheduled event notice from the pending list.

cause - See activate.

close [unit |tape] expression

Exact syntax is implementation-specific.

compute

{ variable { = | as } [the]

{ average | avg | mean

| sum

| number | num

| variance | var

| std.dev | std

| sum.of.squares | ssq

| mean.square | msq

| minimum | min

| maximum | max

| { minimum | min } (variable)

| { maximum | max } (variable)

}

315

SIMSCRIPT II.5 Programming Language

ression

tained

utines.

cking.
} < comma > of expression

Must be controlled by a logical control phrase. Computes the indicated statistics of the exp

expression after the loop statement if the control is over a do...loop block.

create { [a | an] { temporary entity name | process name | event name }

[called variable]

| { each | all | every } { { permanent entity name | resource name }

[(expression)] } < comma >

}

Obtains a block of words of the appropriate size for the named entity.

cycle | next

Returns control immediately to the top of a loop for testing and next iteration. Must be con

within a do...loop block.

define { set name } < comma > as [a | an] [LIFO | FIFO] set

[ranked { by | on } [high | low] attribute name }

< comma then >]

[without § F | L | N | P | S | M } attributes]

[[,] without { FF | FL | FB | FA | F | RF | RL | RS | R } < comma > routines]

Defines set ranking and optional deletion of owner and member attributes and processing ro

define { routine name } < comma > as [a | an]

[integer | alpha | real | double | text]

[releasable | fortran | nonsimscript] { routine | function }

[{ given | giving | with } integer [values | arguments]]

[[comma] yielding integer [values | arguments]]

Defines routines, their mode and the number of given/yielding arguments for consistency che
316

Appendix C. SIMSCRIPT Reference Syntax

tituted is
define { name } < comma > as [a | an]

[[integer | real | double | alpha | text | signed integer]

[integer - { dim | dimensional }]

[dummy | subprogram | stream { name | integer }]

] < [comma] >

{ variable | array} }

[monitored on { [the] { left | right } } < comma >]

Defines the properties of global variables.

define { name } < comma > as [a | an]

[[integer | real | double | alpha | text]

[integer - { dim | dimensional }]

[subprogram]

[saved | recursive]

] < [comma] >

{ variable | array }

Defines the properties of local variables.

define word to mean { word } < >

Instructs the compiler to substitute the words following the keyword mean for the indicated word

in all subsequent statements, before they are compiled. The sequence of words to be subs

terminated by the first end of record following mean. The sequence of words in a define to

mean statement cannot be empty.

destroy{ [the | this] { temporary entity name | process name

| event name } [called variable]

| each { permanent entity name | resource name } }

Releases the block of storage for the specified entity name.
317

SIMSCRIPT II.5 Programming Language

ses.

ithin a

hen
do loop [this | the following]

Used with loop to delimit a group of statement controlled by one or more logical control phra

else - See if.

end

Marks the physical end of a program preamble, routine, report section, or heading section w

report section.

enter with variable

Used to transfer a right-hand expression to a local variable within a left-handed function.

erase { name }

Used to release storage used for text variables.

{ event | upon } [to | for] event name

[{ given | giving | the | this } { name } < comma >

| ({ name } < comma >)]

[saving the event notice]

Event routine heading. Unless saved , the associated event notice is automatically destroyed w

the event routine is executed.

{event notices | events } [{ include | are } { event name } < comma >]

Preamble statement marking the start of event declarations.
318

Appendix C. SIMSCRIPT Reference Syntax

, word
every { entity name } < comma > [may | can]

{ has { a | an | the | some } attribute name

[({ integer/integer | */integer | integer-integer })]

[in { array | word } integer | function]

| owns { { a | an | the | some } set name } < comma >

| belongs to { { a | an | the | some } set name } < comma >

| has { a | an | the | some } attribute name

random [step | linear] variable

[in { word | array } integer]

} < comma >

Entity-attribute-set structure declaration. Specifies optional attribute packing, equivalences

assignments, and functions.

{ external | exogenous }

{ event | process } units are

{ name | integer } < comma >

Logical input devices from which external event/process data will be read.

{ external events | exogenous }

{ events | processes } are { event name | process name } < comma >

Declares the names of the events and processes which can be triggered externally.

file [the | this] expression

[first | last | { before | after } expression]

in [the | this] set name [subscript]

Places an entity in a set.
319

SIMSCRIPT II.5 Programming Language

nding

rding to

he out-
 find { the first case

| { variable = [the] [first] expression } < comma >

} [,]

[if { found | none } [,]]

Must be controlled by a for phrase with a selection clause, but cannot be within a do...loop block.

