
process AIRPLANE
 call TOWER giving GATE yielding RUNWA Y
 work TAXI.TIME (GATE, RUNWAY) minutes
 request 1 RUNWAY
 work TAKEOFF.TIME (AIRPLANE) minutes
 relinquish 1 RUNWAY
end " process AIRPLANE

Since 1962S
SIMSCRIPT II.5®

Simplified

SIMSCRIPT II.5 Simplified

This document was produced by

Professor Tony Vignaux
Victoria University
New Zealand
Tony.Vignaux@mcs.vuw.ac.nz

Updated November 2002 by CACI

If there are questions regarding the use or availability of SIMSCRIPT II.5 product, please contact CACI at any of the
following addresses:

For product Information contact:

CACI Products Company CACI Worldwide Headquarters
1011 Camino Del Rio South, suite 230 1100 North Glebe Road
San Diego, California 92108 Arlington, Virginia 22201
Telephone: (619) 542-5224 Telephone (703) 841-7800
 www.caciasl.com www.caci.com

For technical support contact:

Manager of Technical Support
CACI Products Company
1011 Camino Del Rio South #230
San Diego, CA 92108

Telephone: (619) 542-5224

simscript@caci.com

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the responsibility
for any consequences resulting from the use thereof. The information contained herein is subject to change. Revisions to this
publication or new editions of it may be issued to incorporate such change.

SIMSCRIPT 11.5 is a registered trademark and service mark of CACI Products Company.

 2

TABLE OF CONTENTS

1. Introduction.. 1

2. Simscript II.5 Language Elements ... 3

2.1 Program Structure.. 3

2.2 The Main Program ... 3

2.3 Variables .. 4
2.3.1 Modes.. 4
2.3.2 Local and Global Variables... 5
2.3.3 Arrays .. 5

2.4 The Preamble .. 5

2.5 The Assignment Statement... 6

2.6 Input and Output .. 6
2.6.1 Free-form Input (read) .. 6
2.6.2 Quick-and-dirty output (list)... 6
2.6.3 Output with a Template (print) ... 7

2.7 Program Flow.. 8
2.7.1 Selector Phrases.. 8

2.8 Routines ... 9
2.8.1 Arguments.. 9
2.8.2 Functions.. 10

2.9 Predefined Elements ... 11

3. Simulation with SIMSCRIPT II.5 .. 13

3.1 Simulation Time.. 13

3.2 Entities ... 14
3.2.1 Creating and using Temporary Entities... 14
3.2.2 Attributes of Entities .. 15

3.3 Sets.. 16

3.4 Processes .. 17
3.4.1 Defining a Process .. 17
3.4.2 Process Routine... 18
3.4.3 Creating a Process Entity.. 18
3.4.4 Activating a Process with Attributes and Arguments 19
3.4.5 Elapsing Time in a Process .. 20
3.4.6 A Complete Program Using wait Commands.............................. 20
3.4.7 Interactions of Processes .. 21

SIMSCRIPT II.5 Simplified

3.4.8 Interruptions .. 21

3.5 Resources ... 23
3.5.1 Using Resources.. 25

3.6 Standard Attributes .. 25

4. Statistical Aspects of Simulation.. 27

4.1 Random Number Generation .. 27

4.2 Statistical Monitoring ... 28
4.2.1 Tally ... 28
4.2.2 Accumulate .. 29

5. Acknowledgments.. 31

5.1 References.. 31
5.1.1 Footnotes ... 31

 ii

Abstract

SIMSCRIPT II.5 is a powerful simulation language in active use for major simulations,
particularly in engineering applications. These notes illustrate just enough of the features
so that simple simulations programs can be written.

SIMSCRIPT II.5 Simplified

 b

1. Introduction

SIMSCRIPT II.5 is a powerful, free form, English-like, general-purpose simulation
programming language. It supports the application of software engineering principles,
such as structured programming and modularity, which impart orderliness and
manageability to simulation models.'' [(Russell)(1983)] is available for a range of
computers including PCs running Windows and NT and also Unix workstations.

These notes introduce only a few features of , enough for simple simulations. Many
features of the language are left out. You are strongly urged to refer to the more
comprehensive information found in the manuals such as [(CACI83)(1997)], and
[(CACI89)(1989)], and other books such as [(CACI97)(1997)] and [(Russell)(1983)].
Nor do the notes show how to compile and run programs.

The first section is treated as a general-purpose computer language. It has all the
programming structures that we are used to seeing in computer languages and it can be
used for normal calculations just like Pascal, Java, or Python.

The second section describes the special additions that make into a simulation language.
These include simulation time, processes, and resources.

In the third section the statistical routines used for generating random numbers and for
monitoring simulations are described briefly.

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Simplified

 2

2. Simscript II.5 Language Elements

 SIMSCRIPT II.5 is a computer language with all the usual elements.

2.1 Program Structure

Every program must have a main program. In addition, it may contain a preamble and a
number of routines.

main program

Every program must contain one main program which is the main processing
part.

preamble
This contains all global declarations. It is not always required. If it is included it
must be listed before the main program.

routines
Such as Functions, Subroutines, Events, and Processes. These are not always
required but will be needed in simulation programs.

2.2 The Main Program

The main program starts with the word main. All blocks finish with end

Example 2.1. From time immemorial, the first program that learners write is the one that prints out
``Hello World!''. Here it is in SIMSCRIPT II.5. It consists of just one main block.
main
 print 1 line
 thus
Hello World!
end '' main

Comments begin with two, single quotes. The rest of the line is treated as a comment and
ignored by the compiler.

Convention: The comment attached to the end (though it is not needed) indicates the
name of the block or routine that is terminating. It used to be the convention that basic
words are in lower case and identifiers are in upper case. You will find this in much of
the documentation. It is not required.