The option if statement directs control after the control phrase has been completed, depe

upon the outcome of the find .

go [to] { 'program label [(expression)] '

| program label [(expression)]

| § 'program label' | program label } < or > per expression

}

Transfers control to a labelled statement or one of several labelled statements in a list acco

the integer value of the transfer expression expression.

if logical expression [,]

[statement] < >

[else | otherwise]

[statement] < >

{endif | always | regardless }

The if statement directs control to one of two possible groups of statements, depending on t

come of logical expression. If statements may be nested to any complexity.

interrupt [the | this | the above] process name [called variable]

Removes a process from the pending list, computes the "time to go" (time.a - time.v) and stores it

in time.a (process name) [or time.a (variable)].
320

Appendix C. SIMSCRIPT Reference Syntax

 is real,

dimen-

es.
last column { is | = } integer

Directs compiler to ignore columns beyond integer on subsequent input records.

leave

Transfers control to the statement immediately following the next loop statement.

let variable = expression

Assigns the value of expression to the variable variable. If variable is integer and expression

the result is rounded before storing.

list { expression

| attributes of { entity [called expression]

| each entity

[{ from | after } expression]

[{ in | of | at | on } set name [subscript]]

[in reverse order]

[, { selection clause | termination clause } < >]

}

} < comma >

A free-form output statement that labels and displays values of expressions, and one- or two-

sional attributes or arrays.

{ loop[| repeat }

Used with do to delimit a group of statements controlled by one or more logical control phras
321

SIMSCRIPT II.5 Programming Language

utable

t vari-

 unless
main

Marks the beginning of the main routine in a program. Execution commences at the first exec

statement after main .

move { from expression

| to variable

}

Used only within a routine defined for a monitored variable to access or set the value of tha

able.

NOTE: move to left-monitored variable

move from right-monitored variable

next - See cycle.

normally [,]

{ mode { is | = } { integer | real | double | alpha | text | undefined }

| type { is | = } { saved | recursive }

| { dimension | dim } { is | = } integer

} < comma >

Establishes background conditions for properties of variables and functions that are effective

overridden by subsequent define declarations or, in the case of local arrays, first use.

now - See call.
322

Appendix C. SIMSCRIPT Reference Syntax

ial
open [unit] expression for

input  name = expression 
output  recordsize = expression 
 comma binary 

noerror 

Exact syntax is implementation-specific.

otherwise - See if.

perform - See call.

permanent entities [include { permanent entity name } < comma >]

Preamble statement marking the start of permanent entity declarations.

[new | old | very old] preamble

Marks the beginning of the program preamble.

print integer [double] lines

[with { expression | a group of { expression }

< comma > fields } } < comma >]

[suppressing from column integer]

{ thus | like this | as follows }

The integer lines following the print statement are format lines containing text and pictor
formats for the display of indicated expression values.

The phrases, a group of { expression } < comma > fields and suppressing from column

intege r, can only be used within report sections that have column repetition.
323

SIMSCRIPT II.5 Programming Language

nts to be

reamble.

d input

ources).
priority order is { event name | process name } < comma >

This preamble statement assigns a priority order to different classes of processes and eve

used to resolve time-ties in scheduling.

process [to | for] process name

[{ given | giving | the | this } { name } < comma >

| ({ name } < comma >)]

Process routine heading declaration. The process name process must be declared in the p

processes [{ include | are } { process name } < comma >]

Preamble statement marking the start of process entity declarations.

read { { variable } < comma > [as { [double] binary

| [(expression)] { format2 } < comma > }]

| as { format1 } < comma >

}

[using { the buffer | [tape | unit] expression }]

Reads data, either formatted or free-form from a specified device or the previously establishe

device.

regardless - See if.

release{ variable } < comma >

Frees storage occupied by variables (either arrays or attributes of permanent entities or res
324

Appendix C. SIMSCRIPT Reference Syntax

uesting

d.
relinquish expression [units of] resource name [(subscript)]

Makes the specified number of units of the resource available for automatic reallocation.

remove [the]

{ { first | last } variable

| [this | above] expression

} from [the | this] set name [subscript]

Removes an entity from a set.

repeat - See loop.

request expression [units of] resource [(subscript)]

[[,] with priority expression]

Makes a request for the specified number of units of the resource. If not available, the req

process is enqueued in priority order and suspended awaiting availability of the resource.

reschedule - See activate.

reserve { { variable } < comma > as { expression }

< by > [by *] } < comma >

Allocates blocks of storage of the specified size to the variables. If by * is specified only pointer

space (for multi-dimensioned arrays) is allocated. Otherwise the data storage is also allocate
325

SIMSCRIPT II.5 Programming Language

s with

to-go"

n, this
reset [the] [qualifier name] < comma >

totals of { variable } < comma >

Initializes accumulate or tally counters associated with variable. If totals is not preceded by

qualifier name(s), all counters of variable are (re)initialized. Otherwise, only those counter
the matching qualifiers are reset.

resources[{ include | are } { resource name } < comma >]

Preamble statement marking the start of resource entity declarations.

resume [the | this | the above] process name [called variable]

Used to restore a previously interrupted process to the pending list with the remaining "time-

taken from time.a (process name).

resume substitution

Used to reinstate the substitutions previously nullified by a suppress substitution statement.

return [(expression) | with expression]

Used in a procedure, this statement returns control to its calling program. Used in a functio

statement returns control and a value to its calling program.

rewind [tape | unit] expression

Rewinds an input/output device.
326

Appendix C. SIMSCRIPT Reference Syntax

.

[left | right] { routine | function | subroutine }

[to | for] routine name

[{ given | giving | the | this } { name } < comma >

| ({ name } < comma >)

[yielding { name } < comma >]

Routine heading declaration. The prefix left or right is for declaring monitoring routines. A

routine used as a function has only given arguments.

schedule - See activate.

skip expression { fields

| [input | output] { cards | lines | records }

}

Applies to the current input or current output unit. Skip expression fields applies only to

the current input unit. If neither input nor output is specified, cards and records imply input

and lines implies output .

start new { page

| [input | output] { card | line | record }

}

Applied to the current input or output unit. If neither input nor output is specified, card and

record imply input , and line implies output .

start simulation

Causes the timing routine (time.r) to begin selecting and executing events and/or processes
327

SIMSCRIPT II.5 Programming Language

ce of

g only

iable.

 timing
stop

Halts program execution and returns control to the operating system.

store expression in variable

Assigns the value of expression to variable without regard to mode.

substitute{ this | these } integer lines for word

Instructs the compiler to substitute the next integer lines following "word" for each occurren

"word" in all subsequent statements before they are compiled. Blank lines and lines containin

comments do not count in this statement.

subtract expression from variable

Subtracts the value of expression from the value of variable and stores the difference in var

suppress substitution

Used to nullify current substitutions (possibly in order to modify the substitutions).

suspend [process]

Used to place the current process in the passive state and return control immediately to the

routine without destroying the current process.

tally - See accumulate.
328

Appendix C. SIMSCRIPT Reference Syntax

ttribute

vice is
temporary entities

Preamble statement marking the start of temporary entity declarations.

the system [may | can]

{ has { { a | an | the | some } attribute name

[({ integer/integer | */integer | integer-integer })]

[in { array | word } integer | function]

} < comma >

| owns { { a | an | the | some } set } < comma >

| has { a | an | the | some } attribute name

random [step | linear] variable

[in { word | array } integer]

} < comma >

Specifies attributes of the system and sets owned by the system. Also specifies optional a

packing, equivalences, word assignments, and functions.

[then] if - See if.

trace [using [tape | unit] expression]

Produces a backtrack of the current function and subroutine calls. Trace is executed automatically

when SIMSCRIPT detects an error during execution. In this case, the standard listing de

used.

upon - See event.
329

SIMSCRIPT II.5 Programming Language

equent

t

e spec-

se not-
use{ the buffer | [tape | unit] expression } for { input | output }

Establishes the indicated input or output device as the current input or output unit. All subs

input/output statements that do not specify their own devices in using phrases use these curren

units. Specifying the buffer causes reading or writing to an internal file.

{ wait | work } expression { units | days | hours | minutes }

Introduces a delay of expression time-units into a process.

work - See wait.

write { expression } < comma > { as { [double] binary

| [(expression)] { format
2 } < comma >

}

| as { format
1
 | * }

}

[using { the buffer | [tape | unit] expression }

]

Writes data to the specified device or the previously established output device according to th

ified format.

C.5 Preamble Statement Precedence Rules

The following statements may only appear in the program preamble (except where otherwi

ed). No other statements may appear in the preamble.
330

Appendix C. SIMSCRIPT Reference Syntax

l
s

e

d

Statement

Type Statement Rules

1a normally Can appear anywhere in preamble.
1b define to mean

1c substitute

1d suppress substitution

1e resume substitution

1f last column

__

2a temporary entities A preamble may contain many types of 2a,

2b,
2b permanent entities 2c, 2d, and 2e statements.
2c event notices

2d processes

2e resources

__

3a every Many can follow a type 2 statement.