Example 2.2 This is an illustration of a main program. It contains variable declarations, creation
of resources, input, process activation, starting a simulation and calling a routine. Don't worry
about the details now - they will be explained later. (This would not run by itself)
main
 define title as a text variable
 define no.of.tellers as an integer variable
 define lambda and mu as double variables

SIMSCRIPT II.5 Simplified

 create every teller(1)
 read no.of.tellers, lambda, and mu
 let u.teller(1) = no.of.tellers

 activate a customer now
 start simulation
 call report '' calling a subroutine
end ''main

2.3 Variables

Variable names can be any combination of letters, digits, and periods that contains at
least one letter or two or more nonterminal periods1. Variables should be explicitly
declared with a define variable-list statement which specifies a list of variables as being
of a given mode2.

Example 2.3 Here we define one variable of integer mode, two of double mode and one of text
mode.
define Next.Customer as an integer variable
define Weight, Length, and Height
 as double variables
define my.title as a text variable

The variable-list can take a number of alternative forms. The variable names can be
separated by any of the following: ``,'' or ``and'' or ``, and''. The choice is up to you and is
intended to make the program more readable. See [(CACI83)(1997)]. Similarly, the word
an (which could be a) in the first definition, above, is optional and is there for
readability3.

Convention: All variable names must be defined explicitly.

2.3.1 Modes

Variables can be of a number of modes (called types in other languages):

• integer

• real

• double (increased precision reals)

• text (for strings of text)

• pointer
integer, real, and double modes are intended for numerical calculations, text for string
handling, and pointer for handling temporary entities and processes (to be considered in
Section 3.2.1). At the start of a program all variables are initialized to zero or a blank
value.

 4

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Language Elements

2.3.2 Local and Global Variables

A variable is only known within the routine it is defined in. It is a local variable.
Variables declared in the preamble (Section 2.4) are global and are know and can be
used throughout the program.

2.3.3 Arrays

SIMSCRIPT II.5 does have arrays. They are defined as follows:

Example 2.4 Defining 1- and 2-dimensional arrays.
define Vector as a 1-dimensional integer array
define Matrix as a 2-dimensional, real array

Before an array can be used its dimensions must be reserved (in the main block or a
subprogram, not in the preamble). This allows one to have arrays where the number of
elements is not known until the program is running4.

Example 2.5 Reserving dimensions for the arrays defined in Example 2.4. The first line provides
a 10-element vector of integers, referred to as Vector(1) to Vector(10). The second a 5 by 7 matrix
of real numbers whose elements are referred to as Matrix(i,j), for example.
reserve Vector as 10
reserve Matrix as 5 by 7

2.4 The Preamble

The preamble is the section where global variables are defined. It must precede the main
program and other routines and contain no executable statements.

To ensures that any variables not declared are flagged by the compiler the preamble
must contain the line

normally, mode is undefined
Example 2.6 A preamble showing declarations of two processes, some resources and a number of
global variables. The tally and accumulate statements set up statistical monitoring routines. Don't
worry about the details at the moment. The idea is to see the sorts of declarations that occur in a
preamble. It has no executable statements.

preamble
 normally, mode is undefined
 processes
 every customer has an Arrival.time
 define Arrival.time as a real variable
 resources include Teller

 define no.of.tellers, and no.of.customers

 5

SIMSCRIPT II.5 Simplified

 as integer variables
 define Time.in.bank and Waiting.time
 as real variables

 tally Avg.Wait as the average of Waiting.time
 accumulate Avg.Line as the average of N.Q.Teller
end '' preamble

2.5 The Assignment Statement

All statements start with a key word such as let, add, subtract (though the let can be
eliminated if preferred).

Example 2.7 The first two lines show assignments with the let key word; The next shows an
assignment without let. The next is an arithmetic assignment and the last two show what are
effectively assignments using add and subtract.
 let Teller = 1
 let closing.time = closing.time/hours.v
 Number.of.Tellers = 10 '' key word 'let' is omitted here
 let no.of.customers = no.of.customers + 1
 add 1 to no.of.customers
 subtract 1 from no.of.customers

2.6 Input and Output

In this introduction we will use only a simple free-format read statement and one simple
and one formatted print statement. More complicated ones are available.

2.6.1 Free-form Input (read)

The free-form read variable-list statement is the simplest form of input. The variable-list
can have variables of any mode. Data can be entered from the terminal (i.e. the system
input file) or read from a file5. Be careful with variables of mode text as the value entered
cannot contain blanks.

Example 2.8 This read statement assigns values to the 4 variables. Note that in , statements are
not limited to a single line.
 read no.of.tellers, lambda, title
 and closing.time
Since the list of variables6 can use both commas and the word and we could also write the above
read statement like this:
 read no.of.tellers, and lambda,
 and title, and closing.time

2.6.2 Quick-and-dirty output (list)

 6

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Language Elements

This is used to help in debugging but should not be used in the final forms of programs in
assignments. The list variable-list displays the values of the variables in the variable-list
on the screen.

Example 2.9 This list statement prints the values of variable x, lambda and no.of.tellers:
 list x, lambda, and no.of.tellers
This results in the following output.
X = 2.0000000000
LAMBDA = 5.3300000000
NO.OF.TELLERS = 4.0000000000

2.6.3 Output with a Template (print)

The print variable-list thus statement, introduced here, is the main form of output we will
use in the course7. It prints the values of every variable in the variable-list in a form
specified by a template.

The template is a pattern showing how the values are to be presented. It can contain
words other than the data being printed. Every variable in the variable-list will have a
corresponding asterisk (*) pattern. Integer and text mode variables should be printed with
the form *** (the number of * indicating how many digits or characters to print). Real and
double mode variables will have a pattern including a decimal point somewhere (such as
***.** for a value with 3 digits or spaces before the decimal point and 2 after it).

Example 2.10 The general form is
print N lines with {variable-list}
thus
 {N lines of template
 with one group of *** or ***.**
 for every variable}

However you must be careful to count the exact number of lines used. One common error
is to use too few lines and try and print from the next line which may be part of the
program.
Convention: Leave an extra blank line after a print statement.

Example 2.11 This print statement prints 5 lines with values of the 7 variables or arithmetic
expressions.
 print 5 lines with
 no.of.tellers, lambda, mu, and closing.time*hours.v,
 Avg.Line, Avg.no.of.Custs, and
 Avg.Wait*Minutes.per.day
 thus
 N= ** lambda= **.** mu= **.**
 closing time = **
 Avge line = *.**
 Avge customers = *.**
 Avge wait = ***.**

 '' next program line here, thus leaving a blank

 7

http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Simplified

 '' after the print statement for safety.

2.7 Program Flow

 SIMSCRIPT II.5 has all the usual program structures, such as if-then-else (or if-else-
endif), for-do-loop, until and while loops, etc8.

The if structure has no then, and the statement is terminated by endif9. The else part can
be omitted but the endif must be retained.

Example 2.12 An example of the if structure:
if A > B
 let Maxvalue = A
 read C
else
 let Maxvalue = B
 read D
endif

while loops are similar to until loops. For all the iterative structures, the group of
statements to be executed must be surrounded by a do-loop pair.

Example 2.13 Some examples of looping program structures. Here, in each case, 100 values are
read sequentially into the vector x()
for i = 1 to 100
do
 read x(i)
loop

let i = 1
until i > 100
do
 read x(i)
 add 1 to i
loop

let i = 1
while i <= 100
do
 read x(i)
 add 1 to i
loop

2.7.1 Selector Phrases

The for, while, and until statements can be enriched by using one or more selector
phrases to accept or reject a loop iteration. The when and unless phrases test the value of
a logical expression and execute the inside of the loop if appropriate.

Example 2.14 Here baggage is only counted if it is over 1 except if it belongs to Vignaux.

 8

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Language Elements

for count = 1 to No.of.seats
 when Baggage(count) > 1
 unless Owner(count) = "Vignaux"
 do
 add Baggage(count) to Total
 loop

2.8 Routines

Routines in SIMSCRIPT II.5 are like subroutines or procedures in other programming
languages. They are declared after the main block and not inside it. They are called from
other subprograms (not the preamble). Of course, they may define local variables and
use global variables.

Example 2.15 Here a routine is defined. It has a local variable, i and refers to Num.Ambulances
which, we assume, is global and defined in the preamble.

routine Initialise
 define i as an integer variable

 read Num.Ambulances
 let i = 0
 until i eq Num.Ambulances
 do
 let i = i + 1
 create an Ambulance
 activate this Ambulance now
 loop
end '' routine Initialise

Routines are executed using the call statement. For example:

Example 2.16 Executing a routine using a call statement:
call Initialise

2.8.1 Arguments

Routines can be given arguments and return results. The arguments supplying data are
separated from those returning the result. This is done using the keywords given and
yielding.

Arguments behave like local variables and their mode must be declared immediately after
the routine heading. As they are local to the routine, they can be given any names you
like.

Example 2.17 This routine calculates the value of Profit given the amount of Production.
routine Profit.Calc given Production yielding Profit
 define Production, Profit as double variables '' arguments
 define Fixed, Contribution as double variables '' local

 9

SIMSCRIPT II.5 Simplified

 let Fixed = 10000.0
 let Contribution = 20.0
 let Profit = - Fixed + Contribution*Production
end '' Profit.Calc
Example 2.18 The above routine would be called like this:
call Profit.Calc given 50000.0 yielding The.Profit

Instead of given you can enclose the given arguments in parentheses, (). Convention We
usually declare and call routines with a list of given arguments enclosed in parentheses.
You don't need the word given then.

Example 2.19 For example, the above definition could be written:
routine Profit.Calc(Production) yielding Profit
 define Production, Profit as double variables
 '' lots of calculations
end '' Profit.Calc
Example 2.20 We could call the routine like this:
call Profit.Calc(50000.0) yielding the.Profit

A routine finishes when the program ``drops off the end'' of the routine. You can finish at
another part by the return statement.

WARNING: does not automatically convert integer mode arguments to real or double.
So don't forget to put the decimal point in real or double arguments when you call a
routine!

2.8.2 Functions

Functions are routines that return a value and can be called as part of an arithmetic
expression. The value is returned by using the return with or the return() statement. They
are not executed using the call statement like routines but are used within expressions to
return a value. They must be defined as functions in the preamble. In this definition you
can set the mode and you can (and should) state the number of given arguments.

Remember that the arguments and any other local variables are not recognized outside
the function. The only communication with the main and other routines is via the
arguments in the call command and the return value10.

Of course there are also many pre-defined functions, which you do not have to define
yourself.

Example 2.21 We define a Normal.fn. In the preamble we define it as a double function and
specify the number of arguments:
preamble
 normally, mode is undefined
 define Normal.fn as a double function
 given 2 arguments
end '' preamble

 10

http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Language Elements

Example 2.22 The function code would appear after the main block and would look something
like this:
function Normal.fn (Mean, Std.Dev)
 define Mean and Std.Dev as double variables
 ...
 return(XXX) '' some arithmetic result
end '' Normal.fn
Example 2.23 It would then be called like this:
let x = Normal.fn(10.0,2.1)
 '' note the decimal points for doubles !

Here is an example of a complete program with a preamble and a function that
multiplies two variables.

Example 2.24 The multiply function is declared in the preamble and defined later. It is called in
the main block.
preamble
 normally, mode is undefined
 define x,y, and z as double variables
 define multiply as a double function given 2 arguments
end ''preamble

main
 read x,y
 let z = multiply(x,y)
 print 1 line with x,y,z thus
****.** times ****.** is *******.**
end '' main

function multiply(a,b) '' Definition of the function
 define a,b as double variables
 return (a*b)
end '' multiply

2.9 Predefined Elements

There are many pre-defined functions, routines, variables and constants11. You do not
have to define these. Pre-defined elements have special suffices, for example: .f for
functions, .r, for routines, .v for variables, and .c for constants. Some examples are:

Function abs.f(arg) absolute value of arg
Routine date.r the current date
Variable hours.v hours per day

Constant pi.c

value of �

 11

http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Simplified

 12

3. Simulation with SIMSCRIPT II.5

We now look at some of the special facilities provides for the simulation programmer.
They include entities, sets, processes, resources, and, importantly, ways of recording and
elapsing simulation time.