3b the system An entity can appear in more than one every

statement.
__

4 define variable No precedence relation if it defines a globa
variable. Must follow all Type 3a statement

if it defines an attribute named in them. A

variable, attribute, or function can appear in

only one define statement.
__

5 define set Must follow Type 3 statements which declar

the MEMBER or OWNER entity.
__

No type 6-9 statement can precede any Type 2-3 statements.
__

6a break ties One statement allowed for each process or
6b external events event notice.
6c external processes

6d external units

__

7 priority Must follow all Type 2c, 2d, and Type 6b an
6c statements (and their every statements).

__

8a before One of each per entity/set action.
331

SIMSCRIPT II.5 Programming Language

e
Statement

Type Statement Rules

 after

__

9a accumulate One statement allowed for each attribut
or unsubscripted global variable.

9b tally

332

Index

1

A

a group of ... fields clause................................. 131
abs.f function ..295
accumulate statement226, 229, 230
activate statement.. 190
add statement ..10, 18, 146
after statement... 235
alpha mode ..74, 110
alpha variables.................................... 74, 113, 124
alphanumeric descriptor.................................... 109
always statement... 13, 27
and operator.. 16
and.f function.. 295
arccos.f function... 295
arcsin.f function...295
arctan.f function.. 295
arithmetic expressions...................... 4, 65, 74, 117
arithmetic operators.. 4
array pointers ..65, 253
asterisks... 7
at phrase ..195
atot.f function ..295
attribute name clause.. 142
Attribute packing261, 319

B

before statement ..101
begin heading statement........................... 125, 314
begin report statement....................... 124, 129, 314
beginning column descriptor............................ 114
beginning column format descriptor................. 114
beta.f function ...295
between.v variable ..236
binomial.f function... 296
bit packing ..261
blanks ..7, 293, 308
break ties statement... 208
buffer.v variable.. 123
buffers..123

C

calendar time format ...210
call statement...................................55, 61, 95, 198
called phrase ...164
cancel statement.. 197
card is new phrase ...88
case statement... 84
character string descriptor................................. 115
character string format descriptor115
character strings ..113, 116
close statement ..121
commas ...29, 143, 307
comments ..30
common attributes ..168

compound entities..................................... 170, 272
compute statement100, 224
computer representation descriptor...................110
COMPUTING VARIABLE VALUES 5
concat.f function ...296
control phrases50, 101, 313
cos.f function ..296
create statement........................ 144, 147, 153, 172
cycle statement... 27

D

data is ended phrase.. 87
date.f function... 296
date.r routine..305
day.f function.. 296
day-hour-minute format210
debugging ...232
decimal descriptor... 107
decimal format descriptor................................. 112
decimal time units format................................. 210
default statement... 84
define a variable as monitored on the

 left statement236
define as a variable monitored on the

right statement282
define routine statement.......................................55
define set statement.. 279
define statement

.... 45, 56, 60, 77, 150, 162, 221, 259, 33
define to mean statement82, 317
define variables statement................................ 282
destroy statement.. 206
dim.f function ...296
div.f function.. 297
do loop..26, 44, 101, 318
double mode..39
dummy variable.. 232

E

efield.f function ..87, 297
else ..12, 13, 28, 86, 318
end statement29, 55, 124, 128
ended ...87
endif.. 12, 15
end-of-file conditions120
endselect statement... 84
enter with statement237, 280, 318
entity control phrases ..164
entity nesting... 156
eof.v variable...120
equivalencing...............................98, 188, 261, 270
erase statement.. 70
erlang.f function.. 297
eunit.a attribute188, 189, 205, 209
333

SIMGRAPHICS II.5 Programming Language
ev.s set ..188, 205
event and process attributes186, 188
event attributes ...205
event is statement ...209
every statement ..138
except when...25
exp.f function ...297
exponential.f function297
external events ..319
external process units statement208
external processes.................................... 207, 331
external processes statement212

F

F.rs.s attribute ...205
field packing ...261
FIFO sets ..273
file after routine ..278
file after statement.. 156
file before statement ...156
file last statement ...156
find statement... 99
fixed.f function... 297
for statement..25
formal argument list ...60
format descriptor.. 106
format lists.. 110
formats..7
frac.f function..297
Function attributes ..271
future events set............................... 188, 193, 201

G

gamma.f function... 298
given argument. 60, 72, 86, 96, 202, 217, 279, 327
global variables

56-64, 76, 105, 148, 165-172, 224-233,
261, 317

H

heading.v variable.. 136
here statement ..259
hour.f function ..298
hours.v variable ..196, 244

I

if found statement..276
if none statement.. 100
if page is first statement126
if statement12, 14, 159, 320

nested if statement.......................................15
Input statements ...222
implied subscripts ..172
in array i... 270

in reverse order phrase..................................... 166
in word i phrase...269
include phrase ..190, 203
indirect function call...96
input statements.. 108
int.f function ...298
integer format descriptor106
integer mode,.. 38
INTEGER Variables.. 38
intrapacking ..261
Ipc.a attribute... 205
is empty phrase ...160
is false phrase... 11, 16
is not empty phrase ..160
is true phrase...16
istep.f function... 298
itoa.f function ...298
itot.f function...298
ivalue.a attribute... 222

J

jump ahead statement259
jump back statement ...259

L

label names ...37, 59, 258
LABEL NAMES...37
labels...27
last column statement94, 129
leave statement ...26, 321
left function statement...................................... 280
length.f function ...298
let statement5, 6, 40, 98, 147
library functions ...40
LIFO sets ..273
lin.f function ...298
line...7
line.f function ...299
line.v variable ...126
lines.v variable ...126
list statement91, 94, 103, 117, 174, 234
local arrays ...67, 77, 322
log.10.f function ...299
log.e.f function ...299
log.normal.f function ..299
logical expressions................. 10, 12, 16, 159, 160
LOGICAL EXPRESSIONS............................... 10
look-ahead functions.. 87
loop statement25, 51, 101, 313
lor.f function... 299
lower.f function ..299

M

m.ev.s attribute..188
main statement ...54
334

Index

8

Mark.v variable... 210, 221
match.f function.. 299
max.f function ...299
maximum...227, 288
mean ..289
min.f function ...300
minimum ...289
minute.f function ...300
minutes.v variable ...196
mod.f function ...300
modes.............................. 37, 40, 63, 110, 150, 270
monitored variables235, 282
monitoring routines................................... 288, 327
month.f function ...300
move from ...284, 322
move statement ...283
move to ...322

N

names
label names...37
variable names..37

nday.f function ..300
negative..14
nested do loop ...51
normal.f function ..300
normally statement38, 57, 59, 77, 82, 150
not ended ...87
now phrase ..196
number ..289

O

open statement ..119, 122
optional attributes... 275
or operator ...17
origin.r routine.. 305
otherwise26, 63, 90, 209, 276, 320
otherwise statement ..12
otherwise... 26, 27
out.f function... 300
output statement................. 103-119, 280, 321, 330
output...8

P

p.ev.s attribute ...188, 189
p.rs.s set.. 205
page.v variable.. 126, 136
pagecol.v variable... 136
parallel (|) character...8
parentheses.. 4
periods... 37
permanent entities

144, 147, 164, 170, 203, 228, 261, 267, 323
pointer variables ..249, 256
poisson.f function ...301

positive.. 14
preamble

... 38, 45-59, 260, 270, 278, 288, 308, 31
print statement6, 10, 19, 71, 95, 129, 323
priority statement191, 208
prob.a attribute ..222
process attributes.. 197
process notices.................. 190, 198, 205, 209, 211
process routines186, 193, 198, 202
process statement ..208
process.v variable... 198
program format ...93
programmer-defined array structures............... 249
pty.a attribute.. 205

Q

q.resource set.. 204
qc.e entity...204
qty.a attribute.. 205
quotation marks.............................. 27, 69, 75, 308

R

randi.f function... 301
random variables............................... 215, 219, 220
random.e entity... 222
random.f function214, 301
ranked sets.. 161, 278
rcolumn.v variable.. 212
read statement

............2-9, 41-49, 70, 87-91, 106-117, 17
read.v variable105, 120, 213
real variables ...40, 178
REAL variables.. 38
real.f function.. 301
recursive routines.. 75
recursive variables.. 77
regardless ..12, 15, 28, 324
relational operators ...10
release statement ...65, 67
relinquish statement202, 203, 325
remove first routine ..278
remove first statement157, 201
remove last statement157
repeat.f function ..301
request statement ..203
required set attributes ..168
reschedule statement ...325
reserve statement47, 249, 252, 257, 325
reset statement ..230, 326
resume statement ..326
resume substitution... 331
resume substitution statement..................... 83, 326
return statement............ 56, 63, 187, 200, 202, 326
rewind statement... 326
335

SIMGRAPHICS II.5 Programming Language

70,
right-handed functions280
routine argument60, 66, 77, 96
routine names ...1, 136
rs.s set ...205
rstep.f function... 301
rvalue.a attribute... 222