3.1 Simulation Time

All discrete-event simulation programs have the simulation time maintained in a software
clock. In this is called

time.v
time.v is a double variable. It is sed to record and print out the current simulation time
particularly in controlling the simulation and in producing traces of its operation12. Do
not attempt to alter time.v yourself.

Time is measured in units13

During the running of a simulation program, time steps forward from one event to the
next. An event occurs whenever the state of the simulated system changes. For example,
an arrival of a customer is an event. So is a departure.
Execution of this timing mechanism does not start until the following statement appears
in the main block of the program:

start simulation
The simulation then starts, the timer routine seeking the first scheduled event14. It
continues to run until there are no further events to execute. This is the usual method of
ending a simulation.

More statements can be executed after the simulation (like the call Report in Example
3.1).

The program can be terminated using the stop statement.

Example 3.1 This shows only the main block in a simulation program. Activating the
PoissonProcess has the effect of scheduling at least one event15. The start simulation will make
the programme jump to that event When the simulation ends the Report routine is called.
main
 call Initialise
 activate a PoissonProcess now

 start simulation
 call Report
end '' main

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Simplified

3.2 Entities

Before we look at processes we must look briefly at entities. An entity is an element of
the system being simulated that can be individually identified and processed16. In they
can be either permanent or temporary. They are defined in the preamble using either an
include or an every declaration statement (every statements will be dealt with in Section
3.2.2.)

Example 3.2 Defining some entities.
preamble
 normally, mode is undefined
 permanent entities
 include Teller, Computer
 temporary entities
 include customer, Task

end '' preamble

We will not say much about permanent entities in this simplified version of the language
though they will be used, in the form of resources (see Section

3.5).

3.2.1 Creating and using Temporary Entities

Temporary entities must not only be defined in the preamble, they must be created before
they can be used.

Example 3.3 Assuming that the customer has been defined as a temporary entity we can create it
as follows17:
create a customer

When a temporary entity, say customer, is created:
• a section of memory is allocated to hold its attribute values (see section 3.2.2 to

find out what attributes are) and

• a single global variable customer points to this memory space.
When we create another customer, the same global integer variable customer then points
to the location of the new entity. (c.f. the new statement in many modern languages). We
would not use that global value but define and use a pointer variable to refer to the new
entity. So it is better (and our convention) to create temporary entities in the following
form (where PV is previously defined as a pointer variable). PV can then be used to refer
to the new entity.

Example 3.4 Creating a customer with a pointer that can be used to refer to it.
create a customer called PV

An entity can later be destroyed. It is best to do this by way of the pointer variable. Just
as the create statement needed the entity as well as the pointer, so does the destroy
statement.

 14

http://www.mcs.vuw.ac.nz/~vignaux/docs/

Simulation with SIMSCRIPT II.5

There is an important difference between the create and destroy statements. We create a
customer called PV but destroy the customer called PV.

Example 3.5 Here we define pointer variables Fred and Valerie which are used to access the two
different temporary customer entities. We then get rid of Fred using the destroy the command.
Note the different usage of a and the in the two statements.

define Fred, Valerie as pointer variables
 ...
create a customer called Fred
create a customer called Valerie
 ...
destroy the customer called Fred

3.2.2 Attributes of Entities

An attribute is a property of an entity that conveys extra information about it. Attributes
can be used to identify a sub-class of entities (e.g. red cars) or values for an individual
entity (a customer number) or to control its behavior. The programmer can define
attributes for the entities in the program.

We define an entity with attributes by the every statement in the temporary entities
section of the preamble, instead of the include statement. You state what attributes the
entity has and define their modes.

Convention: The modes of attributes of entities are defined immediately they are specified
and are given names that start with a prefix indicating the entity that they belong to.

Example 3.6 Here we define temporary entities without (Task) and with (customer) attributes:
preamble
 normally, mode is undefined
 temporary entities
 include Task ''(no attributes)
 every customer has a cu.Arrival.time
 define cu.Arrival.time as a double variable
 ...
end '' preamble

Later in the program you can use the attribute, indexed by the global entity name or a
pointer variable

Example 3.7 Using the Fred pointer variable to set the Arrival.time for that particular customer.
main
 define Fred as a pointer variable
 ...
 create a customer called Fred
 let cu.Arrival.time(Fred) = 11.4
 ...
end '' main

 15

SIMSCRIPT II.5 Simplified

3.3 Sets

A set is an ordered list of entities, like a queue. Sets must be defined in the preamble and
must have an owner. The owner is often another entity. In some cases this is not
appropriate so we can specify that a general-purpose owner, the system, can own a set.
When you define an entity in the preamble, you must specify what sets it can belong to
and what sets it owns.

Example 3.8 Here, each of the Job entities has its own list of Tasks to be done, the Task.list held
as a set. The Job can be put on (it belongs to)18 the single Job.queue which is owned by the
system.

preamble
 temporary entities
 every Task
 has a Tk.duration,
 and belongs to a Task.list
 define Tk.duration as a double variable
 every Job
 has an Jb.arrival.time,
 owns a Task.list, and
 belongs to a Job.queue

 the system owns the Job.queue
 ...
end '' preamble

Sets (queues), if not further defined, are assumed to have a normal FIFO (First-in, first-
out or First-come, first served). Otherwise they can be defined as being a LIFO set.
Alternatively a set can be ranked by combinations of attributes of the entities that can
belong to it. This is specified when the belongs phrase is used (See the define .. as a set ...
in Example 3.9).

Example 3.9 Here the Task.list contains Tasks filed in order of low values (ascending order) of
Tk.duration.
 temporary entities
 every Task
 has a Tk.duration,
 and belongs to a Task.list
 define Tk.duration as a double variable
 define Task.list as a set
 ranked by low Tk.duration

Entities are put into and removed from sets by statements in the routines of the program.
They are added to a set using the file statement (See line 5 in Example 3.10), and taken
out using the remove statement (Line 7 in Example 3.10). The entities are filed in the
appropriate order automatically.