S

s.ev.s attribute ..188
s.rs.s set ..205
s.variable attribute ..222
saved variables ...76
saving the event notice phrase198, 318
schedule statement190, 195, 197, 208, 327
scientific descriptor.. 107
seed.v array ..214
select statement.. 84
set attributes............................. 162, 166, 171, 278
set membership.. 139, 151
set membership clause..................................... 142
set ownership clauses142
set pointers149, 162, 165, 169, 188, 272
set routines ...278, 279
sfield.f function ..301
shl.f function ..302
shr.f function.. 302
sign.f function ..302
sin.f function.. 302
skip column descriptor..................................... 115
skip column format descriptor..........................115
skip statement................................... 8, 9, 128, 327
skip to a new page descriptor........................... 115
skip to a new page format descriptor115
skip to new record format descriptor115
snap.r routine ..305
sqrt.f function ...302
Sta.a attribute... 205
start new page statement...................... 9, 114, 287
start new record statement9, 117
start new statement... 327
start simulation statement................. 193, 209, 327
statistical distribution functions215, 216
std.dev ..227, 288, 289
stop statement..................................10, 29, 56, 328
store statement.. 328
subprograms52, 94, 95, 183
subroutine statement.. 200
subscripted attributes229, 261
subscripted labels ...257
subscripted variables45, 46, 49, 50, 89, 281
substitute statement260, 328
substr.f function ...302
subtract statement..6, 328
sum ...289

sum.of.squares102, 103, 224, 227, 289
suppress substitution statement83, 328
suspend statement201, 328
symbols ..3, 11, 29, 307
system attributes............... 149, 152, 228, 261, 270
system functions....................................... 196, 221
system-defined constants................................... 42
system-defined functions................................... 86

T

tally statement ..328
tan.f function ..302
temporary entities 144, 165-171, 225-229, 262- 272
temporary entities statement............................ 329
text descriptor ...109
text mode.............................. 69, 71, 175, 270, 305
text variables ..69, 71, 318
the buffer statement.................................. 324, 330
the first case statement............................... 84, 100
the system statement149, 329
then by clause ...161
then if statement... 16, 51
Thus.. 7
time.a attribute ...188, 201
time.r routine.. 305
time.v attribute... 227, 236
time.v variable.. 201
timing routine... 188
trace statement.. 196
trang.f function..303
transmit buffer format descriptor..................... 115
trim.f function ..303
trunc.f function... 303
ttoa.f function..303
type phrase ...77

U

U.resource attribute ..202
undefined mode.................................. 39, 257, 322
uniform.f function ..303
unless phrase.. 25
until phrase... 25
upon statement... 329
upper.f function ..303
use statement...330

V

variable formats.. 117
variable modes ...37, 69
variable names 1, 2, 5, 29, 31, 37, 39, 42, 56, 61,

145, 232
variables

integer variables.. 38
real variables..38
VARIABLE names..................................... 37
336

Index
variance102, 288, 289, 312

W

wcolumn.v variable..128
weekday.f function... 304
weibull.f function.. 304
when phrase...25
while phrase.. 23
who.a attribute ..205
with phrase ..24, 99
with priority phrase... 204
without attributes phrase................................... 165
word numbers ...169, 170
work statement ..213, 330
write statement........... 106-116, 123, 136, 174, 330
write.v variable... 105, 120

X

x.resource set.. 204
xor.f function.. 304

Y

year.f function... 304
yielded ...198, 231
yielded argument............................ 60, 63, 67, 231

Z

zero..14
337

SIMGRAPHICS II.5 Programming Language
338

	Table of Contents
	Figures
	Preface
	1. SIMSCRIPT II.5 Basic Concepts
	1.1 Introduction
	1.2 Variables
	1.3 Reading Input Data
	1.4 Constants
	1.5 Arithmetic Expressions
	1.6 Computing Variable Values
	1.7 Specialized Computation Statements
	1.8 Displaying the Results of Computation
	1.9 Skipping Unwanted Input Data
	1.10 Logical Expressions
	1.11 Changing the Flow of Computation Using Logica...
	Figure 1-1. Flow of Control After an if Statement
	Figure 1-2. Flow of Control After Shortened if Sta...

	1.12 More on Logical Expressions
	1.13 Repetition Using Control Phrases
	1.14 Control Phrases Extended To Cover More Than O...
	1.15 Logical Control Phrases
	1.16 Altering the Flow of Control Within a Loop
	1.17 Changing the Flow of Control By Direct Order
	1.18 The Logical End of a Program
	1.19 The Physical End of a Program
	1.20 A Note on SIMSCRIPT II.5 Program Form
	1.21 Clarifying Comments In a Program
	1.22 Some Sample SIMSCRIPT II.5 Level 1 Programs
	1.22.1 Roots of a Quadratic Expression
	1.22.2 Finding the Area of a Triangle
	1.22.3 Finding the Maximum and Minimum of a Set of...
	1.22.4 Computing Square Roots

	2. Programming Language Concepts
	2.1 Variable and Label Names Revisited
	2.2 Variable Modes
	2.2.1 REAL and INTEGER Variables

	2.3 Expression Modes
	2.4 System-Defined Constants
	2.5 Subscripted Variables
	Figure 2-1. A List Structure: One-dimensional Arra...
	Figure 2-2. Elements of a One-dimentional Array Ca...
	Figure 2-3. A Table Structure: A Two-dimensional A...
	Figure 2-4. Elements of a Two-dimensional Array Ca...