Sets have a number of standard attributes, automatically defined and updated for you (see
Section 3.6). A most useful one is the number of entities in the set. For a set called Q, the

 16

http://www.mcs.vuw.ac.nz/~vignaux/docs/

Simulation with SIMSCRIPT II.5

number of entities it holds is N.Q. This is automatically updated whenever entities are
added to or removed from the set.

You can test if a set is empty or not using the forms Q is empty or Q is not empty. You
can also ask if a particular entity, say E, is in the set using: E is in Q or E is not in Q.

Example 3.10 (following on from Problem 3.8) Here we create a Job100 and a Task which is put
onto Job100s Task.list. The print statement (6) outputs the number in the Task.list. We can remove
the task from the set (7). The particular statement used does not destroy the task and it can be
accessed using tt.

 1) define Job100, and tt as pointer variables
 ...
 2) create a Job called Job100
 3) create a Task called tt
 4) let Tk.durationn(tt) = 100.0
 5) file tt in the Task.list(Job100)
 ...
 6) print 1 line with N.Task.list(Job100) thus
 Number in task list is ****

 7) remove the first tt from the Task.list(Job100)
 ...
 8) if the Task.list(Job100) is empty
 9) print 1 line thus
 10) Set is empty
 11)
 12)endif

3.4 Processes

We now come to the main tool for discrete-event simulation. A process is a sequence of
events that describes the experience of an entity as it lives its lifetime. For example, a
message turns up in a computing network; it makes transitions between nodes, waits for
service at each one, and eventually leaves the system. All these are events.

In a process is represented as an entity associated with a process routine that describes
the life-cycle. This entity is a temporary entity (but is defined in a separate section of the
preamble as a process). A process can have attributes. Different individual processes
(e.g. individual customers) are created as the program runs. The routine, which describes
the sequence of events, is called the process routine and is written in the program as a
routine with the same name as the entity.

3.4.1 Defining a Process

A process entity is defined with or without attributes in a processes section of the
preamble. Processes can own and belong to sets.

 17

SIMSCRIPT II.5 Simplified

Example 3.11 Here we define a message process (with no attributes), a clock, and a customer
process (with attributes).

preamble
 normally, mode is undefined
 processes
 include message '' a process with no attributes

 every clock has a cl.int
 define cl.int as a real variable

 every customer has an cu.Arrival.time
 define cu.Arrival.time as a real variable
end '' preamble

3.4.2 Process Routine

The process routine is, like other routines, declared after the main block but uses the
keyword process. Its name must be that of the process defined in the preamble. The
process starts executing the routine when it is activated.

Example 3.12 A process routine for a ticking clock. int is the time interval between ticks. It
would be defined as an attribute of the process entity and an argument of the process routine.

process clock(int)
 define int as a double variable
 define i as an integer variable
 for i = 1 to 10
 do
 print 1 line with time.v
 thus
. tick
 wait int units
 loop
end '' clock

3.4.3 Creating a Process Entity

A new process entity appears when the process is created or activated. To create and start
a new process in one step, use the activate statement. Pointer variables can be used to
reference such new processes.

Example 3.13 We activate two messages immediately. the word a indicates that we are both
creating and activating new messages (they have no attributes). The word now implies no
simulation delay before the process starts.

 activate a message now
 activate a message called mmm now

 18

Simulation with SIMSCRIPT II.5

It is also possible to give values to the attributes of the process before it is activated. This
is done by first creating it, setting the attribute values and then activating it.

Example 3.14 Here the customer is created first, given an attribute value, then activated. The
word the is used to indicate we are not creating a new customer when we activate. The attribute
cu.Arrival.time here records the time the customer is created.
create a customer called Fred
let cu.Arrival.time(Fred) = time.v
activate the customer called Fred now

Processes do not have to be activated immediately.

Example 3.15 Here we activate a Job to start at some (random) time in the future and activate a
customer (to be called Fred) immediately, and a bus when time.v becomes 120.0 time units. The
word a indicates that these processes are being created.

 activate a Job in exponential.f(13.33, 2) hours
 activate a customer called Fred now
 activate a Bus called b at 120.0 units

3.4.4 Activating a Process with Attributes and Arguments

A process with attributes may have a corresponding routine with arguments that
correspond in mode but not name to the attributes of the process entity.

Example 3.16 For the customer process definition shown in Example 3.11, a corresponding
process routine fragment might be:

process customer(ArrTime)
 define ArrTime as a real variable
 ...
end '' customer

We can then activate the process and at the same time assign a value of 13.3 to the
attribute cu.Arrival.time by either of the following methods:

1. Assign an cu.Arrival.time with the value of the process argument, ArrTime, when
the routine starts.
Example 3.17 Process argument used19:
activate a customer called Fred given 13.3 now

2. Set the value of the attribute and then activate the process. This ignores the
process argument:
Example 3.18 3-step process:
 create a customer called Fred
 let cu.Arrival.time(Fred) = 13.3
 activate the customer called Fred now

However, a process attribute, such as cu.Arrival.time, and a process routine argument,
such as ArrTime, cannot have the same name20.

 19

SIMSCRIPT II.5 Simplified

3.4.5 Elapsing Time in a Process

Within a process routine the process can wait or work for some time interval measured in
units. (It can also request and relinquish resources as described later in Section 3.5). In
this way it can simulate the elapsing of time.

Example 3.19 The process will hold for a random time with mean 10.0 units.
 work exponential.f(10.0, 3) units

wait and work are effectively synonymous but work is more appropriate if a resource is
being used.

A process disappears when it is destroyed or when it runs off the end of its routine.
Convention: we do not usually destroy processes. instead, allow them to run off the end
of the routine.

3.4.6 A Complete Program Using wait Commands

Example 3.20 This program simulates a firework with a time fuse. It contains a preamble to
define the firework process. I have put in a few extra wait commands
preamble
 normally mode is undefined
 processes
 include firework
end '' preamble

main
 activate a firework in 20.0 units
 start simulation
end ''main

process firework
 define i as an integer variable
 print 1 line with time.v thus
*****.** firework activated

 wait 10.0 units
 for i = 1 to 10
 do
 wait 1.0 unit
 print 1 line with time.v, and i thus
*****.** tick **

 loop
 wait 10.0 units
 print 1 line with time.v thus
*****.** Boom!!
end '' process firework
The output from the program in Example
 20.00 firework activated
 31.00 tick 1

3.20 is :

 20

Simulation with SIMSCRIPT II.5

 32.00 tick 2
 33.00 tick 3
 34.00 tick 4
 35.00 tick 5
 36.00 tick 6
 37.00 tick 7
 38.00 tick 8
 39.00 tick 9
 40.00 tick 10
 50.00 Boom!!

One useful program pattern is the generator (See Example 3.21). This is a process that
generated events or activates a number of other processes as a sequence - it is a source or
generator of other processes. Random arrivals are generated using such a process.

Example 3.21 The generator pattern. A process to generate a series of customers to arrive at
intervals of 10.0 units of time. To achieve ``random'' arrivals of customers the wait statement
should use an exponential random variate instead of, as here, a constant 10.0 value.

process Generator
 while time.v < Finish.time
 do
 activate a customer now
 wait 10.0 units
 loop
end '' Generator

3.4.7 Interactions of Processes

The various states that a process can exist in are shown in this diagram:

An executing process can suspend itself and can be sent a reactivate command by
another process.

Example 3.22 The process itself would say
suspend

and (some other process) would reactivate using the form:

Example 3.23 reactivation by a second process.
reactivate the customer called Fred now

3.4.8 Interruptions

A pending process (one that is waiting for an event to occur) can be interrupted and later
resumed by another routine.

Example 3.24 Here we are in some routine (not the customer routine. The customer called Fred
is interrupted, filed in a set. It is held there for 20.0 units and then resumed.
 interrupt the customer called Fred now

 21

SIMSCRIPT II.5 Simplified

 file Fred in Interrupted.Set
 wait 20.0 units
 remove the first customer called Fred
 from the Interrupted.Set
 resume the customer called Fred

Example 3.25 In this program example the Arrival.Generator is interrupted by the terminating
process Close.Doors. This routine prints out a report and then stops the program, even though
some processes have not yet finished. First we look at the preamble and main blocks.

preamble
 normally mode is undefined
 processes
 include Arrival.Generator,and Close.Doors
 every customer has a cu.number
 define cu.number as an integer variable

 define Day.Length, Mean, sojourn
 as real variables
 define count.departs, and count.arrivals
 as integer variables
end '' preamble

main
 call Read.Data ''reads 3 global variables
 count.departs = 0
 count.arrivals = 0
 activate an Arrival.Generator now
 activate a Close.Doors in Day.Length units
 start simulation '' it starts operating here
 call Report
end '' main
Example 3.26 Following on from Example (3.25) we list the processes and routines.
process Arrival.Generator
 define i as an integer variable
 for i = 1 to 1000000
 do
 wait exponential.f(Mean,1) units
 activate a customer(i) now
 add 1 to count.arrivals
 loop
end '' Arrival.Generator

process customer(id)
 define id as an integer variable
 print 1 line with time.v, and id thus
. customer *** arrives

 wait exponential.f(sojourn,2) units
 print 1 line with time.v, and id thus
. customer *** departs
 add 1 to count.departs
end ''customer

process Close.Doors
 interrupt Arrival.Generator

 22

Simulation with SIMSCRIPT II.5

 call Report
 stop
end ''Close.Doors

routine Read.Data
 read Day.Length, Mean, and sojourn
end '' Read.Data

routine Report
 print 2 line with count.arrivals
 and count.departs thus
***** customers arrived
***** customers departed
end '' Report

Example 3.27 An example of the trace output from a run of this program is as follows:
 .078 customer 1 arrives
 1.803 customer 2 arrives
 3.219 customer 3 arrives
 3.242 customer 4 arrives
 3.619 customer 3 departs
 4.643 customer 5 arrives
 4.803 customer 6 arrives
 5.146 customer 1 departs
 5.222 customer 7 arrives
 5.404 customer 8 arrives
 5.654 customer 8 departs
 5.847 customer 7 departs
 6.315 customer 9 arrives
 6.860 customer 2 departs
 7.285 customer 6 departs
 7.765 customer 10 arrives
 7.882 customer 9 departs
 10 customers arrived
 7 customers departed

3.5 Resources

A resource models a congestion point where there may be queuing. For example in a
manufacturing plant, a Task (modeled as a process) needs work done at a particular sort
of Machine (modeled as a resource). If not enough Machines are available; the Task will
have to wait until one becomes free. The Task will then have the use of a Machine for
however long it needs. It is not available for other Tasks until it is released. These actions
are all automatically taken care of by the resource.

A resource can have a number of different types. There may be three types of Machine
resource, perhaps, lathe, cutter, and polisher. A Ship may be a tanker, a general cargo
ship, or a ferry. Each different type of a resource has a number of units. This records how
many of that type there are initially.

 23

SIMSCRIPT II.5 Simplified

In a resource is modeled as a special kind of permanent entity. A process gets service by
requesting and, when it is finished, by relinquishing the resource. A resource maintains a
set (a queue or list) of processes using units of each type the resource and another set of
processes waiting for units of it. These sets are defined and updated automatically.
Resources are defined in the preamble in a special section labelled resources. A resource
can have user-defined attributes.

Example 3.28 Here Teller is defined as a resource without user-defined attributes. Ma.name is a
user-defined attribute for the resource Machine.
resources
 include Teller
 every Machine has a Ma.name
 define Ma.name as a text variable

A resource also has standard attributes defined automatically (See Section 3.6). These
record how many units of each type of the resource are free, how many processes are
waiting for it, etc. For example, the number of types of a resource R is held in the
variable N.R. Type i is referred to as R(i) where i = 1 to N.R. Each type has a number of
units. The number of units of type i is referred to as U.R(i).