	2.6 Reading Subscripted Variables
	2.7 Using Subscripted Variables In Expressions
	2.8 Nested DO Loops
	2.9 The Structure of a SIMSCRIPT II.5 Program
	Figure 2-5a. Program Consisting of a Subprogram Ca...
	Figure 2-5b. Program Consisting of Two Subprograms...
	Figure 2-5c. Program Consisting of Three Subprogra...

	2.10 Routine Definition
	2.11 Global and Local Variables
	2.12 Routine Arguments
	2.13 Routines Used as Functions
	2.14 Global and Local Variables, Routines, Functio...
	2.15 Library Functions
	2.16 Using Non-SIMSCRIPT Routines
	2.17 Returning Reserved Arrays To Free Storage
	2.18 Array Pointers as Routine Arguments
	2.19 Text Mode Variables
	2.20 Reading and Displaying Text Variables
	2.21 Operations With Text Variables
	2.21.1 Concatenation: CONCAT.F(text1, text2...text...
	2.21.2 Substring: SUBSTR.F(text, index, length)
	2.21.3 Pattern Matching: MATCH.F(text, pattern, sk...
	2.21.4 Length Function: LENGTH.F(text)
	2.21.5 Case Conversion: UPPER.F(text) and LOWER.F(...
	2.21.6 String Repetition: REPEAT.F(string,count)
	2.21.7 Truncation and Expansion: FIXED.F(string,le...
	2.21.8 Blank Character Elimination: TRIM.F(string,...
	2.21.9 INTEGER to TEXT Conversion ITOT.F(integer)

	2.22 Alpha Variables
	2.22.1 TEXT to ALPHA Conversion: TTOA.F(text)
	2.22.2 ALPHA to TEXT Conversion: ATOT.F(alpha)

	2.23 Recursive Routines
	Figure 2-6. Tree Construction
	Figure 2-7. A Binary Tree
	Figure 2-8. A Complex Tree

	2.24 Pre-Processing Program Text
	2.25 More On Changing The Flow of Computation
	2.26 Some Data-Related Logical Values
	2.27 More Sample SIMSCRIPT II.5 Level 1 Programs
	2.27.1 A Data Analysis Program: 1
	2.27.2 A Data Analysis Program: 2
	2.27.3 A Matrix Multiplication Program
	2.27.4 A Matrix Multiplication Routine

	2.28 More on Program Format
	2.29 A Useful Output Statement
	2.30 Subprogram Variables
	2.31 The Store Statement

	3. Input/Output Concepts
	3.1 Introduction
	3.2 A Search Capability
	3.3 A Statement for Computing Some Standard Functi...
	3.4 Input/Output Statements
	3.4.1 Physical Device Specification
	3.4.2 The Formatted I/O Statements READ and Write
	3.4.3 Format Lists
	3.4.4 Controlled READ and WRITE Statements
	3.4.5 Variable Formats

	3.5 Miscellaneous Input/Output Statements and Faci...
	3.5.1 Logical File Assignment: The OPEN Statement
	3.5.2 End-of-File Conditions
	3.5.3 Repositioning Files
	3.5.4 Input/Output of Nondecimal Information

	3.6 Internal Editing of Data
	3.7 Writing Formatted Reports
	Figure 3-1. Report Using Row and Column Repetition...
	Figure 3-2. Column Repetition, Page 1
	Figure 3-3. Column Repetition, Page 2
	Figure 3-4. An Example of Column Repetition
	Figure 3-5. An Example of Format Suppression
	3.7.1 Page Heading Control

	4. Modelling Concepts
	4.1 Introduction
	4.2 Entities and Attributes
	Figure 4-1. Storage of Attributes in a Two-dimensi...
	Figure 4-2. Order of Storage of the Attributes of ...