Once a resource has been defined in the preamble it must have storage allocated for its
attributes in the main block21. First you must specify the number of types (N.R); then you
create all the types (create every R), then you specify how many units of each type
(U.R(i)).

Example 3.29 A group of Machines (a resource) might have 2 different types (N.Machines =
2).There can be different numbers of units of each type:
let N.Machines = 2 '' the number of TYPES

create every Machine ''creates storage

let U.Machine(1) = 4 '' the number of UNITS of type 1
let U.Machine(2) = 1 '' the number of UNITS of type 2

You can get information about the set of processes that are using units of the
resource and those of processes that are waiting. For resource R the set using units of
type i is known as X.R(i); the set waiting for it as Q.R(i). Then, of course, since Q.R(i) is
a set, we can find out how many processes are waiting from the set attribute N.Q.R(i).

Example 3.30 for the Machines, in Example3.29, look at type 1 Machines only (there are 4 of
them)
Q.Machine(1) '' the set of processes waiting for a
 '' type 1 Machine
N.Q.Machine(1) '' the number of processes waiting
X.Machine(1) '' the set containing resources using
 '' units of a type 1 Machine
N.X.Machine(1) '' the number of processes using units

 24

Simulation with SIMSCRIPT II.5

3.5.1 Using Resources

The process routines will contain statements to interact with the resource. These are the
request and the relinquish statements. To use a resource for a time a process will request
a number of units of the particular type. If they are available they are allocated to the
process, which then holds them until releasing them. If they are not available, the
processes will he held on the waiting queue until some come free. The process will
suspend its operation until it receives its request. See Example (3.31).

On finishing with the resource the process must release it using the relinquish statement,
saying how many units of what type are to be released22.

Example 3.31 Here the Job requests, and if necessary waits for, one unit of a Machine of type 2.
On acquisition it then holds it while it works for a random time (exponentially distributed, mean
20.0) units and then relinquishes it again.
process Job
 request 1 Machine(2)
 work exponential.f(20.0,3) units
 relinquish 1 Machine(2)
end '' Job

3.6 Standard Attributes

Entities, sets, processes and resources have predefined standard attributes in addition to
those defined by the user. These are listed in the manuals. Only a few are tabulated here:

Some automatically generated attributes
routines and variables
Entities variable entity global variable

 variable N.entity no of entities in class (only
permanent entities)

Processes attribute time.a next scheduled entry time for
the process

Resources set Q.resource set of processes waiting for this
resource

 set X.resource set of processes using this
resource

 attribute U.resource number of idle units
Sets attributes F.set first entity in set
 of owner L.set last entity in set
 entities N.set number of entities in set
Sets attributes P.set pointer to predecessor in set

 25

SIMSCRIPT II.5 Simplified

 of member S.set pointer to successor in set

 entities M.set equals 1 if entity is in the set, 0
otherwise

Thus the processes waiting for a resource R are listed in the set Q.R and the variable
N.Q.R tells you how many there are.

To list them, you would start at F.Q.R which is the first one waiting. If First.one =
F.Q.R, the next one waiting is S.First.one (the successor to the first one).

 26

4. Statistical Aspects of Simulation

SIMSCRIPT II.5 provides a number of statistical facilities. These include random variate
generation with different seed streams and statistical monitoring methods. See
[(CACI)(1997)][Section 5.3].

4.1 Random Number Generation

There are 10 random number streams, numbered S = 1 ... 10. At any instant each stream
has an integer seed value, which is updated every time the stream is called on for a
random number. All the seed values are different. A stream's seed value can be found
from the variable seed.v(S).

The stream is updated using one of the random variable functions. All these have the
stream as a parameter and update that stream one or more times whenever they are called.

Example 4.1 Generating a random variable from stream 3.
let S = 3
let X = random.f(S)

In this example, the seed value for stream 3 is updated to the next ``random'' integer and
the real value X = seed.v(3)/(231 1) is returned as a real random variable23. Thus 0 < X < 1.

Thus random.f(S) generates apparently uniform random deviates between 0 and 1. It uses
one of the 10 random number seed variables. Each seed sequence of random integers is
supposedly independent of of the others.

The initial values of the seed integers (the starting seeds) from each of the STREAMs are
initialized by at the start of a run. They are listed at the start of Appendix C of
[(Russell)(1983)]. For example, seed.v(1)=2116429302. You can supply your own initial
integer values if you want:

Example 4.2 Set the initial seed value for stream 3 to 2345.
 let seed.v(3) = 2345

Pseudo-random variables can be generated from a number of distributions24:
• binomial.f(N,P,STREAM)

• erlang.f(Mean,K,STREAM)

• exponential.f(Mean,STREAM)

• gamma.f(Mean,K,STREAM)

• log.normal.f(Mean,StdDev,STREAM)

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Simplified

• normal.f(Mean,StdDev,STREAM)

• randi.f(Start,Finish,STREAM)

• uniform.f(Start,Finish,STREAM)

These routines contain calls to random.f(STREAM) and use the corresponding seed
stream.

Example 4.3 To generate a sample, x, from an exponential distribution with mean 20.0, using
STREAM 1, one would use the following call. Notice that I have been careful to put in a decimal
point into the first argument which must be real.
 x = exponential.f(20.0,1)

NOTE: You must use real values if a routine requires a real argument. For example
exponential.f(3, 1) will not give you a sample from an exponential with mean 3. Instead,
you must use the call exponential.f(3.0, 1). does NOT automatically convert
arguments from integer to real.

4.2 Statistical Monitoring

Any global variable can be automatically monitored by the system to calculate statistics.
Little change has to be done to the program except by the addition of a special statement
in the preamble. The two types of monitoring are tally and accumulate.

4.2.1 Tally

tally takes a sample every time the variable is changed. It is intended to monitor a number
of individual observations, such as waiting times.