	4.3 Sets
	Figure 4-3. Automatically-defined Attributes of CO...
	Figure 4-4. Automatically-defined Attributes for M...
	Figure 4-5. Owner-member Set Relationships
	Figure 4-6. Set Relationships
	Figure 4-7. Set Relationships

	4.4 Temporary Entities
	Figure 4-8. Entity Creation

	4.5 Permanent Entities
	Figure 4-9. Attribute Storage of Permanent Entitie...

	4.6 System Attributes
	4.7 Attribute Definitions: Mode and Dimensionality...
	4.8 Sets: Their Declaration and Use
	Figure 4-10. Storage of Attributes of a Permanent ...
	Figure 4-11. Storage of Attributes of a Temporary ...
	Figure 4-12. Storage of System Attributes and Set ...
	Figure 4-13. Entity Structures for FARM and DOG
	Figure 4-14. Entity Records
	Figure 4-15. Entity Records
	Figure 4-16. Entity Records
	Figure 4-17. Entity Records
	Figure 4-18. A Set with Two Members
	Figure 4-19. A Set with Three Members
	Figure 4-20. FIFO and LIFO Set Organizations

	4.9 Entity Control Phrases
	4-10. Common Attributes
	Figure 4-21. Entity Structures for TANKER and TUG

	4.11 Compound Entities
	4.12 Implied Subscripts
	4-13 Displaying Attribute Values
	4.14 Some Sample Programs
	4.14.1 An Inventory Control Example
	4.14.2 A Data Analysis Application
	Figure 4-22. Display of Result Produced by Data An...
	4.14.3 An Analysis of Prime Numbers
	4.14.4 Dynamic Definition and Use of Attributes

	5. Discrete Simulation Concepts
	5.1 Introduction
	5.2 Describing a System Model
	Figure 5-1. An Activity Delimited by Two Events
	Figure 5-2. A Process May Be Considered to be Comp...
	Figure 5-3a. Two Overlapping Activites
	Figure 5-3b. Two Nested Activities
	Figure 5-3c. Two Activities with a Common Event Ti...
	5.2.1 Event Declaration
	5.2.2 Event Notices
	Figure 5-4. Possible Layout of Event Notice Entiti...
	5.2.3 Process Declaration
	5.2.4 Scheduling Events and Processes
	5.2.5 Processes and Events Scheduled for the Same ...

	5.3 The Simulation Mechanism
	Figure 5-5. The Future Events Set Organization
	5.3.1 The Simulation Clock
	5.3.2 Assigning Event and Process Attributes
	5.3.3 Process Interactions
	5.3.4 Interrupting and Resuming a Process
	5.3.5 Processes and Resources
	5.3.6 Requesting and Relinquishing Resources
	5.3.7 Process Notice: Additional Attributes
	Figure 5-6. Attributes of Process Notices Created ...
	5.3.8 External Processes and Events
	5.3.9 Triggering Processes and Events Externally
	5.3.10 Time and Date Expressions in External Data

	5.4 Modelling Statistical Phenomena
	Figure 5-7. A Rectangular Coordinates System
	5.4.1 Random Step Variables
	5.4.2 Random Linear Variables
	5.4.3 Programmer-Defined Random Variables
	Figure 5-8. Storage of RANDVAR Sample Values

	5.5 Simulation Analysis
	5.6 Model Verification and Debugging
	5.7 Synchronous Variables
	5.8 Simulation Example
	5.8.1 A Sample Model

	6. Advanced Topics
	6.1 Introduction
	6.2 Programmer-Defined Array Structures: Pointer V...
	Figure 6-1. One-dimensional Array X with Its Base ...
	Figure 6-2. Base Pointers in a Two-Dimensional Arr...
	Figure 6-3. Base Pointers in a Three-Dimensional A...
	Figure 6-4. Memory Structure After Reserve Stateme...
	Figure 6-5. Memory Structure After Assignment of D...
	Figure 6-6. Family Tree
	Figure 6-7. Family Tree Stored in a Rectangular Ar...
	Figure 6-8. Family Tree Stored in a Ragged Table
	Figure 6-9. Memory Structure for Family Tree, N = ...

	6.3 Still More on Changing the Flow of Computation...
	6.4 Attribute Definitions: Packing and Equivalence...
	Figure 6-10. Entity Storage
	Figure 6-11. Array Storage
	Figure 6-12. Array Storage

	6.5 Attribute Definitions: Functions
	6.6 Compound Entities Involving Temporary Entities...
	6.7 Two Illustrations of Set Ranking by Function A...
	6.8 Using “Optional” Attributes
	Figure 6-13. Record Structure

	6.9 Deletion of Set Routines
	6.10 Left-Handed Functions
	6.11 Monitored Variables
	6.12 Implementation Details for the TALLY Statemen...

	Appendix A. Format Conventions Used In Print Statm...
	Appendix B. Functions and Routines
	B.1 Functions
	B.2 Routines

	Appendix C. SIMSCRIPT Reference Syntax
	C.1 Basic Constructs
	C.2 Primitives
	C.3 Metavariables
	C.4 The Statement Syntax
	C.5 Preamble Statement Precedence Rules

	Index