Example 4.4 here in the preamble we define two global variables25 and then indicate that they
are to be monitored using the tally statement. The tally statement specifies that we want to find
both the mean and standard deviation of the values of the waiting.time.
preamble
 ...
 define Waiting.time and Time.in.bank as real variables
 ...
 tally Avg.Wait as the mean ,
 and Sd.Wait as the std.dev of Waiting.time
 ...
end ''preamble
Later in the main part of the program the mean and standard deviation of the Waiting.time can be
used:
 print 1 line with Avg.Wait and Sd.Wait thus
Waiting time: mean = ****.***, sd = ****.***

 28

http://www.mcs.vuw.ac.nz/~vignaux/docs/

Statistical Aspects of Simulation

4.2.2 Accumulate

accumulate is intended to monitor variables that are continuous in time such as the length
of a queue. Although it changes discretely, there is always a queue length existing26.

accumulate calculates the time-integrals of the value such as the average queue length.

Example 4.5 Here the queue at the Teller is to be monitored to determine the average of the
number waiting for the Teller (held in N.Q.Teller).
preamble
 ...
 resources include Teller
 ..
 accumulate Avg.Line
 as the mean of N.Q.Teller
 ...
end '' preamble
Then in the main part of the program we could find out the average length of the line so far:
 print 1 line with Avg.Line thus
The average number waiting so far is ****.***

tally and accumulate can calculate a number of different statistics: number, sum, mean,
sum.of.squares, mean.square, variance, std.dev, maximum, minimum.

 29

http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Simplified

 30

5. Acknowledgments

Students in OPRE352 and COMP349 classes have, year by year, improved these notes by
their comments and questions. I am also particularly grateful to Jay Braun, the author of
the Reference Handbook, [(CACI83)(1997)], and now with JPL, who kindly corrected a
number of mistakes and suggested changes.

I will be grateful for any corrections or suggestions for improvements to the document
from students, experts, or anyone accessing it over the Web. My email address is
Tony.Vignaux@vuw.ac.nz.

5.1 References

[(CACI83)(1997)]

CACI83 (1997). SIMSCRIPT II.5 Reference Handbook. C.A.C.I, 2nd edition.
[(CACI89)(1989)]

CACI89 (1989). UNIX SIMSCRIPT II.5 User's Manual. C.A.C.I.
[(Law and Larmey)(1984)]

Law, A. M. and Larmey, C. S. (1984). An Introduction to Simulation using
SIMSCRIPT II.5. C.A.C.I.

[(CACI97)(1997)]
CACI97 (1997). SIMSCRIPT II.5 Programming Language. C.A.C.I.

[(Pidd)(1992)]
Pidd, M., editor (1992). Computer Simulation in Management Science. Wiley, 3rd
edition.

[(Russell)(1983)]
Russell, E. C. (1983). Building Models with SIMSCRIPT II.5. C.A.C.I.

5.1.1 Footnotes

1 II.5 disregards all periods written at the end of names and numbers. Thus the names
flight...and flight.. become flight when the program is compiled. (SIMSCRIPT II.5
Reference Manual) You can have periods within an identifier.

2In the word ``mode'' is used instead of ``type''

3Don't read this! If a name is not explicitly declared, will declare it implicitly with
double mode. Implicit declaration is strongly discouraged because it can lead to errors
that are hard detect. We forbid this using a command in the preamble (see the beginning
of Section 2.4).

http://www.mcs.vuw.ac.nz/~vignaux/docs/
mailto:Tony.Vignaux@vuw.ac.nz
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

SIMSCRIPT II.5 Simplified

4Arrays can be multiply-dimensioned and can even be ``ragged'' where the rows are not
all of the same length

5In Unix systems, such a file can be read by redirection. For example, when running
program harbour that is written to read from the terminal and write to the terminal,
without changing the program we can make it read from datafile and write the results to
file results. using: harbour < datafile > results

6See the definition of variable list in the Reference handbook

7See the documentation for others

8it also has a case statement

9Or always, otherwise

10Or in Global variables

11See the Reference Handbook

12A trace is an output record that lists every event and the simulation time it occurred. It
is essential for debugging simulation code and can also be analyzed after a run to produce
statistical results. We will be using traces frequently.

13Other time units are days. hours and minutes. Convention: unless the simulation is
actually operating in days, hours and minutes, the term units will be used to measure
time.

14At least one process must be activated before the simulation is started otherwise no
simulation will occur

15See section 3.4 to find out more about processes

16[(Pidd)(1992)] treats entities more fully.

17The a is important

18You can use may belong to or can belong to instead of belongs to

19I get an error if the bracketed method is used though it is documented in the Reference
handbook

20If this sounds a bit complicated, that is because it is. For comments on this, see [
and Larmey)(1984)].

21or in another routine

(Law

 32

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

Acknowledgements

22If you do not balance the request and relinquish pair your program may grind to a halt

23Because the largest integer that the seeds can take is (2311)

24Yes, Valerie, there is a poisson distribution [poisson.f(Mean,STREAM)] but it is never
used in simulations. Understand? Never!

25Remember you can only tally global variables

26though it may sometimes be zero

 33

http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/
http://www.mcs.vuw.ac.nz/~vignaux/docs/

	Introduction
	Simscript II.5 Language Elements
	Program Structure
	The Main Program
	Variables
	Modes
	Local and Global Variables
	Arrays

	The Preamble
	The Assignment Statement
	Input and Output
	Free-form Input (read)
	Quick-and-dirty output (list)
	Output with a Template (print)

	Program Flow
	Selector Phrases

	Routines
	Arguments
	Functions

	Predefined Elements

	Simulation with SIMSCRIPT II.5
	Simulation Time
	Entities
	Creating and using Temporary Entities
	Attributes of Entities

	Sets
	Processes
	Defining a Process
	Process Routine
	Creating a Process Entity
	Activating a Process with Attributes and Arguments
	Elapsing Time in a Process
	A Complete Program Using wait Commands
	Interactions of Processes
	Interruptions

	Resources
	Using Resources

	Standard Attributes

	Statistical Aspects of Simulation
	Random Number Generation
	Statistical Monitoring
	Tally
	Accumulate

	Acknowledgments
	References
	Footnotes

